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Abstract

Manycore CMP systems are expected to grow to tens or even hundreds of

cores. In this paper we show that the effective co-design of both, the network-

on-chip and the coherence protocol, improves performance and power meanwhile

total area resources remain bounded. We propose a snoopy-aware network-on-

chip topology made of two mesh-of-tree topologies. Reducing the complexity of

the coherence protocol – and hence its resources –, and moving this complexity

to the network, leads to a global decrease in power consumption meanwhile area

is barely affected. Benefits of our proposal are due to the high-throughput and

low delay of the network, but also due to the simplicity of the coherence proto-

col. The proposed network and protocol minimizes communication amongst cores

when compared to traditional solutions based either on 2D-mesh topologies or in

directory-based protocols.

Keywords: Chip multiprocessor, Network-on-Chip, network archirtecture,

coherence protocol.

1. Introduction

Manycore systems are expected to grow to tens or even hundreds of cores

in the same chip. A Network-on-Chip (NoC) is implemented to connect all of

them efficiently [1]. NoCs are to replace conventional bus-based systems where

throughput and latency is compromised as the number of cores increases. NoCs

have been adopted in two system design approaches: multiprocessor system-on-

chips (MPSoCs) and chip multiprocessors (CMPs). In MPSoCs, applications are

usually known in advance and the chip is customized to the applications, including

the NoC. In CMPs, applications are not known in advance and thus, the chip is
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built with little or no information about its future use. In this paper we focus on

NoCs designed for CMP systems.

Since its conception in 2001, NoC research has focused mainly in adopting

the best strategies usually found in high-performance interconnects, covering as-

pects like topology, routing, switching, and arbitration. The main challenge found

in NoC research has been the suitability of known research and solutions to the

highly-constrained new domain (inside the chip). Indeed, many of the proposals

have focused on providing very power- and area- efficient solutions, thus min-

imizing the power consumption and the area footprint of the NoC. With these

constraints as a reference, the 2D mesh topology has been adopted as the baseline

for NoC design, meanwhile conceptually simpler but better topologies as cross-

bars are discarded as they show higher area and power overheads. Real examples

of simple NoCs are the ones implemented in the Polaris chip prototype by In-

tel [2], the Single Chip Cloud Computer by Intel [3], and the products offered by

Tilera [4].

Orthogonal to the design of NoCs for CMP systems, the memory hierarchy,

and its implementation, plays a key role in the final product. A shared variable

programming approach is appealing from the point of view of the programmer,

instead of the message passing programming approach. The inherent simplicity

when programming, however, requires a coherence protocol implementation that

ensures coherency and consistency along all the memory hierarchy levels. It is

typical to find approaches where the processors in CMP systems have a first level

(L1) of private caches and a bank of L2 caches on each tile forming a global

shared but distributed L2 cache. The third level of the memory hierarchy is main

memory. Figure 1 shows the CMP configuration we focus in this paper.

Figure 1: Tiled-CMP schematic.

The coherence protocol implemented in the system can significantly vary from
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an implementation point of view. For example, snoopy protocols rely on a shared

medium connecting all the processors. Typically, snoopy protocols are very sim-

ple to design and test [5]. On the contrary, the mostly-assumed directory-based

protocols require a directory structure to keep the coherence information, that

makes them much more complex to design and, most importantly, to test and val-

idate, since they rely on a point-to-point network with no global visibility. This

leads to race conditions of the protocol when multiple cores access the same block

at the same time. The number of states of the protocol increases to an extent

that prevents its validation in an affordable amount of time. Additionally, direc-

tory structures require dedicated resources at cache memories increasing area and

power consumption.

