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Abstract

Land surfaces and soil conditions are key sources of climate predictability at the
seasonal time scale. In order to estimate how the initialization of the land surface affects
the predictability at seasonal time scale, we run two sets of seasonal hindcasts with the
general circulation model EC-Earth2.3. The initialization of those hindcasts is done
either with climatological or realistic land initialization in May using the ERA-Land re-
analysis. Results show significant improvements in the initialized run occurring up to the
last forecast month. The prediction of near-surface summer temperatures and
precipitation at the global scale and over Europe are improved, as well as the warm
extremes prediction. As an illustration, we show that the 2010 Russian heat wave is
only predicted when soil moisture is initialized. No significant improvement is found for
the retrospective prediction of the 2003 European heat wave, suggesting this event to
be mainly large-scale driven. Thus, we confirm that late-spring soil moisture conditions
can be decisive in triggering high-impact events in the following summer in Europe.
Accordingly, accurate land-surface initial conditions are essential for seasonal

predictions.
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1. Introduction

In the context of global warming and the associated increasing number of extreme events, such
as heat waves, droughts and floods, the predictability at seasonal time scale of extreme
temperature and precipitation events appears to be crucial for climate services, adaptation and
risk management (Challinor et al. 2005; Garcia-Morales and Dubus 2007; Thomson et al. 2006).
The feasibility of seasonal prediction largely rests on the existence of slow, and predictable,
variations in the ocean surface temperature, sea ice, soil moisture and snow cover, and how
the atmosphere interacts and is affected by these boundary conditions (Shukla and Kinter
2006). Ocean anomalies associated with El Nifio - Southern Oscillation (ENSO) and other
ocean phenomena, soil moisture, snow, and ice cover should be taken into account when
initializing the predictions (Balmaseda et al. 2008; Balmaseda and Anderson 2009).
Unfortunately, less information is available about the state of the climate components other than
the atmosphere (Balmaseda et al. 2007; Saha et al. 2010). Due to this source of initial-condition
uncertainty, but also other limitations as model inadequacy, and lack of appropriate
computational resources, the ability to make predictions on time scales longer than two weeks is
still limited (Palmer et al. 2005; Palmer et al. 2005b; Lee et al. 2011).

However, in the past years due to increase of the resolution (Fosser et al. 2014; MacLachlan et
al. 2014), the development of better initialization products (Guemas et al. 2014; Balmaseda et
al. 2009; Balsamo et al. 2015; Dee et al. 2009), and the improvement of model physics (Hourdin
et al. 2013; Frenkel et al. 2012) the skill of climate predictions at seasonal and longer time
scales has improved (Doblas-Reyes et al. 2013).

Despite the global improvement of seasonal prediction, our ability to forecast temperature and
precipitation in some regions such as Europe remains relatively low. On one side, the
pronounced warming trend since the 1980s is well captured by most of the seasonal
retrospective forecasts over Europe, which provides significant skill for two meter temperatures
(t2m, hereinafter) in this region (Doblas-Reyes et al. 2006). On the other side, the skill of
predicting the variability around the warming trends is much lower (Weisheimer et al. 2011).
This is mainly because the climate variability over Europe is controlled by a variety of
mechanisms, such as, the North Atlantic Oscillation (NAO, Rogers 1997; Rodwell et al. 1999),
the anomalous frequency of a set of weather regimes (Reinhold and Pierrehumbert 1982;
Cassou et al. 2005; Wang et al. 2011), complex teleconnections with the Arctic (Cohen et al.
2014) and with the tropics (Kutiel and Benaroch 2001; Shaman and Tziperman 2011; Behera et
al. 2012), and the coupling between the atmosphere and the land surface (Fischer et al. 2007;

Orsolini, Yvan and Kvamstg 2009; Wang et al. 2011). All these processes are not properly
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represented in coupled models, which could explain the poor skill over Europe (Seneviratne et
al. 2010; Kim et al. 2012; Scaife et al. 2011). In an early study, Schar et al. (1999) had shown
the existence of a soil-precipitation feedback over Europe. Later on, soil has been shown to
influence precipitations, temperature and extreme temperature over Europe; (Fischer et al.
2007; Douville 2010; Seneviratne et al. 2006, 2010, 2013; Quesada et al. 2012; Bellprat et al.
2013).

For instance, Seneviratne et al. (2010) described the soil moisture-temperature coupling
feedback loop in which, when an anticyclonic anomaly is present over Europe the soil moisture
content will either amplify or moderate the surface temperature response. If the soil is moist
(energy limited regime) the available surface energy will preferentially dissipate into latent heat
fluxes and dampen surface heating. Conversely, when the soil is dry (soil moisture limited
regime) more energy is available for sensible heating, inducing an increase of near-surface air
temperature (Seneviratne et al. 2010; Hirschi et al. 2011).

As soil moisture partly controls the occurrence of warm events over Europe, a correct
initialization of soil moisture content might be essential to correctly forecast summer extreme
temperatures. This problem was studied by the global land-atmosphere coupling experiment

(GLACE) intercomparison project (http://gmao.gsfc.nasa.qov/research/GLACE). The first phase

(GLACE-1) focused on predictability that arises from soil moisture anomalies and determined
the geographical regions where soil moisture exerts a significant influence on surface air
temperature and precipitation (hot spots) of land-atmosphere coupling (Koster et al. 2004). The
second phase (GLACE-2) focused on forecast quality, and assessed the impact of accurate
soil-moisture initialization on actual skill using a multimodel approach (Koster et al. 2011). The
multimodel mean in GLACE-2 indicates a significant soil-moisture contribution to surface
temperature forecast skill in summer with forecast times of up to two months over North and
South America (Koster et al. 2010, 2011). While Europe was not then found as a main region of
improvement when soil moisture is initialized the GLACE project, numerous other studies have
found an impact of soil moisture initialization in Europe (Douville 2010; van den Hurk et al. 2010;
Materia et al. 2014).

In the present study, the predictability associated with soil moisture at seasonal time scales is
revisited with a focus on Europe. The originality of the present study resides in three different
aspects. First, the experiments described in this manuscript cover a long period of 30 years
instead of the 10 used in GLACE-2. Second, the forecast time has been extended up to 4
months, which is longer than most of the GLACE-2 experiments (Koster et al. 2004, 2010).

