

Design and implementation of an

Out of order execution engine

of floating point arithmetic operations

Ing. Cristóbal Ramírez Lazo

Director:

PhD. Osman Sabri Unsal

Codirector:

PhD. Luis Alfonso Villa Vargas

Ponent:

PhD. Adrián Cristal Kestelman

Barcelona School of Informatics - Universitat Politècnica de Catalunya

Computing Research Center - Instituto Politécnico Nacional

This thesis is submitted for the degree of

Master of Science

Feb 2015

I

Abstract

A floating point unit (FPU), also known as a math coprocessor, is a part of a processor to

perform operations on floating point numbers.

Nowadays, almost all processors include a Floating point unit in the chip, this unit is more

complex and consume more area in the chip and for this reason many processors share this

unit between a pair of cores.

When a CPU is executing a program that calls for floating point operations and this is not

supported by the hardware, the CPU emulates it using a series of simpler fixed point arithme-

tic operations that run on the integer arithmetic logic unit, causing low performance in this

kind of applications.

The Centro de Investigación en Computación of the Instituto Politécnico Nacional work in a

project currently in development called Lagarto to create intellectual property in embedded

high performance processor architectures and operating systems to research and teach.

Lagarto II is a superscalar processor which fetches, decodes and dispatches up to two in-

structions per clock cycle, which will support a complete instruction set of 32-bits that oper-

ate in 64-bits data, this architecture is synthesizable in FPGAs devices.

In this thesis, work is undertaken towards the design in hardware description languages and

implementation in FPGA of an out of order execution engine of floating point arithmetic op-

erations. A first proposal covers the design of a low power consumption issue queue for out

of order processors, register bank, bypass network and the functional units for addi-

tion/subtraction, multiplication, division/reciprocal and Fused Multiply Accumulate (FMAC)

confirming with the IEEE-754 standard. The design supports double precision format and

denormalized numbers; A second proposal is based on a pair of FMAC as functional units

which can perform almost all Floating-point operations, this design is more beneficial in ar-

ea, performance and energy efficiency compared with the first version.

II

Acknowledgments

I would like to express my gratitude to my advisors Luis Alfonso Villa, Osman Unsal and

professor Marco Antonio Ramírez who shared much of their time and knowledge to I could

finish my thesis work. Furthermore, to Professors from the Computer Research Center of

IPN and Barcelona School of Informatics of UPC, who walked me through this interesting

research line.

In addition, I express my gratitude to CONACYT, to Computer Research Center of IPN and

the project: SIP: 20150957 "Desarrollo de Procesadores de Alto Desempeño para Sistemas

en Chips Programables" who financed part of my master degree.

And of course to my family: my parents Cristóbal Ramírez Salinas and Florina Lazo Osorio

and my sister Itzel Ramírez Lazo who have always encouraged me to keep going.