When the two components (NoC and coherence protocol) are put on the same

perspective we can identify an interesting conflict. Discarded topology structures

like buses or crossbars offer the opportunity to implement simple coherence proto-

cols, like the snoop-based protocol. Other preferred topologies, like the 2D mesh,

do not allow snoop-based protocols thus need for more complex protocols, e.g.

directory-based protocols.1

What we pursue in this paper is the effective co-design of both, the NoC and

the coherence protocol, in order to improve performance and power meanwhile

area resources remain bounded. If we analyze a typical CMP system, L1 caches

and L2 banks resources and power clearly overcome resources and power con-

sumed by the network. Thus, reducing the complexity of the coherence protocol

– and hence its resources –, and moving this complexity to the network, will lead

to a global decrease in power consumption meanwhile area is barely affected. In

this paper, we pursue the following properties to the final designed system:

• A simple coherence protocol that can be easily tested and validated. In

particular, a snoop-based protocol.

• A customized NoC scalable enough for a relative large amount of nodes,

compatible with the snoop-based protocol. In particular, reaching 128 pro-

cessors on the same chip.

The solution we propose is called sNoC, referring to a snoopy NoC. sNoC is

built with two network components, each implemented as a mesh-of-trees (MoT) [6].

1One exception is the case of using a broadcast-based protocol in a 2D mesh network. Each

snoopy action is converted into a broadcast. In this case, the network is flooded with many mes-

sages and virtual channels are required to avoid protocol-level deadlock conditions.
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The first MoT is used to broadcast requests whereas the second MoT is used to

send unicast data messages. sNoC increases network resources but helps reduc-

ing the directory structure, containing overall power consumption. sNoC includes

also a customized coherence protocol for the network.

System level evaluation, in terms of performance, area overheads, and power

consumption, shows the viability and the higher efficiency of sNoC when com-

pared to the typical designs of 2D meshes with directory-based protocols. The

benefits of our proposal are due to the better performance of the MoT network,

and the ability of the snoopy protocol to take the best of these high performance

networks. In this sense, we show how a directory-based protocol underutilizes the

MoT making this solution not attractive even being feasible in terms of area.

Results show that for a 64-node network sNoC reduces execution time and

power consumption with respect to the 2D mesh up to 20% and 35%, respectively.

Benefits are because the snoopy protocol reduces communication between nodes,

in terms of number of messages in addition to the sNoC high-throughput archi-

tecture. Introducing a high-throughput MoT with a conventional directory-based

invalidation protocol reduces execution time up to 13% due to the high-throughput

low-latency network, but power consumption is increased up to 15% due to net-

work inefficiency. Additionally, introducing a simple snoopy protocol improves

scalability, as the sNoC just increases area by 2%, meanwhile the same network

without the snoopy protocol increases area up to 10%.

The rest of the paper is organized as follows. In Section 2, the related work

is presented. In Section 3, the snoopy protocol is presented. In Section 4, we

introduce sNoC architecture. In Section 5, we evaluate our design and show that

it overcomes previous state-of-art solutions meanwhile scalability is guaranteed.

Finally, the main conclusions are presented at the end of the paper.

2. Related Work

Snoopy protocols were the preferred solution for ensuring cache coherence

in the first multicore designs. For example, the Pentium 4 chip used a source-

synchronous protocol to handle a bus amongst 4 cores [7]. Snoop-based protocols

are very simple in theory. However, to be practical, an efficient broadcast medium

is required to handle ordered transactions. As the number of processor and mem-

ories to interconnect in the chip has increased in the past years, many network-

on-chip architectures have been designed and proposed. Amongst the different

possible topologies, the 2D-Mesh has been the most adopted approach due to its

low implementation cost and its physical scalability [1]. In this regard, since the
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adoption of the network-on-chip interconnection paradigm, snoopy protocols have

been discarded due to the increased broadcasting complexity. However, simple so-

lutions as 2D-meshes do not fulfill high-throughput low latency requirements. In

this sense, some solutions as packet switching [8, 9] or – the more disruptive –

introducing optical networks have been proposed. In this paper, we propose an

orthogonal solution that reuses multiprocessor system snoopy concepts.

