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Abstract—A user intention based rehabilitation strategy for a lower-limb wear-

able robot is proposed and evaluated. The control strategy, which involves mon-

itoring the human-orthosis interaction torques, determines the gait initiation in-

stant and modifies orthosis operation for gait assistance, when needed. Orthosis 

operation is classified as assistive or resistive in function of its evolution with 

respect to a normal gait pattern. The control algorithm relies on the adaptation 

of the joints’ stiffness in function of their interaction torques and their deviation 

from the desired trajectories. An average of recorded gaits obtained from 

healthy subjects is used as reference input. The objective of this work is to de-

velop a control strategy that can trigger the gait initiation from the user’s inten-

tion and maintain the dynamic stability, using an efficient real-time stiffness 

adaptation for multiple joints, simultaneously maintaining their synchroniza-

tion. The algorithm has been tested with five healthy subjects showing its effi-

cient behavior in initiating the gait and maintaining the equilibrium while walk-

ing in presence of external forces. The work is performed as a preliminary study 

to assist patients suffering from incomplete Spinal cord injury and Stroke. 

Keywords – Adaptive control, Exoskeleton, Gait initiation, Gait assistance, 

Wearable robot 

1 Introduction 

Human centered rehabilitation is essential for ensuring the user involvement in a 

therapy. Several human centered strategies, such as patient cooperative and support 

motor function assessment, oriented to the development of robot behaviors have been 

widely studied [1]. These strategies support the assist-as-needed concept by determin-

ing the level of robotic assistance provided to the user. Referring to the gait, assis-

tance must be dynamically adapted to the patient’s needs and thus, it is necessary to 

develop a personalized assistance in function of the user intentions and movements, as 

well as the therapy, which involves the knowledge of assistance to be perceived. Oth-

er factors have a direct influence on the quality of assistance, such as the availability 

of mechanical support, control strategies, combination of assistive devices etc. One of 

the widely used approaches to detect and evaluate the need of assistance is by evaluat-

ing the position errors. However, the use of a predefined trajectory pattern, without 

other inputs, imposes a complete assistance which might induce slacking and harm 
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the patient. Thus, it is necessary to measure the human-orthosis interaction torques, to 

evaluate the user performance and status, to design a hybrid combination of force-

position control. Assistance in robotic rehabilitation can be achieved using an effec-

tive control strategy [2] such as impedance or adaptive control, which act based on the 

subject’s performance. Such control strategies operate under the principle of assis-

tance-as-needed, in which assistive forces increase as the participant deviates from the 

desired trajectory. This deviation can also be used as input to generate a trigger to 

initiate the movement or the assistance in accordance to the user’s performance.   

The detection of the best instant for gait initiation and termination has been studied 

by many researchers in order to design a volitional control based robotic rehabilitation 

[3, 4]. One of the widely used approaches for monitoring the human intention relies 

on the use of brain machine interfaces such as in XoR [5]. These systems are efficient 

in monitoring the user intention, because a real displacement of the joint position is 

not needed to initiate the gait. Instead, gait initiation in MINDWALKER is based on 

the displacement of the CoM (center of mass) which is calculated heuristically [6]. 

HAL (Hybrid Assistive limb), a light weight powered exoskeleton suit, is efficient in 

adapting to the user movements by sensing the muscle synergies. HAL uses myoelec-

tric signals to measure the muscle forces and to support voluntary motion of the pa-

tient [7, 8], as well as to determine the joint stiffness to be applied.  

 Gait assistance using wearable robots is challenging in terms of determining the 

suitable assistance for dynamic stability, considering the ground reaction forces. Sev-

eral wearable robots have succeeded in providing dynamic stability, such as BLEEX 

[9], XPED2 [10], Ekso (earlier eLegs) [11], Rex (Rex Bionics) and Re-Walk [12], and 

have proven to be efficient in providing assistance on a passive range of motion and 

using complex systems. 

The objective of this work is to develop an assistive control strategy for a wearable 

robot to perform user-dependent gait initiation and assistance. The gait initiation ap-

proach ensures the user involvement in the therapy and their motivation in performing 

the task. The control strategy implies the implementation of an impedance based ap-

proach for gait assistance, without using neither treadmill nor body weight support. 

