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Abstract 

 

The maturity method provides a simple approach for assessing the strength evolution of concrete. 

Although it is already used in the precast industry, no reported applications with sprayed concrete may be 

found in the literature. Such concrete presents singular characteristics due to the spraying process and, in 

some cases, due to the introduction of accelerators that modify the kinetics of cement hydration. 

Consequently, the traditional equations that relate the evolution of mechanical properties and the maturity 

index might not apply in this case. The objective of this study is to adapt the maturity method to sprayed 

concrete. An experimental program was conducted with 24 concrete mixes sprayed in laboratory and 

tested for the evolution of temperature and compressive strength. An alternative equation was proposed to 

relate the maturity index and the mechanical properties. Subsequently, finite element models were 

developed to generalize the maturity curves considering the local design parameters. 
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1. Introduction 

The maturity method provides a relatively simple approach for assessing the in-situ strength 

evolution of concrete during construction. It relies on the measured temperature history of the 

concrete to estimate the maturity index that is then related with the strength development during 
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the curing period. For each concrete mix composition, the relationship between a mechanical 

property and the maturity index can be established via trial mixes subjected to controlled 

conditions. 

The method has been widely used in applications such as concrete pavements or precast 

concrete to improve productivity by, for instance, minimising the curing time [1, 2, 3, 4]. 

However, according to the literature, there have been no reported examples of applications with 

sprayed concrete. This special type of concrete is pumped and sprayed over vertical or top 

surfaces, resisting the self-weight and the loads applied as soon as the element is executed. In 

some applications, accelerators are added to the mixture in order to speed up the setting and the 

short-term evolution of mechanical properties. For that reason, the early strength control is a 

key element that might affect the productivity and the safety in the worksite [5, 6]. 

The maturity method, adapted to this particular form of concrete construction, would help 

engineers decide when the construction advance could be done safely. Furthermore, it would be 

a helpful alternative to the two traditional tests used to measure the compressive strength 

evolution of the sprayed concrete at early ages - the penetration needle test and the stud driving 

method [7]. In that sense, the time to obtain results and the number of people working under a 

risky condition in a poor environment (i.e. tunnelling) could be reduced [8]. 

Several reasons explain the difficulties associated with the implementation of the maturity 

method for the quality control of sprayed concrete. On one hand, the conventional equations 

used to relate the evolution of mechanical properties and the maturity index might not apply to 

mixes with accelerators. On the other hand, changes in the characteristics of the support over 

which the material is sprayed may affect the heat transfer of the concrete layer [9, 10]. 

Therefore, the calibrations of the maturity index for a certain condition might not be generalized 

to the high variability of conditions found in practice. 

The aim of this study is to propose a methodology for the quality control of sprayed concrete 

based upon the maturity method that overcomes the difficulties mentioned previously. 



Accordingly, an experimental programme was conducted involving the spraying of 24 different 

concrete mixes, which were then characterized for the evolution of temperature and 

compressive strength. The relationship between these two parameters were used to propose an 

alternative equation that relates the maturity index and the evolution of mechanical properties 

for sprayed concrete with accelerators. Subsequently, an approach using finite element models 

(FEM) was developed with the aimed of adapting the maturity curves obtained in laboratory to 

the local conditions (such as layer thickness and the type of ground support) found in the 

worksite. The theoretical and empirical findings are presented, culminating in a description of 

the proposed in-situ application. 

 

2. The Maturity method 

The Nurse-Saul function (Eq. 1) is commonly used [1] to assess the maturity index (M), taking 

into account the evolution of temperature (T) over time (t) and the datum temperature (To). This 

last parameter, which is equal to -10 oC in different studies [1], represents the minimum 

temperature that permits the chemical reaction of cement hydration.  

 
(1) 

 

This index M may be related to the compressive strength (S) using the Plowman’s logarithmic 

equation [11]. This presents two parameters, a and b, that are the strength for maturity index 

equal to 1 and the slope of the line, respectively. The relationship between both these 

parameters shown in Eq. 2 gives the maturity curves. 

 (2) 

 

The latter is capable of estimating the strength evolution of conventional concrete as observed in 

various studies [1, 12]. However, sprayed concrete often has particular characteristics that are 



not considered in Plowman’s equation. The addition of accelerators – very common in sprayed 

concrete for tunnelling applications - changes the chemical reactions produced during the 

hydration of cement [13, 14]. These chemical changes alter the development of the mechanical 

properties of the sprayed concrete at very early ages, which consequently requires a modified 

relationship between the compressive strength and the maturity index. 