Finally, the initialization of the soil moisture has been performed using the new ERA-Land
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reanalysis (Balsamo et al. 2015), which is expected to provide a good and consistent estimate
of soil-moisture initial conditions.

The paper is structured as follows. In section 2, the EC-Earth2.3 forecast system, the
experimental set up and the forecast quality assessment methods, as well as the definition used
for “mid-extreme” events, are described. Section 3 illustrates the impact of the soil initialization
on temperature and precipitation skill at the global scale and for extremes over Europe. Section
4 describes in detail the role of soil moisture for the two case studies of summer 2003 and
summer 2010. Finally, section 5 offers a summary and the future prospects of the work.

2. Model and data description

2.1 The EC-Earth2.3 forecast system

The seasonal hindcast experiments are conducted using the EC-Earth2.3 forecast system
(Hazeleger et al. 2011). EC-Earth2.3 consists of three model components, the Integrated
Forecasting System (IFS) cycle 31rl for the atmosphere, NEMO?2 for the ocean and LIM2 for
the sea ice. The model resolution chosen for the atmosphere is a spectral triangular truncation
at a wavenumber 159 and for the computation of physical processes reduced Gaussian grid
N80, which corresponds to a mesh resolution of around 120 km in the mid-latitudes, with 62
layers in the vertical. EC-Earth uses the H-TESSEL (TESSEL for Tiled ECMWF Scheme for
Surface Exchanges over Land) scheme for the land surface (van den Hurk et al. 2000), which
includes an improved representation of hydrology over the TESSEL scheme, in agreement with
more recent IFS cycles (Balsamo et al. 2009). The model has four active soil layers extending to
a depth of 2.89 meters, without considering capillary rise of groundwater or horizontal exchange
of soil water. The oceanic component is NEMO (Madec 2008) using the ORCA1 horizontal
resolution (which is 1° although with a highly irregular, tripolar grid) and 42 vertical levels. The
LIM2 sea-ice model is coupled to the ocean (Fichefet and Maqueda 1997). All model
components are coupled through the Ocean Atmosphere Sea Ice Soil version 3 (OASIS3;
Valcke 2006) coupler.

2.2 Experimental set up

To assess the impact of a realistic land-surface initialization on sub-seasonal and seasonal
forecasts two seasonal hindcast experiments have been performed. A 10-member, four-month
long hindcast experiment has been performed over the period 1981-2010 with start dates the
first of May of each year. The ocean, sea-ice and atmospheric components are initialized with
ORAS4 (Balmaseda et al. 2013), IC3 sea-ice analysis (Guemas et al. 2014) and ERA-Interim
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(Dee et al. 2011), respectively. In the INIT experiment the land surface is initialized with the soil
moisture and temperature and snow from ERA-Land (Balsamo et al. 2015), which provides
consistent land surface conditions to the forecast system since both share the same land-
surface model version. The ensemble is constructed by using atmospheric singular vectors and
the five ocean analyses available from ORAS4. The CLIM experiment initializes the land surface
using the climatology of ERA-Land for the corresponding start date, this being the only
difference between INIT and CLIM. With this set up, the impact of the land-surface initialization
can be isolated from all the other factors that influence the forecast quality in climate
forecasting.

2.3 Forecast quality assessment

The objective of the present study is to assess how the land-surface initialization affects
different aspects of the forecast quality of summer precipitation and temperature, with a specific
focus over Europe.

For 500-hPa geopotential height, t2m, precipitation and sea level pressure data from the ERA-
Interim reanalysis have been used as reference (Dee et al. 2011). For precipitation, the 0 to 12
hour forecasts have been used. For soil moisture the ERA-Land reanalysis product is used
(Balsamo et al. 2015).

The skill has been estimated using the correlation of the ensemble mean and the mean
anomaly spatial correlation coefficient (MACC, hereafter). We use the Student distribution with
N degrees of freedom to estimate the significance level of correlation, N being the effective
number of independent data calculated following the method of von Storch and Zwiers (2001).
The significance of the difference between two correlations is estimated using the methodology
of Steiger (1980), which takes into account the dependence from sharing the same observations
in both correlation coefficients. . In addition, the two methods to assess the significance of
correlation and the significance of the difference of two correlations takes into account the
independent number of data, which is necessary given the serial correlation typical of the time
series considered. As there is no standard method to assess the significance of the MACC and
difference between two MACC, we estimated their significance with a bootstrap of 100 random
drawings, following the methodology of Masson and Mimack (1992). The drawings are done
over the members (random selection of the members with repetition) and over the space
(bootstrap by square blocks over the considered region). The block size is estimated by

estimating the independent number of data on the longitude and latitude dimensions.
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As we need to assess the contribution of the trend to the skill, we have compared the correlation
and the MACC calculated on “raw” and detrended data. The detrended values are the residual
of the regression on the global mean two meter temperature (GMT, hereafter) of the concerned
variables; the observations are regressed on the observed GMT and both experiments are
regressed on their simulated GMT (van Oldenborgh et al. 2013).

All the verification, as well as part of the plotting, have been done using the version 2.1.1 of the
R-based s2dverification package (http://cran.r-

project.org/web/packages/s2dverification/index.html).

Contrary to the common evaluation in seasonal forecasting, where seasonal means of the
variables are analyzed, the skill of daily extremes is also evaluated in this paper. To estimate
the daily extremes, we follow the same methodology as Pepler et al. (submitted), which was
inspired by Hamilton et al. (2012) and the CECILIA EU project definitions (http://www.cecilia-
eu.org/index.htm). The extremes have been calculated using Tx and Tn, the daily maximum and
minimum temperature, respectively, estimated from the 6 hourly t2m.
The first set of extremes are the monthly 90th and 10th percentile of Tn and the 90th percentile
of Tx, named hereafter 10 and q90 of Tn, and g90 of Tx, respectively. For the second set of
extremes, the climatological 90th and 10th percentile of Tx and Tn are estimated using data
from all years between 1981 and 2010. This is done separately for the ERA-Interim data and for
the hindcasts. The frequency of days and nights in a month over and under the corresponding
climatological percentile are then estimated. To summarize, the present study will focus on six
of these variables:
- gl1l0 of Tn for each month and the percentage of nights in a month under the
climatological value of the q10 of Tn, also called number of cold nights.
- 090 of Tn for each month and the associated number of nights in a month over the
climatological value of the q90 of Tn, also called number of warm nights.
- 090 of Tx for each month and the associated number of days in a month over the
climatological value of the q90 of Tn, also called number of warm days.
The two first variables, q10 of Tn and the number of cold nights, correspond to cold extremes

while the other four variables are related to warm extremes.

