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ABSTRACT 

One of the main challenges of teaching statistics to engineering students is to convey the 

importance of being conscious of the presence of variability and of taking it into account when 

making technical and managerial decisions. Often, technical subjects are explained in an ideal 

and deterministic environment. This article shows the possibilities of simple electrical circuits –

the Wheatstone Bridge among them— to explain to students how to characterize variability, how 

it is transmitted and how it affects decisions. Additionally they can be used to introduce the 

importance of robustness by showing that taking into account the variability of components 

allows the design of cheaper products with greater benefits than if one were to simply apply 

formulas that consider variables as exact values. The results are quite unexpected, and they 
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arouse the interest and motivation of students. Supplementary materials for this article are 

available online. 

KEY WORDS: Teaching, variability, engineering students, robust product, Wheatstone bridge  
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1. INTRODUCTION 

When we explain the importance of variability, the attitude of our listeners is very different 

depending on whether we are addressing a group of professionals or a group of students with no 

professional experience.  

On the one hand, it is clear to professionals that variability is a problem (many times it is ―the‖ 

problem), and they are very conscious of the need to characterize it, measure it and minimize its 

effects. However, we have the feeling that to engineering students –who are used to, almost 

exclusively, deterministic approaches– our lectures on the subject appear to be merely rhetorical. 

Our experience is that the usual examples, such as packaging processes (there are no two 

products that weigh ―exactly‖ the same) or the dimensions of mechanical components, are not 

useful to capture the students’ interest. After all, in the end, who cares if a package of rice 

weighs a few grams more or less than another? Furthermore, on top of capturing their attention 

we want them to understand and assimilate the concept of variability –not an easy task, as 

explained by Garfield and Ben-Zvi (2005). 

Among the many proposals that have been published for arousing the interest of students, we 

find particularly interesting that of Søren Bisgaard in a well-known article (Bisgaard, 1991), 

where he shares his experiences of explaining statistics to engineering students as well as 

professionals. A core element of his student course involved designing, building and flying a 

paper helicopter, which has now become famous (Box, 1992), and in which the problems derived 

from variability take a central role. Another article that demonstrates an original focus, although 
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it is not oriented specifically to engineering students, is that of Lee (2007), where he explains 

how he uses chocolate chip cookies in his classes to grab the students’ attention in the analysis of 

their characteristics (such as the number of chips in each cookie). This allows him to demonstrate 

different techniques and key ideas, among which variability is included.  

In this article we present how, in an introductory statistics course —the first time engineering 

students are exposed to statistics— we use two electrical circuits to make students conscious of 

the existence of variability and the technical problems it introduces.  The course is taught for 15 

weeks at 4 hours per week during the spring semester of their second year.  We present these 

examples one after the other as an introduction to random variables and probability distributions. 

We focus on the concepts; the justification of the results comes later once the needed theoretical 

material has been covered. 

2. APPETIZER: A VERY SIMPLE CIRCUIT 

We begin by assuming that we have received an order to manufacture a batch of very simple 

electrical circuits: just a battery connected to a resistor. For simplification, we consider that all 

the batteries have an identical voltage of        , and that —more realistically— not all 

resistors deliver the same resistance    . As the resistance is different for each circuit, the 

intensity     that flows through each one is also different (     , Ohm’s law). The question 

we then pose to the students is: If our client requests lots of circuits with an average intensity of 

   , what should the nominal resistance value be?  
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Most of them do not even bother to give the ―obvious‖ answer:    . Students begin to show 

some interest when we say that if the resistors have variability, their nominal value should not be 

   . We explain that resistors producing values below     will harm more than resistors with 

values above it; and we illustrate the idea with resistances of    and    . Obviously, the 

intensities flowing would be                 (a difference of 4.29A with respect to the 

objective) and                 (a difference of only 2.31A). Assuming that the resistance 

values were distributed symmetrically around this central value, it is clear that a nominal value 

bigger than 10 Ω is needed to obtain an average intensity of    .  

If we suppose that           , the desired nominal value is 10.1 Ω. Later on –once we have 

introduced the mathematical expectation and variance of random variables-- we propose the 

exercise of finding the sought value (the expectation of I)  expanding      in Taylor series (see 

section A.1 on the Appendix).  

We then proceed to pose, using the same example, the following more realistic and easy 

problem: Almost surely, the buyer’s real interest is minimizing the proportion of circuits with 

intensity outside specifications rather than having the average intensity on target.  It is then easy 

to show that, assuming the specifications are       and that, on top of being symmetric and 

having           , resistance values follow a normal distribution, we get      when 

       and     when         . And, given the symmetry, it is obvious that to minimize 

the number of non-conforming resistors we want them centered at                      . 

