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Abstract. Celebrity games, a new model of network creation games is
introduced. The specific features of this model are that players have dif-
ferent celebrity weights and that a critical distance is taken into consider-
ation. The aim of any player is to be close (at distance less than critical)
to the others, mainly to those with high celebrity weights. The cost of
each player depends on the cost of establishing direct links to other play-
ers and on the sum of the weights of those players at a distance greater
than the critical distance. We show that celebrity games always have pure
Nash equilibria and we characterize the family of subgraphs having con-
nected Nash equilibria, the so called star celebrity games. Exact bounds
for the PoA of non star celebrity games and a bound of O(n/β + β) for
star celebrity games are provided. The upper bound on the PoA can be
tightened when restricted to particular classes of Nash equilibria graphs.
We show that the upper bound is O(n/β) in the case of 2-edge-connected
graphs and 2 in the case of trees.

1 Introduction

Nowadays social networks have become a huge interdisciplinary research area
with important links to Sociology, Economics, Epidemiology, Computer Science,
and Mathematics among others [16,13,4,15]. We propose to analyze network
creation in the context of social networks by taking into consideration two of
their fundamental aspects: the small-world phenomenon and a celebrity weight :
a ranking of the participants on some particular feature as popularity, relevance,
influence, etc. The well known empirical study of the small-world phenomenon
was undertaken by Stanley Milgram [21,22], who asked to some randomly chosen
individuals to forward a letter to a designated “target” person. A third of the
letters eventually arrived to their target, in six steps on average. Currently in
social networks, celebrities using Tumblr, Instagram, or Twitter communicate
with millions of fans through posted messages which are read and resent by their
followers reaching, in this way, a much wider audience than strictly their fans.

In this work we want to understand the impact of the features mentioned
above in a process of network creation and, inspired in the model of network cre-
ation proposed by Fabrikant et al. [14], on one hand we assign a weight (celebrity
rank) to each player (vertex in the network), on the other, we impose, motivated
by the small-world phenomenon, the existence of a critical distance . This leads
us to introduce the celebrity games model, defined by Γ = 〈V, (wu)u∈V , α, β〉.

http://arxiv.org/abs/1505.03718v2


In our interpretation, V is a set of nodes with weights (wu)u∈V measuring the
level of celebrity of each node. The parameter α is the cost of establishing a link,
while β establishes the desirable critical distance. The cost of a node has two
components. The first one corresponds (as usual) to the cost of the links bought
by the player. The second one is a refinement of the usual distance metric in
which the player pays the weight of those nodes who are farther away than the
critical distance β.

To the best of our knowledge, celebrity games are new although there are
several network creation games grounded on similar ideas. Indeed, a general
framework for the study of network creation with selfish agents was proposed
by Jackson and Wolinsky [18]. Different extensions to this model are numerous
in Economics (see the survey [17]). Fabrikant et al. [14] introduce a novel game
that models the creation of Internet-like networks by selfish node-agents without
central coordination. Nodes pay for links that they establish unilaterally and
benefit from short paths to all destinations. The authors assume that all pair
of nodes have the same interest (all-to-all communication pattern with identical
weights), the cost of being disconnected is infinite and the edges paid by one
node can be used by others. Albers et al. in [1] continue the study of the model
of [14] improving some of their bounds.

Corbo and Parkes [8] generalize the model of Fabrikant et al. [14] by hav-
ing links formed bilaterally. In subsequent works many other different network
formation games have been defined [9,20,7,11,10,3,19,6,12,2].

Regarding our model, we are interested in the following questions. Which
aspects affect link establishment? Who pays for being connected? What is the
computational complexity of optimal play? What are the networks that opti-
mize social welfare? And how does the worst-case equilibrium performance of a
network compare to its best-case performance?

In fact, our analysis finds that the properties of the game when β > 1 are quite
different from the properties when β = 1. For the case β > 1, our results can be
summarized as follows. Computing a best response is NP-hard. Nevertheless pure
Nash equilibria always exist and Nash equilibria graphs are either connected or
a a set of isolated nodes. Furthermore, there is a relationship between the cost of
the establishment of a link and the weight of the nodes. This leads to a natural
definition of a celebrity in terms of link cost. A celebrity is a node whose weight is
strictly greater than the cost of establishing a link. Having at least one celebrity
guarantee that all the Nash equilibria graphs are connected, although there are
celebrity games without celebrities that still have connected equilibria graphs. In
those games having a connected Nash equilibrium, a star tree is always a Nash
equilibrium graph. We call this subfamily star celebrity games.

The Price of Anarchy (PoA) and of stability (PoS) is analyzed under the
usual sum cost. We show that the PoS is 1 for star celebrity games and that,
for games that are non star celebrity games, the PoS = PoA= max {1,W/α},
where W is the sum of all the weights of the vertices. For star celebrity games
we obtain a general upper bound of O(β + n/β). We conjecture that the PoA is
O(n/β). Towards proving this conjecture we show that it holds when the PoA
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is taken over 2-edge connected ne graphs. To complement the result we prove
that the PoA on ne trees is constant. Finally, for the case β = 1, we show that
the Best Response problem is polynomial time solvable and the PoA is 2.

The paper is organized as follows. In Section 2 we introduce the basic defi-
nitions, the celebrity games and we analyze the complexity of the best response
problem. In Section 3 we set the fundamental properties of ne and optimal
graphs, characterize star celebrity games and provide the first bounds for the
PoA and the PoS. Section 4 is devoted to the study of the diameter of ne graphs
and Section 5 to derive the bounds for the PoA. In Section 6 we give the upper
bound of the PoA over ne trees and in Section 7 we study the case β = 1. Finally
we state some conclusions and open problems in Section 8.

2 The Model

In this section we introduce the celebrity games model and we analyze the
complexity of computing a best response. Let us start with some definitions.
We use standard notation for graphs and strategic games. All the graphs in
the paper are undirected unless explicitly said otherwise. Given a graph G =
(V,E) and u, v ∈ V , dG(u, v) denotes the distance between u and v in G,
i.e. the length of the shortest path from u to v. The diameter of a vertex
u ∈ V is diam(u) = maxv∈V dG(u, v) and the diameter of G is diam(G) =
maxv∈V diam(v). An orientation of an undirected graph is an assignment of
a direction to every edge of the graph, turning it into a directed graph. For
a weighted set (V, (wu)u∈V ) we extend the weight function to subsets in the
usual way. For U ⊆ V , w(U) =

∑

u∈U wu. Furthermore, we set W = w(V ),
wmax = maxu∈V wu and wmin = minu∈V wu.