3. Results

3.1 Impact of land-surface initialization during boreal summer

Figure 1 illustrates the skill of the EC-Earth2.3 system for predicting land t2m and precipitation

using the correlation between the ensemble-mean prediction and the observational reference.
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The results of the CLIM experiment are used as a benchmark. As in most state-of-the-art
forecast systems, EC-Earth2.3 shows high skill for t2m over land almost everywhere except
over some areas where the observational reference might not be trustworthy (Doblas-Reyes et
al. 2013). Statistically significant correlations appear mainly in tropical regions. In contrast, the
predictions exhibit lower skill for precipitation, except over a few regions such as those
neighboring the Pacific basin and sub-Saharan Africa. An important part of the skill in both
temperature and precipitation is linked to ENSO (Landman and Beraki 2012; Phelps et al. 2004,
Doblas-Reyes et al. 2013) whose teleconnections over land is well reproduced by the model in
most of the relevant areas (Fig. S1).

The use of a realistic initialization of soil variables (snow, soil moisture and soil temperature)
such as the one used in the INIT experiment compared to the one used in CLIM has generally a
positive impact on the skill of seasonal mean t2m (Fig. 1c). Nevertheless, only very few of the
positive changes are statistically significant at the 95% confidence level (black dots), which is
the likely result of the small differences and the reduced sample size of the experiment, an
aspect that is limited by the observational data available to reliably initialize the hindcasts. The
impact of land-surface initialization on the precipitation skill is patchy, although with a tendency
to show positive differences in correlation. There is no area with a significant decrease of
correlation, whereas a few areas show an important increase of skill (Fig. 1d). The patterns of
improvement cannot be simply described by a modification of the ENSO teleconnections over
land in INIT compared to CLIM (Fig. S1), because they are very similar in both experiments, and
an alternative explanation is needed.

It has to be borne in mind that our study considers longer forecast time scales than the GLACE-
2 experiment. For instance, no improvement in seasonal skill over the Great Plains emerges in
Fig. 1 compared to previous studies. However, consistently with previous studies (Koster et al.
2004, 2010, 2011; van den Hurk et al. 2010), there is an important improvement of skill in June
(second forecast month) over the United States, which disappears in July and August (Figs. S2,
S3, S4).

In order to quantify precisely the impact on skill seen on Fig. 1, Fig. 2 shows scatter plots of the
difference of correlation between INIT and CLIM against the correlation in CLIM for both
precipitation and t2m in different regions. Figure 2 shows the improvement due to the soail
initialization for temperature prediction: 65.3% of the land points have a positive impact (Fig.
2d). Nevertheless, the correlation difference between INIT and CLIM is significant only in very
few cases (red dots), with no significant negative difference (dark blue dots). In general, in all

regions, more improvements (positive differences, points where the skill is significant in INIT but
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not in CLIM and statistically significant negative correlation decrease) than degradations
(negative differences, points where the skill is significant in CLIM but not in INIT and statistically
significant negative correlation decrease) are found. This comprehensive analysis shows that
the land-surface initialization has on average a positive impact on the temperature skill when
large regions are considered.

Conversely, for precipitation no clear improvements are visible on Fig. 2h: on one side 53.9% of
the grid points have an increased skill in INIT. On the other side, more points are located in the
bottom-right quadrant than in the top-right quadrant, which suggests that more degradations
than improvements occur in the areas where CLIM has skKill.

Figure 2 shows that, for both temperature and precipitation, the lower the skill in CLIM is, the
stronger the improvements in INIT are. In addition, the degradation in INIT tends to occur when
the skill is already positive in CLIM. This suggests that the land-surface initialization brings skill
to regions where the forecast system has no skill, but it can also negatively perturb the system
in regions of high skill, suggesting that the large-scale signal can be perturbed by soil moisture
initialization. This can be partly explained by the biases in the soil initialization products
(Balsamo et al. 2015) and by the initial shock and drift of the soil variables in the forecasts
(Dirmeyer 2005; Materia et al. 2014). Furthermore, model inadequacies in the representation of
the land and/or land atmosphere coupling might explain the decrease of skill in INIT. Error
compensations may take place in CLIM, in other words, CLIM may have skill in some region for
the wrong reasons. In this case, a better representation of the soil state might in some region
lead to a decrease of skill. An illustration of possible error compensations can be seen over
North-Western South America, where the relation between ENSO and t2m is reversed
compared to the observed one (Fig. S1) while still CLIM has a high t2m skill in this region (Fig. 1
and 3).

Another factor that can explain the difference in skill between CLIM and INIT is their
representation of the recent temperature trends. In fact, recent trends can explain a large part of
the seasonal forecast temperature skill (Doblas-Reyes et al. 2006). Figure 3 is similar to Fig. 1,
but this time the correlation has been computed using the residuals of the regression of the
temperature and precipitation fields on the GMT. The comparison of Figs. 1a and 3a illustrate
the important contribution of the trend in the skill of temperature. An important part of the t2m
skill is related to the trend, especially over Europe where most of the skill in CLIM is related to
the trend (Doblas-Reyes et al. 2006, 2013). Conversely, Figs. 1 and 3 suggest that there is

almost no impact on the skill of precipitation from the temperature trend.
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For both precipitation and t2m, the impact of the land-surface initialization remains very similar
when the effect of the global-mean temperature is removed (Figs. 1b, 3b). This result, and the
inspection of the regression coefficients, suggests that the land-surface initialization affects only
marginally the representation of the temperature trend, consistently with the results of Jaeger
and Seneviratne (2010). The comparison between Figs. 1c and 3c (see also Fig. S5) gives a
hint that the skill improvement in INIT compared to CLIM is slightly stronger when the trend is
removed.