The absence of weight compensation carries with it the challenge of maintaining the 

equilibrium in presence of ground reaction forces. The goal is to develop an efficient 

control model for a low-cost wearable robot and to validate the assistive behavior of 

the robot for patients with neurological disorders. A hybrid position and interaction 

torques based control strategy is presented to continuously adapt the user movements 

to the desired gait pattern in real time. This real time adaptation also ensures synchro-

nization among the joint trajectories to maintain dynamic stability. 

2 Human Centered Gait 

The human-orthosis interaction torques are essential in defining the dynamic anal-

ysis of a human centered control strategy. Hence, the mathematical model for the 

dynamic analysis of an exoskeleton can be represented as 

 𝑀𝑜𝑟𝑡(𝑞)�̈� + 𝐶𝑜𝑟𝑡(𝑞, �̇�) + 𝐺𝑜𝑟𝑡(𝑞) =  𝜏𝑎 + 𝜏𝑝𝑎𝑡 + 𝜏𝑑 (1) 



 where 𝑞, �̇�, �̈� are the vectors of joint positions, velocities and accelerations.  

𝑀𝑜𝑟𝑡(𝑞) is the inertia matrix, 𝐶𝑜𝑟𝑡(𝑞, �̇�) is the centrifugal and Coriolis vector and 

𝐺𝑜𝑟𝑡(𝑞) represents the gravitational torques. 𝜏𝑎 and 𝜏𝑝𝑎𝑡 are the orthosis and patient 

torques respectively and 𝜏𝑑 corresponds to the external disturbances acting on the 

subject. These actuator and patient torques are influenced by the human-orthosis in-

teraction, while the external disturbances can be due to any assistive or external 

sources which can affect the dynamic stability of the robot. In the present work, 𝜏𝑝𝑎𝑡 

is used for gait initiation and to determine the level of assistance to be exerted by the 

orthosis. 

2.1 Gait Initiation 

The gait initiation can be defined as the time t in which the user intends to perform 

a movement and can be determined from the human-orthosis interaction torques. This 

type of user dependent initiation is efficient in influencing or motivating the user to 

provide an input movement. The user motivation is necessary to improve the therapy 

and avoid slacking. Since human-orthosis interaction torques based gait initiation can 

be a drawback in differentiating between a tremor and the user intention, the joint 

position and torques must be considered too to trigger the therapeutic procedure. Ad-

ditionally, this strategy permits the user to initiate the therapy with the leg he or she 

feels more comfortable, fig 1. 

The gait initiation strategy considers the joint positions and the human-orthosis inter-

action torques of both legs. This can be represented as, 

𝐺𝑖𝑛𝑖𝑡 = 𝐿𝑒𝑔𝑥 , 𝑥 ∈ [𝑅, 𝐿] (2) 

where, 𝐺𝑖𝑛𝑖𝑡  is the gait initiation trigger obtained from the user for Legx . 𝜃𝑅 and 𝜃𝐿  

are the joint angles of right and left leg respectively; 𝜏𝑅  and 𝜏𝐿 corresponds to the 

measured interaction torques in right and left leg respectively.   

Algorithm 1: Gait initiation 

Case  𝜃𝑅(𝑡) ≠ 𝜃𝑅(𝑡 − 1), 𝜏𝑅(𝑡) ≠ 𝜏𝑅(𝑡 − 1) && 𝜃𝐿(𝑡) = 𝜃𝐿(𝑡 − 1) 
 𝑥 = 𝑅 

Else 𝑥 = 𝐿 

Fig. 1. State transition of the gait initiation algorithm 



2.2 Gait Assistance 

In the present work, for each joint, the actuator works in collaboration with the pa-

tient. The actuator torque can be modified by varying the joint stiffness parameter, 

which invariably modifies the corresponding joint trajectory and force compensation. 

This stiffness variation alters the actuator torque which determines the degree of con-

trol transferred from the orthosis to the human or vice versa. Such an impedance con-

trol scheme has been widely used for its compliant behavior, which results in an adap-

tive walking pattern and a more natural interaction between patient and orthosis. Thus 

the impedance control can be determined by equation (3) 

𝐹 = 𝑀𝑎 + 𝐶𝑣 + 𝐾. (𝜃𝑟𝑒𝑓 − 𝜃𝑎𝑐𝑡)                                (3) 

where, 𝜃𝑟𝑒𝑓 and 𝜃𝑎𝑐𝑡  are the reference and actual joint positions respectively, K is 

the stiffness parameter of the joint and F represents the applied force to the joint. M 

represents the mass, C is the damping constant and a and v represent the acceleration 

and velocity of the robot. Here, the input sample rate to the system is maintained con-

stant and the damping coefficient is kept small, therefore the velocity of the orthosis is 

not modified by the user and thus, it does not induce any significant effect on the 

applied force. Hence the force equation, influenced by the position error, is modified 

as: 

 𝐹 = 𝐾(𝜃𝑟𝑒𝑓 − 𝜃𝑎𝑐𝑡) (4) 

The value K can be determined dynamically based on the performance of the user and 

the level of assistance to be exerted by the orthosis. 