Moreover, maturity curves are based upon pre-determined calibrations of the time-temperature-

strength relationship development, determined in laboratory tests. These conditions, however, 

are different from those found on a construction site, particularly in tunnelling applications. 

Consequently, maturity curves for sprayed concrete are usually obtained experimentally by 

spraying in the laboratory moulds with a thickness of 150 mm as described by the standard 

UNE-EN 14488-2:2007 [7]. In underground construction, the thickness of concrete is chosen 

due to structural reasons - the weaker the ground support, the thicker the lining (considering the 

same concrete compressive strength). Furthermore, the ground support in a tunnel has different 

thermal and mechanical properties than a metallic mould used in a laboratory. These variations 

cause changes in the evolution of temperature inside the concrete, and therefore variations in the 

maturity curves, due to heat transfer between the different materials. 

This heat transfer, governed by a diffusion phenomenon, is the exchange of energy through the 

boundary between two systems. When an object is at a different temperature from another body 

or its surroundings, heat flows until the body and its surroundings reach the same temperature. 

Heat transfer always occurs from a region of high temperature to an adjacent region of lower 

temperature, as described by the second law of thermodynamics [15]. In the case of 

underground construction, thermal conduction is the fundamental heat transfer mode that occurs 

between the concrete and the ground, whereas convection is the one that occurs between the 

concrete and the atmosphere. This phenomenon is different in the specific case of spraying into 

a mould (Figure 1). 

Figure 1- Heat transfer modes in a tunnel a) and for a sprayed 

mould b) 



An experimental programme was designed to consider this phenomenon and propose a 

methodology to perform the maturity method on the sprayed concrete. This involved tests in 

laboratory conditions to obtain the maturity curves and finite element modelling in order to 

adapt these curves to the real conditions. 

 

3. Methodology 

This section presents the materials to produce the mixes and their composition, the spraying 

process and the test methods considered in the study. It also explains the FEM developed in 

order to generalize the experimental results to the real case conditions. 

 

3.1 Materials and composition of mixes 

The cements CEM I 52.5 R (CEM I) and CEM II/A-L 42.5 R (CEM II) were used in the study. 

Their main characteristics are presented in Table 1. The high proportion of clinker of CEM I 

allows quick setting of the concrete and, therefore, a high compressive strength at early ages. 

Although it is still used in sprayed concrete, the European tendency is to favour blended 

cements for environmental reasons. In order to reduce the CO2 emissions during the production 

of cement, several European countries apply cements type II, which include additions in order to 

reduce the amount of clinker [16, 17]. Following this trend, this study also considered CEM II, 

which presents a substitution of approximately 20% of clinker by limestone powder filler. This 

filler is common in Spain and contributes to reducing the setting time of concrete [18]. 

Table 1- Main characteristics of the cements used 

In total, three families of alkali-free accelerators were investigated, each composed of two 

formulations of accelerators chemically based on hydroxysulphate of aluminium 

(Al(SO4)x(OH)3-2x). These accelerators were selected in order to cover the variety usually 



applied in practice and regarding environmental aspects, which eradicate the use of alkali 

accelerators. Table 2 summarizes the characteristics of the accelerators used. 

Table 2- Characteristics of the accelerators 

For each one of them, two doses of accelerator by cement weight (%bcw) were established 

following the performance based procedure from previous studies [19, 20]. These assumed that 

the limit doses for sprayed concrete are the ones that when used to accelerate the hydration of 

cement pastes in a Vicat test entail initial and final setting times that approximately coincide 

with the upper and lower limits defined by Melbye et al [21]. 

Table 3- Doses considered (%bcw) 

The base concrete mix composition consisted of 425 kg/m3 of cement, 380 kg/m3 of fine 

limestone sand (0-2 mm), 900 kg/m3 of coarse limestone sand (0-5 mm) and 380 kg/m3 of 

limestone gravel (5-12 mm) with a water-to-cement ratio of 0.45. Furthermore, a polycarboxylic 

superplasticizer was added to increase both the fluidity and the workability of the concrete. It 

has an approximate density at 20 oC of 1.04 g/cm3, pH equal to 5.0 and a 37.0% of dry residue. 

