

“SIMULATION OF BASIC MULTI-HOP BROADCAST

TECHNIQUES IN VEHICULAR Ad-Hoc NETWORKS USING

VEINS SIMULATOR”

A Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de Barcelona

Universitat Politècnica de Catalunya

by

David Leonardo Renjifo Herrera

In partial fulfilment

of the requirements for the degree of

MASTER IN TELECOMMUNICATIONS ENGINEERING

Advisor: Mónica Aguilar Igartua

Co-Advisor: Cristhian Iza

Barcelona, February 2016

1

Title of the thesis: “Simulation of basic multi-hop broadcast techniques in

Vehicular Ad-hoc Networks using VEINS simulator”.

Author: David Leonardo Renjifo Herrera

Advisor: Mónica Aguilar Igartua

Co-advisor: Cristhian Iza

Abstract

This project presents to the reader an incursion into the world of smart cities and vehicles,

intelligent transport systems, and vehicular ad-hoc networks (VANETs). They are conceptually

analyzed, studied in terms of requirements, framework, architecture, applications and

standardization.

The main objective of this project is the simulation of basic techniques of message dissemination in

VANETs, this project shows a brief description of broadcast dissemination techniques. Also, it is

necessary to analyze simulation of VANETs. For this reason, it presents a brief description of

mobility generators, network simulators and VANETs simulators paying attention to the open

source ones.

The main focus is set on the VEINS simulation framework, due to its high performance results and

a bidirectional coupling between the network and the traffic simulators. From that point, the

project is aimed at analyzing the basic paradigms of VEINS components (OMNeT++, SUMO and the

TraCI module) and providing a study on their features.

Three techniques are simulated (Flooding, Counter and Probability schemes) in two different

scenarios (urban and highway), the simulation results are shown focused on the amount of

retransmitting nodes, percentage of reached nodes, amount of packets sent, average packet delay,

and percentage of packets received.

Finally, a detailed manual is presented to the reader. This manual shows how to install the VEINS

simulator and its components in both Windows and Linux systems. In addition, it shows how to

create a scenario from an extracted map from OpenStreetMap.

Keywords: Intelligent transport systems, Vehicular ad-hoc networks, VANETs simulators, VEINS,

SUMO, OMNeT++.

2

Acknowledgements

Two years ago this adventure begun and I would like to thank all the people who have accompanied

me during this stage of my life.

Thank God for guiding me in every moment of my life and his immeasurable love. Thank my family

for their unconditional support, especially my parents Monica and Leonardo who are the best.

Thank Cristhian Iza and Monica Aguilar for the opportunity to work with them and go into world of

vehicular networks.

Thank you very much!

3

Table of Contents

Abstract ... 1

Acknowledgements .. 2

List of Figures ... 8

List of tables ... 12

Symbols and acronyms ... 13

Chapter 1 Introduction ... 15

1.1 Problem Statement .. 15

1.2 Objectives .. 16

1.2.1 General objective ... 16

1.2.2 Specific objectives .. 16

1.3 Contents and organization of the Master’s Thesis .. 16

Chapter 2 Smart cities and vehicles .. 19

2.1 Smart City ... 19

2.1.1 Definition .. 19

2.1.2 Smart city applications ... 21

2.1.3 Construction of smart transportation .. 22

2.2 Smart Vehicles ... 22

2.2.1 Definition .. 22

2.2.2 General architecture .. 23

Chapter 3 Intelligent Transport Systems ... 25

3.1 Definition ... 25

3.2 Objectives .. 26

3.3 Framework ... 27

3.4 Classification and applications of Intelligent Transport Systems .. 27

3.4.1 Advanced Traveler Information Systems ... 28

3.4.2 Advanced Transportation Management System ... 29

3.4.3 Commercial Vehicle Operation .. 29

3.4.4 Advanced Public Transportation System ... 29

3.4.5 Advanced Vehicle Control and Safety System ... 29

Chapter 4 Vehicular Ad-Hoc Networks .. 30

4.1 Definition ... 30

4.2 Architecture ... 31

4

4.2.1 Main Components .. 32

4.2.2 Communication architecture ... 35

4.3 Vehicular network applications ... 37

4.4 Standardization .. 38

4.4.1 Dedicated Short Range Communication .. 38

4.4.2 IEEE 1609 Standards for wireless access in vehicular environments (WAVE) 39

Chapter 5 Message dissemination in Vehicular Ad-Hoc Networks ... 41

5.1 VANET message dissemination .. 41

5.2 Broadcast in the link layer ... 41

5.3 Vehicular multi-hop broadcast .. 42

5.3.1 Blind flooding ... 42

5.3.2 Counter-based scheme .. 42

5.3.3 Distance-based scheme .. 43

5.3.4 Location-based Scheme ... 43

5.3.5 Neighbor knowledge scheme ... 43

5.3.6 Cluster-based scheme .. 43

5.3.7 Probability scheme ... 43

5.4 The broadcast storm problem ... 44

5.4.1 Weighted p-persistence scheme .. 44

5.4.2 Slotted 1-persistence scheme .. 45

5.4.3 Slotted p-persistence scheme .. 45

5.5 Farthest node scheme ... 46

5.6 Carry-store-forward mechanism .. 46

Chapter 6 Simulation of Vehicular Ad-Hoc Networks .. 47

6.1 Introduction ... 47

6.2 Mobility generators ... 48

6.2.1 SUMO ... 48

6.2.2 FreeSim ... 49

6.2.3 STRAW .. 49

6.2.4 VanetMobiSim .. 49

6.2.5 MOVE ... 50

6.2.6 CityMob .. 50

6.3 Network simulator ... 50

6.3.1 NS-2 .. 51

6.3.2 GloMoSim ... 51

6.3.3 SNS ... 51

5

6.3.4 JiST/SWANS .. 52

6.3.5 OMNeT++ ... 52

6.4 VANET simulators... 52

6.4.1 GrooveNet .. 53

6.4.2 SWANS++ .. 53

6.4.3 TraNS .. 53

6.4.4 VEINS .. 53

6.4.5 NCTUns ... 54

6.5 Selecting a convenient suit of simulators .. 54

Chapter 7 VEINS Simulator ... 55

7.1 Introduction ... 55

7.2 Network simulator: OMNeT ++ .. 55

7.2.1 Model structure ... 56

7.2.2 Parallel Simulation Support .. 57

7.2.3 Simulation Model ... 57

7.2.4 Packet INET ... 58

7.2.5 MiXiM ... 58

7.3 Traffic simulator: SUMO .. 59

7.3.1 Basic paradigms .. 59

7.3.2 Car-Driver Model .. 60

7.3.3 Traffic Lights ... 61

7.3.4 Features .. 61

7.3.5 Components ... 62

7.4 TraCI ... 63

7.4.1 Sumo-launchd .. 64

Chapter 8 Analysis of simulation results of vehicular multi-hop broadcast techniques using

VEINS ... 66

8.1 Introduction ... 66

8.2 Urban scenario ... 67

8.3 Highway scenario ... 68

8.4 Flooding technique .. 68

8.4.1 Flooding technique in the Urban scenario ... 68

8.4.2 Flooding technique in the Highway scenario ... 71

8.4.3 Conclusions about the Flooding technique .. 74

8.5 Counter technique ... 75

8.5.1 Counter technique in the Urban scenario .. 75

8.5.2 Counter technique in the Highway scenario .. 78

6

8.5.3 Conclusions about Counter technique ... 80

8.6 Probability technique ... 80

8.6.1 Probability technique in the Urban scenario ... 81

8.6.2 Probability technique in the Highway scenario ... 84

8.6.3 Conclusions about Probability technique .. 86

8.7 Comparison between Flooding, Counter and Probability techniques 87

8.7.1 Comparison in the Urban scenario ... 87

8.7.2 Comparison in the Highway scenario ... 89

Chapter 9 Conclusions and future work .. 92

9.1 Conclusions .. 92

9.2 Future work .. 93

References ... 94

ANNEXS .. 96

A. How install Virtual Box and create a virtual machine with Linux Ubuntu System.................. 96

A.1 How to create a virtual machine in Virtual Box ... 99

B. Installation of SUMO, OMNeT++ and Veins simulator .. 116

B.1 Get the source code for the programs .. 116

B.1.1 Get the source code for SUMO .. 116

B.1.2 Get the source code for OMNeT++ .. 116

B.1.3 Get the source code for VEINS ... 116

B.2 Installation in Linux .. 116

B.2.1 Installation of packages in Linux Ubuntu ... 116

B.2.2 Installation of SUMO .. 119

B.2.3 Installation of OMNeT++ .. 121

B.3 Installation in Windows ... 123

B.3.1 Installation of SUMO .. 123

B.3.2 Installation of OMNeT .. 124

B.4 Installation of Veins ... 126

B.4.1 Import VEINS in OMNeT++ IDE .. 126

B.4.2 Run the Veins demo scenario... 130

C. Example of simulation in Veins .. 133

C.1 Importing networks and generation of routes in SUMO ... 133

C.1.1 OpenStreetMap .. 133

C.1.2 Get a map from OpenStreetMap ... 133

C.1.3 Preparation the map for use in SUMO ... 135

C.1.4 Generation of routes in SUMO ... 138

7

C.2 Prepare files before simulating .. 139

C.3 Running the simulation .. 142

D. Source code of files used in the simulations ... 148

D.1 Implementation of omnetpp ... 148

D.2 Implementation of FranciscoScenario ... 151

D.3 Implementation of Counter technique .. 152

D.3.1 Counter.cc .. 152

D.3.2 Counter.h ... 155

D.3.3 Counter.ned ... 156

D.4 Implementation of Flooding technique ... 157

D.4.1 Flooding.cc ... 157

D.4.2 Flooding.h ... 159

D.4.3 Flooding.ned ... 160

D.5 Implementation of Probability technique ... 160

D.5.1 Probability.cc .. 160

D.5.2 Probability.h ... 163

D.5.3 Probability.ned ... 164

D.6 Implementation of FranciscoStatistics ... 164

D.6.1 FranciscoStatistics.cc .. 164

D.6.2 FranciscoStatistics.h ... 165

D.6.3 FranciscoStatistics.ned ... 166

8

List of Figures

Figure 2.1 Technical architecture diagram of smart city [6]. ... 20

Figure 2.2 A smart car’s onboard instrumentation [9]. .. 23

Figure 2.3 General architecture of a smart vehicle [10]. .. 23

Figure 3.1 Intelligent transport systems [12]. .. 26

Figure 4.1 WLAN/Cellular architecture [14]. ... 31

Figure 4.2 Ad Hoc architecture [14]. .. 32

Figure 4.3 Hybrid architecture [14]. ... 32

Figure 4.4 VANETs system domain [17]. .. 34

Figure 4.5 C2C-CC reference architecture [17]. .. 35

Figure 4.6 key functions of each communication type [17]. .. 36

Figure 4.7 Communications in vehicle networks [18]. .. 37

Figure 4.8 Overview of the WAVE stack and associated standards [2]. ... 39

Figure 5.1 Weighted p-persistence [20]. .. 45

Figure 5.2 Slotted 1-persistence scheme [20]... 45

Figure 5.3 Slotted p-persistence scheme [20]. ... 46

Figure 6.1 Classification of VANETs simulators [23]. .. 48

Figure 7.1 Model Structure in OMNeT++ [25]. ... 57

Figure 7.2 Logical Architecture of the OMNeT++ Parallel Simulation kernel [25]. 57

Figure 7.3 Logical Architecture of an OMNeT++ Simulation Program [25]. 58

Figure 7.4 Multimodality [29]. ... 59

Figure 7.5 The different traffic flow model [30]. .. 60

Figure 7.6 Scheme of applications in SUMO. ... 62

Figure 7.7 Establishing a connection to SUMO [33]. .. 63

Figure 7.8 Closing a connection to SUMO. ... 64

Figure 7.9 VEINS, simulation model [34]. .. 64

Figure 7.10 Lifecycle management functionality of sumo-launchd [35]. ... 65

Figure 8.1 Urban scenario. Part of the Eixample district. Barcelona, Spain. 67

Figure 8.2 Highway scenario. Part of the C-32 Highway. Barcelona, Spain. 68

Figure 8.3 The classical Flooding technique. Number of retransmitting nodes. CI 90%. Urban

scenario. ... 69

Figure 8.4 The classical Flooding technique. Sent packets. CI 90%. Urban scenario. 69

Figure 8.5 The classical Flooding technique. Percentage of received packets. CI 90%. Urban

scenario. ... 70

Figure 8.6 The classical Flooding technique. Percentage of lost packets. CI 90%. Urban scenario. 70

Figure 8.7 The classical Flooding technique. Delay. CI 90%. Urban scenario. 71

Figure 8.8 The classical Flooding technique. Percentage of reached nodes. CI 90%. Urban scenario.

 .. 71

Figure 8.9 The classical Flooding technique. Number of retransmitting nodes. CI 90%. Highway

scenario. ... 72

Figure 8.10 The classical Flooding technique. Sent packets. CI 90%. Highway scenario. 72

Figure 8.11 The classical Flooding technique. Percentage of received packets. CI 90%. Highway

scenario. ... 73

9

Figure 8.12 The classical Flooding technique. Percentage of lost packets. CI 90%. Highway

scenario. ... 73

Figure 8.13 The classical Flooding technique. Delay. CI 90%. Highway scenario. 74

Figure 8.14 The classical Flooding technique. Percentage of reached nodes. CI 90%. Highway

scenario. ... 74

Figure 8.15 The Counter technique. Number of retransmitting nodes. CI 90%. Urban scenario. 76

Figure 8.16 The Counter technique. Sent packets. CI 90%. Urban scenario. 76

Figure 8.17 The Counter technique. Delay. CI 90%. Urban scenario .. 77

Figure 8.18 The Counter technique. Percentage of reached nodes. CI 90%. Urban scenario 77

Figure 8.19 The Counter technique. Number of retransmitting nodes. CI 90%. Highway scenario. 78

Figure 8.20 The Counter technique. Sent packets. CI 90%. Highway scenario. 79

Figure 8.21 The Counter technique. Delay. CI 90%. Highway scenario. ... 79

Figure 8.22 The Counter technique. Percentage of reached nodes. CI 90%. Highway scenario. 80

Figure 8.23 The Probability technique. Number of retransmitting nodes. CI 90%. Urban scenario. 82

Figure 8.24 The Probability technique. Sent packets. CI 90%. Urban scenario. 82

Figure 8.25 The Probability technique. Delay. CI 90%. Urban scenario. .. 83

Figure 8.26 The Probability technique. Percentage of reached nodes. CI 90%. Urban scenario. 84

Figure 8.27 The Probability technique. Number of retransmitting nodes. CI 90%. Highway scenario.

 .. 85

Figure 8.28 The Probability technique. Sent packets. CI 90%. Highway scenario. 85

Figure 8.29 The Probability technique. Delay. CI 90%. Highway scenario. 86

Figure 8.30 The Probability technique. Percentage of reached nodes. CI 90%. Urban scenario. 86

Figure 8.31 Number of retransmitting nodes for each technique in the Urban scenario. 88

Figure 8.32 Percentage of reached nodes for each technique in the Urban scenario...................... 88

Figure 8.33 Delay for each technique in the Urban scenario. .. 89

Figure 8.34 Number of retransmitting nodes for each technique in the Highway scenario. 90

Figure 8.35 Percentage of reached nodes for each technique in the Highway scenario. 91

Figure 8.36 Delay for each technique in the Highway scenario. .. 91

Figure A.1 Beginning of the installation of the Virtual Box. ... 96

Figure A.2 Select the destination folder. .. 97

Figure A.3 Create shortcuts. ... 97

Figure A.4 Warning about network interfaces. .. 98

Figure A.5 Install the Virtual Box. ... 98

Figure A.6 Installation is completed successfully. .. 99

Figure A.7 Create a new virtual machine. .. 99

Figure A.8 Select the Operating System of the virtual machine. .. 100

Figure A.9 Select the amount of RAM memory. ... 100

Figure A.10 Create a virtual hard drive. ... 101

Figure A.11 Select the type of the virtual hard drive. ... 101

Figure A.12 Select the type of storage in the virtual hard drive. .. 102

Figure A.13 Location and size of the virtual hard drive. ... 102

Figure A.14 Run the virtual machine. ... 103

Figure A.15 Select the startup disk. .. 103

Figure A.16 Choose the folder with the ISO of Ubuntu. ... 104

Figure A.17 Run the ISO of Ubuntu in the virtual machine. ... 104

10

Figure A.18 Select language. .. 105

Figure A.19 Preparing to install Ubuntu. .. 105

Figure A.20 Select the type of the installation. .. 106

Figure A.21 Accept format of the partition. ... 106

Figure A.22 Select the city. ... 107

Figure A.23 Select the language for the keyboard. .. 107

Figure A.24 User and password. ... 108

Figure A.25 Installation of Ubuntu. .. 108

Figure A.26 Restart to finish the installation. ... 109

Figure A.27 Login in the virtual machine. ... 109

Figure A.28 Full screen is not possible. ... 110

Figure A.29 Insert the ISO of Guest Additions. ... 110

Figure A.30 Run VBOXADDITIONS_4.3.24_98716. ... 111

Figure A.31 Permit the installation by writing your password. .. 111

Figure A.32 Installing graphics libraries and desktop services. .. 112

Figure A.33 (a) and (b) shut down virtual machine. ... 113

Figure A.34 Turn on the virtual machine. ... 114

Figure A.35 Login in the system. .. 114

Figure A.36 Ubuntu in full screen mode. .. 115

Figure B.1 Login as user root. ... 117

Figure B.2 Configuration to access into root desktop. ... 117

Figure B.3 Login as root user. ... 118

Figure B.4 Installation of aptitude. ... 118

Figure B.5 Installation of necessary packages for installation of SUMO simulator. 119

Figure B.6 Unzip the file sumo-src-0.22.0.tar.gz. ... 119

Figure B.7 Building the SUMO binaries: ./configure. .. 119

Figure B.8 Building the SUMO binaries: make. .. 120

Figure B.9 Installing the SUMO binaries: make install. .. 120

Figure B.10 Environment variables a) edit bash b) update bash. .. 120

Figure B.11 Run SUMO. .. 121

Figure B.12 Unzip omnet-4.6. ... 121

Figure B.13 Environment variables for OMNeT++. ... 122

Figure B.14 Configuring the installation of OMNeT++. .. 122

Figure B.15 Building OMNeT++. ... 122

Figure B.16 Launch OMNeT++. ... 122

Figure B.17 Install INET framework. ... 123

Figure B.18. Extract the zip file sumo-winbin-0.22.0. ... 123

Figure B.19 Run sumo 0.22.0. ... 124

Figure B.20 Extract the zip file omnet-4.6-src-windows. .. 124

Figure B.21 Type the commands ./conFigure (a) and make (b). .. 125

Figure B.22 Start the OMNeT++ IDE. .. 125

Figure B.23 Install INET framework and import the OMNeT++ examples. 126

Figure B.24 Extract zip file veins-4a2. .. 126

Figure B.25 Unzip VEINS. .. 127

Figure B.26 Import a project in OMNeT++. .. 127

11

Figure B.27 Select the option existing projects into workspace. .. 128

Figure B.28 Select the folder omnet. .. 128

Figure B.29 Import VEINS into OMNeT++. .. 129

Figure B.30 Build VEINS in OMNeT++. .. 129

Figure B.31 Run SUMO in Linux System. .. 130

Figure B.32 Run SUMO in Windows System. .. 130

Figure B.33 Example scenario of SUMO running.. 131

Figure B.34 Run python script in Linux System. .. 131

Figure B.35 Run python script in Windows System. ... 131

Figure B.36 Run Veins demo scenario. ... 132

Figure B.37 OMNeT++ and SUMO running in parallel to simulate VEINS demo scenario. 132

Figure C.1 OpenStreetMap web site. .. 134

Figure C.2 Select the area and export the map. ... 134

Figure C.3 Save the map in your computer. ... 135

Figure C.4 Generation of network through netconvert. ... 135

Figure C.5 Create an empty file in Linux System. ... 136

Figure C.6 Write the name of the new file as typemap.xml. .. 136

Figure C.7 Copy the content of website typemap. ... 137

Figure C.8 Save typemap.xml file. .. 137

Figure C.9 Command polyconvert. ... 138

Figure C.10 Generation of random routes in SUMO. ... 139

Figure C.11 Copy sumo files to veins folder .. 139

Figure C.12 Edit Erlangen.launchd.xml... 139

Figure C.13 Edit Erlangen.sumo.cfg. .. 140

Figure C.14 OMNeT scenario files. ... 140

Figure C.15 Create folders for dissemination methods files. .. 141

Figure C.16 Counter method files. .. 141

Figure C.17 Flooding method files. ... 141

Figure C.18 Probability method files. ... 141

Figure C.19 Create stats folder. .. 142

Figure C.20 Statistics files. .. 142

Figure C.21 Clean local variables. ... 142

Figure C.22 Clean project variables. ... 143

Figure C.23 Build project in OMNeT++. .. 143

Figure C.24 Run python script. ... 143

Figure C.25 Run omnetpp.ini. ... 144

Figure C.26 Select a dissemination method. .. 144

Figure C.27 Click on run to start simulation. .. 145

Figure C.28 Error during simulation. .. 145

Figure C.29 Configure playground parameters. ... 145

Figure C.30 Run simulation in SUMO. .. 146

Figure C.31 Run simulation in OMNeT++. .. 146

Figure C.32 Results of simulation in VEINS. .. 147

12

List of tables

Table 2.1 Working Definitions of a Smart City [3]. ... 20

Table 2.2 The list of smart cities [7]. .. 21

Table 3.1 Functions and users services of ITS. .. 27

Table 3.2 Classifying contactless mobile payments applications [11]. .. 28

Table 4.1 Safety applications in VANET [2]. ... 38

Table 7.1 Applications in the SUMO package [31]. .. 62

Table 8.1. Simulation results of the classical Flooding technique in the Urban scenario. 68

Table 8.2 Simulation results of the classical Flooding technique in the Highway scenario.............. 71

Table 8.3 Simulation results of the Counter technique in the Urban scenario. 75

Table 8.4 Simulation results of the Counter scheme in highway scenario. 78

Table 8.5 Simulation results of the Probability technique in the Urban scenario. 81

Table 8.6 Simulation results of the Probability scheme in the Highway scenario. 84

13

Symbols and acronyms

APTS Advanced Public Transportation Systems

ATIS Advanced Traveler Information Systems

ATMS Advanced Transportation Management Systems

AVCSS Advanced Vehicle Control and Safety System

AVL Automatic Vehicle Location

CanuMobiSim CANU Mobility Simulation Environment

CD Collision Detection

CICAS Cooperative Intersection Collision Avoidance System

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CVO Commercial Vehicle Operation

DCF Distributed Coordination Function

DLR German Aerospace Center

DM Downtown Model

DSRC Dedicated Short Range Communication

EDR Event Data Recorder

ERP Electronic Road Pricing

ETC Electronic Toll Collection

FCC Federal Communications Commission

GUI Graphical User Interface

GPS Global Positioning System

HAR Highway Advisory Radio

HMI Human Machine Interface

ICF Intelligent Community Forum

IDM/IM Intelligent Driving Model with Intersection Management

IDM/LC Intelligent Driving Model with Lane Changing

ISA Intelligent Speed Adaptation

IT Information Technology

ITS Intelligent Transportation Systems

IVC Inter-vehicle Communications

JOSM Java Open Street Map

MAC Medium Access Control

MANET Mobile Ad-Hoc Networks

MM Manhattan Model

14

MOVE Mobility model generator for Vehicular networks

NCTUns National Chiao Tung University Network Simulator

OFDM Orthogonal Frequency Division Multiplexing

OSM Open Street Map

PDES Parallel Distributed Simulation

PHY Physical

PLCP Physical Layer Convergence Procedure

RTS/CTS Request to Send/Clear to Send

SINR Signal to Interference plus Noise Ratio

SM Simple Model

SNS Staged Network Simulator

STRAW Street Random Waypoint

SUMO Simulation of Urban Mobility

TIGER Topologically Integrated Geographic Encoding and Referencing

TMC Traffic Management Centers

TOC Traffic Operations Centers

TraCI Traffic Control Interface

TraNS Traffic and Network Simulation Environment

USB Universal Serial Bus

V2V Vehicle-to-Vehicle Communications

VANET Vehicular Ad-Hoc Networks

VEINS Vehicles in Network Simulation

VMT Vehicle-Miles Traveled

VPS Vehicle Positioning System

WAVE Wireless Access in Vehicular Environments

WHO World Health Organization

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

15

Chapter 1

Introduction

1. Introduction

1.1 Problem Statement

Urban and interurban traffic are among the major issues of contemporary society. According to the

WHO (World Health Organization), road traffic injuries are the eighth leading cause of death

globally, and the leading cause of death for young people aged 15-29. More than a million people

die each year on the world’s roads, and the cost of dealing with the consequences of these road

traffic crashes runs to billions of dollars. Current trends suggest that by 2030 road traffic deaths will

become the fifth leading cause of death [1]. Most accidents caused by drivers are usually

accompanied by speeding, alcohol and drugs, and distraction mainly due by mobile phone use. On

the other hand, traffic jams are a major drawback of large and medium size cities that cause high

levels of pollution while raising the cost of travel. It may be noted that the quality of life in modern

industrialized societies depends to some extent on these factors.