As most seasonal forecast systems, EC-Earth2.3 shows widespread skill in seasonal-mean t2m
and relatively low skill for precipitation forecasts. An important part of the skill for forecasting
t2m is linked to the warming trend. The soil moisture initialization leads to a general
improvement of t2m skill and to a lesser extent of precipitation skill, occurring mainly in regions
where the skill is low in the CLIM experiment. This improvement remains robust when the
global-mean trend effect is removed. The rest of the paper focuses on Europe, a region where
soil moisture has been shown to have a strong impact, an aspect that is also evidenced in our
experiments (Figs. 1, 2; Jaeger and Seneviratne 2010; Hirschi et al. 2011; Quesada et al. 2012;
Douville 2010).

3.2 Summer skill over Europe

The previous section showed that Europe is one of the regions with the largest impact of the
land-surface initialization. However, all the results described concentrate on seasonal averages
of temperature and precipitation. Instead, various studies have demonstrated that soil moisture
plays an important role in the occurrence of extreme warm events (Jaeger and Seneviratne
2010; Hirschi et al 2011; Hamilton et al. 2012). The prediction of extreme events is highly
relevant to society (Wang et al. 2009). Hence, any skill improvements on this aspect might have
a larger impact than the more traditional result of the increase in seasonal mean skill. This
section focuses on the predictability of “seasonal extremes” or “daily extremes” as defined in
Hamilton et al. (2012), Eade et al. (2012) and Pepler et al. (submitted). The extreme variables
considered, which were selected because they are the most relevant in summer, are classified
in two categories (see Section 2.3):

- The warm extremes: q90 of Tx, number of warm days, q90 of Tn and number of warm

nights

- The cold extremes: g10 of Tn and number of cold nights

Figure 4 shows the correlation of the ensemble-mean predictions of CLIM for the JJA (one-

month lead time) seasonal mean for the different extreme variables. The correlation for the
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individual months is provided in the supplementary material (Figs. S6, S7 and S8, for June, July
and August, respectively).

Consistent with previous studies, the pattern of extreme temperature skill tends to be similar to
that of the mean temperature (Figs. 3a and 4a-f; Hamilton et al. 2012; Eade et al. 2012). The
skill is also similar for all the variables inside the two groups of extreme variables (Figs. 4 a-d, e-
f). The similarity is found also when undetrended anomalies are considered (Figs. la, S9a-f;
Pepler et al., submitted). However, as for the mean temperature, the skill is lower for all extreme
variables when the correlation is calculated on detrended anomalies. However, some regional
differences appear. The skill of the CLIM experiment for the warm extreme variables in the
Mediterranean region is slightly higher than for the seasonal-average t2m skill, while the skill of
the cold extreme variables tends to be higher than the mean t2m skill in eastern and northern
Europe (Figs. 4 a-f, 3a).

The correlation changes in INIT with respect to CLIM are very similar for all the extreme warm
variables (Fig. 4g-j). Substantial improvements are found over the Mediterranean region, central
Europe and Scandinavia for extreme warm variables (Figs. 4g-j), which are areas of low skill in
CLIM (Fig. 4a-d). For the extreme cold variables, the soil moisture initialization leads to a weak
improvement over the Mediterranean region and Western Europe and a strong degradation in
northeastern Europe (Fig. 4k-l) that might be linked to the different behaviour of the snow
melting in the two experiments. These patterns obey to a strong intraseasonal evolution of the
skill improvement (Figs. S6-S8), with the skill decrease in northeastern Europe occurring mainly
in June and the skill increase in western Europe in July, especially for the warm extremes.

To better understand the intraseasonal evolution of the impact of the soil initialization on the
skill, the MACC calculated over Europe (20°W70°E-25°N75°N) for CLIM and INIT and the
difference between the MACC in both experiments are displayed in Fig. 5. In May (first month of
the forecast), Fig. 5a shows that the skill for predicting the mean and the cold extremes is high
(up to 0.7), while the skill for the warm extremes is substantially lower (around 0.25). For the
CLIM experiment, the skill of all the variables decreases along the forecast time and reaches
almost zero in July (Fig. 5a). In INIT, as in CLIM, the skill sharply decreases between May and
June, but remains almost constant at ~0.1 for all variables, which is statistically significant at
95% but not high enough to be considered useful in term of seasonal forecasting (Fig. 5a).
Hence, the positive impact of the soil initialization over Europe is more obvious a few weeks
after the forecasts have been initialized and is found for all the variables considered. This can
be better observed in Fig. 5b, which displays the difference of MACC between the two

experiments. There is almost no difference for the variables in May, while in June the cold
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extremes and the mean t2m exhibit a negative impact of land-surface initialization and a positive
or neutral impact for the warm extremes. The decrease in skill of the cold extremes in June is
related to the important decrease of skill in central Europe (Figs. 6, S5), which occurs for all
variables but is stronger for the cold extremes. As in previous cases, the degradation of skill due
to the land initialization happens for regions and periods where the skill is high in CLIM (Figs.
4e-f, 5, S3). Conversely, in July and August, when the skill is low in CLIM (Fig. 5a), we observe
an important improvement in INIT for all variables, especially for the warm extremes (Fig. 5b).

In spite of the positive impact of the land initialization over Europe, different regions experience
a different impact. Figure 6 shows the correlation difference for the mean t2m and the extreme
variables averaged in some of the regions defined in Christensen and Christensen (2007). In
two regions of low skill in the CLIM experiment (Scandinavia and eastern Europe; Fig. 4), the
land-surface initialization has a positive impact for all variables and during the complete
forecast length (Fig. 6d, f, g). In the Alps and Mediterranean area, despite a degradation of skill
during one forecast month, the skill is generally higher in INIT than in CLIM. In the three other
regions considered, France, central Europe and the Iberian Peninsula, the results are less clear
with improvement for some variables occurring simultaneously to degradation of other variables.
No statistically significant differences can be found, except for the number of warm days in
eastern Europe and for the number of warm nights in Scandinavia.