III

Table of contents

List of Figures ... V

List of Tables .. VII

Glossary ... IX

1. Introduction .. 1

1.1. Motivation .. 1

1.2. Objectives .. 2

1.3. Justification .. 2

1.4. Organization ... 3

2. Background ... 4

2.1. Superscalar Architectures .. 4

2.1.1. Issue Stage ... 7

2.1.2. Read Register stage .. 9

2.1.3. Execution Stage ... 9

2.1.4. Commit Stage... 11

2.2. Floating Point Numbers ... 13

2.2.1. IEEE 754 standard ... 14

3. State of the Art .. 18

3.1. Issue Queue .. 19

3.2. Register File ... 21

3.3. Execution Stage ... 27

3.3.1. Floating Point Adder/Subtractor .. 28

3.3.2. Floating Point Multiplier .. 31

3.3.3. Floating Point Divider .. 32

3.4. Intel Itanium Floating Point Architecture .. 37

3.5. AMD Bulldozer Architecture ... 38

4. Design and implementation .. 42

4.1. First Proposal ... 43

4.1.1. Issue Queue .. 43

4.1.2. Register Bank ... 55

4.1.3. Execution Stage ... 58

IV

4.1.4. Bypass design... 81

4.1.5. Complete design ... 82

4.2. Second Proposal ... 85

5. Implementation ... 90

5.1. First Version .. 90

5.1.1. Issue Queue .. 90

5.1.2. Register Bank ... 91

5.1.3. Execution Stage ... 92

5.1.4. Recovery .. 96

5.1.5. Complete design ... 96

5.2. Second Version .. 98

5.2.1. Issue Queue .. 98

5.2.2. Register Bank ... 98

5.2.3. Fused Multiply Accumulate Unit (FMAC) .. 99

5.2.4. Recovery .. 99

5.2.5. Complete design ... 99

6. Testing .. 101

7. Conclusions, Results, Future works and Research’s Products 107

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754 110

APPENDIXE B FPU Instruction Set (Release 6)... 126

References ... 130

V

List of Figures

Fig. 2.1 Lagarto II Microarchitecture ___ 5
Fig. 2.2 Backend and Frontend in a superscalar processors _____________________________ 6
Fig. 2.3 Issue Queue - RAM/CAM Scheme. __ 8
Fig. 2.4 Issue logic for an entry in a CAM/RAM array. _________________________________ 8
Fig. 2.5 Simple execution engine with two functional units, without (left) and with (right) value
bypassing. ___ 11
Fig. 2.6 Codification of Floating Point Numbers _____________________________________ 14
Fig. 2.7 . Single-Precision Floating Point Format (S) __________________________________ 14
Fig. 2.8 Double-Precision Floating Point Format (D) __________________________________ 15
Fig. 2.9 Floating point representations. __ 15
Fig. 3.1 Average number of comparisons per instruction for FP Benchmarks. ______________ 20
Fig. 3.2 Power consumption in Nvidia Tegra 4 processors. _____________________________ 20
Fig. 3.3 Multiport Memory using Logic elements ____________________________________ 22
Fig. 3.4 Conventional Techniques for providing more ports given a 1W/1R memory. ________ 24
Fig. 3.5 A generalized mW/nR memory implemented using a Live Value Table (LVT). _______ 25
Fig. 3.6 A 2W/1R memory implemented using XOR __________________________________ 26
Fig. 3.7 A 2W/2R memory implemented using XOR __________________________________ 26
Fig. 3.8 A generalized mW/nR memory implemented using XOR. _______________________ 27
Fig. 3.9 FP Adder Microarchitecture using a) LOD algorithm b) LOP algorithm ____________ 29
Fig. 3.10 16-bit LZC using the shared carry-propagate approach ________________________ 30
Fig. 3.11 Block Multiplier for two and three blocks. __________________________________ 31
Fig. 3.12 Partial Block multiplier for 53-bits __ 32
Fig. 3.13 Reciprocal Unit implementation - first proposal _____________________________ 33
Fig. 3.14 Reciprocal Unit implementation – second proposal ___________________________ 34
Fig. 3.15 Intel Itanium Architecture ___ 37
Fig. 3.16 Bulldozer building block __ 38
Fig. 3.17 Inside Floating Point 128 FMAC __ 40
Fig. 3.18 Execution of AVX instructions __ 40
Fig. 3.19 AMD Bulldozer Die (Fx Processors) __ 41
Fig. 4.1 IPC for n-wide for a baseline processor ______________________________________ 43
Fig. 4.2 Block diagram of Allocation Logic __ 45
Fig. 4.3 Ready Logic ___ 46
Fig. 4.4 Behavior of the Wakeup using the Block Mapping Table _______________________ 47
Fig. 4.5 Behavior of the Wakeup using the Block Mapping Table _______________________ 47
Fig. 4.6 Behavior of the Wakeup using the Block Mapping Table _______________________ 48
Fig. 4.7 Behavior of the Wakeup using the Block Mapping Table _______________________ 48
Fig. 4.8 Behavior of the Wakeup using the Block Mapping Table _______________________ 49
Fig. 4.9 Behavior of the Wakeup using the Block Mapping Table _______________________ 49
Fig. 4.10 Priority Logic ___ 51
Fig. 4.11 FP Instruction Format for the Issue Queue design ____________________________ 52
Fig. 4.12 Payload RAMs __ 53