This superplasticizer content was 1% bcw for each mix studied, as recommended by the 

manufacturer and following typical sprayed concrete composition for tunnelling construction. A 

ready mix plant that also produced the concrete for a new underground line in Barcelona 

supplied the base concrete. Note that certifications from the supplier were required to verify the 

mix design. 

The total combination of variables yielded 24 mixes of sprayed concretes to be tested. The 

nomenclature defined for the mixes is formed by the name and the dose of the accelerator 

followed by the simplified indication of the cement type. All terms are separated by the symbol 

‘_’. 

 

3.2. Spraying procedure 



Notice: the following production process used to obtain the sprayed concrete is the same that the 

one presented in previous studies [22]. 

All mixes were sprayed with a MEYCO Altera wet-mix machine (Figure 2.a), an oil-

hydraulically driven twin-piston pump that also incorporated a peristaltic dosing unit for 

accelerators and a 10 m3/min diesel air compressor. A simple device was designed to facilitate 

the handling of the nozzle fixed to the forks of a forklift truck for stability and consistency of 

spraying position and angle (Figure 2.b). 

The mixes were sprayed outdoors. The parameters of the spraying process were fixed with a 

pumped concrete flow of 4.4 m3/h (equivalent to 20 strokes per minute), an air pressure of 4 

bars, and an accelerator-dosing flow between 4.0 and 4.5 l/min. 

The material was sprayed on to metallic test panels (500x500x150 mm), at an angle of 20o from 

the vertical according to UNE-EN 14487-2:2008 [23]. The distance between the nozzle and the 

test panels was constant and equal to 1.5 m (Figure 2.b). Like in most real case applications, no 

curing was performed on the spraying moulds in order to avoid interfering with the test up to 24 

h. 

Figure 2- Wet-mix spraying machine a) and test panel position 

b) 

 

3.3. Testing methods 

According to the European standard UNE-EN 14488-2:2007 [7], two methods are available to 

evaluate the development of the compressive strength of sprayed concrete at early ages. The 

penetration needle test (Figure 3.a) is used to estimate the compressive strength from 3 to 30 

min, whereas the stud driving method (Figure 3.b) is applicable to estimate the strength from 2 

to 24 h. 

Figure 3- Penetration needle test a) and stud driving method b) 



Both methods are indirect and therefore several values are required to evaluate the compressive 

strength. In accordance with UNE-EN 14488-2:2007 [7] an average of 10 measurements were 

taken at each age. The penetration needle test was performed at 3, 6, 10, 20 and 30 min, and the 

stud driving method at 2, 4, 6, 12 and 24 h. 

Moreover, the evolution of temperature was recorded for each mix using a data logger and type 

k thermocouples (Figure 4.a), taped to the test panels (Figure 4.b). The temperature was 

measured every minute up to 24 h. Another thermocouple recorded the ambient temperature. 

Figure 4- Data logger and thermocouples a) and assembly of thermocouples in the test panel b) 

In addition, the mix AF-3.1_9_I was sprayed in a mould with two thermocouples arranged at 

different positions (Figure 5) in order to consider the effect of the thickness of the sprayed layer 

on the evolution of temperature results and to calibrate the FEM. In that sense, the first 

thermocouple was centred on the mould at 150 mm from the top in a low position (TC_L), 

whereas the second (TC_H) was set at the same position but at a height of 75 mm. This height 

was achieved using a piece of wood since this material has a very low thermal conductivity. 

Figure 5- Arrangement of the thermocouples in the mould 

 

3.4. Modelling 

Besides the experimental tests, a thermal analysis was performed using a FEM. The aim of the 

analysis is to generalize the maturity curves obtained experimentally under laboratory 

conditions to the situations found in reality. For that, two models were analysed. The first of 

them (Model 1) reproduces the test performed with the panels in laboratory condition. Through 

an iterative procedure considering the experimental results, it is used to derive the curve of heat 

release due to the chemical reactions experienced by the material. This curve serves as an input 

parameter for Model 2, which simulates the conditions found in the real structure and allows 

estimating the evolution of temperature expected in reality. As a result, a simplified correlation 

may be derived between the maturity index measured in laboratory and in the real structure. The 



same analysis may be repeated for several structural types and surrounding conditions, deriving 

specific correlations for each case.  