In order to increase the level of traffic safety, reducing the traffic pollution, and reducing the

congestion, the ITSs (Intelligent Transport Systems) and specifically VANETs (Vehicular Ad-Hoc

Networks) is a matter of major importance. So it is necessary a method of dissemination of

emergence messages generated by safety applications. Basically, the purpose of emergency

16

message dissemination in vehicular networks is to inform vehicles about dynamic road conditions

in order to achieve an efficient and safe transportation system. To achieve this goal there are many

broadcast protocols specially designed for vehicular environments [2]. This work is focused on

analyzing the performance of these dissemination protocols.

1.2 Objectives

In this section we present the main objective of this Master’s Thesis. After that, we present the

contents of the work.

1.2.1 General objective

 Simulation of Basic Multi-Hop Broadcast Techniques in Vehicular Ad-Hoc networks using

the VEINS [32] simulator.

1.2.2 Specific objectives

 Do a brief description of the concept of smart cities, smart cars and intelligent transport

systems (ITS).

 Study and disclose of vehicular networks and their applications.

 Study of dissemination protocols used in VANETs.

 Do an exhaustive study of the VEINS [32] simulator.

 Simulate and analyze the performance of some basic protocols of multi-hop broadcast over

VANETs.

 Do a comparison of the protocols analyzed based on the simulation’s results.

 Provide a comprehensive guide to install and use the VEINS [32] simulator.

1.3 Contents and organization of the Master’s Thesis

This report is divided into nine chapters plus four annexes with the code developed by our research

group that we have used in this Master’s Thesis. Each chapter is structured as follows:

Chapter 1. Introduction

The general framework and the problem on which this study is developed are presented. Also the

objectives to be achieved with this work are set.

17

Chapter 2. Smart cities and vehicles

Smart city concept and its applications are introduced. Also, smart vehicle concept and its general

architecture is defined.

Chapter 3. Intelligent Transport Systems

A brief description of Intelligent Transport Systems is made which includes its objectives and

framework. Besides, the classification and various applications are shown.

Chapter 4. Vehicular Ad-Hoc Networks

In this chapter the concept of vehicle networks (VANETs) is defined. Also, the main components

and communication architecture such as In-vehicle Communication, Vehicle to Vehicle, Vehicle to

road Infrastructure, and Vehicle to Broadband cloud are described. Besides, a brief review of the

applications and the standardization (Dedicated Short Range Communication, IEEE 1609 Standards

for wireless access in vehicular environments) of VANETs is made.

Chapter 5. Message dissemination in Vehicular Ad-Hoc Networks

This chapter provides a review of the concept of broadcast on the link layer. In addition some

methods of multi-hop broadcast such as Flooding, Counter-based scheme, Distance-based scheme,

Location-based scheme, Neighbor knowledge scheme, Cluster-based scheme, and Probability

scheme are briefly described. Also, other methods like Weighted p-persistence scheme, Slotted 1-

persistence scheme, and Slotted p-persistence scheme which reduce the broadcast storm problem

are shown.

Chapter 6. Simulation of Vehicular Ad-Hoc Networks

This chapter describes the concepts of mobility generators, network simulators, and VANETs

simulators. Also, a brief description of the characteristics of the most popular simulators is made.

Chapter 7. VEINS simulator

This chapter shows a depth study about the VEINS framework: components and basic paradigms

on which it is built. It emphasizes the advantage provided by this tool, which is bidirectional link

between network simulation and simulation of traffic.

18

Chapter 8. Simulation of vehicular multi-hop – basic techniques using VEINS simulator

Once the VEINS simulator platform is installed, simulations of two techniques of retransmissions of

broadcast messages are carried out. Then, the results and some comments of the simulations are

shown.

Chapter 9. Conclusions and future work

Finally, a compilation of the conclusions reached during the course of the work is made. Also, some

ideas as future work are presented.

19

Chapter 2

Smart cities and vehicles

2. Smart cities and cars

2.1 Smart City

2.1.1 Definition

The definitions of smart city are various. The concept is used all over the world with different

nomenclatures, context and meanings. A range of conceptual variants generated by replacing the

word smart with adjectives such as digital or intelligent are readily used and reused [3]. Several

working definitions have been put forward and adopted in both practical and academic use, as it is

illustrated in Table 2.1.

Basically, the vision of Smart City is the urban center of the future, made safe, secure

environmentally green, and efficient because all structures – whether for power, water,

transportation, etc. are designed, constructed, and maintained making use of advanced, integrated

materials, sensors, electronics, and networks which are interfaced with computerized systems

comprised of database, tracking, and decision-making algorithms to stimulate sustainable

economic growth and high quality of life for citizens [4, 5].

20

Working Definitions of a Smart City

 A city well performing in a forward-looking way in economy, people, governance,
mobility, environment, and living, built on the smart combination of endowments
and activities of self-decisive, independent and aware citizens.

 A city that monitors and integrates conditions of all of its critical infrastructures,
including roads, bridges, tunnels, rails, subways, airports, seaports,
communications, water, power, even major buildings, can better optimize its
resources, plan its preventive maintenance activities, and monitor security aspects
while maximizing services to its citizens.

 A city connecting the physical infrastructure, the IT infrastructure, the social
infrastructure, and the business infrastructure to leverage the collective
intelligence of the city.

 A city striving to make itself smarter (more efficient, sustainable, equitable, and
livable)

 A city combining ICT and Web 2.0 technology with other organizational, design and
planning efforts to dematerialize and speed up bureaucratic processes and help to
identify new, innovative solutions to city management complexity, in order to
improve sustainability and livability.

 The use of Smart Computing technologies to make the critical infrastructure
components and services of a city – which include city administration, education,
healthcare, public safety, real estate, transportation, and utilities – more
intelligent, interconnected, and efficient.

Table 2.1 Working Definitions of a Smart City [3].

The structure of smart city includes perception layer, network layer and application layer, which

can make the future world increasingly appreciable and measurable, increasingly interconnection

and interoperability and increasingly intelligent [6]. Figure 2.1 shows the technical architecture of

smart city.

Figure 2.1 Technical architecture diagram of smart city [6].

Application

layer

Network

layer

Perception

layer

Analyze and process massive data and information through
cloud computing, fuzzy recognition and other intelligent

technologies

Identify the object and collect information through 2D-Barcode,
reader, RFID, camera, GPS, sensor terminal, sensor network etc.

Make accurate transmission and processing of information
obtained in the perception layer through the integrated grid of

communication, Network management center, information
center and intelligent processing center

21

The ICF (Intelligent Community Forum) annually announces cities awarded as Smart21

Communities, which earns high score in terms of five successful factors to be an intelligent

community (i.e., broadband connectivity, knowledge workforce, digital inclusion, innovation, and

marketing and advocacy). The Table 2.2 shows the list of the smart cities around the world.

Region Cities

Africa Nairobi County (Kenya); Cape Town, Nelson Mandela Bay (South Africa)

Asia Pacific

Ballarat, Coffs Harbour, Gold Coast City, Ipswich, Melbourne, Prospect, State
of Victoria, Sunshine Coast, Whittlesea (Australia); Chongqing, Hong Kong, Jia
Ding, Jiading New City, Shanghai, Tianjin, Tianjin Binhai New Area (China);
Bangalore, Hyderabad, Jaipur (India); Ichikawa, MItaka, Yokosuka (Japan);
Whanganui (New Zealand); Gangnam District, Hwa Seong Dong Tan, Seoul,
Suwon (South Korea); Singapore (Singapore); Hsinchu City, Hwa Seong Dong
Tan, New Taipei City, Seoul, Taichung City, Taipei, Taoyuan County (Taiwan)

Europe

Tirana (Albania); Tallinn (Estonia); Oulu (Finland); Besacon, Issy-les-
Moulineaux (France); Frankfurt (Germany); Heraklion, Trikala (Greece);
Sopron (Hungary); Reykjavik (Iceland); Isle of Man (Isle of Man); Malta
(Malta); Eindhoven (Netherlands); Castelo de Vide, Evora (Portugal);
Barcelona (Spain); Hammarby Sjostad, Vasteras, Kariskrona, Stockholm
(Sweden); Birmingham, Dundee, Glasgow, London, Manchester, Sunderland
(United Kingdom)

Middle East
Kabul (Afghanistan); Tel Aviv (Israel); Doha (Qatar); Dubai (United Arab
Emirates)

North
America

Burlington, Calgary, Edmonton, Fredericton, Kenora, Kingston, Moncton,
Montreal Metro Area, Nunavut, Ottawa, Ottawa-Gatineau, Parkland County,
Quebec City, Saint John, Stratford, Sudbury, Toronto, Vancouver, Waterloo,
Western Valley, Windsor-Essex, Winnipeg (Canada); Durango, Tuxtla
Gutierrez (Mexico); Adel, Albany, Arlington County, Ashland, Austin,
Bettendorf, Bristol, Chattanooga, Cleveland, Columbus Region, Columbus,
Corpus Christi, Dakota County, Danville, Dublin, Florida High Tech Corridor,
LaGrange, Loma Linda, Mitchell, Monmouth, New York City, Northeast,
Philadelphia, Riverside, San Francisco, Spanish Fork, Spokane, Walla Walla
Valley, Westchester County, Windton-Salem (United States)

Middle /
South

America
Barceloneta (Puerto Rico), Curitiba, Pirai, Porto Alegre, Rio de Janeiro (Brazil)

Table 2.2 The list of smart cities [7].

2.1.2 Smart city applications

Generally, the construction of smart city can be divided into three levels, including the construction

of public infrastructure, construction of public platform for smart city, the construction of

application systems. Some typical applications are: Construction of Wireless City, Construction of

Smart Home, Smart Public Services and Construction of Social Management, Construction of Smart

22

Transportation, Construction of Smart Medical Treatment, Construction of Smart Urban

Management, Construction of Green City, Construction of Smart Tourism [6].

2.1.3 Construction of smart transportation

Every city can take good advantage of sensor network, the Internet of Things and other technical

means according to their needs and traffic situation. So, every city can change the traditional

transport system, and establish the smart traffic management system, including adaptive traffic

signal control system, urban traffic control system and so on. The smart traffic management system

can achieve the integration of urban planning, construction, management and operations, and

provide comprehensive support for other subsystems of smart urban system [6].

2.2 Smart vehicles

2.2.1 Definition

With the introduction of WLAN (Wireless Local Area Network) technology such as the IEEE’s 802.11

standard in recent years, many exciting applications are now becoming more and more feasible.

One such application is the smart car or automated vehicle. In this application the user literally

takes a back seat only specifying his or her destination. The vehicle then takes control and brings

the user to their specified destination [8]. So, a vehicle is aware of its neighborhood including the

presence and location of other vehicles that is an important evolution for the automotive industry.

Modern cars now possess a network of processors connected to a central computing platform that

provides Ethernet, USB (Universal Serial Bus), Bluetooth, and IEEE 802.11 interfaces. Newer cars

also have such features as:

 An EDR (Event Data Recorder), inspired by the black boxes found in airplanes. EDRs record

all major data from the vehicle for crash reconstruction.

 A GPS (Global Positioning System) receiver, the accuracy of which can be improved by

knowledge of road topology. GPS is currently used in many navigation systems.

 Front-End radar for detecting obstacles at distances far as 200 meters and short-distance

radar or an ultrasound system, typically used for parking.

In conclusion, a smart car is a vehicle equipped with recording, processing, positioning, and location

capabilities and it can run wireless security protocols. In Figure 2.2 it can be seen a smart vehicle’s

onboard instrumentation. The computing platform supervises protocol execution, including those

23

related to security. The communication facility supports wireless data exchange with other vehicles

or fixed stations [9].

Figure 2.2 A smart car’s onboard instrumentation [9].

2.2.2 General architecture

A smart car is a comprehensive integration of many different sensors, control modules, actuators,

etc. A smart car can monitor the driving environment, asses the possible risks, and take appropriate

actions to avoid or reduce the risk. In Figure 2.3 it can be seen a general architecture of a smart

vehicle.

Figure 2.3 General architecture of a smart vehicle [10].

Head camera

Face camera

Body optical camera

Alcohol sensor

GPS

Turn right/left

Emergency call

Stop car

Slow down

Passive protection

Simple message

Hash noise

Seat vibration

Laser sensor

Forward/Side/Rear camera

Information from other unit

Forward/Side/Rear radar

Brake pressure sensor

Dynamics of throttle, gear,..

Steering angle sensor

Speed sensor

Driver
monitoring

Traffic
monitoring

HMI driver
warning

Risk
assessment

Car
actuator

Car
monitoring

24

 Traffic monitoring. A variety of scanning technologies can be used to recognize the distance

between the car and other road users. Active environments sensing in- and out-car will be

a general capability in the near future. Lidar-radar or vision-based approaches can be used

to provide the positioning information. The radar and lidar sensors provide information

about the relative position and relative velocity of an object. Multiple cameras are able to

eliminate blind spots, recognize obstacles, and record the surroundings. Besides, the car

can get traffic information from the Internet or nearby cars.

 Driver monitoring. Drivers represent the highest safety risk. Smart cars present promising

potentials to assist drivers in improving their situational awareness and reducing errors.

With cameras monitoring the driver’s gaze and activity, smart cars attempt to keep the

driver’s attention on the road ahead. Physiological sensors can detect whether the driver is

in good condition.

 Car monitoring. The dynamics of a car can be read from the engine, the throttle and the

brake. These data will be transferred by controller area networks to analyze whether the

car functions normally.

 Assessment module. It determines the risk of the driving task according to the situation of

the traffic, driver and car. Different levels of risk will lead to different responses, including

notifying the driver through the HMI (Human Machine Interface) and taking emergency

actions by car actuators.

 HMI. It warns the driver of the potential risks in non-emergent situations. For example, a

tired driver would be awakened by an acoustic alarm or vibrating seat. Visual indications

should be applied in a cautions way, since a complex graph or a long text sentence will

seriously impair the driver’s attention and possibly cause harm.

 Actuators. The actuators will execute specified control on the car without the driver’s

commands. The smart car will adopt active measures such as stopping the car in case that

the driver is unable to act properly, or applying passive protection to reduce possible harm

in abrupt accidents, for example, popping up airbags [10].

25

Chapter 3

Intelligent Transport Systems

3. Intelligent Transport Systems

3.1 Definition

IT (Information Technology) has transformed many industries, from education to health care to

government, and is now in the early stages of transforming transportation systems. While many

think improving country’s transportation system solely means building new roads or repairing aging

infrastructures, the future of transportation lies not only in concrete and steel, but also increasingly

in using IT. IT enables elements within the transportation system, such as vehicles, roads, traffic

lights, message signs, etc. to become intelligent by embedding them with microchips and sensors

and empowering them to communicate with each other through wireless technologies [11].

ITS applies advanced technologies of electronics, communications, computers, control and sensing

and detecting in all kinds of transportation system in order to improve safety, efficiency and service,

and traffic situation through transmitting real-time information. In the leading nations in the world,

ITS bring significant improvement in transportation system performance, including reduced

congestion and increased safety and traveler convenience.

ITS include telematics and all types of communications in vehicles, between vehicles (e.g. car-to-

car), and between vehicles and fixed locations (e.g. car-to-infrastructure). However, ITS are not

26

restricted to road transport, they also include the use of information and communication

technologies for rail, water and air transport, including navigation systems, as it is shown in Figure

3.1. In general, the various types of ITS rely on radio services for communication and use specialized

technologies [12].

Figure 3.1 Intelligent transport systems [12].

3.2 Objectives

Transport is in a foundation of every human civilization. Goods and people should be transferred

from one place to another in safe, efficient and reliable way. The main objectives of ITS are:

 To improve traffic safety

 To relieve traffic congestion

 To improve transportation efficiency

 To reduce air pollution

 To increase the energy efficiency

 To promote the development of related industries

27

3.3 Framework

According to the concept framework of future ITS development planned by U.S. DOT and ITS-

America, the relationship between ITS services was defined to ensure the compatibility and the

interchangeability. 7 functions and 30 users services provided to drivers are defined, as it can be

seen in Table 3.1.

Function Users services

Travel and transportation
management

 Driving information during travel

 Route guidance

 Travel service information

 Traffic control

 Incident management

 Emission monitoring and improvement

 Rail road level crossing

Travel demand management  Demand management and operation

 Pre-trip information

 Carpool matching and pre-booking

Public transportation
operation

 Public transportation management

 Public transportation information during travel

 Personalized public transportation

 The security of public transportation

Electronic payment  Electronic payment service

Commercial vehicle operation  The electronic customs clearance of commercial
vehicle

 Automatic security roadside inspection

 Security monitoring in car

 Commercial vehicle management program

 The incident response of dangerous goods

 Cargo flexibility

Emergency management  Emergency notification and personal security

 Emergency vehicle management

Advanced vehicle control and
safety system

 Back-up collision prevention

 Side collision prevention

 Intersection collision prevention

 The vision improvement of traffic accident prevention

 Security preparation

 Collision prevention before accident

 Automatic highway system

Table 3.1 Functions and users services of ITS.

3.4 Classification and applications of Intelligent Transport Systems

Given the wide range of ITS, it is useful to organize discussion of ITS applications through a

taxonomy that arranges them by their primary functional intent. ITS applications can be grouped

within five primary categories, as it can be seen in Table 3.2. These categories are: ATIS (Advanced

28

Traveler Information Systems), ATMS (Advanced Transportation Management Systems),

Commercial Vehicle Operation (CVO), APTS (Advanced Public Transportation Systems), and

Advanced Vehicle Control and Safety System (AVCSS) [11].

ITS Category Specific ITS Applications

Advanced Traveler Information Systems (ATIS) Real-time Traffic Information Provision

Route Guidance/Navigation Systems

Parking Information

Roadside Weather Information Systems

Advanced Transportation Management

Systems (ATMS)

Traffic Operations Centers (TOCs)

Adaptive Traffic Signal Control

Dynamic Message Signs (or “Variable” Message

Signs)

Ramp Metering

Commercial Vehicle Operation (CVO) Electronic Toll Collection (ETC)

Congestion Pricing/Electronic Road Pricing

(ERP)

Fee-Based Express (HOT) Lanes

Vehicle-Miles Traveled (VMT) Usage Fees

Variable Parking Fees

Advanced Public Transportation Systems

(APTS)

Real-time Status Information for Public Transit

System (e.g. Bus, Subway, Rail)

Automatic Vehicle Location (AVL)

Electronic Fare Payment (for example, Smart

Cards)

Advanced Vehicle Control and Safety System

(AVCSS)

Cooperative Intersection Collision Avoidance

System (CICAS)

Intelligent Speed Adaptation (ISA)

Table 3.2 Classifying contactless mobile payments applications [11].

3.4.1 Advanced Traveler Information Systems

ATIS, with advanced communication technology, makes road users can access real time information

in the car, at home, in the office or outdoors as the reference of choosing transportation modes,

travel trips and routes. The system mainly includes changeable message signs, HAR (Highway

29

Advisory Radio), GPS, the internet connection, telephone, fax, cable television, information kiosk

and mobile etc.

3.4.2 Advanced Transportation Management System

ATMS detects traffic situations, transmits them to control center via communication network, and

then develops traffic control strategies by combing all kinds of traffic information. Furthermore,

ATMS makes use of facilities to carry out traffic control and transmits the information to drivers

and concerned departments, and implements traffic management measures, such as ramp

metering, signal control, speed control, incident managements, electronic toll collection and high

occupancy vehicle control and so on.

3.4.3 Commercial Vehicle Operation

CVO applies the technology of ATMS, ATIS and AVCSS in commercial vehicle operation such as

trucks, buses, taxes and ambulances in order to improve efficiency and safety. The system mainly

includes automatic vehicle monitoring, fleet management, computer scheduling and electronic

payment.

3.4.4 Advanced Public Transportation System

APTS applies the technology of ATMS, ATIS and AVCSS in public transportation on order to improve

the quality of service, and increase efficiency and the number of people who take public

transportation. The system mainly includes automatic vehicle monitoring, VPS (Vehicle Positioning

System), computer scheduling and E-tickets.

3.4.5 Advanced Vehicle Control and Safety System

AVCSS applies advanced technologies in vehicles and roads, and helps drivers control vehicles in

order to reduce accidents and improve traffic safety. The AVCSS mainly includes anti-collision

warning and control, driving assistance, automatic lateral/longitudinal control, and the long-run

plans of automatic driving and automatic highway system.

30

Chapter 4

Vehicular Ad-Hoc Networks

4. Vehicular Ad-Hoc Networks

4.1 Definition

VANETs is part of MANETs (Mobile Ad-Hoc Networks), this means that every node can move freely

within the network coverage and stay connected. In VANETs and MANETs, the nodes are mobile.

