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Highlights 

 The effects of nitrate pollution have been evaluated in five different aquifer 

types 

 Statistical and multivariate analyses are used to identify groundwater changes 

 Agricultural pollution modifies groundwater conditions and geochemical 

processes 
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ABSTRACT 18 

Contamination from agricultural sources and, in particular, nitrate pollution, is one of the 19 

main concerns in groundwater management. However, this type of pollution entails the 20 

entrance of other substances into the aquifer, as well as it may promote other processes. In 21 

this study, we deal with hydrochemical and isotopic analysis of groundwater samples from 22 

four distinct zones in Catalonia (NE Spain), which include different lithological units, to 23 

investigate the influence of manure fertilization on the overall hydrochemical composition of 24 

groundwater. Results indicate that high nitrate concentrations, resulting from intense manure 25 
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application, homogenize the contents of the major dissolved ions (i.e.; Cl
-
, SO4

2-
, Ca

2+
, Na

+
, 26 

K
+
, and Mg

2+
). Moreover, positive linear relationships between nitrate and some ions are 27 

found indicating the magnitude of the fertilization impact on groundwater hydrochemistry. 28 

Nevertheless, the increasing concentration of specific ions is not only attributed to the manure 29 

input, but to the enhancing effect of manure and slurry upon the biogeochemical processes 30 

that control water-rock interactions. Such results raise awareness that such processes should 31 

be evaluated in advance in order to assess adequate groundwater resources assessment. 32 

Highlights 33 

 The effects of nitrate pollution have been evaluated in five different aquifer types 34 

 Statistical and multivariate analyses are used to identify groundwater changes 35 

 Agricultural pollution modifies groundwater conditions and geochemical processes 36 

 37 

INTRODUCTION 38 

Nitrate occurrence and transport in aquifers have been widely studied since it is one of the 39 

major threats in groundwater, and most aquifers in agricultural areas are affected by this 40 

contaminant (Spalding and Exner, 1993; EEA, 2012). Most of the papers that focused on 41 

nitrate pollution study, by means of hydrochemical and isotopic data, nitrate trends in 42 

groundwater at different scales to identify potential sources of pollution and build-up 43 

hydrogeochemical models to understand the behavior of nitrate polluted aquifers (for 44 

instance, Burg and Heaton,1998; Hudak, 2000; Katz et al., 2004; Masetti et al., 2008; Vitòria 45 

et al., 2008; Carbó et al., 2009; Kaown, et al., 2009; Menció et al., 2011; Boy-Roura et al., 46 

2013). However, agricultural pollution due to a long and continued application of organic 47 

fertilizer (slurry and manure) may not only entail an increase on this ion in aquifers. On the 48 

one hand, other substances present in manure also enter into the groundwater system, such as 49 
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ions, metals, emerging organic contaminants, or even microorganisms. On the other hand, 50 

these substances interact with the subsurface environment, modifying groundwater 51 

conditions, enhancing geochemical processes and even modifying groundwater communities 52 

(Cho et al., 2000; Böhlke, 2002; Murray et al., 2010; Stein et al., 2010; Korbel and Hose, 53 

2011; Lapworth et al., 2012; Korbel et al., 2013; Choi et al., 2013). 54 

In this study, we look for the evidence of the changes that manure application exerts on the 55 

major components concentrations by conducting an analysis of a large hydrochemical 56 

database, including isotopic data, of nitrate polluted aquifers representative of several 57 

geological environments. Our aim is to analyze whether manure and slurry application lead to 58 

a loss of the hydrogeological fingerprint of the geological background, and whether the 59 

resulting groundwater composition is only caused by mixing with manure lixiviates or by 60 

changes in biogeochemical processes. 61 

Manure applied as fertilizer has a complex chemical composition. For instance, Vitòria 62 

(2004) analyzed its composition from several farms in Osona (Catalonia, NE Spain) and 63 

reported that the concentration of some major inorganic components in pig manure, the most 64 

used organic fertilizer in the studied areas in Catalonia (NE Spain), is notably larger than 65 

their natural values in groundwater. This is the reason why its impact on groundwater 66 

hydrochemistry must be evaluated to avoid misinterpretation of supposedly hydrochemical 67 

natural data. 68 

Samples for this study belong to four distinct regions in Catalonia, all of them classified as 69 