Definition 1. A celebrity game Γ is defined by a tuple 〈V, (wu)u∈V , α, β〉 where:
V = {1, . . . , n} is the set of players, for each player u ∈ V , wu > 0 is the
celebrity weight of player u, α > 0 is the cost of establishing a link, and β,
1 ≤ β ≤ n− 1, is the critical distance.

A strategy for player u in Γ is a subset Su ⊆ V − {u}, the set of players
for which player u pays for establishing a direct link. A strategy profile for Γ
is a tuple S = (S1, . . . , Sn) that assigns a strategy to each player. Every strat-
egy profile S has associated an outcome graph, the undirected graph defined by
G[S] = (V, {{u, v}|u ∈ Sv ∨ v ∈ Su}).

We denote by cu(S) = α|Su| +
∑

{v|dG[S](u,v)>β} wv, the cost of player u in

the strategy profile S. And, as usual, the social cost of a strategy profile S in Γ
is defined as C(S) =

∑

u∈V cu(S).

Observe that, even though a link might be established by only one of the
players, we assume that once a link is established it can be used in both directions
by any player. In our definition players may have different celebrity weights. The
player’s cost function have two components: the cost of establishing links and
the sum of the weights of those players who are farther away than the critical
distance β.
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In what follows we assume that, for a celebrity game Γ = 〈V, (wu)u∈V , α, β〉,
the parameters verify the required conditions. We use the following notation
n = |V |, W =

∑

u∈V wu, S(u) is the set of strategies for player u and S(Γ ) is
the set of strategy profiles of Γ . For a strategy profile S and a strategy S′

u for
player u, (S−u, S

′
u) represents the strategy profile in which Su is replaced by S′

u

while the strategies of the other players remain unchanged. The cost difference
∆(S−u, S

′
u) is defined as ∆(S−u, S

′
u) = cu(S−u, S

′
u) − cu(S). Observe that, if

∆(S−u, S
′
u) < 0, then player u has an incentive to deviate from Su.

Let us recall the definition of Nash equilibrium.

Definition 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a celebrity game. A strategy pro-
file S ∈ S(Γ ) is a Nash equilibria of Γ if no player has an incentive to devi-
ate from his strategy. Formally, for any player u and any strategy S′

u ∈ S(u),
∆(S−u, S

′
u) ≥ 0.

We denote by NE(Γ ) the set of Nash equilibria of a game Γ and we use the
term ne to refer to a strategy profile S ∈ NE(Γ ). We say that a graph G is a
ne graph of Γ if there is S ∈ NE(Γ ) so that G = G[S]. We will drop the explicit
reference to Γ whenever Γ is clear from the context. It is worth observing that,
for S ∈ NE(Γ ), it never happens that v ∈ Su and u ∈ Sv, for any u, v ∈ V . Thus,
if G is the outcome of a ne profile S, then S corresponds to an orientation of the
edges in G. Furthermore, a ne graph G can be the outcome of several strategy
profiles but not all the orientations of a ne graph G are ne.

Let opt(Γ ) = minS∈S(Γ ) C(S) be the minimum value of the social cost. We
use the term opt strategy profile to refer to one strategy profile with with
optimal social cost.

Observe that when in a strategy profile S two players u and v are such that
u ∈ Sv and v ∈ Su, the social cost is higher than when only one of them is
paying for the connection {u, v} and therefore, as for ne, this does not happen
in an opt strategy profile. In the following, as we are interested in ne and opt

strategies, among all the possible strategy profiles having the same outcome
graph, we only consider those that correspond to orientations of the outcome
graph. In this sense the social cost depends only on the outcome graph, the
weights and the parameters. Thus, we can express the social cost of a strategy
profile as a function of the outcome graph G as follows

C(G) = α|E(G)|+
∑

u∈V

∑

{v|dG(u,v)>β}

wj = α|E(G)|+
∑

{(u,v)|u<v and dG(u,v)>β}

(wi+wj).

We make use of three particular outcome graphs on n vertices, Kn, the
complete graph, In, the independent set and Sn a star graph, i.e., a tree in
which one of the vertices, the central one, has a direct link to all the other
n− 1 vertices. For those graphs, we have the following values of the social cost.
For Γ = 〈V, (wu)u∈V , α, β〉, with |V | = n, we have: C(Kn) = αn(n − 1)/2,
C(In) = W (n − 1) and C(Sn) = α(n − 1), for 1 < β ≤ n − 1, and C(Sn) =
α(n− 1) + (n− 2)(W − wc) where c is the central vertex, for β = 1.

We define the PoA and the PoS as usual.
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Definition 3. Let Γ be a celebrity game. The Price of anarchy of Γ is de-
fined as PoA(Γ ) = maxS∈NE(Γ ) C(S)/opt(Γ ) and the Price of stability of Γ as
PoS(Γ ) = minS∈NE(Γ ) C(S)/opt(Γ ).

Whenever there is no possible confusion we drop the reference to Γ , by
referring to opt(Γ ), PoA(Γ ), and PoS(Γ ) by opt, PoA, and PoS, respectively.

Our first result shows that computing a best response in celebrity games is
NP-hard. The hardness follows from a reduction from the minimum dominating
set problem.

Proposition 1. Computing a best response for a player to a strategy profile in
a celebrity game is NP-hard, even restricted to the case in which all the weights
are equal and β = 2.

Proof. We provide a reduction from the problem of computing a dominating set
of minimum size which is a classical NP-hard problem. Recall that a dominating
set of a graph G = (V,E) is a set U ⊂ V such that any vertex u ∈ V is in U or
has a neighbor in U .

Let G = (V,E) be a graph, we associate to G the following instance of the
BestResponse problem (Γ, S, u), with Γ = 〈V ′, (wv)v∈V ′ , α, β〉, where

– The set of players is V ′ = V ∪ {u}, where u is a new player (i.e. u 6∈ V ).
– β = 2, α = 1.5,
– for every v ∈ V ∪ {u}, wv = 2.
– The strategy profile S is obtained from an orientation of the edges in G

setting Su = ∅. Observe that by construction G[S] is the disjoint union of G
with the isolated vertex u.