Several different protocols have been proposed to overcome the scalability

problems of snoopy protocols associated to the interconnection architecture. The

Hammer AMD’s protocol [10] avoids keeping coherence information at the cost of

broadcasting requests to all cores. In [11] a snoopy-based coherence mechanism

for non-ordered networks is proposed. Directory-based protocols [12] reduce net-

work traffic as directory structure allows to store information about the private

caches state. However, these traditional cache coherence protocols introduce in-

direction in the critical path of cache misses [13]. To solve the problem of indirec-

tion, Token-CMP [14] and DiCo-CMP [15] protocols have been proposed. These

indirection-aware protocols avoid the access to the home node allowing latency of

cache misses to be reduced. All these protocols (Hammer, Directory-based, Dico-

CMP, and Token-CMP) can be implemented over non-ordered interconnects [13],

and therefore, avoiding the use of costly interconnection architectures. However,

the inherent costs of these proposals are not negligible. The Hammer protocol [10]

though efficient in terms of area requirements generates a prohibitive amount of

network traffic. The remaining protocols present to a greater or lesser extent two

main drawbacks. First, they introduce significant hardware costs to keep cache

state information. Second, the verification process of these protocols is hard or

even unfeasible [5].

Recent proposals have explored the scalability of crossbar and bus designs.

Concretely, in [16], authors showed that from an implementation point of view

crossbars are feasible even for a hundred of cores. In this regard, when the two

components (NoC and coherence protocol) are put on the same perspective the

costs of implementing a snoop-based protocol can be afforded.

Finally, some authors have pointed out the importance of adapting network-

architectures to the memory architecture. In [17] a low-latency low power bus

connected to a conventional 2D mesh is proposed. Authors in [17] used the bus

to efficiently handle broadcast and multicast messages reducing network latency.

In [18], authors introduce crossbars in NoC environment and used them to imple-

ment an efficient invalidation MOESI protocol.

In this paper, we go one step beyond and perform an efficient co-design of

both the NoC and the memory coherence protocol. Concretely, we describe the
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snoop-based protocol implementation [5]. The snoopy protocol efficiently makes

use of a high performance network design. Our network proposal resembles a

bus subnetwork plus a crossbar subnetwork. To efficiently implement a Mesh-of-

Tree [6, 19], we have followed a distributed floorplan [20] approach to minimize

network consumption.

3. Snoopy Protocol

Cache coherence protocols can be classified in two classes depending on whether

the request issued after a L1 cache miss is broadcast to all L1 and L2 caches in the

system or send to a specific node: in the first case the coherence protocol belongs

to the family of snoopy protocols, while in the second case belongs to directory

protocols.

Snoopy protocols usually rely on a shared communication medium (typically

a bus) with a total ordering of the messages. In case of a L1 cache miss, a request

is broadcast to all the caches in the system. Each cache controller’s finite state ma-

chine evolves depending on the current cache line state and on the request type,

and the protocol is designed to let all the caches independently evolve to a global

correct state which guarantees the single-writer, multiple-readers invariant. Mes-

sages in the interconnection network must be totally ordered to let all the caches

see the same order of issued requests. The main drawback of snoopy protocols is

due to the shared interconnect which limits their scalability.

In directory protocols the request in case of a L1 miss is sent to a single node,

called the home node, which is in charge of managing all the requests issued by

L1 caches and thus acts as the synchronization point: the requests are managed

following the order of their reception at the home node; the home node is typically

associated to the lower shared level of the memory hierarchy. The home node uses

a data structure, called the directory, to keep track of which cores have a copy of

each block in their private caches. In its typical implementation, the directory

consists of a bit vector associated to each cache line, with the size of the vector

equal to the number of cores in the system. This limits the scalability of directory

protocols since the directory introduces an area overhead which grows with the

system size.

Figure 2 shows an example of how the two protocols manage the same se-

quence of requests generated by L1 caches in a system with 4 cores and one bank

of L2 cache. At the beginning, the block we consider is shared by the L1 caches

of cores 1 and 3 (L1-1 and L1-3). Then, a read request is issued by L1-0 and a

write request by L1-2. If a snoopy protocol is used, L1-0 broadcasts its request;
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when the L2 cache receives the request, it sends the data block to L1-0; the block

is now shared by L1-0, L1-1 and L1-3. After a write miss in L1-2, a write request

is broadcast; when the request is received by the nodes which share a copy of the

block, they invalidate their copy, while the L2 cache sends the requested data to

L1-2, which will hold the only valid copy of the block.