Nitrate Vulnerable Zones (NVZs) as a result of the transposition of the Nitrate Directive 70 

(ND) 91/676/EC. In fact, NVZs in Catalonia cover up to 40% of the total area, and half of 71 

them show nitrate concentrations higher than 40 mg/L, affecting 17 out of the 53 72 

groundwater bodies which are at risk of not meeting the European Water Framework 73 

Directive goals (ACA, 2007; Boy-Roura, 2013). In this study, we analyze datasets from the 74 
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following NVZs, according to published results in the Selva basin (Folch et al., 2011; Menció 75 

et al., 2012; Puig et al., 2013), Empordà basin (Puig, 2014), Osona region (Vitòria et al., 76 

2008; Otero et al., 2009; Menció et al., 2011; Boy-Roura et al., 2013), and Garrotxa area 77 

(based on still unpublished data).  According to their lithologies, five groups of aquifers are 78 

distinguished (Figure 1 and Figure 2): 79 

 Group 1: Aquifers in igneous rocks, especially granite and granodiorite and, in a 80 

lesser degree, in metamorphic rocks such as shale, schist, marble, and gneiss. These 81 

aquifers are mainly located in the ranges surrounding the Selva and Empordà basins.  82 

Hydrochemically, they present Ca
2+

-HCO3
-
 and Ca

2+
-HCO3

-
-Cl

-
 facies, tending to 83 

evolve to Na
+
-HCO3

-
. 84 

 Group 2: Aquifers in sedimentary rocks, mainly Paleogene sedimentary rocks, 85 

including detritic, organic and chemical sedimentary rocks, such as conglomerates, 86 

sandstones, siltstones, limestones, marls, and gypsum deposits. Although these 87 

aquifers are present in all the study areas, they are mainly exploited in Osona and 88 

Garrotxa, and with a minor extent in Empordà. Main hydrochemical facies are Ca
2+

-89 

HCO3
-
, Ca

2+
-Mg

2+
-HCO3

-
 or Ca

2+
-SO4

2-
. 90 

 Group 3: Aquifers in sediments derived from igneous and metamorphic rocks. The 91 

arkosic sands, gravels and silt layers of the Neogene deposit that filled the Empordà 92 

and Selva areas, and the more recent Quaternary alluvial formations associated to the 93 

main rivers in these basins, are the weathering products of the main range areas, 94 

mainly located in the Pyrenees Montseny-Guilleries and Gavarres ranges. They show 95 

similar facies than Group 1. 96 

 Group 4: Aquifers in sediments derived from sedimentary rocks. These aquifers are 97 

located in Osona and Garrotxa basins, and constitute the Quaternary alluvial aquifers 98 

and surface formations in these areas. Their facies are analogous to those of Group 2. 99 
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 Group 5: Aquifers in volcanic materials. In this group of aquifers there is a broad 100 

variety of materials, from phreatomagmatic and pyroclastic deposits to basaltic lava 101 

flow locally interleaved by sedimentary (alluvial) levels, which may locally be the 102 

most productive units. These materials are mainly located in the Garrotxa area, but 103 

volcanic lithologies also constitute aquifers in some parts of the Selva basin. This 104 

group shows the lowest EC values with Ca
2+

-HCO3
-
 or Ca

2+
-Mg

2+
-HCO3

-
 facies. 105 

 106 

METHODOLOGY 107 

Field surveys, in the studied datasets (Folch et al., 2011; Menció et al., 2012; Puig et al., 108 

2013; Puig, 2014; Otero et al., 2009; Menció et al., 2011; Boy-Roura et al., 2013), were 109 

conducted from 2006 to 2013. A total number of 204 groundwater sampling locations 110 

constitute the whole dataset –distributed as Selva basin: 37 samples; Empordà basin: 45; 111 