– Finally, u is the player for which we want to compute the best response.

Let D ⊆ V be a strategy for player u. Notice that, if D is a dominating set of
G, then cu(S−u, D) = α|D|+∑

x∈V,d(u,x)>2 2 = α|D|. If D is not a dominating

set of G, cu(S−u, D) = α|D|+∑

x∈V,d(u,x)>2 2 > α(|D| + |{x ∈ V |d(u, x) > 2}|.
Then, D ∪ {x ∈ V |d(u, x) > 2} is a better response than D. Hence, the best
response of player u is a dominating set D of G of minimum size.

To conclude the proof just notice that the described reduction is polynomial
time computable. ⊓⊔

The problem becomes tractable for β = 1 as we show in Section 7.

3 Social Optimum and NE

We analyze here the main properties of opt and ne strategy profiles in celebrity
games. For Γ = 〈V, (wu)u∈V , α, β〉, we assume that β > 1, the case β = 1 is con-
sidered in Section 7. The optimal cost is characterized by the next proposition.

Proposition 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a celebrity game. We have that
opt(Γ ) = min{α,W}(n− 1).
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Proof. Let S ∈ opt(Γ ), and letG = G[S] with connected componentsG1, ..., Gr,
Vi = V (Gi), ki = |Vi|, and Wi = w(Vi), for 1 ≤ i ≤ r. Observe that the social
cost of a disconnected graph can be expressed as the sum of the social cost of its
connected components. Each connected component must be a tree of diameter
at most β, otherwise a strategy profile with smaller social cost could be obtained
by replacing the connections on Vi by such a tree. W.l.o.g we can assume that,
for 1 ≤ i ≤ r, the i-th connected component is a star graph Ski

of ki vertices.
Since C(Sk) = α(k − 1) we have that

C(G) =
r

∑

i=1

α(ki − 1) +
r

∑

i=1

ki(W −Wi) = α(n− r) + nW −
r

∑

i=1

kiWi.

As 1 ≤ ki ≤ n− (r − 1), we have

W ≤
r

∑

i=1

kiWi ≤ (n− r + 1)W.

Therefore, α(n− r) + (r − 1)W ≤ C(G). We consider two cases.

Case 1: α ≥ W .
We have W (n − 1) ≤ C(G). Since C(In) = W (n − 1) ≤ C(G) and G is an

optimal graph, then C(G) = W (n− 1).

Case 2: α < W .
Now α(n − 1) ≤ C(G). As C(Sn) = α(n − 1) ≤ C(G), the optimal graph G

has a social cost C(G) = α(n− 1). We conclude that opt = min{α,W}(n− 1).
⊓⊔

Now we turn our attention to the study of the ne graph topologies.

Proposition 3. Every ne graph of a celebrity game either is connected or is
the graph In.

Proof. If n ≤ 2 the proposition follows immediately. Let n > 2. Let us suppose
that there is a ne S such that the graph G = G[S] is not connected and different
from In. In this case G is composed of at least two different connected compo-
nents G1 and G2. Furthermore, as G 6= In, we can assume that |V (G1)| > 1 as
at least one of the connected components must contain at least two vertices and
one edge. Let u ∈ V (G1) be such that Su 6= ∅. Let x ∈ Su and v ∈ V (G2). Let
us consider the strategies S′

u = Su \ {x} and S′
v = Sv ∪ {x}. As S is a ne we

know that ∆(S−u, S
′
u) ≥ 0. Let G′ = G[S−v, S

′
v], observe that dG′(v, u) = 2 ≤ β,

therefore ∆(S−v, S
′
v) ≤ −∆(S−u, S

′
u)−wu < 0. This contradicts the hypothesis

that G is a ne graph. ⊓⊔

Next result establishes that celebrity games always have ne graphs.

Proposition 4. Every celebrity game Γ = 〈V, (wu)u∈V , α, β〉 has a ne. Indeed,
when α ≥ wmax, In is a ne graph, otherwise Sn is a ne graph but In is not.
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Proof. When α ≥ wmax let us show that In is a ne graph. Observe that G = In
is the outcome of a unique strategy profile S, such that Su = ∅, for any player
u ∈ V . Let us consider a player u and a strategy S′

u 6= ∅. The cost difference
of player i is then ∆(S−u, S

′
u) = α|Su| −

∑

v∈Su
wv =

∑

v∈Su
(α − wv) ≥ 0.

Therefore player u has no incentive to deviate from Si and In is a NE graph.
When α < wmax, let u be a vertex with wu = wmax and let Sn be a star

graph on n vertices in which the center is u. Let us show that Sn is a ne graph.
Consider the strategy profile S in which Su = ∅ and Sv = {u}, for any

v ∈ V different from u, in which the center is the vertex with maximum weight.
As β > 1 no player will get a cost decrease by connecting to more players.
Furthermore, for u 6= v, wv + α < wv + wmax < W . Thus α < W − wv and v
will not get any benefit by deleting the actual connection. The only remaining
possibility is to reconnect to another vertex, but in such a case the cost cannot
decrease. Therefore Sn is a ne graph. Notice that in this case In can not be a
ne, every player u has incentive to connect with any other player v such that
wv = wmax. ⊓⊔

In the following we analyze the conditions in which In is the unique ne graph.

Proposition 5. Let Γ = 〈V, (wu)u∈V , α, β〉 be a celebrity game with α ≥ wmax.
If there are more than one vertex u ∈ V with α > W −wu, then In is the unique
ne graph of Γ , otherwise Sn is a ne graph of Γ .

Proof. Assume that there are at least two vertices u, v with α > W−wu,W−wv

and that there exists a ne graph G = G[S] different from In. By proposition 3, G
is connected. Therefore, it has at least n−1 edges. Since, α > W−wu,W−wv, we
have that Su = Sv = ∅, otherwise S will not be a ne. Therefore, there must be a
vertex, z 6= u, v such that |Sz| ≥ 2. Let x, y ∈ Sz and let S′

z = Sz \ {x, y}. Then,
∆(S−z , S

′
z) ≤ −2α+W−wz. Since G is a ne graph and α > W −wu,W −wv we

have thatW−wz ≥ 2α > W−wu+W−wv. Hence,W < wu+wv−wz < wu+wv,
which is impossible.