(a) Snoopy protocol. (b) Directory protocol.

Figure 2: Directory and snoopy protocol behavior.

On the contrary, in a directory-based coherence protocol system, the L1-0

sends a unicast read request to the home node (the L2 cache bank), which adds

L1-0 to the sharers list of that block and provides the requested data block. L1-2

also sends a unicast write request to the L2 bank, which in turn sends an in-

validation message to each sharer and the requested data to L1-2; a field of the

invalidation message includes the ID of the L1 which issued the request, while

the data message indicates the number of sharers that are being invalidated. When

a sharer receives the invalidation message, invalidates its copy of the block and

sends an acknowledgment message to L1-2; L1-0 can use the block only after the

reception of the data and all the acknowledgments, meaning that all the sharers

have received the invalidation message and invalidated their copy of the block.

4. Network Architecture

4.1. Generic Mesh-of-Tree

In this section, we describe a generic mesh-of-tree (MoT) [6] which is the

baseline of the network implemented throughout this paper. Figure 3 shows a

4-node MoT network. A MoT is a tree-based structure where packets are sent

from network interface (NI) injectors to NI ejectors in two parts: fan-out tree

and fan-in tree. The fan-out tree is made of 1-to-2 switches. Those switches
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behave as demultiplexers, thus no arbitration logic is implemented. The fan-out

tree connects the NI injectors with the fan-in trees, one per NI ejector. Fan-in trees

are made of 2-to-1 switches. As there exists one fan-in tree per NI ejector packets

with different destination addresses do not compete among them. MoT presents

a low implementation cost as it just provides a single path between source and

destination. This renders in faster implementations of the interconnect [6, 19, 20].

Additionally, these networks provide high throughput and low latency.

Figure 3: 4x4 Mesh-of-Tree Baseline schematic.

4.2. Network Implementation

The sNoC network is made of two subnetworks, as can be seen in Figure 4.

Both subnetworks are implemented using the baseline MoT topology. One sub-

network forwards broadcast request messages meanwhile the second subnetwork

forwards unicast response messages – data messages.

In a MoT, all routing complexity is moved into the fan-out tree that must com-

pute the target fan-in tree – target node. The routing algorithm delivers incoming

flits to the proper output analyzing the routing bits inserted in the flit. On the

contrary, each fan-in tree switch require arbitration capabilities as can be seen in

Figure 5. Note that, each 2-to-1 switch is made of a simple multiplexer with arbi-

tration and flow control capabilities. An incoming flit requires one cycle to cross

the network similarly to [19]. This MoT architecture achieves N flits/node/cycle

throughput. In this sense, it resembles a registered crossbar which achieves max-

imum throughput [21, 20] at the expense of increasing resources. The main dif-

ference is that a registered crossbar is typically managed by a central control unit
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Figure 4: sNoC schematic.

which decides which input is connected to each output at a time. In our MoT sub-

network, arbitration decision is distributed through the fan-in tree switches. Dis-

tributing the arbitration policy reduces MoT complexity and increses its operating

frequency. In this paper a simple round-robin arbitration policy is implemented at

each fan-in tree switch.

DATA IN0

DATA IN1

FLOW CONTROL

CONTROL

DATA OUT

requests

STALLSTALL

Figure 5: Fan-in tree switch schematic.

The MoT is placed at the center of the die (see Figure 6). Thus, each core

is connected to the MoT by using a bidirectional link. In order to minimize link

delay and power consumption, those links are pipelined. The link piepeline depth

depends on core distance to the network and the core width. In this paper, we

assume that all cores have the same pipeline depth set to
√
N where N is the

network size. Equalizing pipeline depth is important to balance network traffic.