In summary, the impact of the land-surface initialization is generally positive on predictions of
both the mean t2m and extreme temperature variables and is slightly stronger for the warm than
for the cold extremes. The improvements last the whole forecast length. However, the results
vary from one region to another, and might be associated with the correct prediction of a few
events. An analysis of the impact on two of the most relevant events recorded recently over

Europe might help interpreting these results.

4. Predictions of the European summers of 2003 and 2010

Dry soils seem to have played a key role in the development of the 2003 and 2010 heat waves
over Western Europe and Russia (Weisheimer et al. 2011; Quesada et al 2012; Fischer 2014).
The CLIM and INIT experiments allow investigating the soil contribution to these events and to
understand their role in determining the seasonal forecast sKill.

Figures 7 and 8 illustrate the summer 2003 and 2010 events from observational estimates and
their representation in both INIT and CLIM. The left column shows the observed anomalies for
five variables: t2m, precipitation, 500-hPa geopotential height (z500, hereafter), sea level

pressure (SLP, hereafter) and vertically integrated soil moisture. Dots are used to mark the
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areas where the anomalies are higher than the climatological upper quintile for t2m, z500 and
SLP and are lower than the climatological lower quintile for precipitation and soil moisture. The
CLIM and INIT results are displayed in the central and right columns, respectively. Instead of
displaying ensemble-mean anomalies, which usually are seriously damped when compared to
the reference, the forecast odds are computed from the ensemble. The odds are the ratio
between the probability for the anomalies to be in the upper quintile, the interquintile range or
the lower quintile, and the climatological probability of these three categories (respectively 20%,
60% and 20%). Each point is attributed to the category corresponding to the highest odds ratio.
If the point is attributed to the interquintile range or if there is no category assigned (the
categories with two highest odds ratio have an equal value) the point is drawn in white. If the
point is attributed to the lower/upper quintile category, the corresponding odds ratio is plotted
with the left/right color scale. The odds ratio is a useful way of representing the signal in a
probabilistic way because it gives an estimate of how anomalous the probability of the event is
(i.e. the number of times it can occur above its climatological frequency) independently of the
baseline. These figures allow visualizing how the hindcasts predict the extreme quintile
categories for each point.

For the 2003 heat wave, Fig. 7 confirms the occurrence of the warm and dry event over
Western Europe in 2003. A blocked regime is visible in the geopotential height, with negative
anomalies over north-eastern Europe and positive anomalies over the North Atlantic and
Western Europe (Fig. 7g; Garcia-Herrera et al. 2010). The blocking regime is also clearly visible
on SLP, except over Western Europe where, consistently with Garcia-Herrera et al. (2010) and
Fischer et al. (2007b), the heat low mechanism takes place.

Both INIT and CLIM are able to forecast with high probability this warm and dry anomaly over
Western Europe (Fig. 7 b, c, e, f). A successful prediction of the 2003 heat wave has previously
been achieved with retrospective forecasts presented in Weisheimer et al. (2011), where the
authors highlighted the crucial role of the land surface for the correct prediction of this event. An
initial dry anomaly in spring has further been discussed to have been pre-requisite for the
development of the 2003 heat wave (Fischer et al. 2007b; Ferranti and Viterbo, 2006). The fact
that both experiments are able to forecast the 2003 heat wave is hence surprising and suggests
that the exceptional high temperatures in 2003 may be largely a consequence of a strong
dynamical forcing. This is supported further by the fact that, in spite of starting from
climatological initial conditions, the CLIM experiment develops a high probability of extremely
low soil moisture over the Mediterranean and Western Europe. This result is consistent with the

studies of Feudale and Shukla (2011a, 2011b), which suggest oceanic conditions to be a major
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driver of the heat wave. However, the soil moisture, precipitation and temperature are
forecasted with higher probabilities in INIT than in CLIM (Fig. 7 b, c, €). Moreover, the spatial
pattern of the observed anomalies is better reproduced in INIT than in CLIM. For instance, the
dipole structure of temperature and precipitation between north-eastern and western Europe, a
characteristic of a blocking regime, is, in contrast to CLIM, reproduced more realistically in INIT.
These differences between the two experiments suggest that soil moisture plays a role in
maintaining the blocking regime over Europe and for the occurrence or maintenance of the
baroclinic anomalies of the heat low mechanism over western Europe, consistently with the
studies of Fischer et al. (2007b) and Miralles et al. (2014).

In the case of the 2010 heat wave Fig. 8a, d, g and m show the occurrence of the warm and dry
event over Russia in 2010 associated with a dry soil moisture anomaly and an anticyclone over
Russia. This warm and dry anomaly associated to high sea level pressure is substantially higher
(or lower for soil moisture and precipitation) than the climatological higher quintile for all
concerned variables, consistently with Dole et al. (2011). Unlike 2003, for the summer 2010
event no heat low mechanism takes place associated with the anticyclone and warm and dry
anomalies over Russia, although the z500 anomaly is shifted with respect to the SLP anomaly.
Figure 8 shows that CLIM is not able to predict with probabilities substantially different from the
climatological ones the extreme characteristics of the 2010 Russian heat wave for none of the
considered variables, except for the soil moisture anomaly. Conversely, in INIT, high
probabilities for warm and dry anomalies are found in Eastern Europe (Fig. 8c, f). Figure 8i
shows that INIT predicts relatively well the z500 anomalies, indicating that soil moisture
initialization might have a feedback on the atmospheric circulation. Nevertheless as for 2003,
the SLP pattern of anomalies is not reproduced correctly in INIT nor in CLIM (Fig. 8k, I). The
anomalies of temperature, precipitation are misplaced compared to the observational reference
(Fig. 8c, ).