VI

Fig. 4.13 Complete Low Power Issue Queue Design __________________________________ 54
Fig. 4.14 Replication technique to implement 1W/6R memory. _________________________ 56
Fig. 4.15 6W/6R Memory using LVT Design __ 57
Fig. 4.16 A generalized mW/nR memory implemented using XOR. ______________________ 58
Fig. 4.17 FP Add/Subtract Inputs/Outputs. ___ 60
Fig. 4.18 Complete 55-bits mantissa format __ 60
Fig. 4.19 Readjustment of the Add/Subtract operation _______________________________ 61
Fig. 4.20 Example of result that needs shift to the left n number of bits.__________________ 62
Fig. 4.21 Guard, Round and Sticky bits __ 63
Fig. 4.22 Design of FP Add/Subtract Unit __ 65
Fig. 4.23 FP Multiply Inputs/Outputs. ___ 65
Fig. 4.24 Design of FP multiply unit ___ 67
Fig. 4.25 Multiplication using small size multipliers __________________________________ 68
Fig. 4.26 Two stage 36x36 bits multiplier __ 69
Fig. 4.27 Three stages 54x54 bits multiplier __ 70
Fig. 4.28 Normalization __ 71
Fig. 4.29 FP Divide/Reciprocal Inputs/Outputs. ______________________________________ 71
Fig. 4.30 Design of FP Divider/Reciprocal unit _______________________________________ 75
Fig. 4.31 FP Divide/Reciprocal Inputs/Outputs. ______________________________________ 76
Fig. 4.32 Fused Floating Point Multiply-Add __ 77
Fig. 4.33 Design of Fused Multiply Add Unit __ 78
Fig. 4.34 Bypass Network ___ 81
Fig. 4.35 1 entry of the first recovery shadow memory (Fifo_Blocks and valid bit). _________ 83
Fig. 4.36 Out of Order Floating Point Execution Engine Version 1 _______________________ 84
Fig. 4.37 Bulldozer Microarchitecture ___ 85
Fig. 4.38 Floating-point Bulldozer Microarchitecture _________________________________ 86
Fig. 4.39 New FMAC design ___ 88
Fig. 4.40 Out of Order Floating Point Execution Engine Version 1 _______________________ 89
Fig. 5.1 RTL viewer of the Complete FP Engine. ______________________________________ 97
Fig. 5.2 RTL viewer of the Complete FP Engine. _____________________________________ 100
Fig. 6.1 Simulation from 2ps to 15ps ___ 103
Fig. 6.2 Simulation from 15ps to 28ps __ 104
Fig. 6.3 Simulation from 40ps to 53ps __ 105
Fig. 6.4 Simulation from 64ps to 78ps __ 106
Fig. 6.5 Result of the program written in C language. _______________________________ 106
Fig. 7.1 FP Scalar/SIMD units sharing hardware. ___________________________________ 109

Fig A. 1 Single-Precision Floating Point Format (S)... 111
Fig A. 2 Double-Precision Floating Point Format (D) .. 111
Fig A. 3 Word Fixed Point Format (W) .. 114
Fig A. 4 LongWord Fixed Point Format (L) .. 114
Fig A. 5 FIR Register Format ... 117
Fig A. 6 FCSR Register Format .. 119
Fig A. 7 FEXR Register Format .. 122
Fig A. 8 FENR Register .. 122