Distance between two nodes will be identical independently of core distance. No-

tice that, in sNoC zero-load latency is equal to 2 ∗
√
N +1, N cycle from the core

to the network, one cycle to cross the MoT, and then, n to reach the destination
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core.

CORE

CORE

CORE

CORECORECORE

CORECORECORE

CORE CORE CORE CORE

CORECORECORE

MoT

Figure 6: Network placement in the die.

The MoT subnetwork requires a flit by flit communication flow control at the

switch level. That is, each switch communicates with its attached switches –

one downstream switch and two upstream switches. Thus, some extra physical

signals travel together with data flits. From the upstream switches, incoming flits

travels with a request signal which validate data. From the downstream switch

one stall signal is received. If active, the switch propagates a flit. If not, the

switch stalls communication flow, storing incoming flits into its buffer. When

the buffer gets full, it propagates the stall signal to its upstream switches, stalling

the whole communication flow. When communication flow restarts, stall signals

propagate cycle by cycle from downstream switch to upstream switches. Notice

that a switch sends different stall signals to its upstream switches, in fact, only

the upstream switch that grants the buffer could have its stall signal active. This

communication scheme is called elasticity [22].

Figure 7 shows the communication flow control between the NI injector/ejector

and the subnetwork is attached. If it is a unicast message only one request signal

will be active at each cycle. For broadcast communications all request signals will

have the same value. As it can be seen in Figure 7(b), NI ejector is simpler as it

is attached to a single switch. It just stalls communication flow when its buffer

resources are full.
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(a) NI injector. (b) NI ejector.

Figure 7: NI injector and ejector schematic.

4.3. Request Messages Subnetwork

The subnetwork which handles broadcast request messages must be adapted to

support broadcast communication. Figure 8 shows the schematic of a 4x4 broad-

cast subnetwork. As messages are broadcasted, routing computation is removed.

As it can be seen, request messages subnetwork is a single fan-in tree connected

to a fan-out tree. One important aspect of a snoopy protocol is that all accesses

must be seen by all the nodes in the same order. Also, as messages are broadcast,

every message must arrive to all ejector NIs. To achieve that, the fan-in tree orders

incoming messages meanwhile the fan-out tree delivers messages to all ejectors

NIs. In this sense, stall signal generation is modified. As fan-in tree is connected

to any end node, when one end node is not enable to receive more messages it

stops the whole communication flow. That means, that when a NI ejector receives

a message, all NI ejectors have received the same message.The fact that a node

perfectly knows that the rest of nodes are receiving the same information highly

simplifies the coherence protocol.

With this implementation we obtain a totally ordered network. That is, packets

introduced in cycle T get out the network before packets introduced in time T + t,
for any t > 0. For that purpose, the control unit of the switches must be modified

(see Figure 3). Thus, the policy to access switch resources is not a simple round-

robin algorithm but older packets have priority over newer ones. When packet age

is identical a simple round-robin policy is assumed.

The physical distance between NI ejectors and the broadcast subnetwork out-

put could be large. That means that, the delay between the stall signal generation

at each NI ejector and its reception at the broadcast subnetwork could be large. To

decouple the overall network critical path and the stall signal generation critical

path, NI ejector buffer must be designed to fulfill round-trip-time constraint. That

is, it must be able to consume the flying flits that exist meanwhile the stall signal

is generated and the broadcast subnetwork stops. The number of flying flits that
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STALL

Figure 8: 4x4 broadcast subnetwork schematic.

the NI ejector buffer could consume determine how many times the stall signal

delay could be larger than the network critical path.

The broadcast subnetwork resembles a bus. That is, an interconnection struc-

ture where only one flit is delivered at each cycle. However, allowing broadcast

messages permits to implement a snoopy protocol. However, the MoT broadcast

subnetwork is a low latency network as its operating frequency is identical to the

rest of the network, removing the main disadvantage of conventional buses which

are high latency.