Osona region: 57; Garrotxa area: 65– and they are classified according to the five described 112 

lithological groups (Table 1).  113 

Similar analytical procedures for hydrochemical and isotopic analysis were followed at each 114 

studied region. Specific details are described in each of the given references.  Concentration 115 

units are reported in mg/L. Most of the samples had an ionic mass balance error between 116 

±5%. Isotope δ-notation for water isotopes is expressed in terms of the ‰ deviation of the 117 

isotope ratio of the sample relative to that of the V-SMOW standard. Analytical errors are 118 

±0.06‰ for δ
18

O and ±0.7‰ for δD. Nitrate isotope notation is also expressed in terms of δ 119 

(‰) relative to that of the international standards AIR (atmospheric N2) for δ
15

N. Precision 120 

(≡1σ) of the samples are ±0.3‰ and ±0.4‰, for δ
15

NNO3 and δ
18

ONO3, respectively. 121 

The SPSS program (version 19, 2010, SPSS Inc.) was used to conduct the different statistical 122 

analyses. Differences between aquifer hydrochemical parameters were analyzed considering 123 

the Kruskal-Wallis and Mann-Whitney U tests, for non-parametric data, since none of the 124 
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parameters were normally distributed. In addition, a Principal Component Analysis (PCA) 125 

was conducted in order to identify associations between variables and samples. The 126 

associations obtained through a PCA, based on similar magnitudes and variations in 127 

chemical, physical, and isotopic values in the groundwater samples composition, are adequate 128 

to indicate the influence of human factors, hydrochemical processes, or even, the origin of 129 

groundwater (for instance, Helena et al., 2000; Menció and Mas-Pla, 2008; Menció et al., 130 

2013; Re et al., 2014).
  

131 

 132 

RESULTS AND DISCUSSION 133 

At a first glance, hydrochemical characteristics of groundwater samples with low NO3
-
 134 

content (below the health standard limit of 50 mg NO3
-
/L) reflect the dominant role of 135 

lithology in the composition, as observed in Figure 2. Mean and standard deviation values 136 

(Table 1) and boxplot shapes of selected parameters (EC, Cl
-
, SO4

2-
, Na

+
, Ca

2+
; Figure 2) for 137 

samples with low nitrate content, reflect the differences among aquifer types attributed to 138 

distinct lithology, showing the hydrochemical characteristics of groundwater samples under 139 

natural conditions. For instance, aquifers in groups 1 and 3, including igneous and 140 

metamorphic aquifers and sediments derived from these rocks, do not show significant 141 

differences between concentrations of the major hydrochemical components (with p-values 142 

between 0.089 and 0.881). These aquifers, for instance, present significant differences when 143 

compared with groups 2 and 4, representing aquifers in sedimentary rocks and in sediments 144 

derived from these rocks, for ions such as Cl
-
, Na

+
, and Ca

2+
 (p-values ranging from values 145 

<0.001 to 0.038). Contrarily, hydrochemical characteristics of groundwater at high-nitrate 146 

concentrations (> 50 mg NO3
-
/L; Figure 2) seem to homogenize their concentrations despite 147 

lithological differences, presenting wider ranges for major ions distribution and erasing the 148 
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main differences in their hydrochemical composition of the distinct groups observed at low 149 

NO3
-
 samples.  150 

In detail, when samples of low and high nitrate content for each lithological aquifer group are 151 

compared, significant higher EC values are observed in the most polluted wells (p-values 152 

ranging from 0.006 to values lower than 0.001). Higher EC values are related to significant 153 

higher concentrations of ions: Cl
-
, SO4

2-
, Na

+
 and Ca

2+
 (Table 1). An exception are samples 154 

of group 1, which do not show significant differences in any of these parameters between low 155 

and high nitrate groups (p-values ranging from 0.123 for Ca
2+

 to 0.877 for Cl
-
), since some of 156 

these samples belong to thermal and/or CO2-rich systems. Geochemical evolution in such 157 

environments overlays the chemical contribution of manure inputs. In addition, it is worth 158 

mentioning that these Cl
-
 and Na

+
 higher concentrations are not detected in wells located in 159 

aquifer group 3 (in sediments derived from igneous and metamorphic rocks, and p-values of 160 