VII

List of Tables

Table 2.1 Parameters defining basic format floating point numbers... 15
Table 2.2 Floating-point representations ... 16
Table 2.3 Span of IEEE 754 Floating Point Formats .. 16
Table 2.4 Rounding Definitions .. 17
Table 3.1 Supported Memory Operations Modes .. 23
Table 3.2 ALTFP_ADD_SUB Resource Utilization and Performance for the Cyclone Series
Devices. .. 35
Table 3.3 ALTFP_MUL Resource Utilization and Performance for the Cyclone Series Devices
with dedicated Multiplier circuitry. .. 36
Table 3.4 ALTFP_DIV Resource Utilization and Performance for the Cyclone Series Devices. ... 36
Table 4.1 Add/subtract instructions ... 59
Table 4.2 Multiply instruction .. 65
Table 4.3 Multiply instruction .. 71
Table 4.4 Some calculated values for the ROM memory using the method above explained. .. 73
Table 4.5 Fused Multiply Accumulate Instructions and compatibles with this unit 76
Table 4.6 FP Comparison Instructions .. 79
Table 4.7 FP CMP.cond.fmt instructions .. 79
Table 4.8 FPU Formatted Unconditional Operand Move Instructions.. 80
Table 4.9 FP Branch Instructions .. 80
Table 4.10 Latency of FP functional units ... 82
Table 5.1 Implementation results of FP Issue Queue ... 91
Table 5.2 Implementation results of Register Bank ... 92
Table 5.3 Implementation results of FP Adder/Subtractor ... 92
Table 5.4 Comparisons between both FP adder/Subtractor .. 93
Table 5.5 Implementation results of FP Multiplier ... 93
Table 5.6 Comparisons between both FP adder/Subtractor .. 94
Table 5.7 Implementation results of FP Divider ... 94
Table 5.8 Comparisons between both FP adder/Subtractor .. 95
Table 5.9 Implementation results of FP Multiply Accumulate .. 95
Table 5.10 Implementation results of FP ALU .. 96
Table 5.11 Implementation results of recovery .. 96
Table 5.12 Implementation results of the complete design ... 97
Table 5.13 Implementation results of FP Issue Queue ... 98
Table 5.14 Implementation results of Register Bank ... 98
Table 5.15 Implementation results of FP Multiply Accumulate .. 99
Table 5.16 Implementation results of FP Multiplier ... 99
Table 6.1 Values of the load operations in decimal and Floating-point representation. 102
Table 6.2 Logic Register used in the assembler program. .. 102

VIII

Table A. 1 Parameters of Floating Point Data Types _________________________________ 111
Table A. 2 Value of Single or Double Floating Point Data Type Encoding ________________ 112
Table A. 3 Value supplied when a new Quiet NaN is created __________________________ 114
Table A. 4 FPU Register Models Availability and Compliance __________________________ 116
Table A. 5 FIR Register Field Descriptions ___ 118
Table A. 6 FCSR Register Field Descriptions __ 119
Table A. 7 Rounding Mode Definitions ___ 121
Table A. 8 Cause, Enable, and Flag Bit definitions ___________________________________ 121
Table A. 9 FENR Register Format __ 122
Table A. 10 FENR Register Field Description _______________________________________ 122
Table A. 11 Exceptions __ 123

Table B. 1 FPU Loads and Stores .. 126
Table B. 2 FPU Move To and From Instructions .. 126
Table B. 3 FPU IEEE Arithmetic Operations .. 127
Table B. 4 FPU-Approximate Arithmetic Operations .. 127
Table B. 5 FPU Fused Multiply-Accumulate Instructions .. 127
Table B. 6 Floating Point Comparison Instructions ... 128
Table B. 7 FPU Conversion Operations Using the FCSR Rounding Mode 128
Table B. 8 FPU Conversion Operations Using a Directed Rounding Mode 128
Table B. 9 FPU Formatted Unconditional Operand Move Instructions 129
Table B. 10 FPU Conditional Select Instructions ... 129

IX

Glossary

Dynamic scheduling: Strategies and techniques applied to the superscalar processors in order to

exploit the instructions level parallelism given by a program.

IEEE 754 Standard: Technical standard for floating-point computation established in 1985 by

the Institute of Electrical and Electronics Engineers (IEEE)

High performance techniques: Techniques applied to the superscalar processors in order to

exploit the instructions level parallelism given by a program.

In Order processors: Processors which processes the instructions in the order that they appear

in the binary (according to the sequential semantics of the instructions).

Issue Queue: Structure use in superscalar processors to allocate instructions that not comply

with all conditions to be executed.

Low power consumption techniques: Techniques applied to the superscalar processors in order

to save energy. These techniques usually are applied to processors for mobile devices where de

autonomy is important.

