
Models for the Displacement Calculus

Oriol Valent́ın?

Universitat Politècnica de Catalunya,

Abstract. The displacement calculus D is a conservative extension of
the Lambek calculus L∗ (with empty antecedent allowed in sequents).
L∗ can be said to be the logic of concatenation, while D can be said to
be the logic of concatenation and intercalation. In many senses, it can
be claimed that D mimics L∗, namely that the proof theory, generative
capacity and complexity of the former calculus are natural extensions of
the latter calculus. In this paper, we strengthen this claim. We present the
appropriate classes of models for D and prove its completeness results,
and strikingly, we see that these results and proofs are natural extensions
of the corresponding ones for L∗.

1 Introduction

The displacement calculus D is a quite well-studied extension of the Lambek
calculus (with empty antecedent allowed in sequents) L∗. In many papers (see
[6], [9] and [8]), D has proved to provide elegant accounts of a variety of linguistic
phenomena of English, and of Dutch, namely a processing interpretation of the
so-called Dutch cross-serial dependencies.

The hypersequent calculus hD1 is a pure sequent calculus free of structural
rules, which subsumes the sequent calculus for L∗. The Cut elimination algorithm
for hD provided in [9] mimics the one of Lambek’s syntactic calculus (with some
minor differences concerning the possibility of empty antecedents). Like L∗, D
enjoys some nice properties such as the subformula property, decidablity, the
finite reading property and the focalisation property ([4]).

Like L∗, D is known to be NP-complete [3]. Concerning the (weak) generative
capacity, D recognises the class of well-nested multiple context-free languages
([10]). In this sense, this result on generative capacity generalises the result
that states that L∗ recognises the class of context-free languages. One point of
divergence in terms of generative capacity is that D recognises the class of the
permutation closure of context-free languages ([7]). Finally, it is important to
note that a Pentus-like upper bound theorem for D is not known.

In this paper we present natural classes of models for D. Several strong com-
pleteness results are proved, in particular strong completeness w.r.t. the class of
residuated displacement algebras (a natural extension of residuated monoids).

? Research partially supported by SGR2014-890 (MACDA) of the Generalitat de
Catalunya, and MINECO project APCOM (TIN2014-57226-P).

1 Not to be confused with the hypersequents of Avron ([1]).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41827497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Oriol Valent́ın

Powerset frames for L∗ are considered of interest from the linguistic point of view.
Here, again powerset residuated displacement algebras over displacement alge-
bras are given, which generalise the powerset residuated monoids over monoids
as well as free monoids. Strong completeness result for the so-called implica-
tive fragment of D, which is very relevant linguistically, is proved in the style
of Buszkowski ([2]). Moreover, full completeness with respect powerset residu-
ated displacement algebras over displacement algebras is given following again
Buszkowski’s methods.

The structure of the paper is as follows. In Section 2 we present the basic
proof-theoretic tools (useful for the construction of canonical models) for the
study of D from a semantic point of view. In Section 3 we provide the proof of
strong completeness of the implicative fragment w.r.t. L-models. In Section 4, the
proof of strong completeness of full D w.r.t. powerset residuated displacement
algebras over displacement algebras is outlined. Finally, we conclude in the last
section.

2 The Hypersequent Calculus hD and the Categorical
calculus cD

D is model-theoretically motivated, and the key to its conception is the class of
standard displacement algebras. Some definitions are needed. LetM = (|M|,+,
0, 1) be a free monoid where 1 is a distinguished element of the set of generators
X ofM. We call such an algebra a separated monoid. Given an element a ∈ |M|,
we can associate to it a number, called its sort as follows:

(1)
s(1) = 1
s(a) = 0 if a ∈ X and a 6= 1
s(w1 + w2) = s(w1) + s(w2)

This induction is well-defined, for M is free, and 1 is a (distinguished) genera-
tor. The sort function s(·) in a separated monoid simply counts the number of
separators an element contains.

Definition 1. (Sort Domains)
WhereM = (|M|,+, 0, 1) is a separated monoid, the sort domains |M|i of sort
i are defined as follows:

|M|i = {a ∈ |M| : s(a) = i}, i ≥ 0

It is readily seen that for every i, j ≥ 0, |M|i ∩ |M|j = ∅ iff i 6= j.

Definition 2. (Standard Displacement Algebra)
The standard displacement algebra (or standard DA) defined by a separated
monoid (|M|,+, 0, 1) is the N-sorted algebra with the N-sorted signature ΣD =
(+, {×i}i>0, 0, 1}) with sort functionality ((i, j → i + j)i,j≥0, (i, j → i + j −
1)i>0,j≥0, 0, 1):

({|M|i}i≥0,+, {×i}i>0, 0, 1)

Models for the Displacement Calculus 3

where:

operation is such that

+ : |M|i × |M|j → |M|i+j as in the separated monoid

×k : |M|i × |M|j → |M|i+j−1
×k(s, t) is the result of replacing the k-th
separator in s by t

We will usually write standard DA instead of standard displacement algebra. The
sorted types of D, which we will define residuating w.r.t the sorted operations in
definition 2, are defined by mutual recursion in Figure 1. We let Tp =

⋃
i≥0 Tpi.

A subset B of |M| is called a same-sort subset iff there exists an i ∈ N such
that for every a ∈ B, s(a) = i. D types are to be interpreted as same-sort
subsets of |M|. I.e. every inhabitant of JAK has the same sort. The semantic

Tpi ::= Pri where Pri is the set of atomic types of sort i

Tp0 ::= I Continuous unit
Tp1 ::= J Discontinuous unit

Tpi+j ::= Tpi•Tpj continuous product
Tpj ::= Tpi\Tpi+j under
Tpi ::= Tpi+j/Tpj over

Tpi+j ::= Tpi+1�kTpj discontinuous product
Tpj ::= Tpi+1↓kTpi+j extract

Tpi+1 ::= Tpi+j↑kTpj infix

Fig. 1. The sorted types of D

interpretations of the connectives are shown in Figure 2. This interpretation is
called the standard interpretation. We observe that for any type A ∈ Tp, the
interpretation of A, i.e. JAK, is contained in Ms(A), where the sort map s(·) for
the set Tp, is such that ():

(2)

s(p) = i for p ∈ Pri
s(I) = 0
s(J) = 1
s(A•B) = s(A) + s(B)
s(B/A) = s(A\B) = s(B)− s(A)
s(A�k B) = s(A) + s(B)− 1
s(A↓kB) = s(B↑kA) = s(B)− s(A) + 1