However, the VANETs mobility is constrained to the roadside infrastructure, whereas MANETs

movement is more random in nature. Nodes in VANETs are highly mobile and synchronize to fast

topology changes having sufficient rechargeable battery power. VANETs is having facility of safety

measure in vehicle, streaming communication between vehicles and telemetric device. It operates

on Dedicated Short Range Communication (DSRC), with Wi-Fi, cellular, satellite and WiMAX

(Worldwide Interoperability for Microwave Access) [13].

VANETs are emerging new technology to integrate the capabilities of new generation wireless

networks to vehicles. The idea is to provide ubiquitous connectivity while on the road to mobile

users, who are otherwise connected to the outside world through other networks at home or at

the work place, and efficient vehicle-to-vehicle communications that enable the ITS. Therefore,

VANETs are also called IVC (Inter-vehicle Communications) or V2V (Vehicle-to-Vehicle)

communications [14].

31

ITS are the major applications of VANETs. Another important application for VANETs is providing

Internet connectivity to vehicular nodes while on the move, so the users can download music, send

emails, or play back-seat passenger games [14].

4.2 Architecture

MANETs generally do not rely on fixed infrastructure for communication and dissemination of

information. VANETs follow the same principle and apply it to the highly dynamic environment of

surface transportation. The architecture of VANETs falls within three categories: pure

cellular/WLAN, pure ad hoc, and hybrid. VANETs may use fixed cellular gateways and WLAN access

points at traffic intersections to connect to the Internet, gather traffic information or for routing

purposes. The network architecture under this scenario is a pure cellular or WLAN structure, as it is

shown in Figure 4.1. VANETs can combine both cellular network and WLAN to form the networks

so that a WLAN is used where an access point is available and a 3G connection otherwise [14].

Figure 4.1 WLAN/Cellular architecture [14].

Stationary or fixed gateways around the sides of roads could provide connectivity to vehicles but

are eventually unfeasible considering the infrastructure costs involved. In such a scenario, all

vehicles and roadside wireless devices can form a mobile ad hoc network, as it is shown in Figure

4.2, to perform vehicle-to-vehicle communications and achieve certain goals, such as blind crossing

(a crossing without light control) [14].

32

Figure 4.2 Ad Hoc architecture [14].

Hybrid architecture of combining cellular, WLAN and ad hoc networks together has also been a

possible solution for VANETs, as it is shown in Figure 4.3. This architecture uses some vehicles with

both WLAN and cellular capabilities as the gateways and mobile network routers so that vehicles

with only WLAN capability can communicate with them through multi-hop links to remain

connected to the world [14].

Figure 4.3 Hybrid architecture [14].

4.2.1 Main Components

According to the IEEE 1471-2000 and ISO/IEC 42010 architecture standard guidelines, the VANETs

system can be divided into three domains: the mobile domain, the infrastructure domain, and the

generic domain.

33

As it can be seen in Figure 4.4, the mobile domain consists of two parts: the vehicle domain and the

mobile device domain. The vehicle domain comprises all kinds of vehicles such as cars and buses.

The mobile device domain comprises all kinds of portable devices like personal navigation devices

and smartphones. Within the infrastructure domain, there are two domains: the roadside

infrastructure domain and the central infrastructure domain. The roadside infrastructure domain

contains roadside unit entities like traffic lights. The central infrastructure domain contains

infrastructure management centers such as TMCs (Traffic Management Centers) and vehicle

management centers [17].

However, the development of VANETs architecture varies from region to region. According to CAR-

2-CAR Communication Consortium VANETs system architecture comprises three domains: in-

vehicle, ad hoc, and infrastructure domain. As it is shown in Figure 4.5, the in-vehicle domain is

composed of an on-board unit (OBU) and one or multiple application units (AUs).The connections

between them are usually wired and sometimes wireless. However, the ad hoc domain is composed

of vehicles equipped with OBUs and roadside units (RSUs). An OBU can be seen as a mobile node

of an ad hoc network and RSU is a static node likewise. An RSU can be connected to the Internet

via the gateway; RSUs can communicate with each other directly or via multi hop as well. There are

two types of infrastructure domain access, RSUs and hot spots (HSs). OBUs may communicate with

Internet via RSUs or HSs. In the absence of RSUs and HSs, OBUs can also communicate with each

other by using cellular radio networks (GSM, GPRS, UMTS, WiMAX, and 4G) [17].

34

Figure 4.4 VANETs system domain [17].

35

Figure 4.5 C2C-CC reference architecture [17].

4.2.2 Communication architecture

Communication types in VANETs can be categorized into four types [17]:

 In-vehicle communication, which is more and more necessary and important in VANETs

research, refers to the in vehicle domain. In-vehicle communication system can detect a

vehicle’s performance and especially driver’s fatigue and drowsiness, which is critical for

driver and public safety.

 Vehicle-to-vehicle (V2V) communication can provide a data exchange platform for the

drivers to share information and warning messages, so as to expand driver assistance.

 Vehicle-to-road Infrastructure (V2I) communication is another useful research field in

VANETs. V2I communication enables real-time traffic/weather updates for drivers and

provides environmental sensing and monitoring.

 Vehicle-to-broadband cloud (V2B) communication means that vehicles may communicate

via wireless broadband mechanisms such as 3G/4G. As the broadband cloud may include

36

more traffic information and monitoring data as well as infotainment, this type of

communication will be useful for active driver assistance and vehicle tracking.

Figure 4.6 describes the key functions of each communication type.

Figure 4.6 key functions of each communication type [17].

Figure 4.7 shows how Vehicular networks in the forms of Intra-Vehicle (InV), Vehicle-to-Vehicle

(V2V), Vehicle-to-Infrastructure (V2I), and Vehicle-to-Broadband-cloud (V2B) communications will

enable a variety of applications for safety, traffic efficiency, driver assistance, as well as

infotainment [18].

37

Figure 4.7 Communications in vehicle networks [18].

4.3 Vehicular network applications

Applications in vehicular environment usually can increase the road safety, improve traffic

efficiency, and provide entertainment to passengers. In most cases, VANETs applications can be

roughly organized into two major classes: Comfort applications and Safety applications [15]:

 Comfort Applications: This type of application improves passenger comfort and traffic

efficiency and/or optimizes the route to a destination. Examples for this category are: traffic

information system, weather information, gas station or restaurant location and price

information, and interactive communication such as Internet access or music download.

 Safety Applications: Applications of this category increase the safety of passengers. The

information is either presented to the driver or used to activate an actuator of an active

safety system. Example applications of this class are: emergency warning system, lane-

changing assistant, intersection coordination, traffic sign/signal violation waning, and road-

38

condition warning. Applications of this class usually demand direct vehicle-to-vehicle

communication due to the stringent delay requirements.

A summary of the main applications of safety applications is presented in Table 4.1.

Safety Applications

Features

Communication Messaging Type Latency
Other

requirements

Emergency
Electronic
Brake Lights

V2V Event-triggered,
time limited broadcast 100 ms Range: 300m, high

priority

Slow Vehicle Warning V2V Periodic permanent
broadcast 100 ms High priority

Pre-Crash Sensing V2V Periodic broadcast,
unicast 50 ms

Range: 50 ms,
high/mid priority for
beaconing/unicast

Lane Change Warning V2V Periodic broadcast 100 ms
”Relative positioning
accuracy: <2m
range: 150 m”

Intersection Collision
Warning

V2V-V2I Periodic permanent
broadcast

100 ms
Accurate positioning
on a digital map,
high priority

Hazardous Location
Warning V2V-V2I

Event-triggered
time-limited Geo-
Cast

100 ms High priority

Table 4.1 Safety applications in VANET [2].

4.4 Standardization

Standards simplify product development, help reduce costs, and enable users to compare

competing products. Only through the use of standards can the requirements of interconnectivity

and interoperability be guaranteed and the emergence of new products can be verified to enable

the rapid implementation of new technologies. There are many standards that relate to wireless

access in vehicular environments. These standards range from protocols that apply to transponder

equipment and communication protocols through to security specification, routing, addressing

services, and interoperability protocols [16].

4.4.1 Dedicated Short Range Communication

DSRC is a short to medium range communications service that was developed to support vehicle-

to-vehicle and vehicle-to-roadside communications. Such communications cover a wide range of

applications, including vehicle-to-vehicle safety messages, traffic information, toll collection, drive-

through payment, and several others. DSRC is aimed at providing high data transfers and low

communication latency in small communication zones [16].

39

Wireless vehicular networks operating on the DSRC frequency bands are the main enabling

technologies for the market of ITS. The FCC (Federal Communications Commission) allocated 75

MHz of spectrum at 5.9 MHz to be used by DSRC. It is a free but licensed spectrum. DSRC is free

since the FCC does not charge for usage. The specifications defined by IEEE802.11P and IEEE1609

represent the most mature set of standards for DSRC/WAVE networks [2].

The DSRC spectrum is organized into 7 channels each of which is 10 MHz wide. One channel is

restricted for safety communications only while two other channels are reserved for special

purposes (such as critical safety of life and high power public safety). All the remaining channels are

service channels which can be used for either safety or comfort applications. Safety applications

are given higher priority over comfort applications to avoid their possible performance

degradations and at the same time save lives by warning drivers of imminent dangers or events to

enable timely corrective actions to be taken [16].

4.4.2 IEEE 1609 Standards for wireless access in vehicular environments (WAVE)

The WAVE standards define architecture and a complementary, standardized set of protocols,

services and interfaces that collectively enable secure vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) wireless communications. The primary goal was to develop public safety

applications that can save lives and improve traffic flow, although other commercial services are

also permitted [2].

Figure 4.8 Overview of the WAVE stack and associated standards [2].

40

The layers of the WAVE protocol stack are shown in Figure 4.8. It is worth noting that IEEE 802.11p

is limited by the scope of IEEE 802.11 which strictly works at the media access control and physical

layers. The operational functions and complexity related to DSRC are handled by the upper layers

of the IEEE 1609 standards. These standards define how applications that utilize WAVE will function

in the WAVE environment, based on the management activities defined in IEEE P1609.1, the

security protocols defined in IEEE P1609.2, and the network-layer protocol defined in IEEE P1609.3.

The IEEE 1609.4 resides above 802.11p and this standard supports the operation of higher layers

without the need to deal with the physical channel access parameters.

WAVE uses OFDM (Orthogonal Frequency Division Multiplexing) to split the signal into several

narrowband channels to provide a data payload communication capability of 3, 4.5, 6, 9, 12, 18, 24

and 27 Mbps in 10 MHz channels [16].

41

Chapter 5

Message dissemination in
Vehicular Ad-Hoc Networks

5. Message dissemination in Vehic

5.1 VANETs message dissemination

In VANETs safety applications, message dissemination typically refers to the process of spreading

data over distributed wireless networks.

The dissemination of messages requires broadcast capabilities at the link layer, allowing a frame to

be transmitted to all the vehicles in the radio scope. It also assumes implementation of network

mechanisms to disseminate the message in the whole network. When the V2V communication is

enabled, the message will be disseminated in a multi-hop technique and will be broadcasted by all

the RSU when V2I communications are used. Also it is possible; RSUs broadcast the messages to

some selected vehicles to forward the message to complete the dissemination [2].

5.2 Broadcast in the link layer

IEEE 802.11p/WAVE standard has a set of PHY (Physical) and MAC (Medium Access Control) layer

specifications to enable communications in VANETs. The broadcast message is directly sent by the

source vehicle to the vehicles in the radio range. In IEEE 802.11p, vehicles use a multichannel

42

concept for the delivery of safety-related and infotainment applications. Each vehicle periodically

switch on a common control channel to monitor control and warning messages, and tune onto one

of available service channels to exchange non safety-related data.

802.11p is known for not being able to manage the medium very efficiently, particularly in case of

broadcast messages. Providing reliable delivery of broadcast messages in a VANETs introduces

several key technical challenges such as: lack of acknowledgment, contention window size, hidden

terminal problem, and multi-hop broadcasts.

So, MAC layer based on IEEE802.11p/WAVE plays a key role for data access control channels on the

channel access mechanism. Channel access mechanism is directly related to congestion, channel

access delay and reliability particularly in case of broadcast messages [2].

5.3 Vehicular multi-hop broadcast

This section describes the basic mechanisms used to efficiently disseminate messages to all the

vehicles at several hops or in a certain geographic area. These mechanisms rely on the broadcast

service offered by the IEEE 802.11 p, and must consequently compensate its lack of reliability. These

solutions are the basic mechanisms used in more complex dissemination protocols [2].

5.3.1 Blind flooding

A straight-forward approach to perform broadcast is by flooding. This scheme works as follows: the

first time a vehicle receives a message broadcast, it retransmit it immediately in broadcast format,

i.e. several vehicles retransmit the same messages with the same ID at the same time. Clearly, this

costs n transmissions in a network of n vehicles [2].

5.3.2 Counter-based scheme

When a host tries to rebroadcast a message, the rebroadcast message may be blocked by busy

medium, back-off procedure, and other queued messages. There is a chance for the host to hear

the same message again and again from other rebroadcasting hosts before the host actually starts

transmitting the message [19]. Consequently, the vehicle senses the medium while it is waiting for

the messages sent by its neighbors and counts the number of times it receives the same message.

At the end of the waiting time, the vehicle rebroadcasts the message if it has received the message

less than k times and discards it otherwise; k being a predefined threshold [2].

43

5.3.3 Distance-based scheme

This scheme uses the relative distance between hosts to make the decision. When a vehicle receives

a message, it is able to measure the distance to the transmitter. It can be simply obtained from a

GPS. The position of the transmitter is then included in the message and the distance computed as

the difference between the receiver and the transmitter locations. In some cases, distance can also

be evaluated from the radio signal strength at the receiver [2].

5.3.4 Location-based Scheme

This scheme uses the relative location of broadcasting vehicles to make the decision whether to

drop a rebroadcast or not. Vehicles evaluate extra coverage area based on their location, if the

additional area is greater than a threshold, vehicle will rebroadcast the message; otherwise it

discards it. Such an approach may be supported by positioning devices such as GPS. In the context

of VANETs, this scheme is very similar to the distance based scheme. However, the additional

coverage is difficult to estimate in practice, since it depends on the radio environment (fading,

shadowing, etc.) which is not known by the vehicles [2].

5.3.5 Neighbor knowledge scheme

This scheme is implemented via periodic hello messages to determine whether rebroadcast or not

by that information. Most protocols require vehicles to share 1-hop or 2-hop neighborhood

information with other vehicles [2].

5.3.6 Cluster-based scheme

This scheme is based on graph modeling [19]. The vehicles are divided in clusters and each one has

a cluster head vehicle and cluster gateway vehicle. Once created the cluster, the algorithm for

broadcasting will only allow the gateway or head using one of the following schemes: Probability,

Counter, Distance, and Location, to retransmit emergency messages while the member will be

inhibited from broadcasting, which minimizes broadcast [2].

5.3.7 Probability scheme

An intuitive way to reduce rebroadcasts is to use probabilistic rebroadcasting. Upon receiving a

broadcast message for the first time, a host will rebroadcast it with probability P with 0 < P <= 100%.

Clearly, when P = 100%, this scheme is equivalent to the Flooding [2]. Note that to respond to the

contention and collision problems it is necessary to insert a small random delay (a number of slots)

before rebroadcasting the message. So the timing of rebroadcasting can be differentiated [19].

44

5.4 The broadcast storm problem

In a CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance) network, drawbacks of flooding

include:

 Redundant rebroadcasts. When a mobile host decides to rebroadcast a broadcast message

to its neighbors, all its neighbors already have the message.

 Contention. After a mobile host broadcasts a message, if many of its neighbors decide to

rebroadcast the message, these transmissions (which are all from nearby hosts) may

severely contend with each other.

 Collision. Because of the deficiency of backoff mechanism, the lack of RTS/CTS (Request to

Send/Clear to Send) dialogue, and the absence of CD (Collision Detection), collisions are

more likely to occur and cause more damage [19].

Excessive broadcast redundancy as a result of a broadcast storm leads to severe contention at the

link layer, packet collisions, inefficient use of bandwidth and processing power, and, most

important, service disruption due to high contention [20].

According [2] some authors proposed three distributed broadcast suppression methods: Weighted

p-persistence, Slotted 1-persistence, and Slotted p-persistence.

5.4.1 Weighted p-persistence scheme

In the weighted p-persistence scheme, if vehicle Vj receives a packet form vehicle Vi, vehicle Vj first

checks whether the packet has been received. If vehicle Vj receives this packet at the first time,

then vehicle Vj has probability Pij to re-broadcast the packet. Otherwise, vehicle Vj drops this packet.

𝑃𝑖𝑗 =
𝐷𝑖𝑗

𝑅

Where:

Dij = Distance between vehicle Vi and Vj

R = Transmission range.

Neighbors of vehicle Vi change Pij to 1 to ensure that the message must be broadcasted if they have

no received the re-broadcast message after waiting a random time [21]. This scheme is illustrated

in Figure 5.1.

45

Figure 5.1 Weighted p-persistence [20].

5.4.2 Slotted 1-persistence scheme

In the slotted 1-persistence scheme, If vehicle Vj firstly receives this packet from vehicle Vi, then

vehicle Vj waits for Tsij time slots, vehicle Vj, has probability 1 to rebroadcast the packet [21].

𝑇𝑠𝑖𝑗 = 𝑁𝑠 (1 − [
𝑚𝑖𝑛(𝐷𝑖𝑗 , 𝑅)

𝑅
]) ∗ 𝜏

Where:

Ns = Number of slots

τ = Propagation time for one hop transmission (medium access delay + propagation delay)

𝑚𝑖𝑛(𝐷𝑖𝑗 , 𝑅) = lowest value between Dij and R

The value of N should be carefully chosen according to the traffic density. For example it is

recommended the value of 5 slots for traffic in rush hours and 3 slots for traffic in non-rush hours

[2]. This scheme is illustrated in Figure 5.2.

Figure 5.2 Slotted 1-persistence scheme [20].

5.4.3 Slotted p-persistence scheme

Slotted p-persistence scheme combines the weighted p-persistence and slotted 1-persistence

schemes. If vehicle Vj firstly receives the packet from Vi, then vehicle Vj waits for Tsij time-slots.

Vehicle Vj, has probability Pij to rebroadcast the packet [21]. Figure 5.3 shows this scheme.

46

Figure 5.3 Slotted p-persistence scheme [20].

5.5 Farthest node scheme

By using GPS, a vehicle can know its location and that of the transmitter. A great deal of

dissemination protocols uses this information to favor the farthest vehicles from the previous

emitter as the next forwarder. It minimizes the number of redundant receptions and maximizes the

coverage area [2].

5.6 Carry-store-forward mechanism

The approach to cope with disconnected networks is known as store- carry-forward. The main

purpose of this mechanism is to assign selected vehicles the task of storing, carrying, and forwarding

messages when new opportunities emerge. Many protocols for message dissemination

complement its performance with store- carry-forward paradigm [2].

47

Chapter 6

Simulation of Vehicular Ad-Hoc
Networks

6. Simulation of Vehicular Ad-H

6.1 Introduction

New protocols, scenarios and wireless technology schemes because of complexity and high

expenses cannot be accomplished in large testbed. Due to this problem simulation of VANETs is

essential to find capability of systems and new approaches. VANETs simulation requires two types

of simulation components: Network and mobility. In most case network and mobility simulator are

separate. There are several simulators available that can be used for VANETs simulation. VANETs

simulation software can be classified into three different categories: (a) Mobility generators, (b)

Network simulators, (c) Software which are integrated (a) and (b) or software can simulate both

mobility and network (VANETs simulator). Figure 6.1 shows the classification of VANETs simulators

[22].

48

Figure 6.1 Classification of VANETs simulators [23].

6.2 Mobility generators

Traffic flow simulator generates required realistic vehicular mobility traces to be used in network

simulator as an input.

Vehicular mobility simulations are usually categorized into two main types: microscopic and

macroscopic. Macroscopic only focusing on mobility of flow of cars not each car individually. In

Macroscopic simulation, the generations of vehicular traffic such as traffic density or traffic flows

are defined. In the other types of the mobility models, microscopic approach, the movement of

each individual vehicle and the vehicle behavior is important.

In microscopic model which is used in VANETs simulation, the required parameters for the mobility

generator can be the roads map, scenario of cars traveling and some road and cars parameters like

maximum cars speed, roads limitation, arrivals and departures times of each car, etc. Also, the

output can be the coordinate of each vehicle at every time and their mobility parameters like speed,

acceleration, etc.

6.2.1 SUMO

SUMO (Simulation of Urban Mobility) is an open source, highly portable, microscopic road traffic

simulation package designed to handle large road networks. Its main features include collision free

vehicle movement, different vehicle types, single-vehicle routing, multi-lane streets with lane

changing, junction-based right-of-way rules, hierarchy of junction types, an open GUI (Graphical

User Interface), and dynamic routing. SUMO can manage large environments, i.e., 10 000 streets,

and it can import many network formats such as Visum, Vissim, ArcView, or XML-Descriptions. Thus,

OMNeT Ns-2 SNS GloMoSim JiST/SWANS

SUMO MOVE CityMob FreeSim VanetMobiSim STRAW

VEINS TraNS NCTUns GrooveNet SWANS++ VANET

SIMULATORS

NETWORK

SIMULATORS

MOBILITY

SIMULATORS

49

by combining SUMO and openstreetmap.org, it is possible to simulate traffic in different locations

of the globe. However, since SUMO is a pure traffic generator, its generated traces cannot be

directly used by the available network simulators, which is a serious shortcoming [23].

6.2.2 FreeSim

It was created by the University of Southern California. FreeSim is a fully customizable macroscopic

and microscopic free-flow traffic simulator that allows for multiple freeway systems to be easily

represented and loaded into the simulator as a graph data structure with edge weights determined

by the current speeds. Traffic and graph algorithms can be created and executed for the entire

network or for individual vehicles or nodes, and the traffic data used by the simulator can be user

generated or be converted from real-time data gathered by a transportation organization. Vehicles

in FreeSim can communicate with the system monitoring the traffic on the freeways, which makes

FreeSim ideal for ITS simulation. FreeSim is licensed under the GNU General Public License, and the

source code is available freely for download [23].

6.2.3 STRAW

STRAW (Street Random Waypoint) provides accurate simulation results by using a vehicular

mobility model on real US cities, based on the operation of real vehicular traffic. STRAW’s current

implementation is written for the JiST/SWANS discrete-event simulator, and its mobility traces

cannot be directly used by other network simulators, such as ns-2. STRAW is part of the C3 (Car-to-

Car Cooperation) project. A more realistic mobility model with the appropriate level of detail for

vehicular networks is critical for accurate network simulation. The STRAW mobility model

constrains node movement to streets defined by map data for real US cities and limits their mobility

according to vehicular congestion and simplified traffic control mechanisms [23].