Out of Order processors: Processors which processes the instructions in an order that can be

different (and usually is) from the one in the binary. The purpose of executing instructions out

of order is to increase the amount of ILP by providing more freedom to the hardware for choos-

ing which instructions to process in each cycle.

Pipeline: Technique applied to the processors in order to increase the performance. Basically

split the execution of each instruction into multiple phases and allow different instructions to be

processed in different phases simultaneously. Pipelining increases instruction level parallelism

(ILP), and due to its cost-effectiveness, it practically is used by all processors nowadays.

Scalar processors: Processor that cannot execute more than 1 instruction in at least one of its

pipeline stages. In other words, a scalar processor cannot achieve a throughput greater than 1

instruction per cycle for any code.

Superscalar processors: Superscalar processor can execute more than 1 instruction at the same

time in all pipeline stages and therefore can achieve a throughput higher than 1 instruction per

cycle for some codes.

Introduction

Chapter 1 1

Chapter 1

1. Introduction

1.1. Motivation

The incessant search of methods and techniques to improve the performance in the processors,

which are the basic elements for the functionality of all types of modern devices, from super

computers to cellphones, has led to the development of a kind of microarchitecture called su-

perscalar, which has the capacity to perform fetch, decode and dispatch of two or more instruc-

tions per clock cycle.

To obtain high performance, modern superscalar processors use many building blocks imple-

mented in hardware as register renaming, dynamic branch predictors and speculative instruction

execution. These techniques have the objective to perform dynamic scheduling to expose the

maximum amount of instruction level parallelism found in a program, keep busy at maximum

the functional units of the processors and for that superscalar processors must be able to per-

form out of order execution.

The Centro de Investigación en Computación of the Instituto Politécnico Nacional work in a

project currently in development called Lagarto to create intellectual property in embedded

high performance processors architectures and operating systems to research and teach. The

first model (Lagarto I) is a scalar pipelined processor, which executes one instruction per clock

cycle and is based in MIPS 32-bits architecture developed by PhD. John Hennesy with some

modifications. A second version is a superscalar processors called Lagarto II, which fetches,

decodes and dispatches up to two instructions per clock cycle, which supports a complete in-

struction set of 32-bits that operate on 64-bits data, both architectures are synthesizable in

FPGAs devices. [1]

Superescalar architectures include a large number of components to support out of order execu-

tion. Instructions are fetch, decoded, renamed, and if the instruction queue has free locations,

are dispatch in order. These instructions waiting for their source operands are ready, and that

the corresponding functional unit is found free; should comply with these conditions to be is-

sued to the execution units. Lagarto II can execute operations out of order; it will exploit in-

struction-level parallelism given by the superscalar architectures.

Until today, Lagarto architecture can’t execute the instruction set of floating point operations

because it lacks a hardware floating point unit, and for this reason it performs floating-point

Introduction

Chapter 1 2

operations by software, causing poor performance in applications that require computing with

numbers in floating point format.

1.2. Objectives

General objective

Design and implement an out of order execution engine of floating point arithmetic operations

for the super scalar processor Lagarto II.

Specific objectives

Design and implement in hardware description languages of:

• A Floating Point Instruction Queue with out of order Issue.

• A Floating Point Register bank.

• A set of FP Functional units for arithmetic operations:

• Add/Subtract

• Multiply

• Divide

All functional units should support double precision format (64 bits) and Sub-

normal numbers.

• Forwarding unit (Bypass).

Using techniques for high performance and low power consumption.

1.3. Justification

The design of the hardware structures that constitute the functional blocks of the processor

architecture is not a trivial task. This task becomes even more complicated when the processor

architecture is designed to be superscalar and dynamic scheduling with out of order execution.

Because, while higher performance is achieved, the complexity of the structures that compose it

increases.

Initially the trend of superscalar processors was to obtain the best possible performance, regard-

less of the energy cost, but now that trend has changed and this because its use in mobile devic-

es is overwhelming nowadays, for that reason it is required to have high performance proces-

sors but with low power consumption. Therefore, in this thesis, we propose to design and im-

plement the out of order execution engine of floating point arithmetic operations, using tech-

niques of high performance and low power consumption.