5. Experimental Results

To analyze the benefits of introducing the snoopy protocol, we implement

and compare different architectures for a 64-node network. First, we have im-

plemented a two subnetwork MoTs as described in Section 4 with two cache

coherence protocols: a snoopy protocol as described in Section 3 (sNoC) and

a conventional directory-based invalidation MESI protocol (MoT dir). Addition-

ally, we have implemented a conventional NoC solution made of a 2D mesh with

the directory-based protocol (2D dir). In this case, three virtual networks are used

in order to remove message protocol-level deadlock and, no broadcast messages

are allowed. Finally, we have implemented a two virtual network 2D mesh with

a directory-based protocol, where a MoT broadcast subnetwork is added which

handles broadcast request messages (2D bus). This last architecture resembles

the one presented in [17] and helps to better understand the benefits of using the

snoopy protocol in addition with a high throughput architecture.
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The 2D meshes have been implemented by using a modular switch design as

shown in Figure 9. As it can be seen, 2D switches are made of fan-in switches

identical to those used to build the MoT described in Section 4. Thus, a flit re-

quires two cycles to cross a switch when no contention exist. By implementing

switches as a mesh-of-tree, throughput is increased and latency is decreased when

compared with a canonical switch design with identical functionality [23]. How-

ever, the main reason to implement switches as small MoT is fairness, as 2D

mesh operating frequency will be similar to the operating frequency of the MoT

tree. Network performance can be measured with FPGA-based prototyping [24]

or with cycle accurate network simulators. In this paper we have used a cycle

accurate simulator as it provides more flexibility to model each network config-

uration. In particular, we have used the gNocsim simulator [25]. In the network

link width is set to 64 which is equal to the short message size. Long messages

are split in 9 flits. Fan-in switch buffering depth is set to two in order to minimize

network area.

Figure 9: 2D switch schematic built with fan-in switches.

All architectures have been synthesized using the Design Compiler tool by

Synopsys [26]. The placement and routing has been performed using the ICC tool

by Synopsys [26]. Finally, power consumption parameters have been extracted by

using the Power Compiler tool by Synopsys. The 40nm TSMC technology library

have been used to implement the network [27]. After Place&Route, network area

and power consumption have been computed. We have implemented all designs

using a nominal voltage of 0.9V. The MoT network is the slowest network, where

the critical path is 1.2ns. Thus, the NoC operating frequency has been set to

0.83GHz. Intercore distance has been set to 1.2mm.

Cache memories have been modeled with the CACTI [28] tool by HP labs to

obtain their area and power consumption. 32k L1 and 256k L2 caches are used.

Line size is set to 64 bytes as network link width. In both cases, one read and
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Figure 10: Area in mm2 comparison for different network sizes.

one write port have been considered. Finally, two different L2 tag configurations

have been considered to adapt L2 cache memories to the different coherence pro-

tocols. For the snoopy coherence protocol, only 23 bits are required to build the

tag structure. For the directory-based coherence protocol, extra bits are needed to

implement the directory structure. Thus, the L2 has been built with 87 bits per tag.

Notice that memories used for the snoopy coherence protocol are smaller than the

ones used for a directory-based protocol, as the tag structure is simplified.

5.1. Snoop system scalability

In this section, we analyze the MoT snoopy system scalability when compared

with the other architectures. In order to explore the scalability of the different ap-

proaches we measure two parameters. First, we analyze the network and memory

caches area for different number of nodes. Then, we analyze the broadcast sub-

network performance which is the bottleneck of the sNoC architecture.

Figure 10 shows the area in mm2 for different architectures and different net-

work sizes: 32, 64, 128, and 256 nodes. Due to computing limitations, we cannot

implement the 128-node and 256-node networks. In those cases, area has been

extrapolated from smaller networks results. Basically, we have estimated how

many resources are required – in terms of fan-in and fan-out switches, and wiring

– from smaller network cases. Finally, network area is computed as a sum of each

resource area estimation. As it can be seen, network area influence over the global

system area is negligible for systems with less than 32 nodes (less than 5%). As

the number of nodes increases, MoT-based network area grows faster than cache

memories area. For a 256-node network MoT dir network area becomes the 33%

of the whole system area. For 2D-based architectures network area remains neg-

ligible.