In both models, the software ANSYS 9.0 was used, as it can model the thermal behaviour of 

construction materials under established boundary conditions. In this sense, ANSYS applies the 

Fick’s law of diffusion to evaluate the heat transfer (Eq. 3). This equation relates the evolution 

of temperature (T) in time (t) with the temperature in a determined location (x) multiplied for the 

diffusivity of the material (D). This parameter depends on the conductivity (K), the specific heat 

(c) and the density (ρ) of the material studied. 

 
(3) 

 

 

Model 1 – Test simulation 

A 2D model of the central section of the mould sprayed during the experimental program was 

considered. The geometry of the model was inputted into ANSYS, as presented in Figure 6.a. 

The thermal characteristics of the sprayed concrete and the steel were inputted, including the 

conductivity (K), the specific heat (c) and the density (ρ) (Table 4). ASNYS then meshed the 

geometry using triangular elements, as shown in Figure 6.b. It is important to remark that the 

models were analysed with different mesh refinements to mitigate the possible influence of this 

parameter in the results. 

Figure 6- Geometry of the model a) and final mesh used b) 

The initial temperature of materials and of the evolution of temperatures of the environment 

were defined according with the measurements performed in each test of the experimental 

program. A convective boundary condition was established between the concrete and the 

ambient and between the steel and the environment, assuming film coefficients respectively of 



0.10 and 19.00 kJ/(h·m·K). Other material features such as the specific heat (c) the thermal 

conductivity (k) and the density () are presented in Table 4. 

Table 4- Material features 

The calibration of the model was performed with the mix AF-3.1_9_I, which had thermocouples 

installed in different positions. The energy released over time due to the chemical reactions was 

calibrated manually so that the evolution of temperature of the sprayed layer fits the 

measurements from the experimental results. 

 

Model 2 – Real structure simulation 

After calibrating Model 1, a new geometry was used (Figure 7) to consider the construction 

design parameters such as type of ground support and thickness of the sprayed concrete layers. 

Since one of the most common application of the material occurs in underground structures, the 

sprayed concrete was simulated in a tunnel. 

Figure 7- Geometry of the model of the lining of a tunnel a) 

and mesh generated b) 

In this sense, given that the ambient temperature inside the tunnel is relatively constant over 

time, the inside temperature was considered 18 oC throughout the analysis (other temperature 

values should be considered depending on the conditions found in each case of study). Three 

types of ground support were considered: saturated clay (clay), limestone, and hard stone. The 

thermal properties of these three materials are shown in Table 4. Finally, three different 

thicknesses of sprayed concrete were used in each analysis: 100, 150 and 200 mm. To avoid the 

effect of temperature variations over the surface, the control point is always considered in the 

centre of the layer, as depicted in Figure 7.a. 

 

4. Results and analysis 



This section presents the results of this study, starting with an analysis of the experimental 

results in the laboratory. The experimental relationship between the compressive strength and 

the evolution of temperature is then discussed. Finally, the results obtained from running the 

finite element models are presented in order to adapt the experimental results to the construction 

conditions. 

To simplify the interpretation of the tendencies, only the results of mixes produced with 

accelerators AF-1.1, AF-2.1 and AF-3.1 are presented since other mixes from the same family 

follow a similar trend. 

 

4.1. Experimental results 

 

4.1.1. Evolution of Temperature 

The evolutions of temperature for the mixes are presented in Figure 8. The curves reveal an 

initial increase of temperature due to the early reaction between the cement and the accelerators. 

After that, either a slight decrease of temperature or a reduction of the increase rate is observed, 

thus characterizing a dormant period. Next, a second greater peak of temperature due to the 

hydration of silicates (C2S and C3S) is verified in most of the curves. Finally, the material tends 

to reach equilibrium with the environmental temperature. These observations are consistent with 

former studies performed by Neville, Julliand and Galobardes [13, 14, 24].  

The only exceptions observed were in the case of mixes of cement CEM I with a low or high 

dose of AF-1.1. This is possibly due to the presence of phosphoric acid in the accelerator 

formulation, as observed in other studies [13]. On the contrary, AF-1.1 shows good affinity with 

CEM II, which may be related with the clinker fineness and the content of limestone filler 

present. 