In the case that there is at most one vertex u with α > W − wu. The star
Sn with center u, strategy set Su = ∅, and such that Sv = {u} for all v 6= u is,
clearly, a ne graph. ⊓⊔

Corollary 1. Let 〈V, (wu)u∈V , α, β〉 be a celebrity game. In is the unique ne

graph of Γ if and only if α ≥ wmax and there are more than one vertex u ∈ V
such that α > W − wu.

This characterization allows us to identify the subfamily of celebrity games
that have always a connected ne graph. Observe that those games have Sn as a
ne graph.

Definition 4. Γ = 〈V, (wu)u∈V , α, β〉 is a star celebrity game if Γ has a ne

graph that is connected.

Corollary 2. For a celebrity game Γ = 〈V, (wu)u∈V , α, β〉, the following are
equivalent:
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(1) Γ is a star celebrity game,
(2) either α < wmax or α ≥ wmax and there is at most one u ∈ V for which

α > W − wu, and
(3) Sn is a ne graph of Γ .

Those results allow us to characterize the PoS and, in some cases, the PoA.

Theorem 1. Let Γ be a celebrity game. Then:
- If Γ is a star celebrity game, PoS(Γ ) = 1.
- If Γ is not a star celebrity game and α ≥ W , PoS(Γ ) = PoA(Γ ) = 1.
- If Γ is not a star celebrity game and α < W , PoS(Γ ) = PoA(Γ ) = W/α > 1.

Proof. From Proposition 2, we have that opt(Γ ) = W (n − 1) if α ≥ W and
opt(Γ ) = α(n− 1), otherwise.

If Γ is a star celebrity game, by Corollary 2 we know that Sn is a ne graph.
Let us see that in star celebrity games it can only occur that α < W . If α < wmax,
clearly α < W . If α ≥ wmax, by Corollary 2 we have that there is at most one
u ∈ V for which α > W −wu. Assuming that wu1 ≤ . . . ≤ wun−1 ≤ wun

, we have
that W > W − wu1 ≥ . . . ≥ W − wun−1 ≥ W − wun

, and then W − wun−1 ≥ α.
Hence, PoS(Γ ) = 1.

When Γ is not a star celebrity game, In is the unique ne graph. Thus,
when α ≥ W we have, PoS(Γ ) = PoA(Γ ) = 1 and, when α < W we have,
PoS(Γ ) = PoA(Γ ) = W/α > 1. ⊓⊔

4 Critical Distance and Diameter in NE graphs

In this section we analyze the diameter of ne graphs and its relationship with
the parameters defining the game. We are interested only in games in which ne

graphs with finite diameter exist, thus we only consider star celebrity games. In
stating the characterization, vertices with a high celebrity weight with respect
to the link cost play a fundamental role.

Definition 5. Let Γ = 〈V, (wu)u∈V , α, β〉 be a celebrity game. We say that a
vertex u ∈ V is a celebrity if α < wu.

Given a celebrity u, any other node v with d(u, v) > β has an incentive to
pay for connecting to u. Thus, in any ne graph G, every celebrity node u satisfies
that diam(u) ≤ β.

Proposition 6. For a ne graph G of a star celebrity game, diam(G) ≤ 2β+1.

Proof. Let S be a ne of Γ such that G = G[S] and suppose that diam(G) ≥
2β + 2. Then, there exist two nodes u, v ∈ V such that d(u, v) = 2β + 2. Let
u = u0, u1, . . . , u2β+1, u2β+2 = v be a shortest path from u to v. Let Au = {x ∈
V |d(u, x) ≤ β} and let Au1 = {x ∈ V |d(u1, x) ≤ β}. Let us show that if a node
x ∈ Au ∪ Au1 , then d(x, v) > β. If x ∈ Au then d(x, v) > β, otherwise d(u, v) ≤
d(u, x) + d(x, v) ≤ 2β contradicting the fact that d(u, v) = 2β + 2. Moreover, if
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x ∈ Au1 then d(x, v) > β, otherwise d(u, v) ≤ 1 + d(u1, x) + d(x, v) ≤ 2β + 1
which also contradicts the fact that d(u, v) = 2β + 2.

Consider the edge {u, u1}. Then, either u1 ∈ Su or u ∈ Su1 . In the case that
u1 ∈ Su, let S

′
u = Su \ {u1} and S′

v = Sv ∪ {u1}. Observe that,

∆(S−u, S
′
u) ≤ −α+ w(A{u,u1}(u) ∩Au)

By the previous remark about distances, we know that all the vertices r ∈
A{u,u1}(u) ∩ Au verify d(r, v) > β, but after adding {v, u1} all of them and u
become at distance less than β from v, therefore

∆(S−v, S
′
v) ≤ α− wu − w(A{u,u1}(u) ∩ Au)

Hence, ∆(S−u, S
′
u) +∆(S−v, S

′
v) ≤ −wu < 0. Therefore, either ∆(S−u, S

′
u) < 0

or ∆(S−v, S
′
v) < 0 and then S can not be a ne.

The case u ∈ Su1 , follows in a similar way by interchanging the roles of u
and u1. ⊓⊔

The previous result can be refined to get better bounds on the diameter
when all the nodes are celebrities or when at least one of the nodes is a celebrity.
In particular, it is easy to see the following cases. Let Γ = 〈V, (wu)u∈V , α, β〉
be a star celebrity game and let G be a ne graph of Γ , then (i) If α < wmin,
diam(G) ≤ β and, (ii) If wmin ≤ α < wmax, diam(G) ≤ 2β.

5 Bounding the Price of Anarchy

We derive some upper bounds for the PoA for star celebrity games. Our first
result establishes a upperbound on the PoA in terms of W and α.

Lemma 1. For a star celebrity game Γ = 〈V, (wu)u∈V , α, β〉, PoA(Γ ) = O(Wα ).