Although there are several companies of processors (AMD, Intel, Nvidia, Siemens, Texas, etc.)

the design of their architectures is the intellectual property of companies and techniques imple-

mented to improve the performance are trade secrets.

Introduction

Chapter 1 3

According as a country is able to develop its own technology, will be able to eliminate not only

economic dependence, also knowledge dependence on other countries and generate wealth that

is reflected in its population. A clear example is Chinese, who for two decades established a

state policy aimed at giving a strong impulse to the development of science and technology in

that country. A particular effort made as part of that policy was the research and development of

a microprocessor manufactured locally resulting in 2002 of a CPU which became known as

Godson1, which is based on the architecture MIPS and is capable of running the Linux operat-

ing system. In 2008 it was announced market entry of a low-cost laptop called Yeelong with a

Loongson 2F processor. With this project the Chinese government made the proposal that eve-

ryone with low purchasing power can have access to a personal computer. Thus China is able to

use these processors as an engine of its growing electronics industry, to use them in all sorts of

devices ranging from cars to mobile devices, which would allow China to obtain all the benefits

that entails eliminating dependence on technology foreign [2].

Other similar project is called RISC-V, this project was originated in 2010 by researchers in the

Computer Science Division of the EECS Department at the University of California, Berkley.

RISC-V is a new instruction set architecture (ISA) that was originally designed to support com-

puter research and education and this group hope will become a standard open architecture for

industry implementations. Also they provide a high performance, energy-efficient processor

called Rocket, which is a 6-stage single-issue in-order pipeline that executes the 64-bit scalar

RISC-V ISA. Furthermore, implements an MMU that supports page-based virtual memory and

is able to boot modern operating systems such as Linux. Rocket also has an optional IEEE 754-

2008-compliant FPU, which implements both single- and double-precision floating-point opera-

tions, including fused multiply-add. Developing a CPU requires expertise in several specialties:

Computer architecture, compiler design and operating system design [3].

México could follow this example and get the same benefits by doing a similar effort. However,

research and development in the field of computer architecture design has not been exploited

enough, which is why this thesis will be a great contribution to what will become the first su-

perscalar processor designed in Mexico, and further, as any modern processor, must have an

execution engine of floating point arithmetic operations.

1.4. Organization

The rest of the thesis is composed of the following chapters. Chapter 2 provides a brief back-

ground about superscalar architectures and deepens in issue stage, read register stage and exe-

cution stage; also we introduce the Floating Point Arithmetic and IEEE 754 standard. Chapter

3, describes the state of the art of the issue queues, register files, Floating-point functional units

and a pair of examples of current microprocessors and its FP engine. Chapter 4 describes two

designs of the out of order execution engine, second design is an improvement of the first de-

sign. In Chapter 5 are shown the implementation results. Chapter 6 presents the testing of the

final design and finally Chapter 7 provides the conclusion of this thesis work, future work and

research’s products.

Background

Chapter 2 4

Chapter 2

2. Background

In this chapter first we introduce the superscalar architecture in order to place this work in

context with, making emphasis in the Issue stage, Read Register Stage and Execution Stage

which are the goals of this thesis work. After that, we talk about IEEE-754 standard which is a

technical standard for floating point computation, define the arithmetic formats, interchange

formats, rounding rules, operations and exception handling, and finally, we talk about the in-

struction set architecture which will be supported by Lagarto II processors, which is for aca-

demic and research the MIPS 64 revision 6.

2.1. Superscalar Architectures

Nowadays, we can find embedded processors in many components, such as smartphones,

game consoles, cars, etc.

Superscalar architectures can be classified in in-order and out-of-order execution fashion.

An in-order processor executes the instructions in the order that they appear in the binary,

whereas an out-of-order processor executes the instructions in an order that can be different

from the one in the binary. The purpose of executing instructions out of order is to exploit the

ILP and increase the performance by the superscalar architectures [4].