Figure 8- Evolution of temperature over 24 h considering type 

of cement and dose of accelerator 



Table 5 presents characteristic points extracted from the curves in Figure 8. These points are 

represented in terms of the value (Tmax) and the time (tTmax) of the maximum temperature, first 

increasing of temperature (T1P), the second temperature peak (T2P) and the minimum 

temperature between peaks (TMin1P-2P). Notice that this last value is related to the dormant 

period. The table also presents the energy released during the hydration (Et_), which was 

calculated as the integral of the evolution in time, for each characteristic point (h·oC). 

Table 5- Evolution of temperature characteristic points 

Regarding the first increase of temperature (T1P), mixes with accelerator AF-1.1 present the 

highest temperature in the mixes with cement CEM I. In contrast, mixes with cement CEM II 

present the highest temperature with the accelerator AF-3.1, independently of the dose of 

accelerator. This increase of temperature becomes more pronounce as the dose of accelerator 

increases. Such outcome is the result of a higher content of accelerators that are available to 

react with the cement. Furthermore, the mixes with cement CEM I have higher temperatures 

than those with cement CEM II. This is due to the higher amount of clinker, and therefore 

aluminates (C3A) of cement CEM I in comparison with cement CEM II. The only exception is 

observed in mixes with AF-1.1, which shows greater affinity with cement CEM II. 

Regarding the 2nd peak of temperature (T2P), in case of mixes with cement CEM I the highest 

values are measured for the accelerator AF-3.1 whereas mixes with cement CEM II present the 

highest temperature with the accelerator AF-1.1. Furthermore, the results show that when 

increasing the dose of accelerator the peaks of temperature are around 25% higher with mixes 

with cement CEM I, regardless of the accelerator used. In general, the 2nd peak of temperature 

(T2P) is higher for mixes with cement CEM I than those with cement CEM II, probably due to 

the larger clinker content of the former. Again, the only exception is observed in mixes with 

AF-1.1.  

It is noteworthy that mixes with AF-3.1 present the 2nd peak before the mixes with other 

accelerators for all cement types and doses analysed. This indicates that the chemical 



formulation of AF-3.1 possibly is more active in terms of accelerating the hydration of silicates 

(C2S and C3S) in comparison with other admixtures studied. 

The findings also reveal that mixes that present higher temperatures in the first peak tend to 

show lower temperatures in the second peak. This may be explained by the phase of cement that 

reacts with the accelerators. For example, if the accelerator reacts mainly with the aluminates, a 

higher 1st peak of temperature should be observed. In contrast, if the accelerators are more 

active on the silicates of the cement, a higher 2nd peak should be observed. Another explanation 

could be that less active mixes present smaller 1st peaks, leaving more aluminates to react over 

time and to contribute to the temperature increase of the 2nd peak.  

The dormant period is longer for the low doses of accelerators for both cement types. In this 

sense, mixes with AF-2.1 present the longest dormant periods (TMin1P-2P). This period is not as 

long in mixes with accelerator AF-3.1 since a decrease of temperature is not observed. 

Furthermore, an increase in the dose of accelerator produces shorter dormant. 

Figure 9 presents the evolutions of temperature obtained recording the mix produced with AF-

3.1_9_I taking into account the different thermocouple positions shown in Figure 5. Notice that 

the tendency shown for both evolutions of temperature is the same and equal to the ones 

presented above. 

Figure 9- Evolution of temperature considering thermocouple 

position 

The evolutions of temperature obtained are similar in shape since they present an initial increase 

of temperature, a slightly slower dormant period, a second steep increase of temperature and a 

decrease of temperature after the maximum. The temperatures gathered for TC_H are higher 

than the ones obtained for TC_L due to their position and the consequent heat transfer (Figure 

5). TC_H was in the middle of the sprayed concrete and therefore the heat generated was higher 

than for TC_L. 

 



4.1.2. Penetration needle test 

The results for the compressive strength (and their variance) obtained with the penetration 

needle test are presented in Table 6. Regarding the type of cement, the results obtained are 

similar for the mixes with cements CEM I and CEM II. This demonstrates the lower importance 

of the type of cement up to 30 min. Therefore, the type of accelerator is the parameter that most 

influences the strength measured in the early ages. In general, an increase in dose leads to higher 

strength. This is reasonable as more accelerator is available to react with the cement. In this 

sense, higher results are achieved with AF-2.1 and with AF-3.1 for the cements CEM I and 

CEM II, respectively. The main exception is observed for mixes with AF-1.1, which, regardless 

of the cement type, present the highest compressive strength for the low dose. 