6.2.4 VanetMobiSim

This simulator was developed by the Institut Eurécom with the Politecnico di Torino. VanetMobiSim

is an extension of the CanuMobiSim (CANU Mobility Simulation Environment) which focuses on

vehicular mobility, and features realistic automotive motion models at both macroscopic and

microscopic levels. At the macroscopic level, VanetMobiSim can import maps from the TIGER

(Topologically Integrated Geographic Encoding and Referencing) database, or randomly generate

them using Voronoi tessellation. VanetMobiSim adds support for multi-lane roads, separate

directional flows, differentiated speed constraints and traffic signs at intersections. At the

microscopic level, it supports mobility models such as IDM/IM (Intelligent Driving Model with

Intersection Management), IDM/LC (Intelligent Driving Model with Lane Changing) and an

50

overtaking model (MOBIL), which interacts with IDM/IM to manage lane changes and vehicle

accelerations and decelerations, providing realistic car-to-car and car-to-infrastructure

interactions. VanetMobiSim is based on JAVA and can generate movement traces in different

formats, supporting different simulation or emulation tools for mobile networks including NS-2,

GloMoSim, and QualNet [23].

6.2.5 MOVE

MOVE (Mobility model generator for Vehicular networks) rapidly generates realistic mobility

models for VANETs simulations. MOVE is built on top of SUMO. The output of MOVE is a mobility

trace file that contains information of realistic vehicle movements which can be immediately used

by popular network simulation tools such as NS-2 or GloMoSim. In addition, MOVE provides a GUI

that allows the user to quickly generate realistic simulation scenarios without the hassle of writing

simulation scripts as well as learning about the internal details of the simulator [23].

6.2.6 CityMob

CityMob is an NS-2 compatible mobility model generator proposed for use in VANETs. Citymob

implements three different mobility models: (a) Simple Model (SM), (b) Manhattan Model (MM),

and (c) realistic Downtown Model (DM). In DM model, streets are arranged in a Manhattan style

grid, with a uniform block size across the simulation area. All streets are two-way, with lanes in both

directions. Car movements are constrained by these lanes. Vehicles will move with a random speed,

within an user-defined range of values. DM model also simulates semaphores at random positions

(not only at crossings), and with different delays. DM adds traffic density in a way similar to a real

town, where traffic is not uniformly distributed. Hence, there will be zones with a higher vehicle

density. These zones are usually in the downtown, and vehicles must move more slowly than those

in the outskirts [23].

6.3 Network simulator

Network simulator is usually used for simulation the computer networks. They are used for

simulating the VANETs by evaluating the performance of network protocols for mobility of nodes

and other required technique such as calculate and create the required components in a wireless

network like detailed structure of all nodes (cars), sending and receiving packets roles, data traffic

transmission, channels, etc.

51

Most currently used network simulators are developed for MANETs and hence require VANETs

extensions (such as using the vehicular mobility generators) before they can simulate vehicular

networks.

6.3.1 NS-2

NS-2 is a discrete event simulator developed by the VINT project research group at the University

of California at Berkeley. The simulator was extended by the Monarch research group at Carnegie

Mellon University to include: (a) node mobility, (b) a realistic physical layer with a radio propagation

model, (c) radio network interfaces, and (d) the IEEE 802.11 MAC protocol using the Distributed

Coordination Function (DCF).

However, the NS-2 distribution code had some significant shortcomings both in the overall

architecture and the modeling details of the IEEE 802.11 MAC and PHY modules. The PHY is a full

featured generic module capable of supporting any single channel frame based communications.

The key features include cumulative Signal to Interference plus Noise Ratio (SINR) computation,

preamble and Physical Layer Convergence Procedure (PLCP) header processing and capture, and

frame body capture. The MAC now accurately models the basic IEEE 802.11 CSMA/CA mechanism,

as required for credible simulation studies [23].

6.3.2 GloMoSim

GloMoSim is a scalable simulation environment for wireless and wired network. It has been

designed using the parallel discrete-event simulation capability provided by Parsec. GloMoSim has

been built using a layered approach similar to the OSI seven layer protocol model. Standard APIs

are used between the different simulation layers. This allows the rapid integration of models

developed at different layers by different people. The widely used QualNet simulator is a

commercial version of GloMoSim [23].

6.3.3 SNS

Traditional wireless network simulators are limited in speed and scale because they perform many

redundant computations both within a single simulation run, as well as across multiple invocations

of the simulator. The staged simulation technique proposes to eliminate redundant computations

through function caching and reuse. The central idea behind staging is to cache the results of

expensive operations and reuse them whenever possible. SNS (Staged Network Simulator) is a

staged simulator based on NS-2. On a commonly used ad hoc network simulation setup with 1500

nodes, SNS executes approximately 50 times faster than regular NS-2 and 30% of this improvement

52

is due to staging, and the rest to engineering. This level of performance enables SNS to simulate

large networks. However, the current implementation is based on NS-2 version 2.1b9a, and it is not

specifically designed to simulate VANETs scenarios [23].

6.3.4 JiST/SWANS

JiST is a high performance discrete event simulation engine that runs over a standard Java virtual

machine. It is a prototype of a new general purpose approach to building discrete event simulators

that unifies the traditional systems and language-based simulator designs. It outperforms existing

highly optimized simulation engines both in time and memory consumption. JiST converts an

existing virtual machine into a simulation platform, by embedding simulation time semantics at the

byte-code level. Thus, JiST simulations are written in Java, compiled using a regular Java compiler,

and run over a standard, unmodified virtual machine.

SWANS is a scalable wireless network simulator built on top of the JiST platform. It was created

primarily because existing network simulation tools are not sufficient for current research needs.

SWANS contains independent software components that can be composed to form complete a

wireless network or sensor network. Its capabilities are similar to NS-2 and GloMoSim, but SWANS

is able of simulating much larger networks. SWANS leverages the JiST design to achieve higher

simulation throughput, lower memory requirements, and run standard Java network applications

over simulated networks. SWANS can simulate networks that are one or two orders of magnitude

larger than what is possible with GloMoSim and NS-2, respectively, using the same amount of time

and memory, and with a same level of detail [23].

6.3.5 OMNeT++

OMNeT++ is an object-oriented modular discrete event network simulator. OMNeT++ has a

component-based design, new features and protocols can be supported through modules.

OMNeT++ supports network and mobility models through the independently developed Mobility

Framework and INET Framework modules [24]. There are extensions for real-time simulation,

network emulation, alternative programming languages (Java, C #), integration of databases,

integration of SystemC, and other functions. OMNeT ++ is free for academic use and is already a

platform widely used by the world scientific community.

6.4 VANET simulators

VANET simulators provide traffic and network simulation or can combine traffic and network

simulator.

53

6.4.1 GrooveNet

GrooveNet is an integrated simulator that supports multiple models that characterize

communication, travel and traffic control to enable large scale simulations in street maps of any US

city. The current limitations are that map database does not indicate one-way streets and the

altitude of the street. GrooveNet is implemented in C++ and Qt graphics cross-platform library in

Linux. GrooveNet is based on the TIGER database format and is able to dynamically load counties

at run-time. On startup GrooveNet reads map database text files and converts the topology data

into a binary encoded file with a graph structure [24].

6.4.2 SWANS++

SWANS++ extends the network simulator SWANS by adding a GUI to visualize the scenario and a

mobility model, STRAW for the vehicles movement in street scenarios. STRAW uses the simple RW

mobility model, but it restricts the vehicles movement to real street boundaries, loaded from TIGER

data files. The mobility model implemented in this simulator does not support lane changing and

also it does not provide feedback between the mobility and networking modules [24].

6.4.3 TraNS

TraNS (Traffic and Network Simulation Environment) is a GUI tool that integrates traffic and

network simulators to generate realistic simulations of VANETs. TraNS allows the information

exchanged in a VANETs to influence the vehicle behavior in the mobility model. There is an attempt

to interface SUMO with NS-2 [15]. However, in our opinion, it is very expensive to understand the

SUMO language and also unnecessary, because the communications engineer needs only a

parsimonious model, easy to extend and/or modify [24].

6.4.4 VEINS

VEINS (Vehicles in Network Simulation) is another simulator that couples a mobility simulator with

a network simulator: SUMO is paired with OMNeT++ by extending SUMO to allow it to

communicate with OMNeT++ through a TCP connection. In Veins, there is a manager module that

is responsible for synchronizing the two simulators. This simulator has two separate events queues.

At regular intervals, the manager module triggers the execution of one time step of the traffic

simulation, receives the resulting mobility trace, and triggers position updates for all modules it had

instantiated [24].

54

6.4.5 NCTUns

NCTUns (National Chiao Tung University Network Simulator) was developed only as a network

simulator, but the most recent version, integrates some traffic simulation capabilities, such as

designing maps and controlling vehicles mobility. A large variety of maps can be designed using

different types of supported road segments. The best feature available in NCTUns is that its network

protocol stacks includes the Linux kernel protocol stack, including TCP/IP and UDP/IP, and the user

level protocol stack and the MAC and PHY layer protocols. In this simulator, the code for the vehicles

movement logic is integrated with the network simulation code, which makes it difficult to extend

[24].

6.5 Selecting a convenient suit of simulators

When simulating a VANETs environment with large number of vehicles potentially transmitting

several messages per second, the selection of a network communication simulator is crucial. Some

important parameters to consider are user friendliness, scalability, and the interconnect ability of

road traffic and network communication simulators.

VEINS was selected due to following features: Online re-configuration and re-routing of cars in

reaction to network simulator, Fully-detailed models of IEEE 802.11p and IEEE 1609.4 DSRC/WAVE

network layers, Supporting the realistic map and realistic traffic, User friendliness and interconnect

ability. VEINS enables running of two simulators in parallel, connected via a TCP socket. VEINS

framework developed based on MiXiM. MiXiM which is a framework for simulating wireless

channels provides detailed models of wireless channels; connectivity, mobility and MAC layer

protocols for OMNeT++. In Addition SUMO is an open source, microscopic and continuous road

traffic simulation package designed to handle large road networks. Also SUMO accepts formats

from different map providers. It is possible to choose popular OpenStreetMap (OSM) and

JavaOpenStreetMap (JOSM) as interface and editor for OSM maps.

55

Chapter 7

VEINS Simulator

7. Vwins

7.1 Introduction

VEINS is made up of two distinct simulators, OMNeT++ for network simulation and SUMO for road

traffic simulation. To perform IVC evaluations, both simulators are running in parallel, connected

via a TCP socket. The protocol for this communication has been standardized as the Traffic Control

Interface (TraCI). This allows bidirectionally-coupled simulation of road traffic and network traffic.

Movement of vehicles in the road traffic simulator SUMO is reflected in movement of nodes in an

OMNeT++ simulation. Nodes can then interact with the running road traffic simulation, e.g. to

simulate the influence of IVC on road traffic [32].

Aside from modules to model and to influence road traffic, Veins offers a comprehensive suite of

IVC-specific models that can serve as a modular framework for simulating applications [32].

7.2 Network simulator: OMNeT ++

OMNeT++ is a C++ based discrete event simulator for modeling communication networks,

multiprocessors and other distributed or parallel systems. The motivation of developing OMNeT++

was to produce a powerful open-source discrete event simulation tool that can be used by

56

academic, educational and research-oriented commercial institutions for the simulation of

computer networks and distributed or parallel systems. This tool is available to the public since

September 1997, it is a project born in the Department of Telecommunications of The University of

Technology and Economics of Budapest [25].

7.2.1 Model structure

An OMNeT++ model consists of modules that communicate with message passing. The active

modules are termed simple modules; they are written in C++, using the simulation class library.

Simple modules can be grouped into compound modules and so forth; the number of hierarchy

levels is not limited. Messages can be sent either via connections that span between modules or

directly to their destination modules.

Both simple and compound modules are instances of module types. While describing the model,

the user defines module types; instances of these module types serve as components for more

complex module types. Finally, the user creates the system module as a network module which is

a special compound module type without gates to the external world. When a module type is used

as a building block, there is no distinction whether it is a simple or a compound module. This allows

the user to transparently split a module into several simple modules within a compound module,

or do the opposite, re-implement the functionality of a compound module in one simple module,

without affecting existing users of the module type.

Modules communicate with messages which – in addition to usual attributes such as timestamp –

may contain arbitrary data. Simple modules typically send messages via gates, but it is also possible

to send them directly to their destination modules. Gates are the input and output interfaces of

modules: messages are sent out through output gates and arrive through input gates. An input and

an output gate can be linked with a connection. Connections are created within a single level of

module hierarchy: within a compound module, corresponding gates of two submodules, or a gate

of one submodule and a gate of the compound module can be connected. Compound modules act

as 'cardboard boxes' in the model, transparently relaying messages between their inside and the

outside world. Properties such as propagation delay, data rate and bit error rate, can be assigned

to connections.

Modules can have parameters. Parameters are mainly used to pass configuration data to simple

modules, and to help define model topology. Parameters may take string, numeric or Boolean

values [25]. Figure 7.1 shows the model structure in OMNeT++. Boxes represent simple modules

57

(thick border), and compound modules (thin border). Arrows connecting small boxes represent

connections and gates.

Figure 7.1 Model Structure in OMNeT++ [25].

7.2.2 Parallel Simulation Support

OMNeT++ also has support for parallel simulation execution. Very large simulations may benefit

from the Parallel Distributed Simulation (PDES) feature, either by getting speedup, or by distributing

memory requirements. If the simulation requires several Gigabytes of memory, distributing it over

a cluster may be the only way to run it. For getting speedup (and not actually slowdown, which is

also easily possible), the hardware or cluster should have low latency and the model should have

inherent parallelism. Partitioning and other configuration can be configured in the INI file; the

simulation model itself doesn't need to be changed (unless, of course, it contains global variables

that prevent distributed execution in the first place.) The communication layer is MPI, but it's

actually configurable, so if the user does not have MPI it is still possible to run some basic tests over

named pipes. The Figure 7.2 explains the logical architecture of the parallel simulation kernel [25].

Figure 7.2 Logical Architecture of the OMNeT++ Parallel Simulation kernel [25].

7.2.3 Simulation Model

OMNeT ++ provides an extensive collection of libraries simulation, routines that serve to control

these libraries, and a user interface that allows modeling, execution and debugging of simulations.

58

A simulation model in OMNeT++ consists of the following stages:

 Definition of topology and structure to be simulated, i.e. modules and interconnections

through NED language.

 Definition of individual modules using C++, which are the active elements of the model.

 Compiling modules and linked with the library simulation.

 Specification of the particular parameters of the simulation.

Figure 7.3 shows the logical architecture of an OMNeT++ Simulation Program [25].

Figure 7.3 Logical Architecture of an OMNeT++ Simulation Program [25].

7.2.4 Packet INET

INET framework is built on the platform OMNeT ++ and uses the same operating mode, that is,

modules that communicate with each other by message passing.

INET Framework contains IPv4, IPv6, TCP, SCTP, UDP protocol implementations, and several

application models. The framework also includes an MPLS model with RSVP-TE and LDP signaling.

Link-layer models are PPP, Ethernet and 802.11. Static routing can be set up using network auto-

configurators, or one can use routing protocol implementations.

The INET Framework supports wireless and mobile simulations as well. Support for mobility and

wireless communication has been derived from the Mobility Framework [26].

7.2.5 MiXiM

MiXiM is an OMNeT++ modeling framework created for mobile and fixed wireless networks

(wireless sensor networks, body area networks, ad-hoc networks, vehicular networks, etc.). It offers

59

detailed models of radio wave propagation, interference estimation, radio transceiver power

consumption and wireless MAC protocols (e.g. ZigBee) [27].

The model, which is used in the simulation VEINS framework, is based on real measurements using

802.11p/DSRC devices, with which it is possible to estimate the effect that buildings and other

obstacles have on inter vehicular communication.

7.3 Traffic simulator: SUMO

The German Aerospace Center (DLR) started the development of the open source traffic simulation

package SUMO back in 2001 [28].

7.3.1 Basic paradigms

SUMO is conceived to simulate a traffic road network of the size of a city. As the simulation is multi-

modal, which means that not only are car movements within the city modeled, but also public

transport systems on the street network, including alternative train networks, the atomic part of

the simulation is a single human being. This human being is described by a departure time and the

route he/she takes which again is made up of sub-routes that describe a single traffic modality.

Thus, a simulated person may take his/her car to the nearest public transportation system station

and continue his travel by other means of transport. Apart from movements using motorized

vehicles, a person may also walk. Walking is not simulated at all but is modeled estimating the time

the person needs to reach the destination. Figure 7.4 displays a compound route.

Figure 7.4 Multimodality [29].

In traffic research, four classes of traffic flow models are distinguished according to the level of

detail of the simulation. In macroscopic models traffic flow is the basic entity. Microscopic models

simulate the movement of every single vehicle on the street, mostly assuming that the behavior of

the vehicle depends on both, the vehicle's physical abilities to move and the driver's controlling

behavior. Mesoscopic simulations are located at the boundary between microscopic and

macroscopic simulations. Herein, vehicle movement is mostly simulated using queue approaches

and single vehicles are moved between such queues. Sub-microscopic models regard single vehicles

like microscopic, but extend them by dividing them into further substructures, which describe the

60

engine's rotation speed in relation to the vehicle's speed or the driver's preferred gear switching

actions, for instance. This allows more detailed computations compared to simple microscopic

simulations. However, sub-microscopic models require longer computation times. This restrains the

size of the networks to be simulated. The Figure 7.5 shows the different simulation granularities;

from left to right: macroscopic, microscopic, sub-microscopic, and within the circle: mesoscopic

[30].

Figure 7.5 The different traffic flow model [30].

In the case of SUMO the traffic flow is simulated microscopically through the model developed by

Stefan Krauss. This means, that every vehicle that moves within the simulated network is modeled

individually and has a certain place and speed. In every time step which has duration of 1s, these

values are updated in dependence to the vehicle ahead and the street network the vehicle is moving

on.

The simulation of street vehicles in SUMO is time-discrete and space-continuous. Also, the car-

driver model is continuous. When simulating traffic, the street attributes, such as maximum velocity

and right of way rules are regarded [29].

7.3.2 Car-Driver Model

The model used currently within SUMO is the Gipps-model extension. It is capable of displaying

main features of traffic like free and congested flow. In each time step the vehicle‘s speed is

adapted to the speed of the leading vehicle in a way that yields to a collision-free system behavior.

This velocity is called the safe velocity Vsafe, and is computed using the following equation:

61

𝑉𝑠𝑎𝑓𝑒(𝑡) = 𝑣1(𝑡) +
𝑔(𝑡) − 𝑣1(𝑡) ∗ 𝜏

𝑣̅
𝑏(𝑣̅)

+ 𝜏

Where:

𝑣1(𝑡)= Speed of the leading vehicle in time t.

𝑔(𝑡)= Gap (distance) to the leading vehicle in time t.

τ= Driver’s reaction time (usually 1s)

b= Deceleration function.

To bind the acceleration to the vehicle’s physical abilities, the resulting “wished” or “desired” speed

is computed as the minimum of the vehicle‘s possible maximum velocity, the vehicle’s speed plus

the maximum acceleration with the safe velocity computed as shown above, therefore a vehicle

will not “drive” or “accelerate” faster than is possible for it:

𝑣𝑑𝑒𝑠(𝑡) = 𝑚𝑖𝑛[𝑣𝑠𝑎𝑓𝑒(𝑡), 𝑣(𝑡) + 𝑎, 𝑣𝑚𝑎𝑥]

Further, the driver is simulated by assuming he is making errors and so fails to perfectly adapt to

the desired velocity. This is done by subtracting a random “human error” from the desired speed:

𝑣(𝑡) = 𝑚𝑎𝑥[0, 𝑟𝑎𝑛𝑑[𝑣𝑑𝑒𝑠(𝑡) − 𝜀𝑎, 𝑣𝑑𝑒𝑠(𝑡)]]

As the vehicle must not drive backwards, once again – after the previous computations – the

maximum of the computed speed and zero must be taken and will be the vehicle’s final speed for

the current time step [29].

7.3.3 Traffic Lights

Traffic lights play an important role within the traffic management as they improve traffic flow.

Apart from simple right-of-way rules, each simulated junction may also be a junction with traffic

lights [29].

7.3.4 Features

The simulation platform SUMO offers many features:

 Microscopic simulation - vehicles, pedestrians and public transport are modeled explicitly

 Online interaction – control the simulation with TraCI

 Simulation of multimodal traffic, e.g., vehicles, public transport and pedestrians

 Time schedules of traffic lights can be imported or generated automatically by SUMO

 No artificial limitations in network size and number of simulated vehicles

62

 Supported import formats: OpenStreetMap, VISUM, VISSIM, NavTeq

 SUMO is implemented in C++ and uses only portable libraries [31]

7.3.5 Components

Table 7.1 displays the applications which are contained in the SUMO package.

Application Description

SUMO Command line simulation

GUISIM Simulation with a graphical user interface

NETCONVERT Network importer

NETGEN Abstract networks generator

OD2TRIPS Converter from O/D matrices to trips

JTRROUTER Routes generator based on turning ratios at intersections

DUAROUTER Routes generator based on a dynamic user assignment

DFROUTER Route generator with use of detector data

MAROUTER Macroscopic user assignment based on capacity functions

Table 7.1 Applications in the SUMO package [31].

Figure 7.6 illustrates the relationships between these applications.

Figure 7.6 Scheme of applications in SUMO.

Depending on the application, configuration files have different extensions and it is important to

consider. These extensions are:

 *.sumo.cfg: SUMO, GUISIM

 *.netc.cfg: NETCONVERT

Traffic description Network description User

Additional
definitions

DUAROUTER DFROUTER JTRROUTER NETGEN NETCONVERT

ROUTES NETWORK SUMO -

GUISIM

OUTPUT OF SIMULATION

63

 *.netg.cfg: NETGEN

 *.rou.cfg: DUAROUTER

 *.jtr.cfg: JTRROUTER

 *.df.cfg: DFROUTER

 *.od2t.cfg: OD2TRIPS

7.4 TraCI

TraCI gives the access to a road traffic simulator, in this case SUMO. TraCI allows to retrieve values

of simulated objects and to manipulate their behavior on-line.

Based on architecture of type TCP client-server it is possible to access to TraCI, which acts as a

server and the client is OMNeT++. After starting SUMO, a client connects to SUMO by setting up a

TCP connection to the appointed SUMO port. Figure 7.7 shows the establishment of connection

with SUMO [33].

Figure 7.7 Establishing a connection to SUMO [33].

The client application sends commands to SUMO to control the simulation run, to influence single

vehicle's behavior or to ask for environmental details. SUMO answers with a Status-response to

each command and additional results that depend on the given command.

The client has to trigger each simulation step in SUMO using the Command 0x02: Simulation Step.

If any subscriptions have been done, the subscribed values are returned.

The client is responsible for shutting down the connection using the Command 0x7F: Close, as it is

shown in Figure 7.8. The simulation will end, freeing all resources.

64

Figure 7.8 Closing a connection to SUMO.

7.4.1 Sumo-launchd

Sumo-launchd is a proxy application that runs as a daemon. It accepts TCP connections from

OMNeT++ and SUMO. The structure of communication between the simulators is illustrated in

Figure 7.9 [2].

Figure 7.9 VEINS, simulation model [34].

OMNeT ++ using the TCP protocol sends commands to control the state of the simulation SUMO

thus influences the behavior of the vehicles. Next, SUMO executes the commands and responds

with information mobility vehicles for simulating OMNeT + +. Therefore, SUMO only run commands

when OMNeT ++ has finished all simulation processes and the end of the simulation the TCP session

is closed. Figure 7.10 shows how sumo-launchd works in more details [2].