4 Oriol Valent́ın

JpK ⊆ |M|i for i ≥ 0 p ∈ Pri

JIK = {0} continuous unit
JJK = {1} discontinuous unit

JA•BK = {s1 + s2| s1 ∈ JAK & s2 ∈ JBK} product
JA\CK = {s2| ∀s1 ∈ JAK, s1 + s2 ∈ JCK} under
JC/BK = {s1| ∀s2 ∈ JBK, s1 + s2 ∈ JCK} over

JA�kBK = {×k(s1, s2)| s1 ∈ JAK & s2 ∈ JBK} k > 0 discontinuous product
JA↓kCK = {s2| ∀s1 ∈ JAK,×k(s1, s2) ∈ JCK} k > 0 infix
JC↑kBK = {s1| ∀s2 ∈ JBK,×k(s1, s2) ∈ JCK} k > 0 extract

Fig. 2. Standard semantic interpretation of D types

2.1 The Hypersequent Calculus hD

We will now consider the string-based hypersequent syntax from [5].2 The reason
for using the prefix hyper in the term sequent is that the data-structure used
in hypersequent antecedents is quite nonstandard. Type segments are defined as
follows

(3)
TypSeg0 ::= A for a ∈ Tp0

TypSegn ::= dAei for 0 ≤ i ≤ n := s(A)

Type segments of sort 0 are types. But, type segments of sort greater than 0 are
no longer types. Strings of type segments can form meaningful logical material
like the set of hyperconfigurations, which we now define. The hyperconfigurations
HConfig are defined unambiguously by mutual recursion as follows, where Λ is
the empty string and 1 is the metalinguistic separator::

(4)

HConfig ::= Λ
HConfig ::= A,HConfig for s(A) = 0
HConfig ::= 1,HConfig
HConfig ::= dAe0,HConfig, dAe1, · · · , dAes(A)−1,HConfig, dAes(A),HConfig

for s(A) > 0

The semantic interpretation of the last clause from (4) consists of elements
α0 +β1 +α1 + · · ·+ αn−1 +βn+αn where α0 +1+α1 + · · ·+αn−1 +1+αn∈ JAK
and β1, · · · , βn are the interpretations of the intercalated hyperconfigurations.
The syntax in which HConfig has been defined is called string-based hyperse-
quent syntax. An equivalent syntax for HConfig is called tree-based hypersequent
syntax which was defined in [6], [9]. For proof-search and human readability, the
tree-based notation is more convenient than the string-based notation, but for
semantic purposes, the string-based notation turns out to be very useful, for

2 Term which must not be confused with Avron’s hypersequents ([1]).

Models for the Displacement Calculus 5

the canonical model construction considered in Section 3 which relies on the set
TypSeg =

⋃
n≥0 TypSegn.

In string-based notation the figure
−→
A of a type A is defined as follows:

(5)
−→
A =

{
A if s(A) = 0
dAe0, 1, dAe1, · · · , dAes(A)−1, 1, dAes(A) if s(A) > 0

The sort of a hyperconfiguration is the number of metalinguistic separators it
contains. We have HConfig =

⋃
i≥0 HConfigi, where HConfigi is the set of

hyperconfigurations of sort i. Where Γ and Φ are hyperconfigurations and the
sort of Γ is at least 1, Γ |kΦ (k > 0) signifies the hyperconfiguration which is the
result of replacing the k-th separator in Γ by Φ. Where Γ is a hyperconfiguration
of sort i and Φ1, · · · , Φi are hyperconfigurations, the fold Γ ⊗〈Φ1, · · · , Φi〉 is the
result of simultaneously replacing the successive separators in Γ by Φ1, · · · , Φi
respectively. ∆〈Γ 〉 abbreviates ∆0(Γ ⊗ 〈∆1, · · · , ∆i〉). When a type-occurrence
A in a hyperconfiguration is written without vectorial notation, that means that
the sort of A is 0. However, when one writes the metanotation for hyperconfigu-

rations ∆〈
−→
A 〉, this does not mean that the sort of A is necessarily greater than

0.
A hypersequent Γ ⇒ A comprises an antecedent hyperconfiguration in string-

based notation of sort i and a succedent type A of sort i. The hypersequent
calculus for D is as shown in Figure 3. The following lemma is useful for the
strong completeness results of section 3:

Lemma 1. The set of HConfig is a subset of (TypSeg∪{1})∗. We have that:

i) HConfig is closed by concatenation and intercalation.
ii) If ∆ ∈ (TypSeg ∪ {1})∗, Γ ∈ HConfig, and ∆,Γ ∈ HConfig, then

∆ ∈ HConfig. Similarly, if we have Γ,∆ ∈ HConfig instead of ∆,Γ ∈
HConfig. Finally, If ∆ ∈ (TypSeg ∪ {1})∗, Γ ∈ HConfig, and ∆|iΓ ∈
HConfig, then ∆ ∈ HConfig.

2.2 D and its Categorical Presentation cD

In [11] it is proved that the identities (or equations) true of standard DAs has
as equational theory the so-called class of (general) displacement algebras (DA)
(see Figure 4).

The categorical calculus cD for D is as follows:

(6)

A•B → iff A→ C/B iff B → A\C
A�i B → iff A→ C↑iB iff B → A↓iC

We add as postulates the ones corresponding
to the set of equations defining DA

The set of postulates of cD would be in the case of the categorical calculus with
unit for L∗, the postulates corresponding to the equations defining the class of
monoids. Let RD be the class of residuated DAs. Again, in [11], it is proved the
following embedding translation:

6 Oriol Valent́ın

−→
A ⇒ A if A is primitive

∆〈Λ〉 ⇒ A
IL

∆〈I〉 ⇒ A
IR

Λ ⇒ I

∆〈1〉 ⇒ A
JL

∆〈
−→
J 〉 ⇒ A

JR
1 ⇒ J

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

/L
∆〈
−−→
B/A, Γ 〉 ⇒ C

∆,
−→
A ⇒ B

/R
∆ ⇒ B/A

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

\L
∆〈Γ,

−−→
A\B〉 ⇒ C

−→
A,∆ ⇒ B

\R
∆ ⇒ A\B

∆〈
−→
A,
−→
B 〉 ⇒ C

•L
∆〈
−−−→
A •B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
•R

∆,Γ ⇒ A •B

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

↑iL
∆〈
−−−→
B↑iA|iΓ 〉 ⇒ C

∆|i
−→
A ⇒ B

↑iR
∆ ⇒ B↑iA

Γ ⇒ A ∆〈
−→
B 〉 ⇒ C

↓iL
∆〈Γ |i

−−−→
A↓iB〉 ⇒ C

−→
A |i∆ ⇒ B

↓iR
∆ ⇒ A↓iB

∆〈
−→
A |i
−→
B 〉 ⇒ C

�iL
∆〈
−−−−→
A�i B〉 ⇒ C

∆ ⇒ A Γ ⇒ B
�iR

∆|iΓ ⇒ A�i B

Fig. 3. Hypersequent Calculus for D

(7) For any type A,B ∈, cD ` A→ B iff
−→
A ⇒ B

We can define the well-known Lindenbaum-Tarski construction to see that cD
is strongly complete w.r.t. RD. The canonical model (L, v) where L is (Tp/θ, ◦,
(◦i)i>0, \\, //, (�i)i>0(�i)i>0;≤). θ is the equivalence relation on Tp defined as
follows: AθB iff R `cD A → B and R `cD B → A, where R is a set of non-
logical axioms. Using the classical tonicity properties for the connectives of Tp,
one proves that θ is a congruence. Where A is a type, A is an element of Tp/θ
modulo θ. We define A ≤ B iff R `cD A → B. We define the valuation v as

v(p) = p (p is a primitive type). We have that for every type A, JAKLv = A.
Finally, one has that (L, v) |= A→ B iff R `cD A→ B. From this, we infer the
following theorem:

Theorem 1. cD is strongly complete w.r.t. RD.

Using the embedding translation (7), we see that hD is strongly complete w.r.t.
RD. Since DA is an equational class (see Figure 4), it is closed by subalgebras,

Models for the Displacement Calculus 7

Continuous associativity

x+ (y + z) ≈ (x+ y) + z

Discontinuous associativity

x×i (y ×j z) ≈ (x×i y)×i+j−1 z
(x×i y)×j z ≈ x×i (y ×j−i+1 z) if i ≤ j ≤ 1 + s(y)− 1

Mixed permutation

(x×i y)×j z ≈ (x×j−S(y) +1 z)×i y if j > i+ s(y)− 1
(x×i z)×j y ≈ (x×j y)×i+S(y)−1 z if j < i

Mixed associativity

(x+ y)×i z ≈ (x×i y) + z if 1 ≤ i ≤ s(x)
(x+ y)×i z ≈ x+ (y ×i−s(x) z) if x+ 1 ≤ i ≤ s(x) + s(y)

Continuous unit and discontinuous unit

0 + x ≈ x ≈ x+ 0 and 1×1 x ≈ x ≈ x×i 1

Fig. 4. Equational theory for DA

direct products and homomorphic images. We have other interesting examples of
DAs, namely the powerset DA over A = (|A|,+, {×i}i>0, 0, 1), which we denote
P(A). We have:

(8) P(A) = (|P(A)|, ◦, {◦i}i>0, I, J)

A subset B of |A| is called a same-sort subset iff:

(9) There exists an i ∈ N such that for every a ∈ B, s(a) = i

The notation of the carrier set of P(A) presupposes that its members are same-
sort subsets. Where A, B and C denote same-sort subsets of |A|, the operations
I, J, ◦ and ◦i are defined as follows:

(10)

I , {0}
J , {1}
A◦B , {a+ b : a ∈ A and b ∈ B}
A◦iB , {a×i b : a ∈ A and b ∈ B}

It is readily seen that for every A, P(A) is in fact a DA. A residuated powerset
displacement algebra over a displacement algebra P(A) is the following:

(11) P(A) = (|P(A)|, ◦, \\, //, {◦i}i>0, , {�i}i>0, {�i}i>0, I, J;⊆)

8 Oriol Valent́ın

\\, //, �i and �i are defined as follows:

(12)

A\\B , {d : for every a ∈ A, a+ d ∈ B}
A//B , {d : for every a ∈ A, a+ d ∈ B}
B�iB , {d : for every a ∈ A, d×i b ∈ B}
A�iB , {d : for every a ∈ A, a×i d ∈ B}

The class of powerset residuated DAs over a DA is denoted PRDD. The class
of powerset residuated DAs over a standard DA is denoted PRSD. Finally, the
subclass of powerset residuated algebras over finitely-generated standard DA,
is denoted PRSDfg. Models over residuated DAs of this subclass, are called
L-models. Every standard DA A has two remarkable properties, namely the
property that sort domains |A|i (for i > 0) can be defined in terms of |A|0, and
the property that every element a of a sort domain |A|i is decomposed uniquely
around the separator 1:

(13)

a) For i > 0, |A|i = |A|0◦{1} · · · {1}◦|A|0︸ ︷︷ ︸
(i− 1) 1′s

(1)

b) For i > 0, If a0 + 1 + · · ·+ 1 + ai = b0 + 1 + · · ·+ 1 + bi then
ak = bk for 0 ≤ k ≤ i

We say that the sort domains of |A| are separated by 1. The single Property (13
a) is called weakly separtion, and both properties of (13) constitute what we call
strong separation.

Standard DAs, as suggests its denomination, are effectively general DAs:

Lemma 2. SD ⊆ DA.3

Proof. We define a useful notation which will help us to prove the lemma. Where
A = (|A|,+, (×i)i>0, 0, 1) is a standard DA, let a be an arbitrary element of sort
s(a). We associate to every a ∈ |A| a sequence of elements a0, · · · , as(A). We
have the following vectorial notation:

(14) −→a ji =

{
ai, if i = j
−→a j−1
i + 1 + aj , if j − i > 0

Since A is standard DA, the ai associated to a given −→a are unique (by freeness

of the underlying monoid). We have that a = −→a s(A)
0 , and we write −→a in place

of −→a s(A)
0 . Consider arbitrary elements of |A|, −→a ,

−→
b and −→c :

• Continuous associativity is obvious.