0.684 and 0.844, respectively), where natural processes can also favor high Cl
-
 and Na

+
 161 

concentrations. 162 

It is also relevant that fewer hydrochemical differences are detected when high nitrate 163 

concentration sample populations for the different aquifers are compared (Figure 2 and Table 164 

1). As expected due to lithological similarity, no significant differences are detected between 165 

groups 1 and 3 (p-values ranging from 0.087 for SO4
2-

 and 0.906 for Cl
-
), neither between 166 

groups 2 and 4 (p-values between 0.050 for HCO3
-
 and 0.732 for SO4

2-
).  Nevertheless, when 167 

samples with high nitrate concentrations of group 1 and 2 are compared, only significant 168 

differences in SO4
2-

 and K
+
 are detected (p-values of 0.024 and 0.023), while other 169 

components show similar concentration ranges. Furthermore, differences among high nitrate 170 

concentrations samples of groups 1 and 4 are only evident for Ca
2+

 and K
+
 (p-values of 0.018 171 

and 0.011); comparing samples of groups 2 and 3, significant differences are reduced to Mg
2+

 172 

and K
+
 (with p-values <0.001); and, differences between samples of groups 1 and 5 with high 173 
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nitrate concentrations are significant for Na
+
 and K

+
 (p-values of 0.014 in both cases). Indeed, 174 

this group 5 shows the largest differences with the rest of the aquifer groups for high NO3
-
 175 

samples. In volcanic materials, nitrate pollution is clearly lower than in the rest of the studied 176 

aquifers, with an overall mean value of 30.90±3.81 mg/L (Table 1). In this case, high nitrate 177 

concentration samples presented differences with respect to nitrate for samples of groups 2, 3 178 

and 4 (p-values of 0.026, 0.027 and 0.031, respectively). Between group 5 and these other 179 

groups, significant differences were also observed in EC, Cl
-
, Ca

2+
 and SO4

2-
 (p-values 180 

ranging from <0.001 to 0.044); besides, significant differences were detected between group 181 

5 and groups 2 and 3 for Ca
2+

 (p-values <0.001); and, with group 3 for K
+
 and Mg

2+
 (p-values 182 

of 0.008 and 0.004, respectively) . 183 

Complementarily, two Principal Component Analyses were conducted to determine the 184 

different relationships among samples and variables. The first one considered all available 185 

samples, a total number of 204; and considered eleven variables, including: EC, pH, total 186 

aqueous concentration of HCO3
-
, Cl

-
, SO4

2-
, Ca

2+
, Mg

2+
, Na

+
 and K

+
, and 

18
O and D. In the 187 

second analysis, the dataset included only those samples that, in addition to the mentioned 188 

variables, also included nitrate isotopic data (
15

NNO3). In this analysis the number of samples 189 

was reduced to 158, as in 32% of them (mainly from group 5) lacked the nitrate isotopic 190 

information. By conducting both statistical analyses we seek illustrating whether 191 

denitrification processes are relevant on the understanding of the hydrochemical changes in 192 

groundwater related to nitrate pollution. This is the reason why both analyses are shown 193 

herein, and compared.  194 

In the first PCA, variables as pH, HCO3
-
, K

+ 
and D were ruled out of in order to obtain 195 

better values of the goodness-of-fit statistics. Thus, a PCA conducted with the 7 remaining 196 

variables had a Barlett chi-square statistic of 1241.6 (for 28 degrees of freedom and a 197 

minimum significance level of <0.001), and a value of sampling adequacy (MSA) obtained 198 
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by the Kaiser-Meyer-Olkin of 0.732. In the second analysis, the final solution considered 8 199 

variables, and had a better fit with a Barlett chi-square statistic of 1085.5 (for 36 degrees of 200 

freedom and a minimum significance lower than 0.001), and a MSA of 0.758.    201 

Four varifactors (VF) were obtained in both analyses, explaining 91.59% and 88.19% of the 202 

total variance, respectively. In each PCA, these varifactors explained the same processes and 203 

associations of variables; excepting natural attenuation, which was only considered in the 204 

second one as δ
15

NNO3. For this reason, only the scores and samples distribution obtained in 205 

the second PCA are shown in Table 2 and Figure 3. Thus, after a Varimax rotation, the final 206 