 𝐾𝑡+1 = 𝐾𝑡 ± ∆𝐾 (5) 

 ∆𝐾 = |(
𝜃𝑟𝑒𝑓−𝜃𝑎𝑐𝑡

𝑠∗𝜏𝑝𝑎𝑡
)| (6) 

where, s is a confidence factor which is used to determine the stiffness value at 

time t+1. The confidence factor is a variable which shall be defined by the therapist in 

function of the capabilities of the patient. This confidence factor can be varied accord-

ing to the progress of the user, in order to modify the time instant at which assistance 

 

Fig. 2. Schematic representation of the user-intention based adaptive control strategy 



is to be initiated. A low confidence factor means that the level of assistance should be 

high and a higher confidence factor indicates that the subject is capable of walking 

without or with little assistance. A variation of the K value results in a change in the 

force acting at the joint level what is perceived as assistance or resistance by the pa-

tient.  

The stiffness variation module, as shown in fig 2, is responsible for incrementing, 

decrementing or maintaining the stiffness parameter of each joint. Within a given 

range of trajectory errors, stiffness is computed from position errors, but when the 

defined error thresholds are surpassed, stiffness should be modified according to the 

measured interaction torques. This condition takes place in general with the presence 

of external perturbations. The following are the parameters involved in defining this 

stiffness variation: 

θe- Position error (deg)  

θeThup – Upper threshold of position error (deg)  

θeThlo – Lower threshold of position error (deg)  

τpat - Human-orthosis interaction torques (Nm)  

τpatThlo- Lower threshold of interaction torques (Nm) 

τpatThup- Upper threshold of interaction torques (Nm) 

∆K - Stiffness variation (N/m) 

An average walking pattern generated from a set of recorded walking patterns of 

healthy individuals is used as reference input. Based on this pattern and the patient 

contribution, the stiffness K establishes the operating mode at each joint, assistive or 

resistive. In a first set of trials, for each subject the maximum interaction torques are 

obtained by applying a low stiffness value at each joint. From these maxima, we ex-

tract the upper and lower thresholds of interaction torques to dynamically define the 

operation mode. These thresholds are obtained by multiplying these maxima interac-

tion torques by the confidence factor (s). 

3 Experimental Procedure 

The proposed intention driven adaptive strategy is based on the position error and 

interaction torques. The strategy needs an initial study about the user adaptation to 

determine the gait initiation and assistance scenario. Hence, the experimentation con-

sists of two phases: initialization and execution. The initialization phase involves 

monitoring the interaction torques and joint positions with no-assistance provided by 

K = K + ∆K 

K = K − ∆K 

Algorithm 2 : Gait assistance 

Case  θe >  θeThup 

Case  θe <  θeThlo && τpatThlo < τpat < τpatThup 

Else 
Maintain K 

 



the orthosis in order to be able to define s. This initialization phase is used to parame-

terize the user intentions and adaptations to the movement. In the execution phase, the 

changes in movement and interaction torques are used as a trigger for gait initiation. 

The interaction torques, limited by the confidence factor, are used to determine the 

time instants of stiffness variation. Both these phases are performed and evaluated 

using a lower-limb exoskeleton. 

3.1 Exoskeleton 

H1 is a 6 DoF (degree of freedom) wearable lower limb orthosis with an anthro-

pomorphic configuration to assist individuals with incomplete Spinal cord injury 

(SCI) or Stroke. The exoskeleton, shown in fig 3, has been built within the framework 

of the Hyper* project. H1 has three joints for each leg: hip, knee and ankle, each joint 

is powered by a DC motor coupled with a harmonic drive gear. The exoskeleton is 

equipped with potentiometers and strain gauges to measure the joint angles and hu-

man-orthosis interaction torques on the links respectively. A detailed description 

about the exoskeleton structure and communication parameters is detailed in [13]. 