65

Figure 7.10 Lifecycle management functionality of sumo-launchd [35].

66

Chapter 8

Analysis of simulation results of
vehicular multi-hop broadcast
techniques using VEINS

8. Simulation of vehicular multi-hop

8.1 Introduction

Both Urban and Highway scenarios have been considered in this Master’s Thesis. In each scenario

the number of nodes varies in the range of 10, 20, 50 and 100 with different traffic flows. Also,

three broadcasting techniques are used in each scenario: Flooding, Counter and Probability with

different configuration parameters. The implementations of these techniques were made by

Cristhian Iza, who is a Ph.D. student at the UPC. The details of implementation of the code files are

shown in the Annex D.

The performance metrics to be observed are:

 Number of retransmitting nodes: It is the number of nodes which rebroadcast the message

during of the message dissemination.

 Percentage of reached nodes: It is the percentage of nodes which receive the message.

67

 Amount of sent packets: It is the amount of packets which are sent during of the message

dissemination.

 Delay: It is the total busy time of all nodes in the network.

Besides, all the figures are presented with confidence intervals (CI) of 90%, obtained from 10

simulations per each value of vehicle density using different movement traces per each simulation.

8.2 Urban scenario

This scenario is a part of Barcelona city in Spain extracted from the OpenStreetMap [36].

Specifically, this scenario is a zone of the Eixample district. The dimensions are 1 km x 1 km. Figure

8.1 shows this piece of a generic Manhattan-style urban map.

Figure 8.1 Urban scenario. Part of the Eixample district. Barcelona, Spain.

68

8.3 Highway scenario

This scenario is a part of the C-32 Highway located in Castelldefels, Barcelona, Spain, which was

extracted from the OpenStreetMap [36]. The dimension is 2 km of large. Figure 8.2 shows this map.

Figure 8.2 Highway scenario. Part of the C-32 Highway. Barcelona, Spain.

8.4 Flooding technique

This technique was described in section 5.3.1. Basically, each node that receives a packet

rebroadcasts it immediately.

8.4.1 Flooding technique in the Urban scenario

The simulation results for the Flooding technique in the Urban scenario are shown in Table 8.1.

 10 nodes 20 nodes 50 nodes 100 nodes

Retransmissions 7.1 16.9 45.8 94.7

Sent packets 30.2 158.7 909.8 2665.9

% Received packets 100 88.895 68.577 55.165

% Lost packets 0 11.105 31.423 44.835

Delay (ms) 0.448 2.439 2.09 2.453

% Reached nodes 85 93 97.8 99.8

Table 8.1. Simulation results of the classical Flooding technique in the Urban scenario.

As it can be seen in Figure 8.3, the number of retransmitting nodes is very similar to the number of

nodes in the scenario. Practically, between 71% and 95% of the nodes retransmit the packet as a

broadcast message. This is what happens with the Flooding technique.

69

Figure 8.3 The classical Flooding technique. Number of retransmitting nodes. CI 90%. Urban
scenario.

As a result of that, the number of sent packets increases too much. For example, the number of

sent packets reaches 2666 for 100 nodes, which is so much in comparison with the 30 sent packets

for 10 nodes as it is illustrated in Figure 8.4. As a conclusion, we can see that the Flooding technique

scales very bad.

Figure 8.4 The classical Flooding technique. Sent packets. CI 90%. Urban scenario.

This situation produces that the probability of collisions increases. As it can be seen in Figures 8.5

and 8.6 as the number of nodes increases the percentage of received packets decreases. For

example, the percentage of received packets for 50 nodes is only 68%, which is lower than 100%

for 10 nodes. The devices invest certain resources to send packets, for example the battery, which

are obviously wasted with the Flooding basic technique.

0

20

40

60

80

100

120

10 20 50 100

R
e

tr
an

sm
is

si
o

n
s

Number of nodes

Retransmissions

0

500

1000

1500

2000

2500

3000

3500

10 20 50 100

Se
n

t
p

ac
ke

ts

Number of nodes

Sent Packets

70

Figure 8.5 The classical Flooding technique. Percentage of received packets. CI 90%. Urban
scenario.

Figure 8.6 The classical Flooding technique. Percentage of lost packets. CI 90%. Urban scenario.

Also, the delay for 20 or more nodes increases substantially around five times in comparison to the

delay for 10 nodes, as it is shown in Figure 8.7. That is possible because from 20 nodes the number

of sent packets increases so much.

0

20

40

60

80

100

120

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of received packets

0

10

20

30

40

50

60

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of lost packets

71

Figure 8.7 The classical Flooding technique. Delay. CI 90%. Urban scenario.

As it can be seen in Figure 8.8, as the number of nodes increases the percentage of reached nodes

(i.e., nodes visited by a warning message being disseminated) increases too. That is possible

because if the number of retransmitting nodes increases, the probability of receiving a packet also

increases.

Figure 8.8 The classical Flooding technique. Percentage of reached nodes. CI 90%. Urban
scenario.

8.4.2 Flooding technique in the Highway scenario

The simulation results for the Flooding technique in the Highway scenario are shown in Table 8.2.

 10 nodes 20 nodes 50 nodes 100 nodes

Retransmissions 9.5 20 50 99.8

Sent packets 76.2 329.6 1939.5 5664.8

% Received packets 100 80.445 37.107 22.295

% Lost packets 0 19.555 62.893 77.705

Delay (ms) 1.059 1.838 2.962 3.270

% Reached nodes 100 100 100 99.8

Table 8.2 Simulation results of the classical Flooding technique in the Highway scenario.

0

0,5

1

1,5

2

2,5

3

10 20 50 100

D
e

la
y

[m
s]

Number of nodes

Delay

70

80

90

100

110

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of Reached
nodes

72

As it can be seen in Figure 8.9, the number of retransmitting nodes is close to the number of nodes

in the scenario. Practically, each node rebroadcasts the considered packet.

Figure 8.9 The classical Flooding technique. Number of retransmitting nodes. CI 90%. Highway
scenario.

As a result, the number of sent packets increases too much. For example, the number of sent

packets reaches 5665 for 100 nodes, which is so much in comparison with the 76 sent packets for

10 nodes, as it is illustrated in Figure 8.10.

Figure 8.10 The classical Flooding technique. Sent packets. CI 90%. Highway scenario.

Because the number of retransmitting nodes and the number of sent packets increase, the

probability of collisions also increases. Therefore, the percentage of received packets decreases

drastically from 100% (10 nodes) to 22% (100 nodes), as it can be seen in Figures 8.11 and 8.12.

0

20

40

60

80

100

120

10 20 50 100

R
e

tr
an

sm
is

si
o

n
s

Number of nodes

Retransmisions

0

1000

2000

3000

4000

5000

6000

10 20 50 100

Se
n

t
p

ac
ke

ts

Number of nodes

Sent packets

73

Figure 8.11 The classical Flooding technique. Percentage of received packets. CI 90%. Highway
scenario.

Figure 8.12 The classical Flooding technique. Percentage of lost packets. CI 90%. Highway
scenario.

Because the percentage of received packets decreases, the delay also increases from 1 ms (10

nodes) to 3 ms (100 nodes), as it is shown in Figure 8.13.

0

20

40

60

80

100

120

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of packets received

0

10

20

30

40

50

60

70

80

90

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of packets lost

74

Figure 8.13 The classical Flooding technique. Delay. CI 90%. Highway scenario.

As it can be seen in Figure 8.14, the percentage of reached nodes is nearly 100%. That is possible

because the number of retransmitting nodes is almost 100%.

Figure 8.14 The classical Flooding technique. Percentage of reached nodes. CI 90%. Highway
scenario.

8.4.3 Conclusions about the Flooding technique

According to the results shown in the two previous sections, it can be concluded that as the number

of nodes increases, the network performance decreases drastically. Also, the Flooding technique

works better in the Urban scenario than in the Highway scenario.

0

0,5

1

1,5

2

2,5

3

3,5

4

10 20 50 100

D
e

la
y

[m
s]

Number of nodes

Delay

99,3

99,4

99,5

99,6

99,7

99,8

99,9

100

100,1

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

75

8.5 Counter technique

This technique was described in section 5.3.2. Specifically, each node initiates a counter c that will

record the number of times a node receives the same packet. Such a counter is maintained by each

node for each broadcast packet. Each node increments its c by one each time it receives the same

packet. The node compares its c with a predefined counter threshold C. If c < C, the node

rebroadcasts the packet. Otherwise the packet is dropped. In this simulation the threshold C take

three values were 3, 4 and 5, respectively.

8.5.1 Counter technique in the Urban scenario

The simulation results for the Counter technique in the Urban scenario are shown in Table 8.3.

Nodes Threshold Retransmissions Sent packets Delay (ms) % Reached nodes

10

3 5.5 21 0.308 92

4 6.3 25.7 0.385 92

5 6.8 28.4 0.423 92

20

3 7.1 61.6 0.412 91

4 7 98.6 0.629 91

5 11.3 97.7 0.646 91

50

3 11.8 193.1 0.492 94.6

4 15 251.3 0.64 94.6

5 18.1 302.7 0.875 94.6

100

3 17.8 429.7 0.537 96.2

4 22.7 538.9 0.674 96.2

5 28.9 660.8 0.828 96.2

Table 8.3 Simulation results of the Counter technique in the Urban scenario.

As it can be seen in Figure 8.15, the number of retransmitting nodes when there are 10 and 20

nodes is nearly half of the number of nodes in the scenario. In case of 50 and 100 nodes the number

of retransmitting nodes is 30% of the number of nodes in the scenario approximately. In addition,

the number of retransmitting nodes depends also on the counter threshold value, as it is illustrated

in Figure 8.15.

76

Figure 8.15 The Counter technique. Number of retransmitting nodes. CI 90%. Urban scenario.

As the number of nodes in the scenario and the counter threshold value increase the number of

sent packets increases. For example, with a counter threshold value C = 5, the number of sent

packets increases from 29 (10 nodes) to 661 (100 nodes). This situation is illustrated in Figure 8.16.

Figure 8.16 The Counter technique. Sent packets. CI 90%. Urban scenario.

As it can be seen in Figure 8.17, as the number of nodes in the scenario and the counter threshold

value increase the delay increases as well. Also, with a counter threshold C = 4 the delay for 20, 50

and 100 nodes is nearly equal.

0

5

10

15

20

25

30

35

10 20 50 100

R
e

tr
an

sm
is

si
o

n
s

Number of nodes

Retransmissions

Threshold=3

Threshold=4

Threshold=5

0

100

200

300

400

500

600

700

800

10 20 50 100

Se
n

t
p

ac
ke

ts

Number of nodes

Sent packets

Threshold=3

Threshold=4

Threshold=5

77

Figure 8.17 The Counter technique. Delay. CI 90%. Urban scenario

The percentage of reached nodes depends only on the number of nodes, as it can be seen in Figure

8.18. This percentage is higher than 90% for whatever number of nodes in the scenario.

Figure 8.18 The Counter technique. Percentage of reached nodes. CI 90%. Urban scenario

0

0,2

0,4

0,6

0,8

1

1,2

10 20 50 100

D
e

la
y

[m
s]

Number of nodes

Delay

Threshold=3

Threshold=4

Threshold=5

86

88

90

92

94

96

98

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

Threshold=3

Threshold=4

Threshold=5

78

8.5.2 Counter technique in the Highway scenario

The simulation results for the Counter technique in the Highway scenario are shown in Table 8.4.

Nodes Threshold Retransmissions Sent packets Delay (ms) % Reached nodes

10

3 3,6 27,3 0,388 95

4 4,8 36,3 0,517 95

5 5,9 44,9 0,641 95

20

3 5,5 82,3 0,527 100

4 5,7 85,5 0,547 100

5 7,1 107,2 0,682 100

50

3 6,3 219,8 0,543 100

4 8,7 309,5 0,764 100

5 10,3 365,5 0,902 100

100

3 8 416,2 0,509 99,8

4 10,2 544,4 0,672 99,8

5 14,2 748,6 0,915 99,8

Table 8.4 Simulation results of the Counter scheme in highway scenario.

The number of retransmitting nodes depends on the counter threshold value and on the number

of nodes in the scenario, as it is illustrated in Figure 8.19. Also, it can be concluded that the

percentage of retransmitting nodes reduces as the number of nodes in the scenario increases. For

example, for 10 nodes in the scenario the percentage of retransmitting nodes is about 50%,

whereas for 100 nodes in the scenario this percentage is about 15%.

Figure 8.19 The Counter technique. Number of retransmitting nodes. CI 90%. Highway scenario.

The number of sent packets depends on the number of nodes and on the counter threshold value.

As the number of nodes and the counter threshold value increase the number of sent packets

0

2

4

6

8

10

12

14

16

10 20 50 100

R
e

tr
an

sm
is

si
o

n
s

Number of nodes

Retransmissions

Threshold=3

Threshold=4

Threshold=5

79

increases as well. For example, in the case of a number of nodes N = 100, the number of sent packets

is 416 with a counter threshold C = 3, while this value is nearly doubled with a counter threshold

C = 5. This situation is depicted in Figure 8.20.

Figure 8.20 The Counter technique. Sent packets. CI 90%. Highway scenario.

As it can be seen in Figure 8.21, the delay is directly proportional to the number of nodes in the

scenario and to the counter threshold value. For example, with 50 nodes in the scenario, the delay

for counter threshold C = 3, 4 and 5 are 0.543 ms, 0.764 ms and 0.902 ms, respectively.

Figure 8.21 The Counter technique. Delay. CI 90%. Highway scenario.

As it can be seen in Figure 8.22, the percentage of reached nodes depends only on the number of

nodes. This percentage is higher than 95% independently of the number of nodes in the scenario.

0

100

200

300

400

500

600

700

800

10 20 50 100

Se
n

t
p

ac
ke

ts

Number of nodes

Sent packets

Threshold=3

Threshold=4

Threshold=5

0

0,2

0,4

0,6

0,8

1

10 20 50 100

D
e

la
y

[m
s]

Number of nodes

Delay

Threshold=3

Threshold=4

Threshold=5

80

Figure 8.22 The Counter technique. Percentage of reached nodes. CI 90%. Highway scenario.

8.5.3 Conclusions about Counter technique

According to the results shown in the two previous sections, it can be concluded that the principal

challenge in this technique is the selection of an appropriate counter threshold. So, using small

counter threshold values would help in saving the amount of packets retransmitted by the vehicles.

Nonetheless, this fact may affect reachability especially in sparse networks. Alternatively, larger

counter threshold values are beneficial in sparse networks, but can unnecessary swamp a denser

network with unneeded redundant packets, like it happens with the Flooding technique. Also, it

can be concluded that the Counter technique works better in the Highway scenario than in the

Urban scenario.

8.6 Probability technique

This technique was described in section 5.3.7. Basically, upon receiving a broadcast message for the

first time, a node will rebroadcast it with a probability P. Clearly, when P = 1, this technique is

equivalent to flooding. In this simulation the probability threshold values P that we have used were

0.1, 0.2, 0.5 and 0.8.

75

80

85

90

95

100

105

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

Threshold=3

Threshold=4

Threshold=5

81

8.6.1 Probability technique in the Urban scenario

The simulation results of the Probability technique in the Urban scenario are shown in Table 8.5.

Nodes Threshold Retransmissions Sent Packets Delay (ms) % Reached nodes

10

10 1,2 4,2 0,065 37

20 1,2 4,2 0,065 37

50 3,9 16,2 0,241 64

80 5,8 22,9 0,345 67

20

10 1,6 11,6 0,079 43

20 3 27,2 0,181 51,5

50 7,8 72,8 0,443 61

80 12,2 109,8 0,715 73

50

10 3,3 67 0,169 61,2

20 7,1 158,9 0,398 66,8

50 25,5 496,7 1,252 96

80 38,9 724,2 1,831 96,4

100

10 10 307,6 0,381 72,7

20 19,8 568,4 0,727 83,6

50 49,6 1336,3 1,666 98,8

80 79,5 2173,4 2,709 98,2

Table 8.5 Simulation results of the Probability technique in the Urban scenario.

As it can be seen in Figure 8.23, the number of retransmitting nodes depends on the probability

threshold value and on the number of nodes in the scenario. Also, it can be seen that the percentage

of the retransmitting nodes is very similar to the probability threshold value. For example, for 50

nodes in the scenario the percentage of retransmitting nodes is about 78% (0.78) with a probability

threshold P = 0.8.

82

Figure 8.23 The Probability technique. Number of retransmitting nodes. CI 90%. Urban scenario.

As the probability threshold value increases the number of sent packets increases considerably. For

example, in the case of 100 nodes in the scenario, the number of sent packets increase from 308

(probability threshold P = 0.1) to 2173 (probability threshold P = 0.8), which is an increment about

600%, as it is illustrated in Figure 8.24.

Figure 8.24 The Probability technique. Sent packets. CI 90%. Urban scenario.

0

10

20

30

40

50

60

70

80

90

10 20 50 100

R
e

tr
an

sm
is

si
o

n
s

Number of nodes

Retransmissions

Probability=10%

Probability=20%

Probability=50%

Probability=80%

0

500

1000

1500

2000

2500

3000

10 20 50 100

Se
n

t
p

ac
ke

ts

Number of nodes

Sent packets

Probability=10%

Probability=20%

Probability=50%

Probability=80%

83

As it can be seen in Figure 8.25, the delay is directly proportional to the number of nodes in the

scenario and to the probability threshold value. For example, with 100 nodes in the scenario, the

delay for probability threshold P = 0.1, 0.2, 0.5 and 0.8 are 0.381 ms, 0.727 ms, 1.666 ms and 2.709

ms, respectively. Thus, the delay with a probability threshold P = 0.8 is practically 7 times the delay

with a probability threshold P = 0.1.

Figure 8.25 The Probability technique. Delay. CI 90%. Urban scenario.

As it can be seen in Figure 8.26, the percentage of reached nodes depends on the number of nodes

and on the probability threshold value. For a number of nodes lower than 20 the percentage of

reached nodes is very little.

0

0,5

1

1,5

2

2,5

3

3,5

10 20 50 100

D
e

la
y

[m
s]

Number of nodes

Delay

Probability=10%

Probability=20%

Probability=50%

Probability=80%

84

Figure 8.26 The Probability technique. Percentage of reached nodes. CI 90%. Urban scenario.

8.6.2 Probability technique in the Highway scenario

The simulation results of the Probability technique in the Highway scenario are shown in Table 8.6.

Nodes Threshold Retransmissions Sent packets Delay (ms) % Reached nodes

10

10 1,6 4,2 0,175 82

20 1,6 4,2 0,175 82

50 4,6 16,2 0,504 93

80 7,5 22,9 0,818 95

20

10 1,9 11,6 0,2 87,5

20 3,1 27,2 0,318 94

50 10,7 72,8 1,136 95,5

80 14,7 109,8 1,519 100

50

10 4,3 67 0,399 93

20 10,6 158,9 1,006 99,6

50 25 496,7 2,378 100

80 40,4 724,2 3,9 100

100

10 12,4 307,6 0,858 99,6

20 20 568,4 1,361 99,8

50 50,6 1336,3 3,464 99,8

80 79,4 2173,4 5,24 99,8

Table 8.6 Simulation results of the Probability scheme in the Highway scenario.

According to Figure 8.27, the number of retransmitting nodes is directly proportional to the

probability threshold value. Also, it can be seen that the percentage of the retransmitting nodes is

0

20

40

60

80

100

120

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

Probability=10%

Probability=20%

Probability=50%

Probability=80%

85

very similar to the probability threshold value. For example, for 20 nodes in the scenario the

percentage of retransmitting nodes is about 53% (0.53) with a probability threshold = 0.5.

Figure 8.27 The Probability technique. Number of retransmitting nodes. CI 90%. Highway
scenario.

As the probability threshold value increases the number of sent packets increases drastically. For

example, in the case of 50 nodes in the scenario, the number of sent packets increases from 67

(probability threshold P = 0.1) to 724 (probability threshold P = 0.8), which is an increment about

980%, as it is illustrated in Figure 8.28.

Figure 8.28 The Probability technique. Sent packets. CI 90%. Highway scenario.

As it can be seen in Figure 8.29, as the probability threshold value increases the delay increases as

well. Also, the number of nodes influences the delay. For example, with 50 nodes in the scenario,

0

10

20

30

40

50

60

70

80

90

10 20 50 100

R
e

tr
an

sm
is

si
o

n
s

Number of nodes

Retransmissions

Probability=10%

Probability=20%

Probability=50%

Probability=80%

0

500

1000

1500

2000

2500

10 20 50 100

Se
n

t
p

ac
ke

ts

Number of nodes

Sent packets

Probability=10%

Probability=20%

Probability=50%

Probability=80%

86

the delay for probability threshold P = 0.1, 0.2, 0.5 and 0.8 are 0.399 ms, 1.006 ms, 2.378 ms and

3.9 ms, respectively.

Figure 8.29 The Probability technique. Delay. CI 90%. Highway scenario.

Basically, the percentage of reached nodes depends on the number of nodes. The percentage of

reached nodes is higher than 82% for any number of nodes and any probability threshold value, as

it is shown in Figure 8.30.

Figure 8.30 The Probability technique. Percentage of reached nodes. CI 90%. Urban scenario.

8.6.3 Conclusions about Probability technique

According to the results of the two previous sections, it can be concluded that the selection of the

probability threshold value P is decisive in this technique. Also, in order to do the selection of the

0

1

2

3

4

5

6

10 20 50 100

D
e

la
y

[m
s]

Number of nodes

Delay

Probability=10%

Probability=20%

Probability=50%

Probability=80%

0

20

40

60

80

100

120

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

Probability=10%

Probability=20%

Probability=50%

Probability=80%

87

probability threshold P it must be considered the characteristic of the scenario and the number of

nodes. If this value is too small, the number of retransmitting nodes is small, which is good for the

network, but the percentage of reached nodes can be too small.

On the other hand, if the probability threshold is too big, this technique works like the Flooding

technique. So, the Probability technique will not solve the broadcast storm problem.

In addition, it can be concluded that the Probability technique works better in the Highway scenario

than in the Urban scenario.

8.7 Comparison between Flooding, Counter and Probability techniques

The main configuration parameters of the three broadcasting techniques that we want to analyze

are the number of retransmitting nodes, the percentage of reached nodes and the average packet

delay. Also, the kind of scenario is important, so there is a comparison for both Urban and Highway

scenarios.

8.7.1 Comparison in the Urban scenario

Figure 8.31 shows the number of retransmitting nodes obtained for each technique. In that figure

it can be seen the broadcast storm problem using Flooding technique. Also, it can be seen how

Counter and Probability techniques solve that problem. According to this parameter, it can be

concluded that the Probability technique is the best option in the Urban scenario with a probability

threshold value P = 0.1 (10%).

Figure 8.32 shows the percentage of reached nodes for each technique. According to Figure 8.32,

in the case of the Probability technique, the higher the probability threshold P, the higher the

percentage of reached nodes. On the other hand, using the Counter technique the percentage of

reached nodes is the same whatever the counter threshold C (3, 4 or 5). Also, based on the

percentage of reached nodes Counter technique is the best option in the Urban scenario.