VFs were interpreted as follows:  207 

 VF1 includes SO4
2-

, Mg
2+

, Ca
2+

, and EC, explaining a 32.53% of the total variance.  208 

This VF1 stands for water-rock interaction processes, specifically in sedimentary 209 

formations where gypsum dissolution occurs, since VF1 highest values are obtained 210 

in samples located in aquifers belonging to groups 2 and 4, where these processes 211 

have been described to govern groundwater hydrochemistry (Figure 3a; Menció et al., 212 

2011; Soler et al., 2014). 213 

  VF2 represents the 20.41% of variability of the data. It mainly includes NO3
-
, with a 214 

lower participation of Ca
2+

, EC and Cl
-
. VF2 has been interpreted as nitrate pollution, 215 

showing the direct relationship between NO3
-
 and EC, Ca

2+
 and Cl

-
 variables.  216 

  With a 20.23% of the total variance, VF3 is participated by 
18

O, Na
+
 and Cl 

-
. This 217 

VF3 is linked to the recharge altitude of groundwater samples, with high scores in 218 

samples recharged at low altitude, and low scores in samples recharged at high 219 

altitude. In addition, it is worth recalling that recharge areas of most of the wells 220 

drilled in igneous and metamorphic rocks and in the sediments derived from them 221 

(groups 1 and 3) are located at low altitude. Because of their lithology, water samples 222 
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 10 

present high concentrations of Na
+
 and Cl

-
, explaining the association of both ions 223 

with 
18

O (Table 1, Figure 2 and Figure 3).  224 

 VF4 is mainly associated to 
15

NNO3, with a lower participation of Na
+
 and Cl

-
. With a 225 

15.03% of the total variance explained, this last VF represents natural attenuation 226 

processes (i.e., denitrification). The association of Na
+
 and Cl

-
 with high 

15
NNO3 227 

values (
15

N>15‰, according to Kendall et al., 2007) may be attributed to the 228 

attenuation processes described in the Selva basin, group 3, where regional flow 229 

systems with Na
+
-HCO3

-
 facies and reducing conditions, enhanced natural 230 

heterotrophic attenuation processes (Puig et al., 2013). 231 

Two sample tendencies with positive scores for SO4
2-

, Ca
2+

 and Mg
2+

 (that is, VF1) are 232 

distinguished in a plot VF1 vs. VF2. The first tendency presents high scores for VF2 as well, 233 

which links samples with high SO4
2-

, Ca
2+

 and Mg
2+

 content to high nitrate concentrations 234 

(quadrant I in Figure 3a),  including samples from aquifer groups 2, 3 and 4 with nitrate 235 

concentrations between 280 to 590 mg NO3
-
/L. The second one is associated to negative 236 

values in VF2, and it is composed of samples from aquifer groups 2 and 4, those related to 237 

sedimentary rocks and the sediments derived from these materials. In this case, nitrate 238 

concentrations are notably lower, between 2.5 to 119 mg/L, and the sample with the highest 239 

VF1 score is the one with the lowest nitrate concentration. Thus, two clear sets of samples 240 

with distinct origins for SO4
2-

 are distinguished in these study areas: one with SO4
2-

 related to 241 

nitrate pollution, and the other with SO4
2-

 related to natural sources. 242 

In Figure 3b, high and low scores for nitrate pollution (VF2) are distributed in both high and 243 

low altitude recharge areas (as defined by 
18

O isotopic compositions, VF3). This indicates a 244 

widespread nitrate distribution all over the study areas, being consistent with an intense 245 

agricultural activity. However, most of samples in aquifer group 5, which wells are located in 246 
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volcanic rocks, present low VF2 values, consistent with the comparatively low pollution 247 