• Discontinuous associativity. Let i, j be such that i ≤ j ≤ i+ s(−→a)− 1:

(15)

−→
b ×j−→c =

−→
b i−1

0 +−→c +
−→
b
s(b)
i , therefore:

−→a ×i(
−→
b ×j−→c) = −→a i−1

0 +
−→
b j−1

0 +−→c +
−→
b
s(b)
j +−→a s(a)

i

3 Later we see that the inclusion is proper, i.e. SD (DA

Models for the Displacement Calculus 9

On the other hand, we have that:

−→a ×i
−→
b = −→a i−1

0 +
−→
b+−→a s(

−→a)
i = −→a i−1

0 +
−→
b j−1

0 + 1︸︷︷︸
(i+j−1)-th separator

+
−→
b
s(
−→
b)

j +−→a s(
−→a)

i

It follows that:

(16) (−→a×i
−→
b)×i+j−1

−→c = −→a i−1
0 +
−→
b j−1

0 +−→c+
−→
b
s(
−→
b)

j +−→a s(
−→a)

i

By comparing the rhs of (15) and (16), we have therefore:

−→a ×i(
−→
b ×j−→c) = (−→a×i

−→
b)×i+j−1

−→c

• Mixed Permutation. Consider (−→a×i
−→
b)×j−→c and suppose that i+s(

−→
b)−1 < j:

−→a×i
−→
b = −→a i−1

0 +
−→
b+−→a j−s(

−→
b)

i︸ ︷︷ ︸
j−s(

−→
b)+s(

−→
b)−1=j−1 separators

+1+−→a s(
−→a)

j−s(
−→
b +1)

It follows that:

(17) (−→a×i
−→
b)×j−→c = −→a i−1

0 +
−→
b+−→a j−s(

−→
b)

i +−→c+−→a s(
−→a)

j−s(
−→
b)+1

Since i+ s(
−→
b)− 1 < j, then i < j − s(

−→
b) + 1. Then we have that:

−→a×
j−s(

−→
b)+1
−→c = −→a i−1

0 +1+−→a j−s(
−→
b)

i +−→c+−→a s(
−→a)

j−s(
−→
b)+1

It follows that:

(18) (−→a×
j−s(

−→
b)+1
−→c)×i

−→
b = −→a i−1

0 +
−→
b+−→a j−s(

−→
b)

i +−→c+−→a s(
−→a)

j−s(
−→
b)+1

By comparing the rhs of (17) and (18), we have therefore:

(−→a×i
−→
b)×j−→c = (−→a×

j−s(
−→
b)+1
−→c)×i

−→
b

• Mixed associativity. There are two cases: i ≤ s(−→a) or i > s(−→a). Considering
the first one, this is true for:

(−→a+
−→
b)×−→c = (−→a i−1

0 +1+−→a s(
−→a)

i)×i−→c = −→a i−1
0 +−→c +−→a s(

−→a)
i +

−→
b = (−→a×i−→c)+

−→
b

The other case corresponding to i > s(−→a) is completely similar.

• The case corresponding to the units is completely trivial.

ut

10 Oriol Valent́ın

2.3 Some special DAs

The standard DA S, induced by the separated monoid with generator set TypSeg∗∪
{1}, plays an inportant role. The interpretation of the signature ΣD in |S| is:

(19) S = ((TypSeg∗ ∪ {1})∗, (,), {|i}i>0, Λ, 1)

We have seen in section 2 that HConfig is closed by concatenation (,) and
intercalation |i, i > 0, i.e. C = (HConfig, (,), (|i)i>0, Λ, 1) is a ΣD-algebra.4

Since DA is an equational class, it is closed by (ΣD)-subalgebras. Since C is a
subalgebra of S, hence C is a (general) DA, concretely a nonstandard DA. To see
that C cannot be standard we notice that the sort domains of C are not separated

by {1}. Recall that |C| =
⋃
i≥0

HConfigi (|C|i = HConfigi, for every i ≥ 0). We

have that:

(20) For i > 0,|C|i 6= HConfig0◦ · · · ◦HConfig0︸ ︷︷ ︸
i times

For, for example let us take
−−→
p↑1p = dp↑1pe0, 1, dp↑1pe1, where p ∈ Pr. Type p↑1p

has sort 1, but clearly neither dp↑1pe0 nor dp↑1pe1 are members of HConfig0.
In fact, we have the proper inclusion:

(21) For i > 0, HConfig0◦ · · · ◦HConfig0︸ ︷︷ ︸
i times

(|C|i

It follows that the class of standard DAs is a proper subclass of the class of
general DAs:

(22) SD (DA

The Lindenbaum algebra L defined in the previous Subsection is a nonstandard
DA, because again, the sort domains are not separated by {1}. The initial ΣD-
algebra N in DA is the standard displacement algebra induced by the singleton
generator set {1}, where N = (N,+N , {×Ni }i>0, 0

N , 1N). The elements of the
signature are interpreted as follows:

(23)

0N , 0

1N , 1

+N (n,m) , n+m, where n,m ∈ N
Where i > 0, ×Ni (n,m) , n+m− 1, where n > 0 and m ≥ 0

4 Observe that the sort functionalities of (,) and |i (i > 0) are respectively (i, j →
i+ j)i,j≥0, and (i, j → i+ j − 1)i>0,j≥0, where s(0) = 0, and , s(1) = 1.

Models for the Displacement Calculus 11

Synthetic Connectives and the Implicative fragment

From a logical point of view, synthetic connectives abbreviate derivations mainly
in sequent systems. They form new connectives with left and right sequent rules.
Using a linear logic slogan, synthetic connectives help to eliminate some bureau-
cracy in cut-free proofs and in the (syntactic) Cut elimination algorithms. We
consider a set of synthetic connectives which are of linguistic interest (Figure 5
corresponds to their semantic interpretation, Figure 6 and Figure 7 correspond
to their hypersequent rules). By these definition it is readily seen that the unary
synthetic connectives form residuated pairs, and the binary synthetic connec-
tives form residuated triples. We define what we call the implicative fragment of
D which contains all the continuous and discontinous implicative rules, as well
as the synthetic connectives defined here, which are considered implicative in
the sense that their semantic interpretations in Figure 5 are defined in terms
of implicational subset connectives such as \\, //,�i and �i. We have the fol-
lowing notations: where Tp∗ is the set of unit-free types, Tp∗[→] is the set of
Tp∗-types restricted to the implicative fragment. Similarly, we have hD∗[→],
TypSeg∗[→], and HSeq∗[→] (where HSeq∗ is the set of hypersequents over
unit-free types).5

J/−1AK , JAK//J left projection

J.−1AK , J\\JAK right projection

JˇiAK , JAK↑iI i-th split

B⇑A , B↑1A& · · · &B↑s(B)−s(A)+1A nondeterministic extract

A⇓B , A↓1B& · · · &A↓s(B)−s(A)+1B nondeterministic infix

Fig. 5. Semantic interpretation in standard DAs for the set of synthetic connectives

3 Strong Completeness of the implicative fragment w.r.t.
L-models

In this section we prove theorem 3, which states that D∗[→] is strongly complete
w.r.t. language models. More concretely, the theorem establishes the strong com-
pleteness w.r.t. the hypersequent calculus HSeq∗[→]. In order to prove it, we
demonstrate first strong completeness of HSeq∗[→] w.r.t. powerset residuated
DAs over standard DAs with a countable set of generators. Let V = TypSeg∗[→
]∪{1}. Clearly, V is countably infinite since TypSeg∗[→] is the countable union⋃
i

TypSeg∗[→]i (see (3)), where each TypSeg∗[→]i is also countably infinite.