88

Figure 8.31 Number of retransmitting nodes for each technique in the Urban scenario.

Figure 8.32 Percentage of reached nodes for each technique in the Urban scenario.

0

10

20

30

40

50

60

70

80

90

100

10 20 50 100

R
e

tr
an

sm
is

io
n

s

Number of nodes

Number of retransmisions

Counter th=3 Counter th=4 Counter th=5

Probability th=10% Probability th=20% Probability th=50%

Probability th=80% Flooding

0

50

100

150

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

Counter th=3 - 4 - 5 Probability th=10% Probability th=20 %

Probability th=50% Probability th=80% Flooding

89

Figure 8.33 illustrates the delay for each technique in the Urban scenario. According to this

parameter, the Probability technique is the best option with a probability threshold P = 0.1 (10%).

Also, the worst options are Flooding and Probability with a probability threshold P = 0.8 (80%).

Figure 8.33 Delay for each technique in the Urban scenario.

Finally, according to the number of retransmitting nodes, the Probability technique with a

probability threshold P = 10% works better than the Counter technique with a counter threshold

C = 3. However, the percentage of reached nodes with the Probability technique is too low in

comparison with the Counter technique. In case of the delay, there is a little difference but it does

not have much influence. In conclusion, the best technique in the Urban scenario is the Counter

technique with a counter threshold C = 3.

8.7.2 Comparison in the Highway scenario

Figure 8.34 illustrates the number of retransmitting nodes for Flooding, Counter and Probability

techniques. It can be seen the problem of broadcast storm using the Flooding technique. In case of

Probability technique it can be seen that as the probability threshold value increases, the network

performance decreases. According to this parameter, it can be concluded that until 50 nodes the

0

0,5

1

1,5

2

2,5

3

10 20 50 100

D
e

la
y

m
s

Number of nodes

Delay

Counter th=3 Counter th=4 Counter th=5

Probability th=10% Probability th=20% Probability th=50%

Probability th=80% Flooding

90

best technique is Probability with a probability threshold P = 0.1 (10%). For a number of nodes

above 50, the best technique is the Counter with a counter threshold C = 3.

Figure 8.34 Number of retransmitting nodes for each technique in the Highway scenario.

Figure 8.35 shows the percentage of reached nodes for each technique. In case of the Probability

technique, the percentage of reached nodes is very similar for every number of nodes. On the other

hand, based on this parameter, the Counter technique has the best performance.

Figure 8.36 illustrates the delay for each scheme in the Highway scenario. Until 50 nodes the best

technique is the Probability with a probability threshold P = 0.1 (10%). For a number of nodes higher

than 50 the best technique is the Counter with a counter threshold C = 3.

0

20

40

60

80

100

120

10 20 50 100

R
e

tr
an

sm
is

io
n

s

Number of nodes

Number of retransmisions

Counter th=3 Counter th=4 Counter th=5

Probability th=10% Probability th=20% Probability th=50%

Probability th=80% Flooding

91

Figure 8.35 Percentage of reached nodes for each technique in the Highway scenario.

Figure 8.36 Delay for each technique in the Highway scenario.

In conclusion, with a number of nodes less than 50 the best technique is the Probability with a

probability threshold P = 0.1 (10%), and with a number of nodes higher than 50 the best technique

is the Counter with a counter threshold C = 3.

0

50

100

150

10 20 50 100

P
e

rc
e

n
ta

ge
 %

Number of nodes

Percentage of reached nodes

Counter th=3 - 4 - 5 Probability th=10% Probability th=20 %

Probability th=50% Probability th=80% Flooding

0

1

2

3

4

5

6

10 20 50 100

D
e

la
y

m
s

Number of nodes

Delay

Counter th=3 Counter th=4 Counter th=5

Probability th=10% Probability th=20% Probability th=50%

Probability th=80% Flooding

92

Chapter 9

Conclusions and future work

9. Conclusions and future work

9.1 Conclusions

During the previous eight chapters of this Master’s Thesis, we have made an extensive study into

the message dissemination field of vehicular networks. We have presented the concept of VANETs

and its enormous potential, the wide range of applications and the advantages on road safety.

The development of VANETs depends on a series of factors such as technical requirements,

standards for wireless communications, and simulations platforms. The simulation world is very

important specially in large scale scenarios. Thus, there are many projects that have been

developed in recent years to create realistic simulation frameworks designed for VANETs. To do

that, necessarily it requires a module for modeling the network (inter-vehicular communication)

and another for the simulation of mobility (traffic). In the state of the art one can find different

solutions to combine both fields. However, the most successful model for performance is the hybrid

simulator concept. In this context, VEINS [32] is a hybrid simulator which is based on OMNeT++ [25]

(a network simulator) and SUMO [28] (a traffic simulator) and a real time communication system

between both called TraCI.

93

After our deep analysis through simulations of several of the main broadcast techniques it can be

concluded that the Flooding technique is the worst scheme because it produces too much delay,

large number of retransmissions, and when the number of nodes increases the percentage of

received packets decreases drastically. In the case of the so-called Counter scheme, it can be

concluded that when its configurable threshold increases the performance decreases substantially,

although it is the best scheme in comparison with the other. Finally, the Probability technique works

better in highway scenarios than in urban scenarios. In general, in all the analyzed schemes the

most important parameter, for both Counter and Probability technique, is the selection of a

threshold according to the number of nodes and the features of the scenario.

9.2 Future work

Some approaches of future work are pointed out:

 A deep study of other VANET open source simulation solutions, such as TraNS [15] (SUMO

and NS-2) which is a hybrid simulator with wide acceptance among the VANET research

community.

 Work focusing on developing a unified system installation of VEINS. During the process of

the installation of VEINS there were some problems especially with the compatibility of

version between OMNeT++ and SUMO. So it would be useful to define a project to make a

single and automatic installation of VEINS in both Windows and Linux systems.

 Implementation of novel techniques of message dissemination in OMNeT++ over the VEINS

simulation tool, to see the benefits compared to other proposals available in the literature.

94

References

[1] World Health Organization. (2013). “Global status report on road safety 2013: supporting a

decade of action”. Available on:

http://www.who.int/violence_injury_prevention/road_traffic/en/

[2] Cristhian Iza Paredes. (2014).” Design and performance evaluation of smart dissemination of

emergence messages in Vehicular Ad-Hoc Networks”. Ph. D Thesis Proposal Universitat

Politecnica de Catalunya.

[3] Hafedh Chourabi , Taewoo Nam , J. Ramon Gil-Garcia, Sehl Mellouli, Theresa A. Pardo, Hans

Jochen Scholl, Shawn Walker, Karine Nahon. (2012). “Understanding Smart Cities: An

Integrative Framework”. 45th Hawaii International Conference on System Sciences

[4] Tuba Bakici, Esteve Almirall, Jonathan Wareham. (2012). “A Smart City: the Case of

Barcelona”. Springer Science + Business Media, LLC 2012

[5] Robert E. Hall. (2000). “The Vision of A Smart City”. 2nd International Life Extension

Technology Workshop Paris, France.

[6] Kehua Su, Jie Li, Hongbo Fu. “Smart City and the Apllications”. School of Computer – Wuhan

University, Wuhan, Hubei, China.

[7] Intelligent Community Forum. website:

https://www.intelligentcommunity.org/index.php?src=gendocs&ref=Community_Alpha&lin

k=Community_Alpha.

[8] Raymond Cunningham, Vinny Cahill. “System Support for Smart Cars: Requirements and

Research Directions”. Distributed Systems Group, Department of Computer Science, Trinity

College Dublin, Ireland.

[9] Jean-Pierre Hubaux, Srdjan Capkun, Jun Luo. (2004). “The Security and Privacy of Smart

Vehicles”. EPFL – IEEE Security & Privacy.

[10] Jie Sun, Zhao-hui Wu, Gang Pan. (2009). “Context-aware smart car: from model to

prototype”. Journal of Zhejiang University Science

[11] Stephen Ezell. (2010). “Explaining International IT Application Leadership: Intelligent

Transportation Systems”. ITIF The Information Technology & Innovation Foundation

[12] ETSI. Web site: http://www.etsi.org/technologies-clusters/technologies/intelligent-

transport

[13] S. Swapna Kumar. (2014). “Vehicular Ad Hoc Network”. World Academy of Science,

Engineering and Technology, International Journal of Computer, Control, Quantum and

Information Engineering.

[14] Fan Li, Yu Wang. “Routing in Vehicular Ad Hoc Networks: A survey”. University of North

Carolina at Charlotte.

[15] Saleh Yousefi, Mahmoud Siadat Mousavi, Mahmood Fathy. (2006). “Vehicular Ad Hoc

Networks (VANETs): Challenges and Perspectives”. 6th International Conference on ITS

Telecommunications Proceedings.

[16] Sherali Zeadally, Ray Hunt, Yuh-Shyan Chen, Angela Irwin, Aamir Hassan. (2012). “Vehicular

ad hoc networks (VANETS): status, results, and challenges”. Springer Science+Business

Media, LLC 2010.

[17] Wenshuang Liang, Zhuorong Li, Hongyang Zhang, Shenling Wang, and Rongfang Bie. (2014).

“Vehicular Ad Hoc Networks: Architectures, Research Issues, Methodologies, Challenges, and

http://www.who.int/violence_injury_prevention/road_traffic/en/
https://www.intelligentcommunity.org/index.php?src=gendocs&ref=Community_Alpha&link=Community_Alpha
https://www.intelligentcommunity.org/index.php?src=gendocs&ref=Community_Alpha&link=Community_Alpha
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport
http://www.etsi.org/technologies-clusters/technologies/intelligent-transport

95

Trends”. Hindawi Publishing Corporation International Journal of Distributed Sensor

Networks.

[18] Miad Faezipour, Mehrdad Nourani, Adnan Saeed, and Sateesh Addepalli. (2012). “Progress

and Challenges in Intelligent Vehicle Area Networks”. Communications of the ACM.

[19] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. “The Broadcast Storm

Problem in a Mobile Ad Hoc Network”. Department of Computer Science and Information

Engineering, National Central University, Chung-Li, 32054, Taiwan.

[20] N. Wisitpongphan, O.K. Tonguz, J.S. Parikh, P. Mudalige, F. Bai, V. Sadekar. (2007). “Broadcast

Storm Mitigation Techniques in Vehicual Ad Hoc Network”. IEEE Wireless Communications.

[21] Yun-Wei Lin, Yuh-Shyan Chen, Sing-Ling Lee. (2010). “Routing Protocols in Vehicular Ad Hoc

Networks: A survey and Future Perspectives”. Journal of Information Science and Engineering

26,913-932

[22] Hamed Noori. “Realistic Urban Traffic Simulation as Vehicular Ad-Hoc Network (VANET) via

Veins Framework”. Proceeding of the 12th Conference of Fruct Association.

[23] Francisco J. Martínez, Chai Keong Toh, Juan Carlos Cano, Carlos T. Calafate, Pietro Manzoni.

(2009). “A survey and comparative study of simulators for vehicular ad hoc networks

(VANETs)”. John Wiley & Sons , Ltd.

[24] Evjola Spaho, Leonard Barolli, Gjergji Mino, Fatos Xhafa, Vladi Kolici. (2011). “VANET

Simulators: A Survey on Mobility and Routing Protocols”. IEEE, 2011 International Conference

on Broadband and Wireless Computing, Communication and Applications.

[25] András Varga, Rudolf Hornig. (2008). “An Overview of The OMNeT++ Simulation

Environment”. SIMUTools, Marseille, France.

[26] “INET Framework for OMNeT++ Manual”. (2012). Available on:

http://omnetpp.org/doc/inet/api-current/neddoc/index.html

[27] http://mixim.sourceforge.net/

[28] Michael Behrisch, Laura Bieker. Jakob Erdmann, Daniel Krajzewicz. (2011). “SUMO –

Simulation of Urban Mobility”. SIMUL 2011: The Third International Conference on Advances

in System Simulation.

[29] Daniel Krajzewicz, Georg Hertkorn, Peter Wagner, Christian Rössel. “SUMO (Simulation of

Urban Mobility) An open-source traffic simulation”. German Aerospace Centre, Institute for

Transportation Research, Centre for Applied Informatics Cologne, Germany.

[30] SUMO User Documentation. Available on:

http://sumo.dlr.de/wiki/SUMO_User_Documentation

[31] Institute of Transportation Systems web site:

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

[32] Veins documentation, available on: http://veins.car2x.org/documentation/

[33] TraCI documentation, available on: http://sumo.dlr.de/wiki/TraCI/Protocol

[34] MJ (Thinus) Booysen. (2012). “Tutorial: Simulating VANET and ITS (using OMNeT++ and

SUMO)”. University Stellenbosch, Department of Electrical and Electronic Engineering.

[35] Christoph Sommer. (2011). “Car-to-X Communication in Heterogeneous Environments”.

Universität Erlangen – Nürnberg.

[36] Frederik Ramm. (2014). “OpenStreetMap Data in Layered GIS Format”.

http://omnetpp.org/doc/inet/api-current/neddoc/index.html
http://mixim.sourceforge.net/
http://sumo.dlr.de/wiki/SUMO_User_Documentation
http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/
http://veins.car2x.org/documentation/
http://sumo.dlr.de/wiki/TraCI/Protocol

96

ANNEXS

A. How install Virtual Box and create a virtual machine with Linux

Ubuntu System

First of all, make a folder Omnet Ubuntu in your Desktop. Then, download there the Virtual Box

from the website: https://www.virtualbox.org/wiki/Downloads, to date version is 4.3.24. Figure A.1

shows the beginning of the installation by double clicking on the VirtualBox-4.3.24-98716-Win

which you have downloaded. Press Next.

Figure A.1 Beginning of the installation of the Virtual Box.

Then, in the next window press Next in order to maintain the default destination folder, as it is

illustrated in Figure A.2. If you want to change this folder you can press Browse.

https://www.virtualbox.org/wiki/Downloads

97

Figure A.2 Select the destination folder.

Figure A.3 shows the window in which you can choose to create or not shortcuts press Next.

Figure A.3 Create shortcuts.

Then, in the next window press Yes in order to continue with the installation, as it is shown in Figure

A.4.

98

Figure A.4 Warning about network interfaces.

Then, click on Install to begin the installation, as it is illustrated in Figure A.5.

Figure A.5 Install the Virtual Box.

The installation begins. It will take a while. Finally, the VirtualBox-4.3.24-98716-Win was installed

successfully. Click on Finish button, as it is shown in Figure A.6.

99

Figure A.6 Installation is completed successfully.

A.1 How to create a virtual machine in Virtual Box

In this section you can see how to create a virtual machine of Linux Ubuntu 14.04 in Virtual Box

4.3.24. Download the ISO of Ubuntu 14.04 from this website:

http://www.ubuntu.com/download/desktop and save in the Omnet Ubuntu folder which you have

created in the previous section.

Then, run the Virtual Box by double clicking on the Oracle VM VirtualBox icon created in your

desktop and click on Máquina > Nueva, as it is shown in Figure A.7.

Figure A.7 Create a new virtual machine.

http://www.ubuntu.com/download/desktop

100

Then, write a name, for example OMNET, select Tipo: Linux; Versión: Ubuntu (64bit) and press

Next, as it is illustrated in Figure A.8.

Figure A.8 Select the Operating System of the virtual machine.

In the next window select the amount of RAM memory to reserve for the virtual machine, for

example 2048 MB, and press Next, as it is shown in Figure A.9.

Figure A.9 Select the amount of RAM memory.

101

Then, select the option Crear un disco duro virtual ahora and click on Crear button, as it is

illustrated in Figure A.10.

Figure A.10 Create a virtual hard drive.

In the next window select the type of the virtual hard drive, for example the option VDI (VirtualBox

Disk Image) and press Next, as it is shown in Figure A.11.

Figure A.11 Select the type of the virtual hard drive.

Then, select the type of storage in the virtual hard drive, for this manual the option Tamaño fijo

and click on Next button, as it is illustrated in Figure A.12.

102

Figure A.12 Select the type of storage in the virtual hard drive.

In the next window write a name and select the maximum capacity for the virtual hard drive. For

example OMNET and 20,00 GB, as it is shown in Figure A.13. Then, press Crear. It will take a while.

Figure A.13 Location and size of the virtual hard drive.

Then, select the virtual machine and click on Iniciar, as it is illustrated in Figure A.14.

103

Figure A.14 Run the virtual machine.

Then, click on that icon in the right side of the window in order to select the ISO of Ubuntu which

you have downloaded, as it is show in Figure A.15.

Figure A.15 Select the startup disk.

In the next window choose the directory of the ISO of Ubuntu which is found inside the Omnet

Ubuntu folder. Then, click on Abrir, as it is illustrated in Figure A.16.

104

Figure A.16 Choose the folder with the ISO of Ubuntu.

Then, click on Iniciar button, as it is shown in Figure A.17.

Figure A.17 Run the ISO of Ubuntu in the virtual machine.

Then, select the language and click on Instalar Ubuntu button, as it is illustrated in Figure A.18.

105

Figure A.18 Select language.

In the next window click on Continuar. This window shows some recommendations before the

installation of Ubuntu, as it is illustrated in Figure A.19.

Figure A.19 Preparing to install Ubuntu.

106

Then, select the option Borrar disco e instalar Ubuntu and press Instalar ahora, as it is illustrated

in Figure A.20.

Figure A.20 Select the type of the installation.

In the next window press Continuar in order to continue with the installation, as it is shown in

Figure A.21.

Figure A.21 Accept format of the partition.

107

Then, write the city where you live and press Continuar, as it is illustrated in Figure A.22.

Figure A.22 Select the city.

In the next window select the language for the keyboard and press Continuar, as it is shown in

Figure A.23.

Figure A.23 Select the language for the keyboard.

108

Then, write a name of user and password and press Continuar, as it is illustrated in Figure A.24.

Figure A.24 User and password.

The installation of Ubuntu will begin. It will take a while, as it is shown in Figure A.25.

Figure A.25 Installation of Ubuntu.

109

Then, restart the virtual machine in order to finish the installation by pressing Reinicar ahora, as it

is illustrated in Figure A.26.

Figure A.26 Restart to finish the installation.

Then, login with your password and press Enter, as it is shown in Figure A.27.

Figure A.27 Login in the virtual machine.

110

The Ubuntu was installed successfully but you cannot see in full screen, as it is illustrated in Figure

A.28.

Figure A.28 Full screen is not possible.

In order to fix that, in the virtual box window click on Dispositivos > Insertar la imagen de CD de

las Guest Additions, as it is illustrated in Figure A.29.

Figure A.29 Insert the ISO of Guest Additions.

111

Then, run VBOXADDITIONS_4.3.24_98716 by clicking on Ejecutar in the message box, as it is shown

in Figure A.30.

Figure A.30 Run VBOXADDITIONS_4.3.24_98716.

Then, write your password in order to permit the installation, as it is illustrated in Figure A.31 and

press Autenticar.

Figure A.31 Permit the installation by writing your password.

112

Then, the graphics libraries and desktop services components will be installed press Enter when it

is completed, as it is shown in Figure A.32.

Figure A.32 Installing graphics libraries and desktop services.

Then, you must shut down the virtual machine in order to the changes takes effect, as it is illustrated

in Figure A.33, so click on that icon in the upper right side and click on Apagar (a), and then click on

the icon in the right side (b).

113

(a)

(b)

Figure A.33 (a) and (b) shut down virtual machine.

Then, turn on again the virtual machine, so select the virtual machine that you have created and

click on Iniciar, as it is shown in Figure A.34.

114

Figure A.34 Turn on the virtual machine.

Finally, login in the system, as it is shown in Figure A.35.

Figure A.35 Login in the system.

As you can see in Figure A.36, the Ubuntu is run in full screen mode.

115

Figure A.36 Ubuntu in full screen mode.

The installation of Ubuntu was completed successfully.

116

B. Installation of SUMO, OMNeT++ and Veins simulator

This is a guide for installation of SUMO, OMNeT++ and VEINS simulators in both Windows and Linux

Systems.

Since many different teams and individual developers work to implement improvements and new

features, this type of open source tools evolves relatively quickly. So the markings on this project

concerning the versions of the modules may lose value in the near future. To date, it is

recommended to use version 0.22.0 of SUMO, version 4.6 of OMNeT++, and version 4a2 of VEINS.

The installation in Microsoft Windows does not require any previous configuration. In case of Linux

Environment a new installation of operating system is required.

B.1 Get the source code for the programs

B.1.1 Get the source code for SUMO

For both Windows and Linux Systems download sumo-src-0.22.0.tar.gz from this website

http://sourceforge.net/projects/sumo/files/sumo/

B.1.2 Get the source code for OMNeT++

For both Windows and Linux Systems go to the following website and download omnetpp-4.6-src:

http://www.omnetpp.org/omnetpp

B.1.3 Get the source code for VEINS

For both Windows and Linux users download veins-4a2.zip from the website:

http://veins.car2x.org/download/

For Windows users go to the section B.4, for Linux users continue with the next section.

B.2 Installation in Linux

B.2.1 Installation of packages in Linux Ubuntu

SUMO and OMNeT++ require several packages to be installed on the virtual machine. First of all,

you need super-user permissions, open a new terminal and type the command:

 sudo passwd root

http://sourceforge.net/projects/sumo/files/sumo/
http://www.omnetpp.org/omnetpp
http://veins.car2x.org/download/

117

Write your password, in this case the password for david user. Then, write twice the password for

the user root and type the command:

Then, write the password for the user root, as it is illustrated in Figure B.1.

Figure B.1 Login as user root.

Then, you must be logged as a root user, in order to access in root desktop type the following

command, as it is shown in Figure B.2.

Figure B.2 Configuration to access into root desktop.

Then, you must restart the system. As a result, you can login as root user and access into desktop,

as it is illustrated in Figure B.3.

su

sudo sh –c ‘echo “greeter-show-manual-login=true” >>
/usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf’

118

Figure B.3 Login as root user.

In order to install the packages that you need, open a terminal and write the next command, as it

is shown in Figure B.4.

Figure B.4 Installation of aptitude.

At the confirmation questions (Do you want to continue? [Y/N]), answer Y. Then, type the

command:

In the confirmation questions (Do you accept this solution? [y/n/q]), answer Y, as it is illustrated in

Figure B.5.

apt-get install aptitude

aptitude install build-essential gcc g++ bison flex perl tcl-dev tk-dev blt libxml2-
dev zlib1g-dev default-jre doxygen graphviz libwebkitgtk-1.0-0 openmpi-bin
libopenmpi-dev libpcap-dev autoconf automake libtool libproj0 libgdal1-dev

libfox-1.6-dev libgdal-dev libxerces-c-dev

119

Figure B.5 Installation of necessary packages for installation of SUMO simulator.

B.2.2 Installation of SUMO

Open a new terminal and make a folder omnet inside the home folder. Then, unzip the file sumo-

src-0.22.0.tar.gz which you have downloaded in section B.1.1 by typing the next command, as it is

shown in Figure B.6.