In order to better understand how the soil initial conditions can affect the predictability of the
event, figure 9 shows for both 2003 and 2010, the soil moisture anomalies, with respect to the
daily climatology calculated over 1981-2010, for May 1st. Previous studies have suggested that
the 2003 spring was possibly drier than usual (Fischer et al. 2007), however more recent
analyses have shown that it was actually likely close to climatology. For instance, in a
catchment in Northeastern Switzerland with measurements of whole surface water balance
(including soil moisture and evapotranspiration), a recent study (Seneviratne et al. 2012) has
shown that soil moisture was not particularly low prior to June 2003. This result was confirmed

more broadly for a large part of Central Europe in another study (Whan et al. 2015) based on a
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newly derived soil moisture dataset (Orth and Seneviratne 2015). However, Fig. 9 shows that
according the ERA-Land product, the soil moisture over western Europe in 2003 exhibit a large
dry anomaly over the whole western Europe at the beginning of May. During the course of May,
soil moisture dries over western Europe and recovers at the end of the month and then
decreases during the whole summer. This behaviour is similar to the one described in Whan et
al. (2015) based on the soil dataset of Orth and Seneviratne (2012). The two products have the
same evolution during summer 2003 but ERA-Land does have larger soil anomalies than the
other product in both June and May.

In CLIM, logically, the soil initial condition is very close to 0, while in INIT the simulation starts to
a dryer state, however probably due to the interpolation errors (from T511 to T106) and the drift
of the first time steps, the first day is less dry than the observed state. The progressive drying of
soil during summer is well reproduced by the two simulations (due to the ensemble averaging
the evolution is smoother in the simulation than in the reanalysis). Independently of the initial
condition of soil, the successful forecast of temperature and precipitation leads to the correct
evolution of the soil during the summer. However, it is not clear from the present experiment to
know if in July or August, after the strong drying of June (Fig. 9b and Whan et al. 2015), the soil
conditions are important, additional experiments with more start dates would be needed.

In 2010, INIT starts with a dry anomalies equivalent to the observed one, while again CLIM
starts from 0 (Fig. 9d). Conversely to 2003, the model is unable to forecast the evolution of the
soil moisture during the forecast, while the ERA-Land shows a drastic drying during summer,
INIT and CLIM keep the same anomaly. So while in INIT, the dry conditions will allow the heat
wave to develop the neutral condition in INIT will inhibit its development.

To summarize, it seems that the 2003 warm event was predictable even without the correct
initialization of the land surface, consistently with the studies of Feudale and Shukla (2011a,
2011b). The atmospheric and ocean conditions are enough to generate the dry soil moisture
anomalies (Fig. 7h and 9b). This last feature shows that the atmospheric circulation was
predictable by the model even without the correct soil-moisture initial condition. It hence
suggests that the anticyclonic circulation over Europe was driven by the large scale conversely
to what has been suggested by previous studies (Garcia-Herrera et al. 2010). However, it
appears that the soil moisture is also an important factor for the occurrence of the 2003 heat
wave. First, the precipitation and temperature are better predicted when the soil moisture is
initialized (Fig. 7b-c, e-f). Moreover, the results of both experiments show that the soil moisture
has a feedback on the atmospheric circulation. Finally, the soil moisture seems important to

simulate the cold and moist anomalies in Eastern Europe, which are occurring with the heat
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wave over Western Europe. Conversely, the 2010 heat wave is predictable only when the soil
moisture is adequately initialized suggesting that the dry soil moisture anomalies at the

beginning of spring might have been crucial for the development of the heat wave over Russia.

5. Summary and conclusions

While European climate is hardly predicted by coupled models, many studies have shown the
essential role played by soil moisture in this region (Schar et al. 1999, 2004; Fischer et al. 2007,
Douville 2010; Seneviratne et al. 2006, 2010, 2013; Quesada et al. 2012). In the framework of
the GLACE project, the role of soil-moisture initialization has been assessed at sub-seasonal
time scales (Koster et al. 2010, 2011; van den Hurk et al. 2010). Nevertheless, fewer studies
evaluated how soil-moisture initialization can affects skill, especially over Europe, at longer time
scales (Douville 2010).

The present study aims to assess the added value of land-surface initialization for seasonal
forecasts. Two sensitivity experiments, consisting in 30 years of 10-member ensemble
hindcasts of 4 month length have been run. Both sensitivity experiments have been carried out
with the EC-Earth2.3 forecast system initialized in the same way for ocean, atmosphere and sea
ice. The difference between both sensitivity experiments resides in the initialization of the soil.
While the soil temperature, moisture and snow are initialized with ERA-Land in INIT, these
variables are initialized with a climatology of ERA-Land in CLIM.

The comparison of those two experiments for summer (June-to-August average, one-month
lead time) shows that land-surface initialization has a positive impact on temperature skill and
also, to a lesser extent, on precipitation, which is consistent with previous studies (Koster et al.
2004, 2010; Douville et al. 2010; Materia et al. 2014). This improvement is robust whether the
warming trend is considered or not. At regional scale, particularly over Europe, the skill
improves in a similar way for t2m and a set of associated extreme variables. The improvement
occurs up to the last forecast month, which contrasts with the results described in van den Hurk
et al. (2010), who found that the improvement goes up to six weeks over Europe. As they found
in their study, land initialization can degrade the skill during the second month of the forecast,
while important improvements occur at longer forecast times.

Land initialization is also crucial for the prediction of the 2010 heat wave over Russia. The
prediction of the 2010 event is successful only when the soil moisture is initialized, showing that
the dry conditions preceding the heat wave were decisive in the occurrence of the event.
Conversely, the 2003 European heat wave is predicted by both experiments, with either a

climatological or a realistic land-surface initialization, suggesting that the event was driven by
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the large-scale atmospheric circulation. The slightly better skill of the INIT experiment for this
event still suggests a positive feedback of dry soil on temperature, consistently with Weisheimer
et al. (2011).