Proof. Let S be a ne of Γ and let G = G[S] = (V,E). As S is a ne, no player
has an incentive to deviate from S. In particular, for any u ∈ V

0 ≤ ∆(S−u, ∅) ≤ −α|Su|+
∑

{v|d(u,v)≤β}

wv − wu.

Summing up, for all u ∈ V , we have

0 ≤
∑

u∈V



−α|Su|+
∑

{v|d(u,v)≤β}

wv − wu



 = −α|E|+
∑

u∈V

∑

{v|d(u,v)≤β}

wv −W.

Therefore α|E| ≤ ∑

u∈V

∑

{v|d(u,v)≤β}wv −W and C(G) can be upper bounded
as follows:

C(G) = α|E|+
∑

u∈V

∑

{v|d(u,v)>β}

wv

≤
∑

u∈V





∑

{v|d(u,v)≤β}

wv +
∑

{v|d(u,v)>β}

wv



−W

= (n− 1)W
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Hence, PoA(Γ ) ≤ (n−1)W
α(n−1) = W

α . ⊓⊔

Using the previous lemma we get an O(n) upper bound on the PoA of star
celebrity games.

Theorem 2. For a star celebrity game Γ , PoA(Γ ) = O(n).

Proof. When α > wmax, W < nα and, from Lemma 1, the claim follows. We
consider now the case α ≤ wmax. Let S be any ne of Γ and G = G[S] = (V,E).
If α < wv and d(u, v) > β then player u has an incentive to buy a link to v,
contradicting the fact that S is a ne. Therefore, the social cost of S can be
expressed as:

C(S) = α|E| +
∑

u∈V

∑

{v|d(u,v)>β}

wv ≤ α|E|+
∑

u∈V

∑

{v 6=u,α≥wv}

wv

≤ α|E| + αn(n− 1)/2 ≤ αn(n− 1).

Hence, PoA(Γ ) ≤ αn(n−1)
α(n−1) = n. ⊓⊔

From Theorem 2 we get a tight bound for some particular cases.

Corollary 3. For a star celebrity game Γ = 〈V, (wi)i∈V , α, β〉 with α ≤ wmin,
β = Θ(1), and β > 2, PoA(Γ ) = Θ(n).

We can also derive a partial upper bound on the cost component correspond-
ing to the vertices’ weights. Define the weight component of the social cost, for
a critical distance β, W (G, β), as

W (G, β) =
∑

u∈V (G)

∑

{v|d(u,v)>β}

wv =
∑

{{u,v}|d(u,v)>β}

(wu + wv).

Proposition 7. Let Γ = 〈V, (wu)u∈V , α, β〉 be a star celebrity game. In a ne

graph G, W (G, β) = O(αn2/β).

Proof. Let S be a ne and G = G[S] be a ne graph. Let u ∈ V and let b =
diam(u). Recall that, by Proposition 6, b ≤ 2β + 1. We have three cases.
Case 1: b < β. For any node v ∈ V \ {u} consider the strategy S′

v = Sv ∪ {u},
and let G′ = G[S−v, S

′
v]. By connecting to u we have diamG′(v) ≤ β and, as

S is a ne, we have ∆(S−v, S
′
v) = α − ∑

{x|dG(x,v)>β}wx ≥ 0. Therefore we

have
∑

{x|dG(x,v)>β}wx ≤ α. As b < β we conclude that W (G, β) ≤ nα. Since

1 < β ≤ n− 1, we get n/β ≤ αn2/β.
Case 2: b ≥ β and b ≥ 6. For 1 ≤ i ≤ b, consider the set Ai(u) = {v | d(u, v) = i}
and the sets

C1 = {v ∈ V | 1 ≤ d(u, v) ≤ b/3} = ∪1≤i≤b/3Ai(u),

C2 = {v ∈ V | b/3 < d(u, v) ≤ 2b/3} = ∪b/3<j≤2b/3Aj(u),

C3 = {v ∈ V | 2b/3 < d(u, v) ≤ b} = ∪2b/3<k≤bAk(u).

10



As b = diam(u), Aℓ(u) 6= ∅, 1 ≤ ℓ ≤ b, and all those sets constitute a partition of
V \{u}. As b ≥ 6, for each ℓ, 1 ≤ ℓ ≤ 3, Cℓ contains vertices at a b/3 ≥ 2 different
distances. Therefore, for 1 ≤ ℓ ≤ 3, it must exist iℓ such that Aiℓ(u) ⊆ Cℓ and
|Aiℓ(u)| ≤ 3n/b, otherwise the total number of elements in Cℓ would be bigger
than n.

For any v ∈ V , let S′
v = (Sv ∪ Ai1(u) ∪ Ai2(u) ∪ Ai3(u)) \ {v} and let

G′ = G[S−v, S
′
v]. Since b ≤ 2β+1, we have that b/3 < β. Hence, by construction,

diamG′(v) ≤ β. Therefore, as S is a ne, we have

0 ≤ ∆(S−v, S
′
v) ≤

9nα

β
−

∑

{x|dG(x,v)>β}

wx.

Thus,
∑

{x|dG(x,v)>β}

wx ≤ 9nα

β
and W (G, β) ≤ 9n2α

β
.

Case 3: b ≥ β and b ≤ 6. Consider the sets Ai(u) = {v | d(u, v) = i}, 0 ≤ i ≤ b,
and the sets C0 = {v ∈ V | d(u, v) is even} and C1 = V \ C0. Both sets are
non-empty and one of them must have ≤ n/2 vertices. By connecting to all the
vertices in the smaller of those sets the diameter of the resulting graph is 2.

Therefore, using a similar argument as in case 2, we get W (G, β) ≤ n2α
2 , which

is O(n2/β) as β < 6. ⊓⊔

Observe that, from the previous result it would be enough to show that in a
ne graph G, |E| = O(n/β) to prove that the PoA(Γ ) = O(n/β). We could not
prove this bound for the general case so we analyze the PoA for some particular
cases. To do so, in the following technical Lemma, that allows us to derive a a
general upper bound in terms of n and β, we establish some topological properties
of ne graphs.

Lemma 2. Let Γ = 〈V, (wu)u∈V , α, β〉 be a star celebrity game and let S be a
ne of Γ and G = G[S]. If there is a vertex v ∈ V such that |Sv| > 6n/β, then
there exists X ⊆ Sv with |X | ≥ 3n/β such that for each x ∈ X, {v, x} is a
bridge.