Two weeks later, once the normal distribution has been covered, the students find these values 

themselves as part of an exercise.  
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3. THE WHEATSTONE BRIDGE  

Following the case just discussed, we present a slightly more sophisticated example that is  more 

realistic and that has more didactic possibilities: the Wheatstone Bridge. The Wheatstone Bridge 

is an assembly for measuring electrical resistance; it was employed by Genichi Taguchi (Taguchi 

and Wu, 1979) to explain his robust design techniques, and also by George Box to demonstrate 

the weaknesses of Taguchi’s methods while at the same time illustrating his proposals (Box and 

Fung, 1994). Although it seems to have currently fallen out of style and is no longer present in 

university physics textbooks, it continues to be an excellent example for demonstrating what we 

lose when we ignore variability.  

Figure 1 presents a circuit diagram. The resistor with unknown resistance is placed in   . The 

values of    and    are known, and    is a variable resistor that, once    is connected, is 

regulated such that the current does not pass through ammeter  . 

 

 

Figure 1: Diagram of a Wheatstone Bridge 
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In this situation, by applying Kirchhoff’s laws, we deduce that          ⁄⁄   and, thus: 

    
     

  
 (1) 

If we ignore variability, any value of    and of    will be equally good. One comfortable 

solution, as suggested by some textbooks, is that       and, therefore,      ; but this is a 

bad solution, as discussed below.   

In what follows we will distinguish between the real value of    (which we denote simply as   ) 

and the measurement result (which we refer to as  ̃ ). Let us suppose that              , 

            , and that –as would happen in practice– to determine the value of    we would 

use    and    rather than the unknown real values of    and   . Assuming that    is affected by 

a certain experimental error,             we have: 

  ̃        
  

  
 (2) 

 

Resolving for    in (1) and substituting in (2) we have:   

  ̃  (  

  

  
  )

  

  
 (3) 

 

It is then clear that the variability of the measurement result   ̃   depends at least on the ratio  

   /   . This dependence can be shown to the students by means of a spreadsheet (available 

online as supplementary material). In it we calculate the value of  ̃  for a large set of circuits and 

observe how the measurement precision changes when the values    ,    ,    ,     and      

change. The values of    and    are generated from their respective distributions, and the values 
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of    and  ̃  from expressions (1) and (3), respectively. Figure 2 illustrates the values of  ̃  

obtained in 1000 circuits with components having the parameters shown in the Figure and a 

value of        .   

 

Figure 2: Values obtained for a resistor of 20   in 1000 circuits with the indicated 

characteristics  

We then explain that the resistance value of a common resistor is identified by bands of color 

printed on its body, with an additional final band that indicates its tolerance (Figure 3). And we 

show catalogues where it can be seen that the price is related more to the resistor tolerance than 

to its nominal value.  

 

 

 

Colors indicating the 

resistor’s nominal value 

Color indicating the 

tolerance value 
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Figure 3: Resistor with bands indicating its nominal value and tolerance 

At this point we ask the question: Is it possible to manufacture Wheatstone Bridges with less 

expensive components and capable of measuring with greater precision? The spreadsheet 

immediately provides the answer: Yes. For example, in Figure 4 the nominal resistance values 

   and    have been changed and –despite having multiplied by 10 the values of      and     , 

and increased the value of    , from 3 to 10 Ω— the device’s precision has improved 

considerably: the standard deviation of the measurement is 3 times smaller. 

 

Figure 4: Values obtained for a resistor of 20   for 1000 circuits with the indicated 

characteristics 

At this point we do not justify why this is so. We just show the results and provide the 

spreadsheet to the students so that they can play with it and experience firsthand the effect of 

changing the parameters of   ,    and    distributions. Some weeks later, when students have 
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the needed background, we offer them an exercise in which they must theoretically justify the 

results.   

4. CLASSROOM EXPERIENCE 

As mentioned above, we use this material in a first course on statistics taught to engineering 

students. The course represents 150 hours of student work: 60 hours in the classroom (4 hours 

per week during 15 weeks) plus 90 hours of personal student work (exercises, mini projects and 

presentations). 

When students take this course they have already taken two courses in calculus and one in 

electromagnetism, which effectively covers the concepts of circuit theory needed to understand 

the Wheatstone bridge example. 

The first week is introductory; we cover a few motivating examples of the use and importance of 

statistics in engineering and some basic descriptive statistics. 

Variability is introduced the second week. To increase students’ interest, we present the simple 

circuit (one power supply and one resistor) example. It is a great way to show that when 

variability is involved, things are not what they seem. Then we introduce the more complex 

Wheatstone bridge, discussing briefly how it works. Students quickly realize that predicting the 

effect of variability is more difficult in this example, and they welcome the spreadsheet. We 

show them the results obtained with the values used in Figures 2 and 4. The fact that it is 

possible to obtain a better product with worse, and thus cheaper, components becomes evident.  
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The time we spend to present these examples is about 20 minutes. We leave the spreadsheet 

available to students so they can play with it. At this point we do not justify the results -students 

still lack the needed concepts and tools- but we let them know that they will find out the 

justification, through exercises, later on. The remaining time of the second week is devoted to 

random variables, probability distributions and their properties.  