This study shows an improvement of temperature skill when land is initialized, Nevertheless,
while initializing realistically soil moisture improves skill in regions and for variables of low skKill,
for regions and variables with high skill, the land-surface initialization could lead to a skill
degradation, consistently with the findings of Materia et al. (2014). This means that the land-
surface initialization can increase the skill in regions where the original forecast system has no
skill but, at the same time, can negatively perturb the large-scale signal or the local conditions
in regions of positive skill. A better knowledge of the interaction between the large-scale
circulation and the local land-atmosphere coupling as well as an evaluation of the role of the
soil-moisture drift on the temperature anomalies simulated is needed to understand the skill
degradation. This assessment will require an inspection of the daily evolution of different
variables, such as temperature, soil moisture, precipitation and fluxes. The comparison of
different soil initialization products and different initialization techniques, such as for example the
one known as anomaly initialization, could also help better understanding the processes
involved. It is also important determining to what measure the findings of the current study are
model dependent. The authors have plans to perform the analysis in a multi-model framework.
An interesting result of the study is the ability to predict the 2003 European heat wave even
without realistic land-surface initialization from May, suggesting that there is a role for the large-
scale circulation. Deeper analysis are needed to confirm the robustness of this result, first large
discrepancies seems to exist between different dataset suggesting that different soil product
should be tested for the initialization. Moreover, a large drying which occurs at the beginning of
June, new simulation would be needed to know the influence of this drying on the heat wave.
The INIT and CLIM simulation will be extended in this purpose. With the help of those extended
simulations, the authors will analyze the possible remote forcing of the blocking events over

Europe in 2003 and the land-atmosphere feedbacks, which took place that summer.
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Fig. 1: a Correlation of the ensemble mean t2m averaged in JJA (one-month lead time) in the
CLIM experiment. The dots mark the areas where the correlation is significant at the 95%
confidence level. b Same as a, but for precipitation. ¢ Difference of correlation of the ensemble
mean between the INIT and CLIM experiments for the t2m in JJA. The dots mark the areas
where the difference of correlation is significant at the 95% confidence level. d Same as c but
for precipitation.

Fig. 2: a Scatter plot of the difference of correlation of the JJA t2m (one-month lead time)
between INIT and CLIM against the correlation of the JJA t2m in CLIM over the the Northern
Hemisphere land grid points. The numbers in the corners correspond to the percentage of grid
points in the respective quadrants. The grey dots correspond to the values in the grid points
where neither the correlation in CLIM, INIT, nor the difference of correlation between INIT and
CLIM is significant. The black dots represent the points where the correlation is significant at
95% confidence level in both CLIM and INIT, the orange dots the points where the correlation is
significant at 95% confidence level in INIT but not in CLIM, the light blue dots to the points
where the correlation is significant at 95% confidence level in CLIM but not in INIT and the red
(dark blue) dots to the points where the correlation difference is significantly positive (negative)
at 95% confidence level. b Same as a, but in the tropics. ¢ Same as a, but in the Southern
Hemisphere (without Antarctica). d Same as a, but over the whole globe. The e, f, g and h

panels show the equivalent results for precipitation.

Fig. 3: As in Fig. 1, but with the correlation computed using the residual of the regression of the

temperature and precipitation anomalies on the global mean temperature.

Fig. 4: Correlation of the ensemble mean in JJA (one-month lead time) in CLIM, for a q90 of Tx,
b number of warm days, ¢ 90 of Tn, d number of warm nights, e the q10 of Tn and f number of
cold nights. The dots mark the areas where the correlation is statistically significant with a 95%
confidence level. Difference of correlation between INIT and in CLIM in JJA, for g q90 of Tx, h
number of warm days, i q90 of Tn, j number of warm nights, k the q10 of Tn and | number of
cold nights. The dots mark the areas where the difference of correlation is significant at 95%

confidence level and the correlation has been computed using the detrended anomalies.

Fig. 5: a Mean spatial anomaly correlation coefficient (MACC) calculated for the ensemble-
mean hindcasts of CLIM (plain line) and INIT (dotted line) over the land in Europe (10°W4Q°E-
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35°N75°N) for the monthly mean t2m (black), the q90 of Tx (red), the q90 of Tn (pink), the q10
of Tn (purple), the number warm days (orange), the number of warm nights (green) and the
number of cold days (light blue). The MACC is calculated on detrended anomalies. The solid
(open) dots mark the values significant at 95% level in INIT (CLIM), estimated with a bootstrap
over of 100 drawings. b Same as a but for the difference of the MACC between INIT and CLIM.
None of the difference of MACC is significant at 95% level, estimated with a bootstrap of 100

drawings.

Fig. 6: a Difference of correlation between the INIT and CLIM experiments for the temperature
variables averaged in the Iberian Peninsula region (10°W3°E-36°N44°N). b Same as a, but for
France (5°W5°E-44°N50°N), ¢ central-Europe (2°W16°E-48°N55°N), d Scandinavia (5°E30°E-
55°N70°N), e the Alps (5°E15°E-44°N48°N), f the Mediterranean area (3°E25°E-36°N44°N) and
g Eastern Europe (6°E30°E-44°N55°N).

Fig. 7: a Observed anomalies of t2m for 2003 JJA (one-month lead time) mean (K). The dots
indicate the area where the anomaly is in the upper quintile (estimated over 1981-2010). b Odds
in CLIM for t2m. The odds are the ratio between the probability for the anomalies to be in the
upper quintile, the interquintile range or the lower quintile and with the climatological probability
of these three categories (20%, 60% and 20%, respectively). Each point is attributed to the
category corresponding to the highest odds ratio. If the point is attributed to the interquintile
range or if there is no category assigned (the categories with two highest odds ratio have an
equal value) the point is drawn in white. If the point is attributed to the lower/upper quintile
category, the corresponding odds ratio is plotted with the left/right color scale.c Same as b, but
for INIT. d Observed anomalies of precipitation for 2003 JJA mean (mm/day). The dots indicate
the area where the anomaly is in the lower quintile for the 1981-2010 period. e same as b, but
for precipitation. f Same as c, but for precipitation. g, h, i same as a, b, c, but for geopotential
height at 500 hPa (m). j, k, | same as a, b, ¢, but for monthly mean of 6 hourly SLP (hPa). m, n,

0 same as d, e, f, but for the vertically integrated volume fraction of water in soil (m3/ms3).

Fig. 8: Same as Fig. 7, but for JJA (one-month lead time) 2010.