Figure B.6 Unzip the file sumo-src-0.22.0.tar.gz.

Type the following commands in order to build and install the SUMO binaries, as it is illustrated in

Figure B.7, B.8 and B.9.

Figure B.7 Building the SUMO binaries: ./configure.

 tar xzf sumo-src-0.22.0.tar.gz

cd sumo-0.22.0/

./conFigure --prefix=/home/omnet/sumo-0.22.0 --enable-debug

make

make install

120

Figure B.8 Building the SUMO binaries: make.

Figure B.9 Installing the SUMO binaries: make install.

Then, set the environment variables by editing .bashrc in your home directory. Type the command:

Add the following line at the end of the file, then save it:

Then, type the following command for the changes to take effect, as it is shown in Figure B.10 a)

and b).

a)

b)

Figure B.10 Environment variables a) edit bash b) update bash.

Finally, you can launch SUMO typing the command sumo-gui in the terminal, as it is show in

Figure B.11.

gedit ̴/.bashrc

source ̴/.bashrc

sumo-gui

export PATH=$PATH:/home/omnet/sumo-0.22.0/bin/

121

Figure B.11 Run SUMO.

The installation of SUMO was successfully.

B.2.3 Installation of OMNeT++

Go to the omnet folder that you have created in the section B.2.2. Then, unzip the file omnetpp-

4.6-src.tgz which you downloaded in section B.1.1 by typing the next command, as it is show in

Figure B.12.

Figure B.12 Unzip omnet-4.6.

Set the environment variables by editing the file bash. Type the command:

Add the following line at the end of the file and save it:

Then, type the next command for the changes to take effect, as it is shown in Figure B-13 a) and b).

tar xzf omnetpp-4.6-src.tgz

gedit ̴/.bashrc

source ̴/.bashrc

export PATH=$PATH:/home/omnet/omnetpp-4.6/bin/

122

a)

b)

Figure B.13 Environment variables for OMNeT++.

After that, in the top-level OMNeT++ directory type the following commands in order to configure,

compile and launch OMNeT++, as it is illustrated in Figures B.14, B.15 and B.16.

Figure B.14 Configuring the installation of OMNeT++.

Figure B.15 Building OMNeT++.

Figure B.16 Launch OMNeT++.

Then, a window will appear that will allow us to install the INET framework and import the

OMNeT++ examples. So, press Ok and the program will download and install, as it is shown in

Figure B.17.

./conFigure
make

omnetpp

123

Figure B.17 Install INET framework.

The OMNeT++ was installed successfully. In order to continue with the installation of VEINS

simulator go to the section B.4.

B.3 Installation in Windows

B.3.1 Installation of SUMO

Make a folder omnet in the partition C:\ and extract there the zip file sumo-winbin-0.22.0 which

you downloaded in the section B.1.1. So, right-click on the zip file in Windows Explorer, and select

Extract All form the menu. You can also use external programs like 7zip, as it is shown in Figure

B.18.

Figure B.18. Extract the zip file sumo-winbin-0.22.0.

Then, go to folder C:/omnet/sumo-0.22.0/bin and double click on sumo-gui to verify that the

program runs correctly, as it is shown in Figure B.19.

124

Figure B.19 Run sumo 0.22.0.

The sumo 0.22.0 was installed successfully.

B.3.2 Installation of OMNeT

Extract the zip file omnet-4.6-src-windows which you have downloaded in section B.1.2 in the

omnet folder that you have created before in section B.3.1, as it is shown in Figure B.20.

Figure B.20 Extract the zip file omnet-4.6-src-windows.

After that, go to the folder C:/omnet/omnetpp-4.6 and start mingwenv.cmd by double-clicking it.

It will bring up a console with the MSYS bash shell. After that, build the simulation libraries by

entering the following commands:

This process is shown in Figure B.21 (a) and (b).

$./conFigure
$ make

125

a)

b)

Figure B.21 Type the commands ./conFigure (a) and make (b).

Now, you can launch the IDE by typing the next command in the console mingwenv.cmd, as it is

shown in Figure B.22.

Figure B.22 Start the OMNeT++ IDE.

Then, a window will appear that will allow you to install the INET framework and import the

OMNeT++ examples. So, press Ok and the program will download and install, as it is shown in

Figure B.23. The OMNeT++ was installed successfully.

omnetpp

126

Figure B.23 Install INET framework and import the OMNeT++ examples.

B.4 Installation of Veins

This section shows the steps to follow in order to install and launch Veins for both Windows and

Linux environments.

B.4.1 Import VEINS in OMNeT++ IDE

First step you must unzip the zip file that you have download in the section B.1.3.

 Windows Users

Extract the zip file veins-4a2 in the omnet folder that you created before in section B.3.1, as

it is shown in Figure B.24.

Figure B.24 Extract zip file veins-4a2.

127

 Linux Users

Unzip the file veins-4a2.zip inside the omnet folder that you created in section B.2.2 by typing

the next command in the terminal, as it is shown in Figure B.25.

Figure B.25 Unzip VEINS.

Then, launch OMNeT++ IDE by typing the command omnetpp in the terminal as you have done

before during installation of OMNeT++.

For both Windows and Linux users import the project into your OMNeT++ IDE workspace by

clicking: File > Import, as it is shown in Figure B.26.

Figure B.26 Import a project in OMNeT++.

A window will appear and you must select General: Existing Projects into Workspace and press

Next >, as it is illustrated in Figure B.27.

unzip veins-4a2

128

Figure B.27 Select the option existing projects into workspace.

In the new window press Browse..., search and select the folder omnet/veins-veins-4a2 that you

have created before during extraction the file veins-4a2.zip and press Aceptar, as it is illustrated in

Figure B.28.

Figure B.28 Select the folder omnet.

Then, press Finish and VEINS will be imported successfully, as it is shown in Figure B.29.

129

Figure B.29 Import VEINS into OMNeT++.

Finally, you must build the project by clicking Project > Build All in OMNeT++, as it is illustrated in

Figure B.30.

Figure B.30 Build VEINS in OMNeT++.

130

B.4.2 Run the Veins demo scenario

First, you should be sure that SUMO is working correctly. So, in the terminal go to the path

/home/omnet/veins-veins-4a2/examples/veins and run SUMO using the next commands, as it is

shown in Figure B.31.

For Windows users at the moment of typing the commands use mingwenv.cmd terminal and

change the directory /home/ for /c/, as it is shown in Figure B.32. You should see a line saying

"Loading configuration... done."

Figure B.31 Run SUMO in Linux System.

Figure B.32 Run SUMO in Windows System.

Then, you get an impression of example scenario looks like, as it is illustrated in Figure B.33. As a

result, you can conclude that SUMO is working correctly.

cd /home/omnet/veins-veins-4a2/examples/veins/

/home/omnet/sumo-0.22.0/bin/sumo-gui –c erlangen.sumo.cfg

131

Figure B.33 Example scenario of SUMO running.

The next step is to run SUMO and OMNeT simultaneously. VEINS comes with a small python script

wills proxy TCP connections between OMNeT++ and SUMO. To do that this script starts a new copy

of the SUMO simulation for every OMNeT++ simulation connecting. So, in the terminal type the

next command to start it.

The script will print Listening on port 9999, as it is illustrated in Figure B.34, and wait for the

simulation to start. Leave this window open and switch back to the OMNeT++ IDE.

For Windows users change the directory /home/ for /c/, as it is illustrated in Figure B.35.

Figure B.34 Run python script in Linux System.

Figure B.35 Run python script in Windows System.

Then, you can simulate the Veins demo scenario in the OMNeT++ IDE, for both Windows and Linux

users, right-click on veins/examples/veins/omnetpp.ini and choose Run As > 1 OMNeT++

simulation, as it is shown in Figure B.36.

/home/omnet/veins-veins-4a2/sumo-launchd.py –vv –c
/home/omnet/sumo-0.22.0/bin /sumo-gui

132

Figure B.36 Run Veins demo scenario.

If everything worked as intended this will give you a working simulation scenario using OMNeT++

and SUMO running in parallel to simulate a stream of vehicles that gets interrupted by an accident,

as it is illustrated in Figure B.37.

Figure B.37 OMNeT++ and SUMO running in parallel to simulate VEINS demo scenario.

133

C. Example of simulation in VEINS

C.1 Importing networks and generation of routes in SUMO

SUMO offers the possibility to import real network topologies for simulation, which is an important

advantage, since it is a very interesting possibility. The user can use real and concrete scenarios in

order to study the behavior of a given IVC.

The SUMO simulator is able to import networks from several sources; however, it will use

OpenStreetMap.

C.1.1 OpenStreetMap

The OpenStreetMap (OSM) project (www.openstreetmap.org) has collected an enormous amount

of free spatial data and the database is growing every day. Many people want to use this data for

their own GIS projects but have been hindered by the use of a non-standard data format in the

OSM project.

The mapping from OSM data to other formats is not an exact science. OSM rules on how to map

certain features are often not well defined and there is no mandatory quality control. This openness

allows a lot of flexibility and is part of the reason why OSM has been able to collect so much data

in such a short time frame, but it makes using the data more difficult. When using or exporting the

data, many decisions have to be made on how to extract the different features into something

usable for the task at hand [36].

C.1.2 Get a map from OpenStreetMap

Open your web browser and go to the web site: https://www.openstreetmap.org and search a city

that you want, for example Barcelona, Spain, as it is shown in Figure C.1.

https://www.openstreetmap.org/

134

Figure C.1 OpenStreetMap web site.

Then, click on Export button which is located in top and after that click on Manually select a

different area. Choose the area which you want to export and click on Export button which is

located in the left as illustrated in Figure C.2. A window appears asked if you want to open or save

the map, you must click on save for download the file map.osm, as it is shown in Figure C.3.

Figure C.2 Select the area and export the map.

135

Figure C.3 Save the map in your computer.

C.1.3 Preparation the map for use in SUMO

Copy the file map.osm which you downloaded in previous section in sumo/bin directory, after open

a terminal and execute the following command in order to convert the map into a road network

that is understood by SUMO, as it is illustrated in Figure C.4.

Figure C.4 Generation of network through netconvert.

Now, it is necessary to create the typemap.xml file. There are many ways to do that, one option is

to use the GUI in Linux environment. So, go to the sumo/bin directory and right click on the folder

and select Documento Nuevo > Documento vacío and name the file as typemap.xml, as it is shown

in Figures C.5 and C.6.

netconvert --osm-files map.osm -o barcelona.net.xml

136

Figure C.5 Create an empty file in Linux System.

Figure C.6 Write the name of the new file as typemap.xml.

Then, open your web browser and go to the following web site:

 https://github.com/bluemix/SUMO/blob/master/typemap.xml and copy its contents into the

typemap.xml file which you created before and save it, as it is shown in Figures C.7 and C.8.

https://github.com/bluemix/SUMO/blob/master/typemap.xml

137

Figure C.7 Copy the content of website typemap.

Figure C.8 Save typemap.xml file.

138

Then, go to the terminal and execute the next command in order to show the map correctly in

SUMO. This step is illustrated in Figure C.9.

Figure C.9 Command polyconvert.

So, the map is ready for use with SUMO.

C.1.4 Generation of routes in SUMO

Having defined the network topology, it only remains to generate the so-called traffic demand, that

is, the description of the routes that follow the vehicles.

There are several methods to generate traffic demand in SUMO:

 Using Route definitions.

 Using definitions travel.

 Using definitions of flows (similar to above but uniting vehicles with similar travel in

groups).

 Using definitions of flows at intersections rotation rate (the link target is not specified,

and instead the probability of making turns at intersections shown).

 Using random routes.

In this case it will use random routes. There is a Python script developed with the aim of producing

random routes, his name is randomTrips.py. Currently, it is the most recommended method to

achieve this functionality. However, note that the results are not always entirely realistic.

So, open a terminal, go to the sumo/bin folder, and type the next command, as it can be seen in

Figure C.10.

polyconvert --net-file barcelona.net.xml --osm-files map.osm --type-file
typemap.xml -o barcelona.poly.xml

python /home/omnet/sumo-0.22.0/tools/trip/randomTrips.py --net-file
barcelona.net.xml --route-file barcelona.rou.xml --begin 0 --end 100 --length

139

Figure C.10 Generation of random routes in SUMO.

C.2 Prepare files before simulating

In this step you must copy the files that you have generated in sections C.1.3 and C.1.4 from sumo

folder to veins folder, as it is shown in Figure C.11. In order to do that type the following commands:

Figure C.11 Copy sumo files to veins folder

After that, you have to edit the configuration files of VEINS. So, go to the path /home/omnet/veins-

veins-4a2/examples/veins/. Then, open with gedit the files erlangen.launchd.xml and

erlangen.sumo.cfg and write the name of files which you copied before i.e. barcelona.net.xml,

barcelona.rou.xml, barcelona.poly.xml, as it is illustrated in Figures C.12 and C.13.

Figure C.12 Edit Erlangen.launchd.xml.

cp barcelona.net.xml /home/omnet/veins-veins-4a2/examples/veins/
cp barcelona.poly.xml /home/omnet/veins-veins-4a2/examples/veins/
cp barcelona.rou.xml /home/omnet/veins-veins-4a2/examples/veins/

140

Figure C.13 Edit Erlangen.sumo.cfg.

Then, you need to create the scenario in OMNeT++, in this manual will be used

FranciscoScenario.ned and omnetpp.ini which were created by Cristhian Iza, who is a Ph.D. student

at the UPC. The codes of these files are available on Annex D. Create these files and put them into

/home/omnet/veins-veins-4a2/examples/veins folder, as it is shown in Figure C.14.

Figure C.14 OMNeT scenario files.

You need to create files which are dissemination methods of messages. So, create counter, flooding

and probability folders inside /home/omnet/veins-veins-4a2/src/veins/modules/application/traci,

as it is shown in Figure C.15. After, create the files to each technique, as it is shown in Figures C.16,

C.17, and C.18.

141

Figure C.15 Create folders for dissemination methods files.

Figure C.16 Counter method files.

Figure C.17 Flooding method files.

Figure C.18 Probability method files.

After that, create a folder named stats into /home/omnet/veins-veins-4a2/src/veins/modules and

created inside the files FranciscoStatistics.*, as it is shown in Figures C.19 and C.20.

142

Figure C.19 Create stats folder.

Figure C.20 Statistics files.

Now, you are ready for run the simulation.

C.3 Running the simulation

Before running the simulation, it is recommendable clean the local variables of Veins. So, in

OMNeT++ workspace right-click on veins and click on clean local, clean project and build project,

as it is illustrated in Figures C.21, C.22 and C.23.

Figure C.21 Clean local variables.

143

Figure C.22 Clean project variables.

Figure C.23 Build project in OMNeT++.

Then, type the following command, as it is shown in Figure C.24.

Figure C.24 Run python script.

/home/omnet/veins-veins-4a2/sumo-launchd.py –vv –c
/home/omnet/sumo-0.22.0/bin/sumo-gui

144

Then, right-click on omnetpp.ini and select Runs As – 1 OMNeT++ Simulation, as it is illustrated in

Figure C.25.

Figure C.25 Run omnetpp.ini.

After that, select one dissemination method of messages, in this case flooding, and click on OK, as

it is shown in Figure C.26.

Figure C.26 Select a dissemination method.

Then, a window will appear and click on RUN to start the simulation, as it is illustrated in Figure

C.27.

145

Figure C.27 Click on run to start simulation.

In some cases an error may occur, as illustrated in Figure C.28, it is because the map is bigger than

the playground parameter. So, you need to edit this parameter in omnetpp.ini file, as it is shown in

Figure C.29.

Figure C.28 Error during simulation.

Figure C.29 Configure playground parameters.

146

Then, you need to repeat the previous steps in order to restart the simulation, if the playground

parameter is ok the simulation starts, as it is shown in Figures C.30 and C.31.

Figure C.30 Run simulation in SUMO.

Figure C.31 Run simulation in OMNeT++.

Finally, you can see the results in result folder and click on flooding.anf, as it is illustrated in

Figure C.32.

147

Figure C.32 Results of simulation in VEINS.

148

D. Source code of files used in the simulations

D.1 Implementation of omnetpp

omnetpp.ini

[General]
cmdenv-express-mode = true
cmdenv-autoflush = true
cmdenv-status-frequency = 10000000s

tkenv-image-path = bitmaps
ned-path = .

network = FranciscoScenario

Simulation parameters #

debug-on-errors = true
print-undisposed = false

sim-time-limit = 6000s

**.scalar-recording = true
**.vector-recording = true

**.debug = false
**.coreDebug = false

*.playgroundSizeX = 13000m
*.playgroundSizeY = 13000m
*.playgroundSizeZ = 50m

Annotation parameters #

*.annotations.draw = false

Obstacle parameters #

*.obstacles.debug = false

WorldUtility parameters #

*.world.useTorus = false
*.world.use2D = false

149

TraCIScenarioManager parameters #

*.manager.updateInterval = 0.1s
*.manager.host = "localhost"
*.manager.port = 9999
*.manager.moduleType = "org.car2x.veins.nodes.Car"
*.manager.moduleName = "node"
*.manager.moduleDisplayString = ""
*.manager.autoShutdown = true
*.manager.margin = 25
*.manager.launchConfig = xmldoc("erlangen.launchd.xml")

11p specific parameters #

NIC-Settings #

*.connectionManager.pMax = 20mW
*.connectionManager.sat = -89dBm
*.connectionManager.alpha = 2.0
*.connectionManager.carrierFrequency = 5.890e9 Hz
*.connectionManager.sendDirect = true

*.**.nic.mac1609_4.useServiceChannel = false

*.**.nic.mac1609_4.txPower = 20mW
*.**.nic.mac1609_4.bitrate = 18Mbps

*.**.nic.phy80211p.sensitivity = -89dBm
*.**.nic.phy80211p.maxTXPower = 10mW
*.**.nic.phy80211p.useThermalNoise = true
*.**.nic.phy80211p.thermalNoise = -110dBm
*.**.nic.phy80211p.decider = xmldoc("config.xml")
*.**.nic.phy80211p.analogueModels = xmldoc("config.xml")
*.**.nic.phy80211p.usePropagationDelay = true

WaveAppLayer #

.node[].appl.debug = false
.node[].appl.headerLength = 256 bit
.node[].appl.sendBeacons = false
.node[].appl.dataOnSch = false
.node[].appl.sendData = true
.node[].appl.beaconInterval = 1s
.node[].appl.beaconPriority = 3
.node[].appl.dataPriority = 2
.node[].appl.maxOffset = 0.005s

150

Mobility #

.node[].veinsmobilityType = "org.car2x.veins.modules.mobility.traci.TraCIMobility"
.node[].mobilityType = "TraCIMobility"
.node[].mobilityType.debug = true
.node[].veinsmobilityType.debug = true
.node[].veinsmobility.x = 0
.node[].veinsmobility.y = 0
.node[].veinsmobility.z = 1.895
*.node[0].veinsmobility.accidentCount = 1

#[Config Stats]
.node[].veinsmobility.posx.result-recording-modes = - # try removing superflous stats

*.manager.actualNumVehiclesSignal.scalar-recording = true
*.manager.actualNumVehicleSignal.vector-recording = true

.node[].appl.warningReceivedSignal.scalar-recording = true
.node[].appl.warningReceivedSignal.vector-recording = true

.node[].appl.beaconReceivedSignal.scalar-recording = true
.node[].appl.beaconReceivedSignal.vector-recording = true

.node[].appl.messageReceivedSignal.scalar-recording = true
.node[].appl.messageReceivedSignal.vector-recording = true

.node[].appl.newWarningReceivedSignal.scalar-recording = true
.node[].appl.newWarningReceivedSignal.vector-recording = true

*.stats.allBeaconsReceivedSignal.scalar-recording = true
*.stats.allBeaconsReceivedSignal.vector-recording = true

*.stats.allNewWarningsReceivedSignal.scalar-recording = true
*.stats.allNewWarningsReceivedSignal.vector-recording = true

*.stats.allWarningsReceivedSignal.scalar-recording = true
*.stats.allWarningsReceivedSignal.vector-recording = true

*.stats.allMessagesReceivedSignal.scalar-recording = true
*.stats.allMessagesReceivedSignal.vector-recording = true

*.stats.numAccidentsSignal.scalar-recording = true
*.stats.numAccidentsSignal.vector-recording = true

[Config Flooding]
description = "Flooding based dissemination"
**.debug = false
**.coreDebug = false
*.annotations.draw = true
.node[].applType = "Flooding"
.node[].appl.sendBeacons = false

151

.node[].appl.indexOfAccidentNode = 0
.node[].appl.indexOfAccidentNode = 0
*.node[0].veinsmobility.accidentCount = 1
*.node[0].veinsmobility.accidentStart = 40s
*.node[0].veinsmobility.accidentDuration = 20s

[Config Counter]
description = "Counter based dissemination"
.node[].applType = "Counter"
.node[].appl.counterThreshold = 5
**.debug = false
**.coreDebug = false
*.annotations.draw = true
.node[].appl.indexOfAccidentNode = 0
*.node[0].veinsmobility.accidentCount = 1
*.node[0].veinsmobility.accidentStart = 90s
*.node[0].veinsmobility.accidentDuration = 30s

[Config Probability]
description = "Probability based dissemination"
.node[].applType = "Probability"
.node[].appl.ProbabilityThreshold = 10
**.debug = false
**.coreDebug = false
*.annotations.draw = true
.node[].appl.indexOfAccidentNode = 0

D.2 Implementation of FranciscoScenario

FranciscoScenario.ned

import org.car2x.veins.modules.stats.FranciscoStatistics;

//
import org.car2x.veins.nodes.RSU;
import org.car2x.veins.nodes.Scenario;
//

import org.car2x.veins.base.connectionManager.ConnectionManager;
import org.car2x.veins.base.modules.BaseWorldUtility;
import org.car2x.veins.modules.mobility.traci.TraCIScenarioManagerLaunchd;
import org.car2x.veins.modules.obstacle.ObstacleControl;
import org.car2x.veins.modules.world.annotations.AnnotationManager;

network FranciscoScenario
{
 parameters:
 double playgroundSizeX @unit(m); // x size of the area the nodes are in (in meters)
 double playgroundSizeY @unit(m); // y size of the area the nodes are in (in meters)
 double playgroundSizeZ @unit(m); // z size of the area the nodes are in (in meters)

152

 @display("bgb=$playgroundSizeX,$playgroundSizeY");

 submodules:
 obstacles: ObstacleControl {
 parameters:
 @display("p=240,50");
 }
 annotations: AnnotationManager {
 parameters:
 @display("p=260,50");
 }
 connectionManager: ConnectionManager {
 parameters:
 @display("p=150,0;i=abstract/multicast");
 }
 world: BaseWorldUtility {
 parameters:
 playgroundSizeX = playgroundSizeX;
 playgroundSizeY = playgroundSizeY;
 playgroundSizeZ = playgroundSizeZ;
 @display("p=30,0;i=misc/globe");
 }
 manager: TraCIScenarioManagerLaunchd {
 parameters:
 @display("p=512,128");
 }
 stats: FranciscoStatistics {
 parameters:
 @display("p=440,50");
 }

 connections allowunconnected:
}

D.3 Implementation of Counter technique

D.3.1 Counter.cc

#include "Counter.h"
#include "veins/modules/messages/WaveShortMessage_m.h"
#include <iostream>
#include <cstdio>
#include <cstring>

using Veins::TraCIMobility;
using Veins::TraCIMobilityAccess;
using std::sprintf;
using std::strcmp;