levels in this aquifer type (Table 1). 248 

Finally, when nitrate content (VF2) and nitrate attenuation (VF4) are plotted (Figure 3c), 249 

samples with the highest nitrate concentration (with values exceeding 150 mg NO3
-
/L at VF2 250 

scores > 1) are located in quadrants I and II; while quadrants I and IV include those samples 251 

affected by natural attenuation (with 
15

N>15‰). Samples of quadrant I and IV indicate that 252 

attenuation processes are active independently of the nitrate concentration. Besides, in some 253 

cases, nitrate content has been reduced to values lower than the health standard limits of 50 254 

mg/L, as represented by the sample with negative scores of VF2. These nitrate attenuation 255 

processes have been detected in all aquifers types.     256 

Bivariate plots of selected ions against nitrate concentrations point out their linear increase 257 

proportional to manure application. SO4
2-

 and Ca
2+

 (both included in VF1) and Cl
-
 258 

(participating in VF2 and VF3) as major components illustrate this fact (Figure 4). Linear 259 

regression equations are estimated for each aquifer lithology using all the available data, 260 

despite their δ
15

NNO3 value. Such regression equations prevail over two facts: 1) the inherent 261 

variability of the manure chemical composition depending on its origin and storage before 262 

application; and 2) the heterogeneity of soil processes, which are different, in type and 263 

magnitude, depending on the soil nature and the crop type. Therefore, equations indicate the 264 

rate of ion concentration changes with increasing nitrate content (slope); that is, the amount 265 

of each ion that any unit of nitrate adds to groundwater whether as a direct input or as a result 266 

of enhancing geochemical processes; and the expected value of the major component where 267 

no fertilization occurs (y-intercept). Such linear increase is quite evident for these three ions, 268 

and similar relationships occur for other major components.  269 

Nevertheless, each geological environment show distinct responses to nitrate inputs. Water-270 

rock interaction in igneous and metamorphic rocks (group 1) will depend on the low 271 
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solubility of silicate minerals, and of other processes as cation exchange, which may 272 

significantly alter the Ca
2+

:Na
+
 ratio and it may be responsible for a wide dispersion of data 273 

values with and without the occurrence of nitrate pollution. The large heterogeneity of 274 

volcanic deposits (group 5), which may include sedimentary layers among volcanic episodes, 275 

also originates a wide range of geochemical values as regards of SO4
2-

 and Ca
2+

. However, 276 

Cl
-
 concentration in the studied aquifers appears to be well related to manure fertilization. 277 

Moreover, the occurrence of thermal and/or CO2-rich waters in group 1 aquifers may enhance 278 

specific weathering processes resulting, for instance, in large chloride concentrations that 279 

infiltrating water may dilute.  280 

As already suggested by the PCA results, SO4
2-

 content may originate from evaporitic rocks 281 

(gypsum) dissolution or from manure contribution. These two geochemical paths are also 282 

recognized in groups 2 and 4, where sedimentary rocks or their denudation deposits constitute 283 

the aquifers: significantly large values of SO4
2-

 are found at low nitrate concentration (<75 284 

mg NO3
-
/L), whereas a clear linear relationship between them appears as nitrate content 285 

increases. Correlation factors, as they appear in Figure 4, are misleading since they represent 286 

the whole dataset; exclusion of those points largely affected by gypsum dissolution will turn 287 

to larger R
2
 values proving the influence of manure fertilization on the final groundwater 288 

composition. 289 

Denitrification processes also affect such bivariate relationships. In those places where 290 

autotrophic nitrate reduction has been proved (group 2 samples, Osona region; Otero et al., 291 

2009), an increase of SO4
2-

 due to pyrite oxidation will occur coupled to nitrate decreease; 292 

whereas heterotrophic attenuation processes will increase alkalinity. Both processes will also 293 

have consequences on the gypsum and calcite equilibriums modifying the Ca
2+

 concentration, 294 

yet the neat linear increase of Ca
2+

 with nitrate in most of the aquifer types might suggest that 295 

it directly originates in the manure itself. However, a geochemical insight to calcium 296 
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equilibrium indicates that nitrification of reduced N from manure generates acidity along with 297 