5 The unary connectives are definable in terms of (full) Tp (using the units, e.g.
ˇkA,A↑kI), but the nondeterministic ⇓ and ⇑ are no longer definable only in terms
of Tp, (see [11]).

12 Oriol Valent́ın

Γ 〈
−→
A 〉 ⇒ B

/−1L

Γ 〈
−−−→
/−1A, 1〉 ⇒ B

Γ, 1 ⇒ A
/−1R

Γ ⇒ /−1A

Γ 〈
−→
A 〉 ⇒ B

.−1L

Γ 〈1,
−−−→
.−1A〉 ⇒ B

1, Γ ⇒ A
.−1R

Γ ⇒ .−1A

∆〈
−→
B 〉 ⇒ C

ˇiL
∆〈
−−→
ˇiB|iΛ〉 ⇒ C

∆|iΛ ⇒ BB
ˇR

∆ ⇒ ˇiB

Fig. 6. Hypersequent rules for synthetic unary implicative connectives

∆ ⇒ A Γ 〈
−→
B 〉 ⇒ C

⇑L
Γ 〈
−−−→
B⇑A|iΓ 〉 ⇒ C

∆|1
−→
A ⇒ B · · · ∆|d

−→
A ⇒ B

⇑R
∆ ⇒ B⇑A

∆ ⇒ A Γ 〈
−→
B 〉 ⇒ C

⇓L
Γ 〈Γ |i

−−−→
A⇓B〉 ⇒ C

−→
A |1∆ ⇒ B · · ·

−→
A |a∆ ⇒ B

⇓R
∆ ⇒ A⇓B

Fig. 7. Hypersequent calculus rules for nondeterministic synthetic connectives

Let us consider the standard DA S (from (19)), induced by the (countably)
infinite set of generators V :

S = (V ∗, (,), {|i}i>0, Λ, 1)

In order to prove completeness of HSeq∗[→] w.r.t. the class of powerset DAs
over (countable) standard DAs (PRSD), we define some useful notation:

Definition 3. For any type C ∈ Tp∗[→], and a set of sequents R of HSeq:

[C]R , {∆ : ∆ ∈ HConfig and R ` ∆ ⇒ C}

In practice, when the set R of hypersequents is clear by the context, we simply
write [C] instead of [C]R. Let us fix some set of hypersequents R:

Lemma 3. (Truth Lemma)
Let P(S) be the powerset residuated DA over the standard DA S from (19) .
Let v be the following valuation on the powerset P(S):

For every p ∈ Pr, v(p) , [p]R

LetM = (P(S), v) be called as usual the canonical model. The following equality
holds:

For every C ∈ Tp∗[→], JCKP(A)
v = [C]

Models for the Displacement Calculus 13

Proof. We proceed by induction on the structure of type C. Let us write J · K
instead of JCKP(A)

v , and [·] instead of [·]R. We will say that an element ∆ ∈ JAK
is correct iff ∆ ∈ HConfig.

• C is primitive. True by definition.

• C = B↑iA. Let us see:

[B↑iA] ⊆ JB↑iAK

Let ∆ be such that R ` ∆ ⇒ B↑iA. Let ΓA ∈ JAK. By induction hypothesis
(i.h.), JAK = [A]. Hence, R ` ΓA ⇒ A We have:

∆ ⇒ B↑iA
−−−→
B↑iA|iΓA ⇒ B

Cut
∆|iΓA ⇒ B

By (i.h.), JBK = [B]. It follows that ∆|iΓA ∈ JBK, hence ∆ ∈ JB↑iAK.
Whence, [B↑iA] ⊆ JB↑iAK.
Conversely, let us see:

JB↑iAK ⊆ [B↑iA]

Let ∆ ∈ JB↑iAK. By i.h. JAK = [A]. For any type A, we have eta-expansion,

i.e.
−→
A ⇒ A. Hence,

−→
A ∈ JAK. We have that∆|i

−→
A ∈ JBK. By i.h.,∆|i

−→
A ⇒ B.

Since
−→
A is correct, and by i.h. ∆|i

−→
A is correct, by lemma 1, ∆ is correct. By

applying the ↑i right rule to the provable hypersequent ∆|i
−→
A ⇒ B we get:

∆ ⇒ B↑iA

This ends the case of B↑iA.

• C = A↓iB. Completely similar to case B↑iA.

• C = B/A. Let us see:

[B/A] ⊆ JB/AK

Let ∆ be such that R ` ∆ ⇒ B/A. Let ΓA ∈ JAK. By induction hypothesis
(i.h.), JAK = [A]. Hence, R ` ΓA ⇒ A We have:

∆ ⇒ B↑iA
−−→
B/A, ΓA ⇒ B

Cut
∆, ΓA ⇒ B

By (i.h.), JBK = [B]. It follows that ∆,ΓA ∈ JBK. Whence, [B/A] ⊆ JB/AK.
Conversely, let us see:

JB/AK ⊆ [B/A]

Let ∆ ∈ JB/AK. By i.h. JAK = [A]. For any type A, we have eta-expansion,

i.e.
−→
A ⇒ A. Hence,

−→
A ∈ JAK. We have that ∆,

−→
A ∈ JBK. By i.h., ∆,

−→
A ⇒ B.

14 Oriol Valent́ın

Since
−→
A is correct, and by i.h. ∆,

−→
A is correct, by lemma 1 ∆ is correct. By

applying the / right rule to the provable hypersequent ∆,
−→
A ⇒ B we get:

∆ ⇒ B/A

This ends the case of B/A.

• C = A\B. Completely similar to the case C = B/A.

• Nondeterministic connectives. Consider the case C = B ⇑i A.