The variable stiffness control ensures a safe therapeutic experience [14, 15]. The 

exoskeleton permits a stiffness value within the range of 1-100 N/m. A low stiffness 

value (<10N/m) will not cause any significant effect on the user’s behavior. Similarly, 

a high stiffness value (> 80N/m) will provide a completely assisted movement, with 

few or no input from the user. The initial stiffness value must be defined taking into 

account the user’s capability and the degree of assistance to be applied by the 

orthosis. 

 

Fig. 3.   Participant wearing the HYPER exoskeleton H1 

 



3.2 Experimentation 

Initially the walking pattern is generated from tests on subjects applying a low 

stiffness value (20N/m). This phase is necessary to obtain the pattern of interaction 

torques and to allow the user to adapt to the orthosis. This initialization also 

determines the minimum interaction torque observed in the users along with the 

deviation in position. The evolution of these interaction torques are used to determine 

the initiation of stiffness variation, determining the adaptive behavior to be exerted by 

modifying stiffness. This variable stiffness results in either an assistive or resistive 

behavior. The confidence factor is used to determine the initiating time of the gradual 

actuation of the joints stiffness functions, thusachieving a smooth performance 

without affecting the joints trajectories. The gradual increase or decrease of the stiff-

ness value smoothens the interaction torques. 

The setup includes a recorded gait pattern obtained from healthy users and 

optimized after some repetitions of gait cycles. The values of stiffness and confidence 

factor are defined based on the subject’s health condition. Since the strategy is tested 

with healthy individuals, the initial stiffness and confidence factor are assumed to be 

50 N/m and 0.9 respectively. High interaction torques are found in healthy subjects, 

so a higher confidence factor is needed to define their thresholds.  

The evaluation of the control strategy is performed by following a protocol and 

considering an intermediate pause between consecutive trials to allow identifying the 

user intention after recovering from fatigue. An interval of 10-20 seconds is intro-

duced at the beginning of each trial, for gait initiation algorithm, with an auditory cue 

to notify the subject to initiate the movement. Similarly for evaluating the gait assis-

tance strategy pause time of 1-2 minutes is considered at the end of every 10 minutes 

walking test. Thus the study involves two types of walking experiments, gait initiation 

for 3 minutes and gait assistance for 10 minutes. The gait assistance experiment is 

performed for 30 minutes, i.e. 3 sets of 10 minutes walking test. 

4 Results and Discussion 

The proposed adaptive control strategy has been tested and evaluated with five 

healthy individuals of the age group 37±9, weight 80±8kg, and height 1.75±0.05m. 

The results section has been divided into two parts in order to explain the gait initia-

tion and the gait assistance scenarios. 

4.1 Gait Initiation 

In a gait cycle, the knee joint plays a key role for both the initialization of the 

movement and the swing state. Hence, the gait initiation strategy is evaluated by mon-

itoring the deviation in the knee joint movement with respect to the expected pattern, 

along with the interaction torques. The flexion and extension movement of the knee 

joint is monitored to differentiate between the user’s intention and tremor movement.  

As shown in fig 4, the right leg of the user showed gait movement initiation in most 

of the trials. This can be seen from the shift in the interaction torques of the right and 



left leg, both in hip and knee joint. The initiation of the gait is characterized by the 

flexion movement of the knee joint. For instance, at time 97 seconds the right knee 

joint shows a little displacement in the movement which initiates the gait cycle. The 

hip joint trajectory appears after a few seconds, immediately followed by the 

transition to the left leg. 

4.2 Gait Assistance 

The efficiency of the adaptive gait assistance provided by the control model is 

evaluated in comparison with a reference gait pattern. Fig 5 shows the reference gait 

patterns and the resulting mean gait cycles of the five healthy subjects. The subjects 

performed a free normal walking movement, with low stiffness. In this case, the devi-

ation from the desired trajectory was found to be high. After a series of trials (10) this 

error decreased gradually due to the effect of the adaptive stiffness acting on the 

joints. The stiffness variation helped to maintain this error within a specified range 

 

Fig. 5. Reference gait pattern and the resulting mean gait pattern of each subject: (a) Hip 

(deg) – Knee (deg), (b) Knee (deg) - Ankle (deg) 

 

 

Fig. 4. Gait initiation sequence of a healthy user, blue curve signifies the joint trajectories 

and red curve indicates the interaction torques 



and following a similar pattern of incrementing and decrementing K at every joint, 

thus resulting in an assistive or resistive behavior. 