Table 6- Compressive strength (MPa) and variance (%) 

obtained by the penetration needle test 

The penetration test has a range of application between 0 MPa and approximately 1.3 MPa. It 

was observed that for mixes with a low dose of accelerator, values are recorded up to 30 

minutes in almost all mixes, and show a slow gain of compressive strength over time. 

Conversely, mixes with the high dose could only be tested up to 10 or 20 minutes, due to the 

limit of the testing equipment.  In that sense, results stop around 1.0 MPa because the next 

estimations could not be taken due to the rapid gain of strength. It is important to highlight the 

fast gain of strength in mixes with the low dose of AF-1.1 and cement CEM II, which at 10 min 

showed the same strength of mixes with other accelerators at 30 minutes. This is probably due 

to the higher affinity of AF-1.1 with the cement CEM II, even for low doses. This phenomenon 

was also observed in the evolution of temperature over time. 

Figure 10 illustrates the compressive strength results presented by the mixes considered in this 

section and the data for the early strength classes for young sprayed concrete: J1, J2 and J3 [18, 

25]. 

Figure 10- Compressive strength results considering type of 

cement and dose of accelerator 



The results show that the strength development is classified as J2 or J3. Regarding the type of 

cement, mixes with CEM II relate more to curve J3 than the samples with CEM I. This is 

possibly due to the limestone filler in the cement CEM II, which contributes to the nucleation of 

the hydrated phases increasing the compressive strength at very early ages. In this case the 

mixes with accelerators AF-1.1 and AF-3.1 relate to curve J3, whereas AF-2.1 relate to curve 

J2, independently of the type of dose. This shows the lower affinity between the accelerator AF-

2.1 and the cement CEM II, as observed from analysing the evolution of temperature. This 

tendency was observed in the evolution of temperatures and is probably due to the hydration of 

C3A. Conversely, mixes produced with cement CEM I and low dose of accelerator relate more 

to curve J2. An increase in the dose of accelerator produces a small growth in the strength of the 

mixes with accelerators AF-1.1 and AF-3.1, which are still classified as J2. A higher influence 

is observed in the mix with AF-2.1 that presents a significant increase of strength and is 

classified as J3. 

 

4.1.3. Stud driving method 

The results of compressive strength (and their variance) obtained by the stud driving method are 

presented in Table 7. Regarding the type of cement, the results obtained are similar for the 

mixes with cement CEM I and for CEM II, although cement CEM I are slightly higher. This is 

due to the higher strength class of the cement and its importance from age 4 h onwards. 

However, the type of accelerator is still more important during this period. 

Table 7- Compressive strength (MPa) and variance (%) 

obtained by the stud driving method 

In the first 6 hours, the type of accelerator and the additions in the cement have more influence. 

In this sense, higher results are achieved with AF-2.1 regardless of the type of cement and dose 

of accelerator. This is possibly related to the quicker hydration of the C2S and C3S of mixes with 

AF-2.1, which produces C-S-H chains able to provide compressive strength. This phenomenon 



is observed in the second peak of temperature. In contrast, mixes with AF-1.1 and AF-3.1 

produced lower results in mixes with cement CEM I and CEM II, respectively. This probably 

indicates a lower affinity between the accelerators and the type of cements. 

The stud driving method has a range of application from around 3 MPa upwards, therefore the 

age of 4 h was established as the initial time of assessment. As a result, mixes with cement 

CEM II present values from 4 h, indicating a more rapid gain of strength. On the contrary, 

mixes with cement CEM I could only be tested from 6 h onwards in most cases.  

Figure 11 reveals the results can be classed as young sprayed concrete J2 and J3 [18, 25]. 