Proof. Let x ∈ Sv and let Fx be the set of nodes z for which every shortest path
from v to z passes through x (those vertices are forced to use x in any shortest
path). Notice that, for each pair of different vertices x, x′ ∈ Sv, Fx ∩ Fx′ = ∅
and |Fx|+ |Fx′ | < n. This together with the fact that |Sv| > 6n/β implies that
there exist at least 3n/β nodes x ∈ Sv such that |Fx| < β/3. Consider the set
X = {x ∈ V | |Fx| < β/3}.

Let x ∈ X and assume that {v, x} ∈ E is not a bridge. In this case, there
exist at least one more edge between Fx and V \ Fx. Let {y, y′} ∈ E be an edge
distinct from {v, x} with y ∈ Fx and y′ ∈ V (G) \ Fx.

As |Fx| < β/3, maxz∈Fx
d(v, z) < β/3. Consider the strategy S′

v = Sv \ {x}
and let G′ = G[S−v, S

′
v], the above conditions imply that, for any z ∈ Fx,

dG′(v, z) ≤ d(v, y′) + 1 + d(y, x) + d(x, z) ≤ β/3 + 1 + 2(β/3− 1) < β

11



Therefore, ∆(S−v, S
′
v) = −α < 0, which is a contradiction with the fact that G

is a NE graph. Thus {v, x} is a bridge for every x ∈ X and therefore there are
at least |X | ≥ 3n/β bridges having v as endpoint, as we wanted to see. ⊓⊔

This leads us to a upper bound of the PoA in terms of n and β.

Theorem 3. For a star celebrity game Γ , PoA(Γ ) = O(n/β + β).

Proof. Let G be a ne of a star celebrity game Γ = 〈V, (wu)u∈V , α, β〉 . Since we
have that W (G) = O(n2α/β) it is enough to see that |E| = O(n2/β + nβ). Let
X = {u ∈ V | |Su| > 6n/β}. By Lemma 2, every u ∈ X defines 3n/β bridges of
the form {u, x}, so there are at most n/(3n/β) = β/3 nodes in X . We have

|E| =
∑

u∈V

|Su| =
∑

u∈X

|Su|+
∑

u6∈X

|Su| ≤ n|X |+(n−|X |)(6n/β) < nβ/3+6n2/β.

Thus |E| = O(n2/β + nβ). ⊓⊔

Hence, when β = O(
√
n), we get an upper bound of O(n/β).

Corollary 4. For a star celebrity game Γ with β = O(
√
n), PoA(Γ ) = O(n/β).

For the case of 2-edge connected graphs, as a consequence of Lemma 2, we
have the following.

Corollary 5. Let Γ = 〈V, (wu)u∈V , α, β〉 be a star celebrity game and let S be
a ne of Γ and G = G[S]. If there exists a vertex v ∈ V such that |Sv| > 6n/β,
then G cannot be 2-edge connected.

Using this property we can tighten the upper bound of the PoA when con-
sidering only 2-edge connected ne graphs.

Proposition 8. For celebrity games having a 2-edge connected ne, the PoA on
2-edge-connected graphs is O(n/β).

Proof. Let Γ = 〈V, (wu)u∈V , α, β〉 be a star celebrity game and let S be a ne of
Γ . Assume that G = G[S] is 2-edge connected. From Lemma 2, if there exists
a vertex v ∈ V such that |Sv| > 6n/β, then G cannot be 2-edge connected.
Therefore, for each u ∈ V , |Su| < 3n/β + 1 and |E(G)| ≤ n(3n/β + 1). From
Proposition 7 we have W (G, β) = O(αn2/β). So, C(G) = O(αn2/β). As α <
W , from Proposition 2, opt(Γ ) = α(n − 1). We conclude that PoA on 2-edge-
connected graphs is O(n/β). ⊓⊔

6 Price of Anarchy on NE trees

Now we complement the results of the previous section by providing a constant
upper bound when we restrict the ne graphs to be trees. In order to get a tighter
upper bound for the PoA on ne trees, we first improve the bound on the diameter
of ne trees to β + 1.

12



Proposition 9. Let Γ = 〈V, (wu)u∈V , α, β〉 be a star celebrity game. If T is a
ne tree of Γ , diam(T ) ≤ β + 1.

Proof. Let T be a tree such that T = G[S] where S is a ne of Γ . Let d = diam(T )
and let P = u, u1, . . . , ud be a diametral path of T . Assume that d > β + 1. For
1 ≤ i < d, let Ti be the connected subtree containing ui after removing edges
(ui−1, ui) and (ui, ui + 1). As P is a diametral path, both u and ud are leaves
in T . Furthermore, T1 and T2 are star trees. In general, the distance from the
leaves of any Ti to both u and ud is at most d.

We consider two cases depending on whom is paying for the connections to
the end points of P .
Case 1: u ∈ Su1 or ud ∈ Sud−1

.
W.l.o.g. assume that ud ∈ Sud−1

. As S is a ne we have wd ≥ α. Consider the
strategy S′

u1
= Su1 ∪ {ud−1}, then ∆(S−u1 , S

′
u1
) ≤ α − wud

− wud−1
< 0 and T

can not be a ne graph.
Case 2: u1 ∈ Su and ud−1 ∈ Sud

.
When β ≥ 3. Set S′

u = Su−{u1}∪{u2} and T ′ = G[(S−u, S
′
u)]. Observe that,

for x ∈ T1, dT ′(u, x) ≤ 3 ≤ β and, for x /∈ T1 ∪ {u}, dT ′(u, x) = dT (u, x) − 1.
Therefore, ∆(S−u, S

′
u) ≤ −wuβ+1

< 0. Therefore, T is not a ne graph.
The previous argument fails for the case β = 2 as there might be x ∈ T1 with

dT ′(u, x) = 3. From Proposition 6, we know that d ≤ 2β+1 ≤ 5. Let us see that
it can not be the case that d = 4 or d = 5. Let S′

u = Su − {u1} ∪ {ud−1} and
S′
ud

= Sud
− {ud−1} ∪ {u1}. Let T 1 = G[(S−u, S

′
u)] and T 2 = G[(S−ud

, S′
ud
)].