Fig.9: a Standardized anomalies with respect to the daily climatology computed over 1981-2010
of ERA-Land for May 1st 2003. b Evolution of the daily anomalies of summer 2003 averaged in
the black box of a (5W20E-43N55N) in black for ERA-Land, in blue for the ensemble mean of
CLIM and in red for the ensemble mean of INIT. ¢ Same as a but for May 1st 2010. d Same as



858 b but for the box drawn on ¢ (25E55E-45N60N) during summer 2010. For all the panel the unit
859  is m¥/m3.
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a) t2m: CLIM b) precip: CLIM

Fig. 1: a Correlation of the ensemble mean t2m averaged in JJA (one-month lead time) in
the CLIM experiment. The dots mark the areas where the correlation is significant at the 95%
confidence level. b Same as a, but for precipitation. ¢ Difference of correlation of the ensemble
mean between the INIT and CLIM experiments for the t2m in JJA. The dots mark the areas
where the difference of correlation is significant at the 95% confidence level. d Same as ¢ but
for precipitation.
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Fig. 2: a Scatter plot of the difference of correlation of the JJA t2m (one-month lead time)
between INIT and CLIM against the correlation of the JJA t2m in CLIM over the the Northern
Hemisphere land grid points. The numbers in the corners correspond to the percentage of grid
points in the respective quadrants. The grey dots correspond to the values in the grid points
where neither the correlation in CLIM, INIT, nor the difference of correlation between INIT and
CLIM is significant. The black dots represent the points where the correlation is significant at
95% confidence level in both CLIM and INIT, the orange dots the points where the correlation
is significant at 95% confidence level in INIT but not in CLIM, the light blue dots to the points
where the correlation is significant at 95% confidence level in CLIM but not in INIT and the red
(dark blue) dots to the points where the correlation difference is significantly positive (negative)
at 95% confidence level. b Same as a, but in the tropics. ¢ Same as a, but in the Southern
Hemisphere (without Antarctica). d Same as a, but over the whole globe. The e, f, g and h
panels show the equivalent results for precipitation.



a) t2m: CLIM b) precip: CLIM

Fig. 3: As in Fig. 1, but with the correlation computed using the residual of the regression
of the temperature and precipitation anomalies on the global mean temperature.



a) q90 of Tx b) nb of warm days c) q90 of Tn d) nb of warm nigths e) q10 of Tn f) nb of cold nigths

Fig. 4: Correlation of the ensemble mean in JJA (one-month lead time) in CLIM, for a q90
of Tx, b number of warm days, ¢ q90 of Tn, d number of warm nights, e the q10 of Tn and f
number of cold nights. The dots mark the areas where the correlation is statistically significant
with a 95% confidence level. Difference of correlation between INIT and in CLIM in JJA, for
g q90 of Tx, h number of warm days, i q90 of Tn, j number of warm nights, k the q10 of Tn
and 1 number of cold nights. The dots mark the areas where the difference of correlation is
significant at 95% confidence level and the correlation has been computed using the detrended
anomalies.



a) MACC of t2m over Europe
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Fig. 5: a Mean spatial anomaly correlation coefficient (MACC) calculated for the ensemble-
mean hindcasts of CLIM (plain line) and INIT (dotted line) over the land in Europe (10°W40°E-
35°N75°N) for the monthly mean t2m (black), the q90 of Tx (red), the q90 of Tn (pink), the
ql0 of Tn (purple), the number warm days (orange), the number of warm nights (green) and
the number of cold days (light blue). The MACC is calculated on detrended anomalies. The
solid (open) dots mark the values significant at 95% level in INIT (CLIM), estimated with a
bootstrap over of 100 drawings. b Same as a but for the difference of the MACC between INIT
and CLIM.
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Fig. 6: a Difference of correlation between the INIT and CLIM experiments for the temperature
variables averaged in the Iberian Peninsula region (10°W3°E-36°N44°N). b Same as a, but for
France (5°W5°E-44°N50°N), ¢ central-Europe (2°W16°E-48°N55°N), d Scandinavia (5°E30°E-
55°N70°N), e the Alps (5°E15°E-44°N48°N), f the Mediterranean area (3°E25°E-36°N44°N)

and g Eastern Europe (6°E30°E-44°N55°N).
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a) t2m: ERAiInt b) t2m: CLIM c) t2m: INIT

Fig. 7: a Observed anomalies of t2m for 2003 JJA (one-month lead time) mean (K). The dots
indicate the area where the anomaly is in the upper quintile (estimated over 1981-2010). b
Odds in CLIM for t2m. The odds are the ratio between the probability for the anomalies to be
in the upper quintile, the interquintile range or the lower quintile and with the climatological
probability of these three categories (20%, 60% and 20%, respectively). Each point is attributed
to the category corresponding to the highest odds ratio. If the point is attributed to the
interquintile range or if there is no category assigned (the categories with two highest odds ratio
have an equal value) the point is drawn in white. If the point is attributed to the lower /upper
quintile category, the corresponding odds ratio is plotted with the left /right color scale. ¢ Same
as b, but for INIT. d Observed anomalies of precipitation for 2003 JJA mean (mm/day). The
dots indicate the area where the anomaly is in the lower quintile for the 1981-2010 period. e
same as b, but for precipitation. f Same as c, but for precipitation. g, h, i same as a, b, c,
but for geopotential height at 500 hPa (m). j, k, 1 same as a, b, ¢ but for monthly mean of 6
hourly SLP (hPa). m, n, o same as d, e, f but for the vertically integrated volume fraction of
water in soil (m?/m?).



a) t2m: ERAiInt b) t2m: CLIM c) t2m: INIT

Fig. 8: Same as Fig. 7, but for JJA (one-month lead time) 2010.
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Fig. 9: a Standardized anomalies with respect to the daily climatology computed over 1981-
2010 of ERA-Land for May 1st 2003. b Evolution of the daily anomalies of summer 2003
averaged in the black box of a (5W20E-43N55N) in black for ERA-Land, in blue for the
ensemble mean of CLIM and in red for the ensemble mean of INIT. ¢ Same as a but for May
Ist 2010. d Same as b but for the box drawn on ¢ (25E55E-45N60N) during summer 2010.

For all the panel the unit is m®/m3.
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