Figure 11- Compressive strength results considering type of 

cement and dose of accelerator 

The mixes with cement CEM II present more closely curve J3, as commented before possibly 

due to the limestone filler. The only exception is the mix with a high dose of AF-3.1, classified 

as J2. Conversely, mixes with cement CEM I present the same behaviour regardless of the dose 

of accelerator. In this sense, mixes produced with AF-2.1 and AF-3.1 present more curve J3, 

whereas those with AF-1.1 are classified as J2. This difference is possibly due to the low 

affinity between accelerator AF-1.1 and cement CEM I, as observed in the evolution of 

temperature. 

 

4.2. Experimental relationship evolution of temperature and compressive strength 

The maturity indices obtained for each mix from the evolution of temperature are calculated 

according with Eq. 1. Figure 12 illustrates an example of this calculation for one of the mixes 

with AF-1.1. This calculation is repeated for the different ages of characterization of the 

compressive strength with the penetration needle and the study driving method. Consequently, 

several pair of values of maturity index (M) and the corresponding compressive strength (S) are 

obtained for each time. Notice that this assessment was made only with the results up to 12 



hours from spraying since this is the typical times for the advance of the construction is below 

this limit. 

Figure 12- Relation between the evolution of temperature a) 

and the maturity index b), for mix AF-1.1 

Curves were then fitted to the pair of values from each mix, using LAB Fit v.7.2.48. In a first 

approach, the fit was performed with the Plowman’s equation that relates the values of S and M 

[11]. As a result, the parameter ‘a’ and ‘b’ that yield the best R² were found. The same was 

repeated with the alternative equation proposed here (Eq. 4), which depends on the parameters 

A, B and C. 

 (4) 

 

Table 8 presents the R² achieved with both equations. Notice that a poor fit was obtained with 

the Plowman’s equation. In this case, values as low as 0.69 are observed, with an average of 

0.81. It is evident that the Plowman’s equation does not provide a good approximation of the 

correlation between the maturity index and the compressive strength due to the influence of the 

accelerator in the hydration kinetics of cement. Consequently it is not adequate for the 

application of the maturity method in such mixes. On the contrary, the alternative equation 

proposed here leads to a minimum R² of 0.93 with an average of 0.99. This suggests that Eq. 4 

is more representative of sprayed concrete with accelerators.  

Table 8- Parameters obtained by LAB Fit 

Figure 13 presents the experimental results and the maturity curves obtained with Eq. 3. The 

maturity curves are clearly influenced by the parameters studied, namely type of cement and 

type/dosage of accelerator. This means that different maturity curves would be obtained if 

modifications were made in the composition of concrete. Considering the type of cement, all the 

mixes present similar tendencies. Regarding the dose of accelerator, the results of mixes with 

accelerator AF-1.1 and AF-3.1 show that an increase of the dose entails higher values of 



maturity index to achieve the same compressive strength. This is not observed for mixes 

produced with AF-2.1. 

Figure 13- Relationship between the maturity index and the 

compressive strength  

 

4.3. Modelling 

This section presents the results obtained running models 1 and 2 (section 3.4) that were created 

so that design considerations - such as type of ground support and thickness of the sprayed layer 

– could be taken into account in order to adapt the experimental maturity curves from the 

moulds to the real condition found in the worksite. Firstly, Model 1 was run, introducing and 

changing the generated heat in order to obtain the same results as the experimental ones 

obtained with the mix AF-3.1_9_I (Figure 9). Figure 14 shows the results given by TC_L and 

TC_H, with correlations of 0.996 and 0.993 respectively. The heat generated in the mix due to 

the chemical reactions of the hydration of the cement combined with the accelerator is thus 

established. 

Figure 14- Adjustment model-experimental data  

The results obtained from Model 1 were used to run Model 2, estimating new values of maturity 

indexes, dependant on the type of ground support and the thickness of the sprayed layer. The 

aim was to adjust the results obtained from spraying a mould of thickness equal to 150 mm in 

order to estimate the results gathered in a tunnel with different boundary conditions. The 

evolutions of temperature of the tunnel lining were thus obtained, as well as the development of 

the maturity indices with time calculated. Table 9 presents, as an example, the findings when 

spraying layers of 100 and 150 mm on clay, together with the results for the concrete sprayed in 

the mould. 

Table 9- Development of maturity index in time (ºC·h) 



The results show that reducing the thickness lowered the maturity index significantly. 