When d = 4, for any x ∈ T2, dT 1(u, x) = dT (u, x) and dT 2(u4, x) = dT (u4, x).
Therefore, we have

∆(S−u, S
′
u) = w(T1)− w(T3)− wu4 and ∆(S−u4 , S

′
u4) = w(T3)− w(T1)− wu.

Thus ∆(S−u, S
′
u) +∆(S−u4 , S

′
u4) = −wu −wu4 < 0 and one of the two players

has an incentive to deviate.
When d = 5, we have ∆(S−u, S

′
u) = w(T1) + wu2 − wu3 − w(T4) − wu5

and ∆(S−u5 , S
′
u5) = w(T4) + wu3 − wu − w(T1)− wu2 . Therefore we have that

∆(S−u, S
′
u) +∆(S−u5 , S

′
u5) = −wu − wu5 < 0 and one of the two players has

an incentive to deviate. ⊓⊔

Our next result shows a constant upper bound for the PoA on ne trees. In
order to prove the upper bound on the PoA on ne trees we provide first an
auxiliary result.

Lemma 3. Let Γ = 〈V, (wu)u∈V , α, β〉 a star celebrity game and let G be a ne

graph of Γ . If there is v ∈ V with diamG(v) ≤ β − 1, then W (G, β) ≤ α(n− 1).

Proof. Let S ∈ ne(Γ ) and letG = G[S]. Let u ∈ V , u 6= v. If v /∈ Su,∆(S−u, Su∪
{v}) ≥ α−∑

{x|dG(u,x)>β}wx ≥ 0. But, if v ∈ Su, diam(u) ≤ β.

Hence, α ≥ ∑

{x|dG(u,x)>β}wx and summing over all u 6= v we have that

α(n− 1) ≥ W (G, β).
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The proof of the upperbound for the PoA on ne trees uses the previous
statements and examines the particular cases β = 2, 3.

Theorem 4. The PoA on ne trees of a star celebrity game is at most 2.

Proof. Let T be a ne tree of Γ . From Proposition 9 we have a bound on the
diameter, so we know that diam(T ) ≤ β + 1. Since T is a tree, we have that
there exists u ∈ V such that diam(u) ≤ (diam(T ) + 1)/2 ≤ β/2 − 1 If β ≥ 4,
then diam(u) ≤ β − 1. By lemma 3, C(T ) ≤ 2α(n − 1). Hence, the PoA of ne
trees of Γ is at most 2 for β ≥ 4.

In the case of β = 3, either diam(T ) ≤ 3 or diam(T ) = 4. In the first case
C(T ) = α(n − 1) and in the second there is u with diamT (u) = 2 = β − 1 and
we can use Lemma 3.

Finally, we consider the case β = 2. Notice that the unique tree T with
diameter 3 is a double star, a graph that is formed by connecting the centers of
two stars. Assume that a ne tree T is formed by Sk, a star with k vertices and
centered at u, and Sn−k, a star graph with n− k vertices centered at v, joined
by the edge (u, v). Let Lu (Lv) be the set of leaves in Sk (Sn−k). As T is a ne

graph we have that w(Lu), w(Lv) ≤ α. Furthermore

C(T ) =α(n− 1) +
∑

w∈Lu

w(Lv) +
∑

w∈Lv

w(Lu) ≤ α(n− 1) +
∑

w∈Lu

α+
∑

w∈Lv

α

≤ α(n− 1) + α(n− 2) ≤ 2α(n− 1).

⊓⊔

Note that in a ne tree T , if α > wmax, for an edge (u, v) connecting a leaf
u it must be the case that v ∈ Su. Then, in the proof of Proposition 9, we only
have the case u1 ∈ Su. In such case diam(T ) ≤ β. Hence, if α > wmax, the PoA
on ne trees is 1.

Corollary 6. Let Γ = 〈V, (wu)u∈V , α, β〉 be a star celebrity game such that
α > wmax. For any ne tree of Γ , diam(T ) ≤ β and therefore the PoA on ne

trees is 1.

7 Celebrity games for β = 1

We analyze now the case of celebrity games when β = 1. Our first result is that
the problem of computing a best response becomes tractable when β = 1

Proposition 10. The problem of computing a best response of a player to a
strategy profile in celebrity games is polynomial time solvable when β = 1.

Proof. Let S be a strategy profile of Γ = 〈V, (wu)u∈V , α, 1〉 and let u ∈ V and
D ⊆ V \ {u}. As β = 1 we have

cu(S−u, D) = α|D|+
∑

v/∈D

wv.
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Notice that for sets with |D| = k the first component of the cost is the same.
Thus a best response on strategies with k players can be obtained by considering
the set Dk formed by the players in V \ {u} having the k-th highest weights. Let
Wk = W −w(Dk). Thus cu(S−u, Dk) = αk+Wk. To obtain a best response it is
enough to compute the value k for which cu(S−u, Dk) is minimum and output
Dk. Observe that the overall computation can be performed in polynomial time.

⊓⊔

When β = 1 the particular structure of ne and opt graphs is different from the
case of β > 1, as pairs of vertices at distance bigger than one are not directly
connected. Such a property does not hold for higher distances.

Proposition 11. Let Γ = 〈V, (wu)u∈V , α, 1〉 be a celebrity game and G = (V,E)
a ne graph of Γ . Therefore, for any u, v ∈ V

– if either wu > α or wv > α then {u, v} ∈ E,
– if both wu < α and wu < α then {u, v} /∈ E,
– otherwise the edge {u, v} might or might not belong to E.

Proof. Let S be a ne and let G = G[S] = (V,E). Observe that due to the fact
that β = 1, for any player u,

cu(S) = α|Su|+
∑

{v|v 6=u,{u,v}6∈E}

wv.

The cost is thus expressed in terms of the existence or non existence of a connec-
tion between pairs of nodes and thus the strategy can be analyzed considering
only deviations in which a single edge is added or removed. We analyze the
different cases for players u and v.

Case 1: wu > α. For any player v 6= u, if the edge {u, v} is not present in G the
graph cannot be a ne graph as v improves its cost by connecting to u. For the
same reason, if the edge is present either u ∈ Sv or v ∈ Sv. The later casev ∈ Sv,
can happend only when wv > α. Therefore, the player that is paying for the
connection will not obtain any benefit by deviating.