[B ⇑ A] ⊆ JB ⇑ AK

Let ΓA ∈ JAK. By i.h, ΓA ⇒ A. Let ∆ ⇒ B ⇑ A. By s(B) − s(A) + 1
applications of ⇑ left rule, we have

ΓA ⇒ A
−→
B ⇒ B, by eta-expansion

⇑ L−−−−→
B ⇑ A|iΓA ⇒ B, for i = 1, · · · , s(B)− s(A) + 1

By s(B)− s(A) + 1 Cut applications with ∆ ⇒ B ⇑ A, we get:

∆|iΓA ⇒ B

Hence, for i = 1, · · · s(B)−s(A)+1, by i.h.∆,ΓA ∈ JBK. Hence,∆ ∈ JB ⇑ AK.
Conversely, let us see:

JB ⇑ AK ⊆ [B ⇑ A]

By i.h, we see that
−→
A ∈ JAK. Let ∆ ∈ JB ⇑ AK. This means that for every

i = 1, · · · , s(B) − s(A) + 1 ∆|i
−→
A ∈ JBK. By i.h., ∆|i

−→
A ⇒ B. By a similar

reasoning to the deterministic case C = B↑iA, we see that ∆ is correct. We
have that:

∆|1
−→
A ⇒ B · · · ∆|s(B)−s(A)+1

−→
A ⇒ B

⇑ R
∆ ⇒ B ⇑ A

• The case C = A ⇓ B is completely similar to the previous one.
Let us see the cases corresponding to the unary (implicative) connectives.

• Left projection case: C = /−1A. Let us see:

[/−1A] ⊆ J/−1AK

Let ∆ ∈ [/−1A]. Hence, ∆ ⇒ /−1A. We have that:

∆ ⇒ /−1A

−→
A ⇒ A

/−1L−−−→
/−1A, 1 ⇒ A

Cut
∆, 1 ⇒ A

Models for the Displacement Calculus 15

By i.h., ∆, 1 ∈ JAK. Hence, ∆ ∈ J/−1AK.
Conversely, let us see:

J/−1AK ⊆ [/−1A]

Let ∆ ∈ J/−1AK. By definition, ∆, 1 ∈ JAK. By i.h., ∆, 1 ⇒ A, and by
lemma 1, ∆ is correct. By application of /−1 right rule, we get:

∆ ⇒ /−1A

This proves the converse.

• Case C = .−1A is completely similar to the previous one.

• Case C = ˇkA. Let us see:

[ˇkA] ⊆ JˇkAK

Let ∆ ⇒ ˇkA. We have that:

∆ ⇒ ˇiA

−→
A ⇒ A

ˇkL−−→
ˇiA|kΛ ⇒ A

Cut
∆|kΛ ⇒ A

By i.h., ∆ ∈ JˇkAK.
Conversely, let us see that:

JˇkAK ⊆ [ˇkA]

Let ∆ ∈ JˇkAK. By definition, ∆|kΛ ∈ JAK. By i.h. and lemma 1, ∆ is correct
and ∆|kΛ ⇒ A. By application of the ˇk right rule:

∆ ⇒ ˇkA

Hence, ∆ ∈ [ˇkA].

We have seen all the cases of the so-called implicative fragment. We are done. ut

By induction on the structure of HConfig (see (4)) one proves the following
lemma:

Lemma 4. (Identity lemma)

For any ∆ ∈ HConfig, ∆ ∈ J∆KM.

Let (Ai)i=1,··· ,n be the sequence of type-occurrences in a hyperconfiguration ∆.

Let ∆

(
Γ1 · · ·Γn
A1 · · ·An

)
be the result of replacing every type-occurrence Ai with Γi.

Recall that we have fixed a set of hypersequents R. We have the lemma:

Lemma 5. M = (P(S), v) |= R

16 Oriol Valent́ın

Proof. Let (∆ ⇒ A) ∈ R. For every type-occurrence Ai in ∆ (we suppose that

the sequence of type occurrences in ∆ is (Ai)i=1,··· ,n), we have that JAiK
M
v =

[Ai]R. For any Γi ∈ JAiK
M
v , we have by the truth lemma 3 that R ` Γi ⇒ Ai.

Since (∆ ⇒ A) ∈ R, we have then that R ` ∆ ⇒ A. By n applications of the Cut

rule with the premises Γi we get from R ` ∆ ⇒ A that R ` ∆
(
Γ1 · · ·Γn
A1 · · ·An

)
⇒ A.

We have that J∆KMv = {∆
(
Γ1 · · ·Γn
A1 · · ·An

)
: Γi ∈ JAiK

M
v }. Since, we have R `

∆

(
Γ1 · · ·Γn
A1 · · ·An

)
⇒ A, again, by the truth lemma, ∆

(
Γ1 · · ·Γn
A1 · · ·An

)
∈ JAKMv . We

have then that J∆KMv ⊆ JAKMv . We are done. ut

Theorem 2. D∗[→] is strongly complete w.r.t. the class PRSD.

Proof. Suppose PRSD(R) |= ∆ ⇒ A. Hence, in particular this is true of the

canonical model M. Since ∆ ∈ J∆KM, it follows that ∆ ∈ JAKM. By the truth

lemma, JAKM = [A]R. Hence, R ` ∆ ⇒ A. We are done. ut

Let A and B be respectively standard DAs over separated monoids with a count-
able set of generators V1 = (ai)i>0 ∪ {1}, and a finitely generated standard DA,
concretely a standard DA with a set of three generators V2 = {a, b, 1}. We have
that |A| = V ∗1 , and |B| = V ∗2 . Let ρ̄ be the following injective mapping from V1

into V ∗2 :

(24)
ρ̄(1) = 1
ρ̄(ai) = a+ bi + a

ρ extends recursively to the morphism of standard DAs ρ̄:

(25)
ρ̄ : A −→ B

0 7→ 0
1 7→ 1
ρ̄(w1 + w2) 7→ ρ̄(w1) + ρ̄(w2)
ρ̄(w1 ×i w2) 7→ ρ̄(w1)×i ρ̄(w2)

Since for every i > 0, ρ̄(ai) is prefix-free (and hence ρ̄),6 ρ̄ is a monomorphism.
ρ̄ induces then a monomorphism of standard DAs. Let A, B and C range over
subsets of |A|. Since ρ̄ is a monomorphism of DAs and the underlying monoids
of A and B are free, one proves:

(26)