Modern superscalar architectures include a large number of elements in order to support the out

of order execution. Instructions are fetched in order from the instruction cache, are decoded to

understand their semantics. After, most processors apply some type of renaming to the register

operands to remove the false dependences introduced by the compiler in order to identify and

exploit parallelism in the instruction stream [5]. Then, instructions are dispatched to various

buffers, depending of the kind of instruction. Non-memory instructions are dispatched to the

integer issue queue or FP issue queue, whereas memory instructions are dispatched to the

load/store queue. These instructions waiting for their source operands are ready, and that the

corresponding functional unit is found free; should comply with these conditions to be issued to

the execution units.

Background

Chapter 2 5

Fig. 2.1 Lagarto II Microarchitecture

An instruction remains in the reorder buffer until it commits. The goal of the reorder buffer

is to preserve the order until the instruction finalizes and to store information about the instruc-

tion that is useful for its execution but also to recovery of some error if it is necessary. Finally,

non-speculative instructions commit their results in program order. In Figure 2.1 is shown the

microarchitecture of Lagarto II which is a superscalar processor.

Basically the superscalar processors can be divided in the Frontend and Backend, where the

first one always is in-order and include the Fetch, decode and rename stages, whereas the sec-

ond, could be in-order or out-of-order and include the issue, execute/writeback and finally the

commit which is always in order. In Figure 2.2 we show this division.

Background

Chapter 2 6

Fig. 2.2 Backend and Frontend in a superscalar processors

The first part of the pipeline is responsible of the fetching instructions. The main components of

this stage are the instruction cache memory, where the instructions are allocated, and a branch

predictor, which one determines if the current instruction is a branch but it also takes the deci-

sion whether about take or not take this branch while the fetch stage determines the address of

the next fetch cycle.

The second stage is the instruction decode. The main components of this part are ROM decod-

ers and ad-hoc circuitry; the main objective is to identify the main attributes of the instruction

such as type and resources that it will require for their execution.

The third stage is Register renaming which goal is to change the names of the logical source

registers by its corresponding physical register tags mapped in last cycles, also assign new

physical register tags to the logical destination with the purpose of removing all false depend-

ences. This is done normally though a set of tables that contain information about the current

mapping of logical names to physical ones and what names or tags are not being used, together

with some logic to analyze dependences among the multiple instructions.

The fourth stage is the instruction dispatch, is responsible of reserve different resources that the

instruction will use, including entries in the reorder buffer, issue queue and load/store buffers. If

resources are not available, the processor performs a stall until these resources become free. All

the above steps are performed in order [4].

Background

Chapter 2 7

From here on we will emphasize the backend part, deepening in the Issue Stage, read register

and execution which are the goals of this work, also to understand the recovery in case of miss

speculation we will talk a little about the commit stage.

2.1.1. Issue Stage

The Issue stage is in charge of sending instructions to the execution units. There are two

types of issue schemes: In order and out of order. The first one scheme sends the instructions in

the program order, whereas the second scheme sends the instruction out of the program order as

soon as their source operands become available. Most of the latest processors implement out-of-

order schemes. There are many different ways of implementing an out-of-order issue.

In-order issue logic

In-order issue logic issues the instructions for execution in the same order they were fetched.

Therefore, instructions wait until all previous instructions have been issued. Then, the instruc-

tion is issued as soon as its source operands are available and the resources it needs for execu-

tion are ready. This kind of issue logic is sometimes implemented at the decode stage of the

processor due to its simplicity using scoreboarding. A typical scoreboard comprises two tables,

a data dependence table and a resource table [4].

Out of order issue logic

The issue logic is a key component that determines the amount of instruction level parallel-

ism that processors are able to exploit. It allows out-of-order execution by issuing instructions

to the functional units as soon as its source operands become available. However, the hardware

components involved in the issue process sit in the critical path of the processor pipeline [4].

Researches have used a variety of schemes to implement the issue queue; also several recent

proposals have attempted to reduce the issue logic’s complexity and power.