The results of one of the subjects are used to show the response of the control 

strategy. The gait performance of a healthy user, as shown in fig 6, demonstrates the 

influence of the stiffness variation proposed in this work. The initial walking with low 

stiffness value is presented as the ‘no-assistance’ mode. In comparison with the refer-

ence pattern, the no assisted walking is found to produce a maximum deviation. After 

the application of a variable stiffness, the user is able to walk within a predefined 

error limits. The stiffness variation also converges with respect to the movement at 

the end of 10 trials. At the end of 20 trials, the user is following a movement which is 

quite similar to the reference pattern.  

 

Fig. 7. Changes in gait pattern of a healthy subject due to effect of adaptive stiffness: (a) Hip 

(deg) - Knee (deg), (b) Knee (deg) - Ankle (deg) 

 

 

 

Fig. 6. Interaction torques of each joint showing the change in behavior while 

stiffness converges (highlighted region) to an optimal value 

 



The error was found to be within the defined limits for all the users. The hip joint 

showed a little variation and more adaptable behavior in terms of stiffness changes in 

real time. Since the exoskeleton is a planar robot, the lateral hip movement cannot be 

monitored. However, this orthosis limitation does not affect the proposed control 

strategy. A significant variation of the stiffness is found in both ankle and knee joints. 

The hip joint stiffness varied in a short range which is evident from the interaction 

torques in fig 7. This can be due to the lateral movement of the user’s hip joint which 

compensates the joint trajectory. The interaction torques of the ankle joint is in the 

limits of 12 Nm to -3 Nm, as shown in fig 7, and with the application of the confi-

dence factors the threshold is limited to 10 Nm to -1 Nm. This threshold limit is used 

to initiate the stiffness increment when the position error threshold is reached. Simi-

larly, in the knee joint, the interaction torques are within the limits of 14 Nm to -14 

Nm and after the application of the confidence factor the thresholds are 12 Nm and -

12 Nm. The interaction torques are bounded within the limits even in the presence of 

maximum stiffness. 

Since the flexion and extension movement of the knee joint is essential in walking 

for maintaining the transition between gait phases, the stiffness variation converges, 

after a few gait trials, as shown in fig 8. The trajectory deviation is found to be within 

a small range, but with a delay, in the knee joint, as shown in fig 9. In case of the 

ankle joint the stiffness behavior shows a different pattern due to the compensation of 

ground reaction forces. In the ankle joint, the deviation from the reference position is 

found to be higher, which explains the pattern of stiffness variation. 

The confidence factor is used to act on the joint gradually, by varying its stiffness. 

The consequence is the relax intervals that appear as negative slope (decreasing stiff-

ness), which results in achieving a smooth behavior of the system. Lower confidence 

factors will result in few and shorter steps of stiffness variation, so the increment will 

be faster. On the contrary, a higher confidence factor will limit the increase of stiff-

ness. The gradual increase in the stiffness value is due to the permanent difference in 

position error. The error in position of the joint in combination with the change in 

interaction torques results in a high stiffness value. 

 

Fig. 8.   Trajectory deviation of a healthy subject between trials 10 and 11 



5 Conclusion 

A user intention based adaptive walking strategy has been evaluated in function of 

the position error and human-orthosis interaction torques, thus ensuring an effective 

and safe therapy. The gait initiation is determined at the beginning of each gait cycle 

from the input orders received from the user. The stiffness value of each joint adapts 

dynamically to the user needs and keeps the position error bounded within the speci-

fied limits in real time. The wearable robot was tested with no body weight compen-

sation, which demonstrates the reliability of the control strategy in terms of ensuring 

dynamic stability in presence of ground reaction forces. The results of the proposed 

control method were evaluated by comparing the resulting trajectory with a prede-

fined gait trajectory. The experimental results showed that the user’s gait intention 

was observed effectively with no delay and followed by the leg movement. The re-

sults demonstrated that the evolution of the stiffness value does not follow a similar 

pattern for all the joints. The stiffness value converges to be within a given range after 

a series of trials. The stiffness variation was in coordination with the flexion and ex-

tension movements. This demonstrates the efficiency of the proposed method for a 

real time process involving multiple joints.  

This work has been the basis for a further study combining this gait initiation strat-

egy with a brain machine interface that considers neurological signals and for the 

evaluation of the performance of the adaptive control in the assistance of incomplete 

SCI and Stroke patients, including the presence of muscle stimulation (FES), which, 

from the control perspective, acts as external disturbances. 
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Fig. 9.   Stiffness variation of a healthy subject 
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