Define_Module(Counter)

153

void Counter::initialize(int stage)
{
 BaseWaveApplLayer::initialize(stage);
 if (stage == 0) {

 // configurable variables in omnetpp.ini
 counterThreshold = par("counterThreshold").longValue();
 indexOfAccidentNode = par("indexOfAccidentNode").longValue();
 randomRebroadcastDelay = par("randomRebroadcastDelay").doubleValue();
 //

 traci = TraCIMobilityAccess().get(getParentModule());
 stats = FranciscoStatisticsAccess().getIfExists();
 ASSERT(stats);
 beaconReceivedSignal = registerSignal("beaconReceivedSignal");
 warningReceivedSignal = registerSignal("warningReceivedSignal");
 messageReceivedSignal = registerSignal("messageReceivedSignal");
 newWarningReceivedSignal = registerSignal("newWarningReceivedSignal");

 lastDroveAt = simTime();
 sentMessage = false;
 }
}

void Counter::receiveSignal(cComponent *source, simsignal_t signalID, cComponent::cObject
*obj)
{
 Enter_Method_Silent();
 if (signalID == mobilityStateChangedSignal) {
 handlePositionUpdate(obj);
 }
}

void Counter::onBeacon(WaveShortMessage *wsm)
{
 // Beacons are not used in this algorithm
}

void Counter::onData(WaveShortMessage *wsm)
{
 // statistics recording
 emit(warningReceivedSignal, 1);
 emit(messageReceivedSignal, 1);
 stats->updateAllWarningsReceived();
 stats->updateAllMessagesReceived();

 // prevent originating disseminator from participating in further dissemination attempts
 if (sentMessage)
 return;

154

 // add the new message to storage
 receivedMessages[wsm->getTreeId()].push_back(wsm->dup());

 // is it a new warning message?
 if (receivedMessages[wsm->getTreeId()].size() == 1) {
 // statistics recording
 stats->updateNewWarningsReceived();
 emit(newWarningReceivedSignal, 1);

 // add a random waiting period before proceeding. Please see:
 // * onSelfMsg for continuation.
 // * .randomBroadcastDelay configuration in omnetpp.ini
 char buf[64];
 sprintf(buf, "%ld", wsm->getTreeId());
 // scheduleAt sends messege to self (see handleSelfMsg() below and
randomRebroadcastDelay in omnetpp.ini
 scheduleAt(simTime() + SimTime(randomRebroadcastDelay, SIMTIME_MS), new
cMessage(buf));
 }
}

void Counter::handlePositionUpdate(cComponent::cObject *obj)
{
 // stopped for for at least 10s?
 if (traci->getSpeed() < 1) {
 if ((simTime() - lastDroveAt >= 10)
 && (!sentMessage)
 && (indexOfAccidentNode == getParentModule()->getIndex())) {

 std::cerr << "[INFO] ACCIDENT STARTED @simTime: " << simTime().str() << " for node: " <<
getParentModule()->getIndex() << endl;

 findHost()->getDisplayString().updateWith("r=16,red");
 if (!sentMessage)
 sendMessage(traci->getRoadId());
 }
 }
 else {
 lastDroveAt = simTime();
 }
}

void Counter::sendMessage(std::string blockedRoadId)
{
 t_channel channel = dataOnSch ? type_SCH : type_CCH;
 WaveShortMessage* wsm = prepareWSM("data", dataLengthBits, channel, dataPriority, -1,2);
 wsm->setWsmData(blockedRoadId.c_str());
 sendWSM(wsm);

 sentMessage = true;
}

155

void Counter::handleSelfMsg(cMessage *msg)
{
 // for "data" and "beacon" self messages
 if ((!strcmp(msg->getName(), "data")) || (!strcmp(msg->getName(), "beacon"))) {
 BaseWaveApplLayer::handleSelfMsg(msg);
 return;
 }
 else { // for "rebroadcast" self messages
 // if the number of times a warning message is received exceeds the counterThreshold
 // configuration variable, do not rebroadcast.
 if (receivedMessages[atol(msg->getName())].size() >= (unsigned)counterThreshold)
 return;
 // if greater than threshold.. rebroadcast.
 sendWSM(receivedMessages[atol(msg->getName())][0]->dup());
 }
}

D.3.2 Counter.h

#ifndef Counter_H
#define Counter_H

#include "veins/modules/application/ieee80211p/BaseWaveApplLayer.h"
#include "veins/modules/mobility/traci/TraCIMobility.h"
#include "veins/modules/stats/FranciscoStatistics.h"
#include <vector>
#include <map>

using Veins::TraCIMobility;
using Veins::AnnotationManager;
using std::vector;
using std::map;

typedef std::vector<WaveShortMessage*> WaveShortMessages;

class Counter : public BaseWaveApplLayer
{

public:
 virtual void initialize(int stage);
 virtual void receiveSignal(cComponent *source, simsignal_t signalID, cObject *obj);

protected:
 TraCIMobility* traci;
 FranciscoStatistics* stats;
 vector<WaveShortMessage*> warningMessages;
 simsignal_t beaconReceivedSignal;
 simsignal_t warningReceivedSignal;
 simsignal_t newWarningReceivedSignal;
 simsignal_t messageReceivedSignal;
 simtime_t lastDroveAt;
 bool sentMessage;

156

 long counterThreshold;
 long indexOfAccidentNode;
 double randomRebroadcastDelay;
 map<long,WaveShortMessages> receivedMessages; // treeId, WSM vector

protected:
 virtual void onBeacon(WaveShortMessage *wsm);
 virtual void onData(WaveShortMessage *wsm);
 virtual void handlePositionUpdate(cObject *obj);
 virtual void sendMessage(std::string blockedRoadId);
 virtual void handleSelfMsg(cMessage *msg);
};

#endif // Counter_H

D.3.3 Counter.ned

package org.car2x.veins.modules.application.traci.counter;
import org.car2x.veins.modules.application.ieee80211p.BaseWaveApplLayer;
import org.car2x.veins.modules.application.ieee80211p.BaseWaveApplLayer;

simple Counter extends BaseWaveApplLayer
{
 @class(Counter);
 @display("i=block/app2");

 int counterThreshold = default(3);
 volatile double randomRebroadcastDelay = default(uniform(0,500));
 int indexOfAccidentNode = default(0);

 @signal[warningReceivedSignal](type=long);
 @statistic[warningReceivedSignal](record=count,vector; description="Warning Message
Received");

 @signal[beaconReceivedSignal](type=long);
 @statistic[beaconReceivedSignal](record=count,vector; description="Beacon Message
Received");

 @signal[messageReceivedSignal](type=long);
 @statistic[messageReceivedSignal](record=count,vector; description="Message Received");

 @signal[newWarningReceivedSignal](type=long);
 @statistic[newWarningReceivedSignal](record=count,vector; description="New Warning
Message Received");
}

157

D.4 Implementation of Flooding technique

D.4.1 Flooding.cc

#include "Flooding.h"
#include "veins/modules/messages/WaveShortMessage_m.h"
#include <iostream>

using Veins::TraCIMobility;
using Veins::TraCIMobilityAccess;

Define_Module(Flooding)

void Flooding::initialize(int stage)
{
 BaseWaveApplLayer::initialize(stage);
 if (stage == 0) {

 traci = TraCIMobilityAccess().get(getParentModule());
 stats = FranciscoStatisticsAccess().getIfExists();
 ASSERT(stats);
 beaconReceivedSignal = registerSignal("beaconReceivedSignal");
 warningReceivedSignal = registerSignal("warningReceivedSignal");
 messageReceivedSignal = registerSignal("messageReceivedSignal");
 newWarningReceivedSignal = registerSignal("newWarningReceivedSignal");

 indexOfAccidentNode = par("indexOfAccidentNode").longValue();

 lastDroveAt = simTime();
 sentMessage = false;
 }
}

void Flooding::receiveSignal(cComponent *source, simsignal_t signalID, cComponent::cObject
*obj)
{
 Enter_Method_Silent();
 if (signalID == mobilityStateChangedSignal) {
 handlePositionUpdate(obj);
 }
}

void Flooding::onBeacon(WaveShortMessage *wsm)
{
 // not used for this algorithm
}

void Flooding::onData(WaveShortMessage *wsm)
{
 // statistics recording

158

 emit(warningReceivedSignal, 1);
 emit(messageReceivedSignal, 1);
 stats->updateAllWarningsReceived();
 stats->updateAllMessagesReceived();

 // prevent originating disseminator from participating in further dissemination attempts
 if (sentMessage)
 return;

 bool messageIsRepeat = false;

 // is this a new warning message?
 size_t i;
 for (i = 0; i < warningMessages.size(); ++i) {
 WaveShortMessage* warningMessage = warningMessages[i];
 if (wsm->getTreeId() == warningMessage->getTreeId()) {
 messageIsRepeat = true;
 }
 }

 if (traci->getRoadId()[0] != ':')
 // traci->commandChangeRoute(wsm->getWsmData(), 9999);

 // rebroadcast only if new message
 if (!messageIsRepeat) {
 sendWSM(wsm->dup());

 stats->updateNewWarningsReceived();
 emit(newWarningReceivedSignal, 1);

 warningMessages.push_back(wsm->dup());
 }
}

void Flooding::handlePositionUpdate(cComponent::cObject *obj)
{
 // stopped for for at least 10s?
 if (traci->getSpeed() < 1) {
 if ((simTime() - lastDroveAt >= 10)
 && (!sentMessage)
 && (indexOfAccidentNode == getParentModule()->getIndex())) {

 std::cerr << "[DEBUG] ACCIDENT STARTED @simTime: " << simTime().str() << " for node: "
<< getParentModule()->getIndex() << endl;

 findHost()->getDisplayString().updateWith("r=16,red");
 if (!sentMessage) sendMessage(traci->getRoadId());
 }
 }
 else {
 lastDroveAt = simTime();
 }

159

}

void Flooding::sendMessage(std::string blockedRoadId)
{
 sentMessage = true;

 t_channel channel = dataOnSch ? type_SCH : type_CCH;
 WaveShortMessage* wsm = prepareWSM("data", dataLengthBits, channel, dataPriority, -1,2);
 wsm->setWsmData(blockedRoadId.c_str());
 sendWSM(wsm);
}

D.4.2 Flooding.h

#ifndef FLOODING_H
#define FLOODING_H

#include "veins/modules/application/ieee80211p/BaseWaveApplLayer.h"
#include "veins/modules/mobility/traci/TraCIMobility.h"
#include "veins/modules/stats/FranciscoStatistics.h"
#include <vector>

using Veins::TraCIMobility;
using Veins::AnnotationManager;
using std::vector;

class Flooding : public BaseWaveApplLayer
{
public:
 virtual void initialize(int stage);
 virtual void receiveSignal(cComponent *source, simsignal_t signalID, cObject *obj);

protected:
 TraCIMobility* traci;
 FranciscoStatistics* stats;
 vector<WaveShortMessage*> warningMessages;
 simsignal_t beaconReceivedSignal;
 simsignal_t warningReceivedSignal;
 simsignal_t newWarningReceivedSignal;
 simsignal_t messageReceivedSignal;
 simtime_t lastDroveAt;
 bool sentMessage;
 long indexOfAccidentNode;

protected:
 virtual void onBeacon(WaveShortMessage *wsm);
 virtual void onData(WaveShortMessage *wsm);
 virtual void handlePositionUpdate(cObject *obj);
 virtual void sendMessage(std::string blockedRoadId);
};

160

#endif // FLOODING_H

D.4.3 Flooding.ned

package org.car2x.veins.modules.application.traci.flooding;
import org.car2x.veins.modules.application.ieee80211p.BaseWaveApplLayer;

simple Flooding extends BaseWaveApplLayer
{
@class(Flooding);
@display("i=block/app2");

int indexOfAccidentNode = default(0);

@signal[warningReceivedSignal](type=long);
@statistic[warningReceivedSignal](record=count,vector; description="Warning Message
Received");

@signal[beaconReceivedSignal](type=long);
@statistic[beaconReceivedSignal](record=count,vector; description="Beacon Message
Received");

@signal[messageReceivedSignal](type=long);
@statistic[messageReceivedSignal](record=count,vector; description="Message Received");

@signal[newWarningReceivedSignal](type=long);
@statistic[newWarningReceivedSignal](record=count,vector; description="New Warning Message
Received");
}

D.5 Implementation of Probability technique

D.5.1 Probability.cc

#include "Probability.h"
#include "veins/modules/messages/WaveShortMessage_m.h"
#include <iostream>
#include <cstdio>
#include <cstring>

using Veins::TraCIMobility;
using Veins::TraCIMobilityAccess;
using std::sprintf;

Define_Module(Probability)

void Probability::initialize(int stage)
{
 BaseWaveApplLayer::initialize(stage);
 if (stage == 0) {

161

// std::cerr << "In Probability::initialize()" << endl;

 ProbabilityThreshold = par("ProbabilityThreshold").doubleValue();
 indexOfAccidentNode = par("indexOfAccidentNode").longValue();
 randomRebroadcastDelay = par("randomRebroadcastDelay").doubleValue();

 traci = TraCIMobilityAccess().get(getParentModule());
 stats = FranciscoStatisticsAccess().getIfExists();
 ASSERT(stats);
 beaconReceivedSignal = registerSignal("beaconReceivedSignal");
 warningReceivedSignal = registerSignal("warningReceivedSignal");
 messageReceivedSignal = registerSignal("messageReceivedSignal");
 newWarningReceivedSignal = registerSignal("newWarningReceivedSignal");

 lastDroveAt = simTime();
 sentMessage = false;
 }
}

void Probability::receiveSignal(cComponent *source, simsignal_t signalID, cComponent::cObject
*obj)
{
 Enter_Method_Silent();
 if (signalID == mobilityStateChangedSignal) {
 handlePositionUpdate(obj);
 }
}

void Probability::onBeacon(WaveShortMessage *wsm)
{
// std::cerr << "In Probability::onBeacon()" << endl;
}

void Probability::onData(WaveShortMessage *wsm)
{
// std::cerr << "In Probability::onData()" << std::endl;
 emit(warningReceivedSignal, 1);
 emit(messageReceivedSignal, 1);
 stats->updateAllWarningsReceived();
 stats->updateAllMessagesReceived();

 // prevent originating disseminator from participating in further dissemination attempts
 if (sentMessage)
 return;

 receivedMessages[wsm->getTreeId()].push_back(wsm->dup());

 // is it a new warning message?
 if (receivedMessages[wsm->getTreeId()].size() == 1) {
 stats->updateNewWarningsReceived();

162

 emit(newWarningReceivedSignal, 1);

 char buf[64];
 sprintf(buf, "%ld", wsm->getTreeId());
 scheduleAt(simTime() + SimTime(randomRebroadcastDelay, SIMTIME_MS), new
cMessage(buf));
 }
}

void Probability::handlePositionUpdate(cComponent::cObject *obj)
{
 // stopped for for at least 10s?
 if (traci->getSpeed() < 1) {
 if ((simTime() - lastDroveAt >= 10)
 && (!sentMessage)
 && (indexOfAccidentNode == getParentModule()->getIndex())) {

 std::cerr << "[DEBUG] ACCIDENT STARTED @simTime: " << simTime().str() << " for node: "
<< getParentModule()->getIndex() << endl;

 findHost()->getDisplayString().updateWith("r=16,red");
 if (!sentMessage)
 sendMessage(traci->getRoadId());
 }
 }
 else {
 lastDroveAt = simTime();
 }
}

void Probability::sendMessage(std::string blockedRoadId)
{
 t_channel channel = dataOnSch ? type_SCH : type_CCH;
 WaveShortMessage* wsm = prepareWSM("data", dataLengthBits, channel, dataPriority, -1,2);
 wsm->setWsmData(blockedRoadId.c_str());
 sendWSM(wsm);

 sentMessage = true;
}

void Probability::handleSelfMsg(cMessage *msg)
{
 if ((!strcmp(msg->getName(), "data")) || (!strcmp(msg->getName(), "beacon"))) {
 BaseWaveApplLayer::handleSelfMsg(msg);
 return;
 }
 else { // IS A REBROADCAST
 if (uniform(0,1)< ProbabilityThreshold)
 return;
 sendWSM(receivedMessages[atol(msg->getName())][0]->dup());
 }
}

163

D.5.2 Probability.h

#ifndef Probability_H
#define Probability_H

#include "veins/modules/application/ieee80211p/BaseWaveApplLayer.h"
#include "veins/modules/mobility/traci/TraCIMobility.h"
#include "veins/modules/stats/FranciscoStatistics.h"
#include <vector>
#include <map>

using Veins::TraCIMobility;
using Veins::AnnotationManager;
using std::vector;
using std::map;

typedef std::vector<WaveShortMessage*> WaveShortMessages;

class Probability : public BaseWaveApplLayer
{

public:
 virtual void initialize(int stage);
 virtual void receiveSignal(cComponent *source, simsignal_t signalID, cObject *obj);

protected:
 TraCIMobility* traci;
 FranciscoStatistics* stats;
 vector<WaveShortMessage*> warningMessages;
 simsignal_t beaconReceivedSignal;
 simsignal_t warningReceivedSignal;
 simsignal_t newWarningReceivedSignal;
 simsignal_t messageReceivedSignal;
 simtime_t lastDroveAt;
 bool sentMessage;
 double ProbabilityThreshold;
 long indexOfAccidentNode;
 double randomRebroadcastDelay;
 map<long,WaveShortMessages> receivedMessages; // treeId, WSM vector

protected:
 virtual void onBeacon(WaveShortMessage *wsm);
 virtual void onData(WaveShortMessage *wsm);
 virtual void handlePositionUpdate(cObject *obj);
 virtual void sendMessage(std::string blockedRoadId);
 virtual void handleSelfMsg(cMessage *msg);
};

#endif // Probability_H

164

D.5.3 Probability.ned

package org.car2x.veins.modules.application.traci.probability;
import org.car2x.veins.modules.application.ieee80211p.BaseWaveApplLayer;

simple Probability extends BaseWaveApplLayer
{
 @class(Probability);
 @display("i=block/app2");

 double ProbabilityThreshold = default(0.5);
 volatile double randomRebroadcastDelay = default(uniform(0,500));
 int indexOfAccidentNode = default(0);

 @signal[warningReceivedSignal](type=long);
 @statistic[warningReceivedSignal](record=count,vector; description="Warning Message
Received");

 @signal[beaconReceivedSignal](type=long);
 @statistic[beaconReceivedSignal](record=count,vector; description="Beacon Message
Received");

 @signal[messageReceivedSignal](type=long);
 @statistic[messageReceivedSignal](record=count,vector; description="Message Received");

 @signal[newWarningReceivedSignal](type=long);
 @statistic[newWarningReceivedSignal](record=count,vector; description="New Warning
Message Received");
}

D.6 Implementation of FranciscoStatistics

D.6.1 FranciscoStatistics.cc

#include "FranciscoStatistics.h"
#include <iostream>
using std::cerr;
using std::endl;

Define_Module(FranciscoStatistics)

void FranciscoStatistics::initialize(int stage)
{
 if (stage == 0) {
 allBeaconsReceivedSignal = registerSignal("allBeaconsReceivedSignal");
 allNewWarningsReceivedSignal = registerSignal("allNewWarningsReceivedSignal");
 allWarningsReceivedSignal = registerSignal("allWarningsReceivedSignal");
 allMessagesReceivedSignal = registerSignal("allMessagesReceivedSignal");
 allBeaconsReceived = allWarningsReceived = newWarningsReceived = allMessagesReceived =
0;
 numAccidentsOccurred = 0;

165

 }
}

void FranciscoStatistics::finish()
{
}

void FranciscoStatistics::updateAllBeaconsReceived()
{
 ++allBeaconsReceived;
 emit(allBeaconsReceivedSignal, allBeaconsReceived);
}

void FranciscoStatistics::updateNewWarningsReceived()
{
 ++newWarningsReceived;
 emit(allNewWarningsReceivedSignal, newWarningsReceived);
// cerr << "num warnings: " << newWarningsReceived << simTime().str() << endl;
}

void FranciscoStatistics::updateAllWarningsReceived()
{
 emit(allWarningsReceivedSignal, ++allWarningsReceived);
}

void FranciscoStatistics::updateAllMessagesReceived()
{
 emit(allMessagesReceivedSignal, ++allMessagesReceived);
}

void FranciscoStatistics::incrementAccidentOccurred()
{
 emit(numAccidentsSignal, ++numAccidentsOccurred);
}

D.6.2 FranciscoStatistics.h

#ifndef FRANCISCOSTATISTICS_H
#define FRANCISCOSTATISTICS_H
#include <csimplemodule.h>

class FranciscoStatistics : public cSimpleModule
{

public:
 void updateAllBeaconsReceived();
 void updateNewWarningsReceived();
 void updateAllWarningsReceived();
 void updateAllMessagesReceived();

 int getNumberOfAccidentsOccurred() { return numAccidentsOccurred; }

166

 void incrementAccidentOccurred();

protected:
 int allBeaconsReceived;
 int newWarningsReceived;
 int allWarningsReceived;
 int allMessagesReceived;
 int numAccidentsOccurred;

 simsignal_t allBeaconsReceivedSignal;
 simsignal_t allNewWarningsReceivedSignal;
 simsignal_t allWarningsReceivedSignal;
 simsignal_t allMessagesReceivedSignal;
 simsignal_t numAccidentsSignal;

protected:
 virtual void initialize(int stage);
 virtual void finish();

};

class FranciscoStatisticsAccess
{
 public:
 FranciscoStatisticsAccess() {
 }

 FranciscoStatistics* getIfExists() {
 return dynamic_cast<FranciscoStatistics*>(simulation.getModuleByPath("stats"));
 }
};

#endif // FRANCISCOSTATISTICS_H

D.6.3 FranciscoStatistics.ned

package org.car2x.veins.modules.stats;

simple FranciscoStatistics
{
 parameters:
 @class(FranciscoStatistics);
 @display("i=block/table2_vl.png");

 @signal[allBeaconsReceivedSignal](type=long);
 @statistic[allBeaconsReceivedSignal](record=count,vector; description="All Beacons
Received");

 @signal[allNewWarningsReceivedSignal](type=long);
 @statistic[allNewWarningsReceivedSignal](record=count,vector; description="All New
Warnings Received");

167

 @signal[allWarningsReceivedSignal](type=long);
 @statistic[allWarningsReceivedSignal](record=count,vector; description="All Warnings
Received");

 @signal[allMessagesReceivedSignal](type=long);
 @statistic[allMessagesReceivedSignal](record=count,vector; description="All Messages
Received");

 //@signal[numAccidentsSignal](type=long);
 //@statistic[numAccidentsSignal](record=count,vector; description="Number Of Occurred
Accidents");
}