Furthermore, the maturity calculated from samples sprayed into steel moulds underestimates the 

maturity at 150 mm thickness. Using these results, it is possible to estimate of the actual in-situ 

compressive strength by adjusting the results from the mould to fit the results of the lining. To 

do this, the coordinates of the maturity indices obtained from the mould and from the lining 

were graphed together. Figure 15 presents the results obtained for various layer thicknesses on 

clay, limestone and stone ground supports whose thermal properties are indicated in Table 4.  

Figure 15- Influence of the thickness a) and the ground support 

b) on the maturity indices 

Notice that an approximately linear relationship is observed between the maturity index 

calculated in the mould and that in the real condition, regardless of the type of soil and the 

thickness of the layer. This suggests that in a simplified approach, a constant coefficient may be 

used to convert the maturity indexes measured in the moulds into the one obtained in the real 

structure. Such coefficient is given by the slope η of the linear regressions from the curves in 

Figure 15. To apply this coefficient, the minimum maturity index of reference obtained in the 

moulds should be multiplied by η to obtain the equivalent minimum maturity index that should 

be respected in the real structure.  

Table 10 presents the η-parameters obtained for the different boundary conditions together with 

the correlation coefficients in parenthesis. 

Table 10- η-parameters and corresponding R² 

As previously observed, the development of the maturity indexes over time depends on the 

thickness and the type of ground support, as well as the mix design. Regarding the thickness of 

sprayed concrete, a decrease involves a reduction of η, entailing a reduction of the results 

gathered from the mould, regardless of the ground support type. Furthermore, the thermal 

characteristics of the ground support affect the value of the parameter η. Although only three 

types of ground support were considered under a constant temperature of 18 °C, other types of 

ground and temperature values may be studied using the thermal model presented in section 3.4. 



The parameter η might also be obtained experimentally from tests performed in moulds and in 

the real structure. 

 

5. Maturity method for sprayed concrete 

In order to apply the maturity method to sprayed concrete, a preliminary calibration of the 

maturity curves need to be performed, as illustrated in Figure 16. The preliminary assessment 

consists of developing the maturity curves according with the requirements of UNE-EN 14488-

2 [7] in 150 mm-deep standard moulds. The early compressive strength of the sprayed concrete 

should be estimated at different ages with the penetration needle and stud driving methods. The 

temperature evolution must also be recorded with in-situ thermocouples and a data logger to 

establish the strength/time relationship. This should be repeated for the typical doses of 

accelerators that will be used in practice. Once the maturity curves are calibrated according with 

Eq. 4, this may be used in the worksite. If an approximate prediction of the construction 

conditions in terms of layer thickness and ground support is available, the η-parameter could be 

obtained from the thermal models or experimental studies. 

Figure 16- Application of the maturity method to sprayed 

concrete 

The subsequent step requires that thermocouples are placed over the substrate surface and the 

concrete is sprayed in-situ. A data logger connected to a computer would record the evolution of 

temperature, which would be automatically used to calculate the maturity index. Then, the 

compressive strength can be estimated in real time using the η-parameter and the calibrated 

maturity curves given by Eq. 4. This would allow the engineers to make timely decisions as the 

construction progresses, considering the minimum strength requirements. 

 

6. Conclusions 



Based on the results and the analysis conducted, it is clear that the maturity method can be 

applied to estimate the compressive strength development in sprayed concrete if special 

considerations are taken into account. In addition to proposing a methodology to apply the 

method, the following conclusions are drawn from the findings of this study. 

 The relationships between the compressive strength development and the maturity index 

of the mixes with accelerators studied do not fit the Plowman’s equation. The poor fit of 

the experimental results (average R² of 0.81) indicates that the latter is not capable of 

reproducing well the maturity curves in the mixes tested. 

 In order to apply the maturity method for sprayed concrete, the alternative equation (Eq. 

3) proposed here should be used since it reproduces well the short-term maturity curves, 

showing an average R² of 0.99. Like in the Plowman’s equation, the main parameters 

should be obtained empirically by curve fitting to the experimental data. 

 The maturity curves are affected by the type of accelerator, the dose of accelerator and 

the type of cement. Therefore, a maturity curve has to be defined for each mix design. 

 Design aspects, such as thickness of the sprayed concrete layers and the type of ground 

support, must be considered in order to adjust the maturity curves obtained 

experimentally. Such adjustment may be easily performed by applying the η-parameter 

obtained through either numerical simulation or experimentally. 
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