Case 2: wu, wv < α. If the edge {u, v} is present in G the graph cannot be a ne

graph as the player establishing the connection improves its cost by removing the
connection to the other player. For the same reason, if the edge is not present
none of the players will obtain any benefit by deviating and paying for the
connection.

Case 3: wu, wv = α. The cost, for any of the players, of establishing the con-
nection or not is the same. In consequence the edge can or cannot be in a ne

graph.

Case 4: wu = α and wv < α. Player v is indifferent to be or not to be connected
to u, but player u in a ne will never include v in its strategy. Observe that again
the edge can or cannot exists in a ne graph but, if it exists, it can only be the
case that u ∈ Sv. ⊓⊔
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Let us analyze now the structure of the opt graphs.

Proposition 12. Let Γ = 〈V, (wu)u∈V , α, 1〉 be a celebrity game and G = (V,E)
a opt graph of Γ . For any u, v ∈ V , we have

– if wu + wv < α then {u, v} /∈ E,
– if wu + wv > α then {u, v} ∈ E,
– if wi + wj = α then {u, v} might or not be an edge in G.

Proof. Let S be a strategy profile and let G = G[S] = (V,E) be an opt graph.
As we have seen before as β = 1, for any player u,

cu(S) = α|Su|+
∑

{v|v 6=u,{u,v}6∈E}

wv,

and we get et the following expression for the social cost

C(G) = α|E| +
∑

{u,v|u<v,{u,v}6∈E}

(wi + wj).

The above expression shows that to minimize the contribution to the cost, an
edge {u, v} can be present in the graph only if wu +wv ≥ α and will appear for
sure only when wi + wj > α. Thus the claim follows. ⊓⊔

From the previous characterizations we can derive a constant upper bound
for the price of anarchy when β = 1.

Theorem 5. Let Γ = 〈V, (wu)u∈V , α, 1〉 be a celebrity game. PoA(Γ ) ≤ 2.
Furthermore the, ratio among the social cost of the best and the worst ne graphs
of Γ is bounded by 2.

Proof. Γ = 〈V, (wu)u∈V , α, 1〉. Observe that due to the conditions given in
Propositions 11 and 12 the social cost of an opt graph is at most

∑

{{u,v}|wu+wv≥α}

α+
∑

{{u,v}|wu+wv<α}

(wu + wv),

and the social cost of a ne graph with minimum number of edges, i.e. one in
which all the optional are not present, is

∑

{{u,v}|wu>α or wv>α}

α+
∑

{{u,v}|wu,wv≤α}

(wu + wv) =

=
∑

{{u,v}|wu>α or wv>α}

α

+
∑

{{u,v}|wu,wv≤α and wu+wv=α}

α

+
∑

{{u,v}|wu,wv≤α and wu+wv<α}

(wu + wv)

+
∑

{{u,v}|wu,wv≤α and wu+wv>α}

(wu + wv) =
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Observe that the difference with the cost of an opt graph is in the last term

D = {{u, v} | wu, wv ≤ α and wu + wv > α}.

Notice that {u, v} ∈ D contributes to the cost of an opt graph with α and to the
cost of a ne graph with wu+wv. By taking Γ with wu = α, for any u ∈ V , we can
maximize the size of D and this leads to the worst possible ne graph. For such a
Γ , In is a ne graph and we have that C(In) =

∑

u,v∈V,u<v(wu+wv) = αn(n−1).
Furthermore, in any opt graph of Γ , all the edges will be present, thus we have
opt = αn(n− 1)/2. Thus

PoA(Γ ) ≤ n(n− 1)α

αn(n− 1)/2
= 2

Observe that when wu = α, for any u, the complete graph is also a ne graph
and thus we have that the ratio between the social cost of the worst and the
best ne graph is bounded by 2. ⊓⊔

8 Conclusions and Open problems

We have introduced celebrity games: a new model of network creation whose cost
function considers two features. The first one is that every player has a celebrity
weight and the second is that the network has a critical distance. The relation
between the weight of the players and the link cost establishes the conditions for
the connectivity of ne graphs. For connected ne graphs we show that:

– the networks created by celebrity games have diameter ≤ 2β + 1 (that de-
pends on the given critical distance β) and that,

– the value of this critical distance has implications on the quality of the ne

strategies.

Indeed, we obtain ne graphs in which all the nodes are as close as desired among
them. In fact, since the PoA of star celebrity games is O(β + n/β), we can
observe that enlarging (below some reasonable bounds) the value of β improves
the quality of the equilibrium and the other way round. In other words, there
is a trade-off between the closeness of the nodes in the graph and the quality of
the ne.

To go further, we propose two different lines of research. On one hand, to
tighten the gap between the provided upper bound of O(β + n/β) for the PoA.
We conjecture that the upper bound can be improved to O(n/β) and we have
proved so for 2-edge connected ne graphs. On the other hand, we propose to
study natural variations of our framework. Among the many possibilities to
extend this model we think that the following three are interesting: (i) to analyze
celebrity games under the max social cost measure (work in progress), (ii) to
consider other definitions of the social cost measure and, (iii) to analyze the non
uniform model in which the critical distance might be different for each pair of
participants.

17



Acknowledgments This work was partially supported by funds from the Span-
ish Ministry for Economy and Competitiveness (MINECO) and the European
Union (FEDER funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R),
and SGR 2014 1034 (ALBCOM) of the Catalan government.

References

1. S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On Nash equilibria
for a network creation game. ACM Trans. Economics and Comput., 2(1):2, 2014.

2. N. Alon, E. D. Demaine, M. Hajiaghayi, P. Kanellopoulos, and T. Leighton. Cor-
rection: Basic network creation games. SIAM J. Discrete Math., 28(3):1638–1640,
2014.

3. N. Alon, E. D. Demaine, M. T. Hajiaghayi, and T. Leighton. Basic network creation
games. SIAM J. Discrete Math., 27(2):656–668, 2013.

4. K. R. Apt and E. Markakis. Diffusion in social networks with competing products.
In SAGT 2011, LNCS(6982):212–223, 2011.
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