NO3
-
 and it enhances carbonate dissolution. This process can even be accentuated where lime 298 

or dolomite are applied as soil neutralizers in agricultural lands (Böhlke, 2002; Choi et al., 299 

2013), increasing Ca
2+

 and Mg
2+

 concentrations. Complementarily, the analysis of 300 

hydrochemical evolution of pig manure stored in experimental pits showed a decrease of Ca
2+

 301 

and Mg
2+

 through time (Vitòria, 2004). Since manure is usually stored for several months 302 

before its application, Ca
2+

 increase shown in Figure 4 may be better attributed to 303 

geochemical reactions occurring in the soil and in the subsurface following fertilization than 304 

to direct manure contribution. Hence, the observed hydrochemical composition is not just a 305 

simple conservative mixture of groundwater with infiltrating slurry and manure lixiviation. 306 

Contrarily, Na
+
 and K

+
 showed a conservative behavior in the liquid manure, being their 307 

concentrations increased by evaporation (Vitòria, 2004).  However, groundwater samples are 308 

not specifically rich in both cations (Figure 2), suggesting that other processes as plant 309 

uptake, sorption and cation exchange may control their final content in groundwater (Böhlke, 310 

2002). 311 

 312 

CONCLUSIONS 313 

Data from aquifers with distinct lithological environments prove that manure application as 314 

fertilizer modifies groundwater hydrochemical composition, turning it notably distinct than 315 

the expected natural background given by water-rock interaction and other natural processes. 316 

Manure and slurry fertilization homogenize the overall hydrochemistry despite lithological 317 

differences, hindering the geochemical interpretation inherent to any regional groundwater 318 

resources evaluation study.  319 

Nevertheless, such compositional modifications which, in general, tend to adopt a linear 320 

increase (Figure 4, all data) cannot be solely attributed to the effect of direct manure inputs, 321 
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as fertilization may enhance or reduce geochemical processes that control groundwater 322 

composition at equilibrium. Therefore accepting that nitrate pollution influences, 323 

groundwater regional reports should look for the relationships shown in these aquifers; 324 

checking potential influences upon the expected (natural) hydrochemical composition, so a 325 

better understanding of the hydrogeological system is attained. 326 
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FIGURE CAPTIONS 443 

Figure 1: Geographical and geological setting of the distinct study areas. 444 

Figure 2. Box plots of the main hydrochemical parameters according to the aquifer groups 445 

and nitrate concentrations ranges: Low nitrate concentrations refer to values below 50 mg/L, 446 

and high nitrate concentrations refer to values above 50 mg/L (see SI2 for details). Legend: 447 

Boxes represent the 25 and 75 percentiles and the median; while a white line represents the 448 

mean value. Bars define the 10 and 90% percentile, and dots refer to extreme values. 449 

Figure 3. PCA scores distribution of the different samples, considering denitrification, 450 

plotted according the lithological group and the 
15

NNO3, content: a) VF1 vs VF2, b) VF3 vs 451 

VF2, and c) VF4 vs VF2. 452 

Figure 4.  Bivariate relationships of SO4
2-

, Ca
2+

 and Cl
-
 vs. NO3

-
. Linear regression equations 453 

are calculated for all the samples of the group, disregarding their 
15

N value. Legend: red 454 

circles, samples with 
15

N >15‰; black circles, samples with 
15

N<15‰; white circles, 455 

samples with 
15

N data not available.  456 

 457 
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TABLES 459 

Table 1: Mean values and standard errors of the main physicochemical characteristics of the 460 

different aquifer groups, differentiating samples of low and high nitrate content. 461 

 G1- Igneous and 

metamorphic rocks 

G2- Sedimentary rocks G3- Aquifers derived  

from igneous and 
metamorphic rocks 

G4- Aquifers derived  

from sedimentary rocks 

G5- Volcanic materials 

 <50 mg/L >50 mg/L <50 mg/L >50 mg/L <50 mg/L >50 mg/L <50 mg/L >50 mg/L <50 mg/L >50 mg/L 