As it can be seen in Figure 10, 2D-based architectures have the lowest area

14



for large systems. On the contrary, MoT dir has the highest area due to network

unscalability. MoT dir increment with respect to the 2D dir is up to 11%, 23%

and 48% for 64, 128, and 256 nodes, respectively. Notice that, as the snoopy

coherence protocol removes directories, sNoC minimizes MoT unscalability. For

a 64-node network sNoC is just a 2% larger than the 2D-mesh. For larger net-

works, differences increase up to 10% and 22% for 128, and 256 node networks,

respectively.

In the sNoC architecture, the broadcast subnetwork is the bottleneck of the

system as it only extracts one flit per cycle (identically to a bus). However, for

current benchmarks this limitation does not impact the whole design. Figure 11

shows throughput demanded by applications on the broadcast subnetwork mea-

sured in flits/cycle. As it can be seen, application traffic demand is much lower

than broadcast subnetwork capability, that is, one flit per cycle. Canneal has the

highest bus demand but it is only 0.55 flits per cycle. On average, this demand is

lower than 0.1 flits per cycle.

Figure 11: Broadcast subnetwork throughput demand.

5.2. Execution Time

In this section, we analyze the execution time of the different architectures

presented above. Execution time is measured in cycles and real application traf-

fic from SPLASH and PARSEC benchmarks [29, 30] have been used. Figure 12

shows the decrease in the execution time of the 2D bus, MoT dir, and sNoC ar-

chitectures, when compared to the 2D dir. Figure 12 shows how MoT-based solu-

tions clearly outperforms 2D-mesh based solutions, as the MoT architectures have

higher throughput and lower network latency when congestion exists. Introducing

a MoT-subnetwork as 2D bus does, improves performance but this difference is

not as big as those obtained with MoT architectures. On average, 2D bus archi-

tecture reduces execution time by 5%.
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More interesting conclusion is how the coherence protocol impact on high per-

formance networks. Notice that, the directory-based protocol underutilized MoT

resources, as the MoT dir execution time decrease is lower than the decrease ob-

tained by sNoC. On the contrary, the simpler snoop protocol efficiently utilizes the

MoT throughput. On average, MoT dir reduces execution time by 13%, mean-

while sNoC reduces the execution time by 20%. Remember that, for a 64-node

network, sNoC is just 2% larger than the 2D dir.

Figure 12: Normalized execution time with respect to 2D dir.

5.3. Protocol Injected Messages

Figure 13 shows the number of messages injected for different applications

when using a directory-based protocol (Directory) and the snoopy protocol (Snoopy)

presented in Section 3. As it can be seen in Figure 13, snoopy protocol injects less

messages in the network due to its simplicity. On average, the number of mes-

sages injected into the network is reduced by 35%. This reduction in number

of messages is strongly related with the application execution time shown above,

as communication between nodes requires less messages and hence, application

runs faster. Additionally, reducing network messages reduces whole system power

consumption, as it will be shown later.

5.4. Power Consumption

In this subsection we show the power consumption of the different architec-

tures previously exposed. Power consumption is decomposed as the sum of the

power of the L1 and L2 cache memories, and the network power consumption.

Table 1 shows the static power consumption of a single L1 and L2 cache

memories. Two kinds of L2 banks have been considered, one L2 suitable for

the directory-based protocol (L2 dir) which requires more TAG bits as stated in

previous section, and a smaller L2 sufficient for the snoop protocol (L2 snoop).
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Figure 13: Network injected messages.

Table 1 also shows the power required to perform a read/write access at its maxi-

mum operating frequency.

Power (mW) Static power Dynamic Power

L1 0.03 1.55

L2 dir 1.01 4.32

L2 snoop 0.9 3.55

Table 1: Power consumption in mW for a single L1, L2 dir, and a L2 snoop.