ρ̄(A◦B) = ρ̄(A)◦ρ̄(B) ρ̄(A◦iB) = ρ̄(A)◦iρ̄(B)
ρ̄(A\\B) = ρ̄(A)\\ρ̄(B) ρ̄(B//A) = ρ̄(B)//ρ̄(A)
ρ̄(A�iB) = ρ̄(A)�iρ̄(B) ρ̄(B�iA) = ρ̄(B)�iρ̄(A)
ρ̄(B�iI) = ρ̄(B)�iI ρ̄(A//J) = ρ̄(A)//ρ̄(J)
ρ̄(J\\A) = J\\ρ̄(A)

6 If w is a non-empty proper prefix of ρ̄(ai), then w /∈ Im(ρ̄).

Models for the Displacement Calculus 17

Moreover, one proves also

(27)

ρ̄(

s(B)−s(A)+1⋂
i=1

B�iA) =

s(B)−s(A)+1⋂
i=1

ρ̄(B)�iρ̄(A)

ρ̄(

s(B)−s(A)+1⋂
i=1

A�iB) =

s(B)−s(A)+1⋂
i=1

ρ̄(A)�iρ̄(A)

Now, let (P(A), v) be the powerset residuated displacement model over the stan-
dard DA A. For every A ∈ Tp∗[→], and ∆ ∈ HConfig, one has the following
facts:

(28) JAKP(A)
v = JAKP(B)

ρ̄ ◦ v and JAKP(A)
v = JAKP(B)

ρ̄ ◦ v

By properties (28), (26), and (27) and the fact that ρ̄ is a monomorphism, we
have therefore the following equivalence:

(29) J∆KP(A)
v ⊆ JAKP(A)

v iff J∆KP(B)
ρ̄ ◦ v ⊆ JAKP(B)

ρ̄ ◦ v

Where K is a subclass of RD, the notation K(R) |= ∆ ⇒ A (where R is a set of
hypersequents) means that K |= R and K |= ∆ ⇒ A.

Theorem 3. D∗[→] is strongly complete w.r.t. L-models.

Proof. Let R be a set of sequents. By way of contradiction, consider a hyper-
sequent ∆ ⇒ A such that D∗[→] + R 6` ∆ ⇒ A but PRSDfg(R) |= ∆ ⇒ A.
Since D∗[→] is strongly complete w.r.t. PRSD (theorem 2), there exists a model
(A, v) |= R but (A, v) 6|= ∆ ⇒ A. Let ρ̄ the coding morphism from (25). Let
B be the finitely generated standard displacement algebra with 3 generators
a, b and 1. Since PRSDfg(R) |= ∆ ⇒ A, we have that for every valuation v′,

J∆KBv′ ⊆ JAKBv′ , in particular for the valuation ρ̄ ◦ v. By (29) we have that:

J∆KAv ⊆ JAKAv iff J∆KBρ̄ ◦ v ⊆ JAKBρ̄ ◦ v

But, by assumption, J∆KAv 6⊆ JAKAv . Contradiction. ut

Corollary 1. HSeq∗[→] is strongly complete w.r.t. powerset residuated DAs
overs standard DAs with 3 generators.

4 Towards Strong Completeness of full D w.r.t. PRDD

We sketch7 in this section strong completeness of full D w.r.t. PRDD. We
get this result by proving a representation theorem between RD and PRDD.
In order to get this representation theorem we need to consider D∗ (unit-free
D), and consequently, Tp∗ (unit-free Tp), and HConfig∗ (unit-free HConfig).
This is a step to prove strong completeness for full D (without restrictions on
the units). We give the mutually recursive definition of the set T of hypertrees,
and the set of atomic terms:
7 We do not have enough space to justify the main claims. But, we believe that this

sketch is quite illuminating.

18 Oriol Valent́ın

(30)

Λ, 1 ∈ T
If A ∈ Tp∗, then A is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A•B; f) is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A•B; s) is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A�iB; f) is an atomic term
If T ∈ T , A,B ∈ Tp∗, then (T ;A�iB; s) is an atomic term
s((T ;A•B; f)) = s(A) and s((T ;A•B; s)) = s(B)
s((T ;A�iB; f)) = s(A) and s((T ;A�iB; s)) = s(B)
Λ ∈ T , and 1 ∈ T
If L atomic, then

−→
L,L{1 : · · · : 1︸ ︷︷ ︸

s(L) 1’s

} ∈ T

If T, S ∈ T , then T, S ∈ T
If T, S ∈ T , then T |iS ∈ T

Like HConfig, T is sorted, and for every T ∈ T , s(T) is simply the number
of separators T contains. We put T i = {T : T ∈ T and s(T) = i} for i ≥ 0.
We have then that T =

⋃
i≥0 T i. Notice that T includes the set HConfig.

We define now a notion of reduction B in T . Where A,B ∈ Tp∗, and Ti, Sj ,
(i = 1, · · · , s(A), and , j = 1, · · · , s(B)) are hypertreees, we have:

(31)

{−−−−−−−−→
(T ;A•B; f){T1 : · · · : Ts(A)},

−−−−−−−−→
(T ;A•B; s){R1 : · · · : Rs(B)}

BT ⊗ 〈T1 : · · · : Ts(A) : R1 : · · · : Rs(B)〉{−−−−−−−−−→
(T ;A�iB; f){T1 : · · · :

−−−−−−−−−→
(T ;A�iB; f){R1 : · · · : Rs(B)} : · · · : Ts(A)}

BT ⊗ 〈T1 : · · · : R1 : · · · : Rs(B) : · · · : Ts(A)〉

By a simple primitive type counting argument, one sees that the transitive clo-
sure of B B∗ , is always terminating, i.e. B∗ is strongly normalising. Again, by
primitive type counting arguments, one sees that B∗ is weakly Church-Rosser,
and hence, by Newman’s lemma, B∗ is Church-Rosser. This allows for every
element of T ∈ T to define its normal form irr(T). We put Irr = irr(T).
Since T is sorted, Irr is also sorted. We have that Irr =

⋃
i≥0 Irri, where

Irri = {T : T ∈ Irr and s(T) = i}. Let us consider the ΣD-algebra:

(32) Irr = (Irr, +̃, (×̃i)i≥0, Λ, 1)

Where +̃, and (×̃i)i≥0, are defined as follows::

(33)
T +̃S , irr(T, S)

T ×̃iS , irr(T, S)

By Church-Rosser, Irr is easily seen to be a (nonstandard) DA. For, given the
arbitrary hypertrees T1, T2 and T3, for example discontinuous associativity is
proved as follows:

(34)

T1×̃i(T2×̃jT3) = irr(T1|iirr(T2|jT3))
= Irr(T1|i(T2|jT3)) = Irr((T1|iT2)|i+j−1T3)
= Irr(Irr(T1|iT2)|i+j−1T3)
= (T1×̃iT2)×̃i+j−1T3

Models for the Displacement Calculus 19

Irr induces the powerset residuated DA over the DA Irr, which we denote
P(Irr).