Number 

of wells 

9 4 28 36 15 27 22 29 29 5 

EC (µS/cm) 819±110 915±135 819±70 1124±65 841±72 1073±78 770±27 1070±64 623±21 779±31 

pH 7.18±0.14 6.99±0.04 7.35±0.09 7.43±0.06 7.47±0.12 7.28±0.08 7.18±0.04 7.08±0.04 7.47±0.06 7.25±0.21 

Eh (mV) 236.7±62.1 386.5±39.3 190.1±20.1 247.4±27.4 354.9±38.7 379.8±8.3 161.0±13.5 164.3±17.3 274.6±21.0 240.0±10.0 

T (°C) 17.4±0.5 16.9±0.3 15.4±0.6 15.9±0.4 16.3±0.4 16.4±0.2 15.1±0.4 13.2±0.2 14.5±0.6 14.5±0.4 

O2 (mg/L) 1.5±0.6 3.9±1.4 4.0±0.6 4.0±0.5 3.7±1.1 5.2±0.5 4.6±0.6 4.4±0.4 8.0±0.6 7.6±1.3 

HCO3
- (mg/L) 368.1±59.6 346.9±40.0 418.3±15.4 388.0±13.0 355.1±34.4 360.7±13.5 411.9±18.6 407.4±13.1 284.8±13.0 341.7±39.0 

Cl- (mg/L) 101.0±24.7 99.2±42.8 42.4±6.7 94.9±10.4 86.1±15.1 91.8±11.9 16.0±1.6 73.3±12.4 16.1±2.2 30.7±10.4 

SO4
2- (mg/L) 35.9±5.7 57.2±8.6 132.4±46.4 164.3±32.1 68.4±16.8 98.1±12.4 43.5±5.4 184.6±34.6 48.0±6.5 41.4±8.2 

NO3
- (mg/L) 13.7±4.2 105.3±20.3 17.0±2.5 166.3±19.4 18.6±4.4 137.5±16.6 25.4±2.7 172.2±25.2 23.9±2.4 71.4±10.0 

Na+ (mg/L) 104.2±38.0 79.7±18.6 34.8±4.2 54.3±7.5 63.5±12.0 56.4±5.1 12.5±1.4 42.0±5.6 16.5±1.5 21.5±.9 

K+ (mg/L) 2.2±0.4 1.0±0.3 4.4±1.7 8.5±2.4 2.4±0.4 5.8±3.0 2.8±0.6 8.8±2.1 7.6±0.7 6.9±1.7 

Ca2+ (mg/L) 82.6±14.0 127.5±21.5 132.6±16.2 185.7±10.1 110.7±12.7 166.3±9.7 135.8±7.1 196.0±10.8 87.2±4.5 89.5±8.4 

Mg2+ (mg/L) 14.6±3.6 22.0±3.5 37.4±5.4 38.2±3.8 19.3±2.0 22.7±2.4 21.0±1.1 44.1±5.6 19.5±1.2 34.1±3.5 
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Table 2. Loadings obtained in the second PCA, including 
15

NNO3, among the different 465 

parameters.   466 

 VF1 VF2 VF3 VF4 

SO4
2-

 (mg/L) 0.965 0.008 -0.005 0.039 

Mg
2+

 (mg/L) 0.885 0.181 0.007 0.249 

Ca
2+

 (mg/L) 0.740 0.562 0.004 0.035 

EC (µS/cm) 0.641 0.546 0.425 0.184 

NO3
-
 (mg/L) 0.121 0.949 0.112 0.057 


18

OH2O (‰) -0.238 0.097 0.848 -0.178 

Na
+
 (mg/L) 0.295 0.054 0.738 0.426 

Cl
- 
(mg/L) 0.289 0.520 0.601 0.405 


15

NNO3 (‰) 0.113 0.085 0.047 0.935 

Eigenvalue 2.928 1.837 1.821 1.352 

% Variance 32.53 20.41 20.23 15.03 
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