Cache memory power consumption can be calculated by:

PLi = Eread ∗A/ET + Pstatic (1)

where A is the number of read/write accesses to a cache memory, Eread is the

energy required for a read access, and ET is the execution time. As stated in

previous section, one read/write access per cycle is allowed.

Table 2 shows the static and dynamic power consumption the different net-

work implementations. Static power reflects the power consumption when no flits

crosses the network for each configuration. Meanwhile the dynamic power con-

sumption reflects the power consumption when flits cross the network. For the

MoT designs, dynamic power consumption is measured for a unicast flit and a

broadcast flit. In MoT cases, links between cores and the network are included.

Notice that, for the 2D case flit power consumption depends on how many hops

(H) the flits realizes. Notice that, sNoC power consumption is larger than a con-

ventional 2D mesh. This is specially critical in case of broadcast messages. Such

a high power is because any broadcast message must arrive to any end node. How-

ever, snoop protocol generates less messages than a 2D mesh. Reducing the num-

ber of injected messages minimizes the impact of the high power consumption of
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a single sNoC broadcast message. However, the reduction of messages injected

into the network minimizes that difference.

Power (mW) Static power Dynamic Power

sNoC
unicast 31.96 2.152

broadcast 25.96 41.44

MoT dir 31.96 2.152

2D dir 20.41 0.236*H

Table 2: Power consumption in mW for the different network implemented.

Thus, network power consumption can be computed as:

Pnetwork = Nsub∗PNstatic+EBflit ∗IF ∗B/ET +EUflit∗IF ∗(1−B)/ET (2)

where Nsub is the number of subnetwork each network have, PNstatic is the static

power consumption of a single subnetwork, ET is the execution time of the appli-

cation, EBflit is the energy required to broadcast a single flit, EUflit is the energy

required for transmitting a single unicast flit, IF are the number of injected flits

in the network, and B is the proportion of broadcast flits.

Figure 14 shows the power consumption (in mW) when executing different

real applications over the different architectures described. As it can be seen,

power consumption benefits of sNoC are strongly related with messages gen-

erated. Then, meanwhile a power consumption reduction of almost 40% in Lu

and Radix applications is achieved, sNoC consumes more power in other appli-

cations with more generated messages, a 21% more in Barnes, and a 12% more

in Canneal. In mean, sNoC presents a 15% reduction in power consumption.

Two aspects should be considered. First, despite sNoC requires more power to

transmit messages – specially broadcast messages – it reduces overall number

of messages. Additionally, sNoC memories are simplified and present a lower

power consumption than a directory-based memory. Power consumption saved

at memories compensate the increment in power consumption that occurs at the

network. On the contrary, MoT dir presents the highest power consumption as

expected, as it increases resources, meanwhile injected flits and cache memories

are not optimized. On average, MoT dir increases power consumption by 52%.

2D bus reduces power consumption by 10%, due to reduction in resources when

introducing the MoT broadcast subnetwork and its capability of injecting broad-

cast messages. However, this reduction is not as large as the power consumption

reduction achieved by sNoC.

18



Figure 14: Power consumption (in mW) for the different architectures.

6. Conclusions

In this paper we proposed sNoC a mesh-of-tree high-throughput low-latency

network suitable for snoop-based cache coherence protocols. sNoC relies on an

efficient co-design of a snoop protocol and a high-throughput low-latency net-

work. Basically, simplifying the coherence protocol and moving some complexity

to the on-chip network maximizes system’s efficiency. A thorough evaluation of

the proposed NoC design confirmed that execution time and power are reduced

when deploying sNoC. In particular, results showed that for a 64-node network

sNoC achieves a 20% reduction in execution time, meanwhile power consump-

tion reduction can be achieved if the number of injected messages by the snoopy

protocol is significantly dropped. Furthermore, sNoC improves the mesh-of-tree

networks scalability, as it only increases by 2% system resources, meanwhile a

simple mesh-of-tree with a directory-based protocol increases the area by 11%.
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