Following Buszkowski’s technics on labelled deductive systems ([2]), we can
now introduce in Figure 8 a natural deduction system nD∗ for a conservative
extension of D∗. R is a given set of D∗-hypersequents. The axiom rule has as

−→
A�A for every A ∈ Tp∗

T�B/A S�A
/E

T, S�B

T,
−→
A�B

/I
T�B/A

S�A T�A\B
\E

T, S�B

−→
A, T�B

\I
T�A\B

T�A•B
•E1−−−−−−−−→

(T ;A•B; f)�A

T�A•B
•E2−−−−−−−−→

(T ;A•B; s)�B

T�A S�B
•I

T, S�A•B

T�B↑iA S�A
↑iE

T |iS�B

T |i
−→
A�B

↑iI
T�B↑iA

S�A↓iT�A\B
↓iE

S|iT�B

−→
A |iT�B

\I
T�A↓iB

T�A�iB
�iE1−−−−−−−−−→

(T ;A�iB; f)�A

T�A�iB
�iE2−−−−−−−−−→

(T ;A�iB; s)�B

T�A S�B
�iI

T |iS�A�iB

T�A
Red If TB∗ S

S�A

Ti�Ai where i = 1, · · · , n
AxiomR, (∆ ⇒ A) ∈ R

∆

(
T1 · · ·Tn

A1 · · ·An

)
�A

Fig. 8. nD∗ rules

premises Ti�Ai where (Ai)i=1,··· ,n is the sequence of type-occurrences of ∆. We
can prove that for R ` ∆ ⇒ A iff R ` ∆�A.

20 Oriol Valent́ın

One considers the following canonical modelM = (P(Irr), αR), where αR(p) =

[p]R,{T : R ` T�p}. Writing J · K instead of J · KMαR
, one proves that for every

type A ∈ Tp∗, JAK = [A]R. By rule AxiomR of nD∗, it is readily seen that
M |= R. The product rules of elimination help to straightforwardly prove that
JA ? BK = [A ? B]R, where ? ∈ {•,�i : i > 0}. To prove that for every resid-
uated DA algebra A is isomorphically embeddable into a powerset rediduated
DA over a DA, one defines a bijection between the carrier set of A and the set
of primitive types Pr = (pa)

a∈|A|. We define the valuation µ(pa) = a, and the

set of hypersequents which hold in (A, µ), i.e. R = {∆ ⇒ A : µ(∆) ≤ µ(A)}.
We consider the canonical model M = (P(Irr), αR), and we define the faithful
monomorphism h : |A| → |P(Irr)| such that h(a) := αR(pa), and h(0) = Λ, and
h(1) = 1. Finally, in order to obtain full strong completeness w.r.t. PRDD, one
uses the representation theorem and the fact that hD is strongly complete with
respect residuated DAs (see Subsection 2.2).

5 Conclusions

The strong completeness theorems we have proved are quite analogous to the
ones of L∗. The semantics are quite natural as in the case of L∗. We think that
these results constitute a big step towards the study of the model theory of hD.

It is known that L∗ is not weakly complete w.r.t. free monoids (see [11]).
Hence, weak completeness of full D (with units) w.r.t. L-models is not possible.
It remains open whether D∗ is weakly complete w.r.t. L-models.

References

1. A. Avron. Hypersequents, Logical Consequence and Intermediate Logic form Con-
currency. Annals of Mathematics and Artificial Intelligence, 4:225–248, 1991.

2. W. Buszkowski. Completeness results for Lambek syntactic calculus. Zeitschrift
für mathematische Logik und Grundlagen der Mathematik, 32:13–28, 1986.

3. Richard Moot. Extended Lambek calculi and first-order linear logic. In Claudia
Casadio, Bob Coecke, Michael Moortgat, and Philip Scott, editors, Categories and
Types in Logic, Language, and Physics, volume 8222 of Lecture Notes in Computer
Science, pages 297–330. Springer Berlin Heidelberg, 2014.

4. G. Morrill and O. Valent́ın. Spurious ambiguity and focalisation. Manuscript,
Submitted.

5. Glyn Morrill, Mario Fadda, and Oriol Valent́ın. Nondeterministic Discontinuous
Lambek Calculus. In Jeroen Geertzen, Elias Thijsse, Harry Bunt, and Amanda
Schiffrin, editors, Proceedings of the Seventh International Workshop on Compu-
tational Semantics, IWCS-7, pages 129–141. Tilburg University, 2007.

6. Glyn Morrill and Oriol Valent́ın. Displacement Calculus. Linguistic Anal-
ysis, 36(1–4):167–192, 2010. Special issue Festschrift for Joachim Lambek,
http://arxiv.org/abs/1004.4181.

7. Glyn Morrill and Oriol Valent́ın. On Calculus of Displacement. In Srinivas Banga-
lore, Robert Frank, and Maribel Romero, editors, TAG+10: Proceedings of the 10th
International Workshop on Tree Adjoining Grammars and Related Formalisms,
pages 45–52, New Haven, 2010. Linguistics Department, Yale University.

Models for the Displacement Calculus 21

8. Glyn Morrill, Oriol Valent́ın, and Mario Fadda. Dutch Grammar and Processing:
A Case Study in TLG. In Peter Bosch, David Gabelaia, and Jérôme Lang, editors,
Logic, Language, and Computation: 7th International Tbilisi Symposium, Revised
Selected Papers, number 5422 in Lecture Notes in Artificial Intelligence, pages
272–286, Berlin, 2009. Springer.

9. Glyn Morrill, Oriol Valent́ın, and Mario Fadda. The Displacement Calculus. Jour-
nal of Logic, Language and Information, 20(1):1–48, 2011. Doi 10.1007/s10849-
010-9129-2.

10. Alexey Sorokin. Normal forms for multiple context-free languages and displacement
lambek grammars. In Sergei Artemov and Anil Nerode, editors, Logical Founda-
tions of Computer Science, volume 7734 of Lecture Notes in Computer Science,
pages 319–334. Springer Berlin Heidelberg, 2013.

11. Oriol Valent́ın. Theory of Discontinuous Lambek Calculus. PhD thesis, Universitat
Autònoma de Barcelona, Barcelona, 2012.