The third week is dedicated to specific probability distributions, among them the normal 

distribution. One of the suggested exercises is, for the simple circuit, calculating what the 

nominal value of the resistance should be in order to minimize the proportion of defective 

circuits if the tolerances are       . It is a rather original exercise that, in spite of being 

relatively easy, has a surprising result.  

In the fourth week, the two main topics are linear combination of random variables and sampling 

distribution of  ̅ and   . The product or the ratio of random variables is not covered; we tell 

students that when needed, a good solution is to expand the function in Taylor series. Exercises 

proposed in this week are, among others: 

 Calculating the nominal value of   for          in the simple circuit. 

 Deriving a general expression for the relation between    and    in the Wheatstone bridge 

that maximizes the measurement precision and applying it to the introductory example 

conditions (       ,        and resistances to be measured of around    ). Section A.2 

of the Appendix provides a solution. 
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 Calculating  ( ̃ ). It is easy to see (section A.3 on the Appendix) that the parameters of the 

   distribution introduce a positive bias in the measurement of   .  

Students are offered the final result of all proposed exercises, but not the way to solve them that 

is provided only in some cases of especial difficulty. The exercises described above are among 

the ones solved, with a level of detail similar to the one used in the appendix of this article.  

We believe that these examples can be used to illustrate variability related issues in many 

different ways and be adapted to different situations and levels. We have used these examples in 

more advanced courses dealing with more specific issues, such as industrial statistics, quality 

improvement and design of experiments. They are useful to introduce important concepts, such 

as robustness, and to show that an appropriate parameter design can make quality features 

insensitive to the variability of components’ characteristics. Of course, students need to have a 

technical background. 
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APPENDIX: THEORETICAL JUSTIFICATIONS 

A.1 Circuit with only a battery and a resistor 

The value needed to obtain an average intensity of     can easily be calculated expanding     

into a Taylor series around       up to the second-order derivatives: 

 

 
 

 

    
 

      

[    ] 
 

[      ] 

[    ] 
   

 (
 

 
)     (

 

 
)  

 

    
 

         

[    ] 
 

Letting        and            in the above expression, it is easy to show that       is 

the value of      which makes           . 

The approximation is very good because the term corresponding to the third order derivative is 

zero (the numerator is the skewness of a normal distribution:  {[      ] }    .  And the 

term corresponding to the fourth order derivative gives values of the order of thousandths. 

Another way to check the goodness of this approximation is by simulating values of  

            and checking that the average value of       is equal to 10.00. 

A.2  The Wheatstone Bridge parameters design 

Of course the measurement precision is measured by  ( ̃ ). From (3) we have: 

  ( ̃ )  (
    

  
)
 

 (
  

  
)  (

  

  
)
 

  
  (4) 
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Since only    and    are random variables, the only difficulty is finding       ⁄  . Again, an 

easy way to do it is to expand       into a Taylor series around       and      ; up to the 

first-order derivatives, the result is: 

  

  
 

     

     
 

 

     
[        ]  

     

[     ]
 
[        ]    

Using   and    to represent the expectation and variance we get: 

 (
  

  
)  

 

  
   

  
  
 

  
   

  

Hence substituting in (4) we have: 

 ( ̃ )    
 *

  
 

  
  

  
 

  
 +  

  
 

  
   

  

We can see that    always appears in the denominator, and therefore we want it to be as large as 

possible in order to minimize  ( ̃ ). After having set a value for   , we can find the value of    

that minimizes  ( ̃ ) in the following way: 

    ̃  

   
   

   
     

 

  
  

  
 

  
 
      

Setting the derivative equal to zero yields: 

  
   

  
  

  
   

 

  
  

And we get that: 
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   √
      

  
    

To be able to measure resistances with values of around      if          , we should choose 

       , considering that    and    are equal. 

A.3  The Wheatstone Bridge calibration 

This exercise provides a nice way to ―visualize‖ bias. Also, students can check that this bias can 

be compensated by a proper calibration. 

From (3), we calculate: 

 ( ̃ )    

  

  
 (

  

  
) 

In this case we also expand       into a Taylor series. As we did before, we consider that the 

values of    and    are independent, and using the terms up to the second-order derivatives, we 

have: 

 ( ̃ )    

  

  
(
  

  
 

    
 

  
 ) 

     (  
  

 

  
 ) 

It is then clear that the parameters of the    distribution introduce a positive bias in the 

measurement of   .   
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