One of the most common ways to implement the issue logic is based on random access memory

RAM and content-addressable memory (CAM) array structures called RAM-CAM Schemes as

we can see in the Figure 2.3. These structures can store several instructions, but generally fewer

than the total number of in-flight instructions. Each entry contains an instruction that has not

been issued or has been issued speculatively but not yet validated and thus might need to be

rescheduled.

Background

Chapter 2 8

Fig. 2.3 Issue Queue - RAM/CAM Scheme.

After the issue logic selects an instruction for execution, it broadcast the instruction’s destina-

tion tag to all the instructions in the issue queue. The wakeup logic compares each source tag in

the queue with the broadcast tag and, if there is a match, marks the operand as ready. This pro-

cess is known as wakeup. A superscalar processor can broadcast and compare multiple tags in

parallel. Figure 2.4 shows a block diagram of the issue logic for one entry of the issue queue

[6].

Fig. 2.4 Issue logic for an entry in a CAM/RAM array.

The selection process identifies instructions whose source operands are ready and whose re-

quired resources are available, and then issues them for execution. When more than one instruc-

tion is ready and competes for the same resource, the selection logic chooses one of them ac-

cording to some heuristic like the oldest first or the longest latency first [6].

Overall, the issue logic’s main source of complexity and power dissipations the many tag com-

parisons it must perform every cycle. Researches have proposed several approaches to improve

the issue logic’s power efficiency, these are described in the following chapter.

INT Queue

Payload RAM

CAM

Wakeup

S
E

L
E

C
T

IO
N

L
o

g
ic

A
L

L
O

C
A

T
IO

N

L
o

g
ic FP Queue

Payload RAM

CAM

Wakeup

S
E

L
E

C
T

IO
N

L
o

g
ic

A
L

L
O

C
A

T
IO

N

L
o

g
ic

TAG BUS From INT FP and L/S Queues

I0 I1 I2 I3 F0 F1 F2 F3MAPPER

Background

Chapter 2 9

2.1.2. Read Register stage

Once the instruction is issued, some bits (tag) go to read the source operands to the Floating

point register file to send all needed information to the execution stage. The instruction set

architecture of a CPU almost always defines a set of registers, which are used to exchange data

between memory and the functional units on the chip. In simpler CPUs, these architectural

registers correspond one-for-one to the entries in a physical register file within the CPU. Su-

perscalar CPUs use register renaming, so that the mapping of which physical entry stores a

particular architectural register changes dynamically during execution, as is explained in section

2.1.

Processors in general have a small number of architectural registers (32 integers and 32 FP)

and, as consequence, name dependences through registers are very common, and the benefits of

getting rid of them in an out-of-order processor are huge.

High performance processors use an out of order execution scheme in order to exploit the in-

struction level parallelism (ILP) existent in the program’s code. Processor examines a large

window of in-flight instructions to find all possible ready instructions capable to execute every

cycle. The size of the windows is some of the key determinants of the IPC achieved by the

processor. However, if the processors support a large window of in-flight instructions, it re-

quires a large register file and issue queues, which can compromise the cycle time [7].

Another important aspect to take account is that a large issue-width in the processors also re-

quires a large number of read/write ports in the register file. The access time of the register file

basically depends on both the number of entries and the number of ports. The register file is a

heavily ported RAM structure. A processor capable of issuing eight floating point instructions

each cycle may need a floating point register file with sixteen read ports to read two source

operands per instruction and eight write ports to write the result of each functional unit, also

need other extra ports to interchange information with the integer Register file and one more

port to write the new data from the load/store unit.

Register files in dynamic superscalar processors have been a very modestly sized. The Alpha

21264 processor has as many as 80 integer physical registers and 72 floating-point physical

registers and use a clustered organization to reduce the number of ports and the access time [8].

Many researches were performed in order to improve the access time and the energy consump-

tion in the register file; some of those are described in the next chapter.

2.1.3. Execution Stage

In this stage the instructions results are calculated, the values of the source operands are send to

the execution units with extra information like the kind of operation, also, in case of floating

point operations send the precision, format and round method. There are several types of opera-

tions that the processor can perform in the execution stage. The most common are the arithme-

https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Register_renaming

Background

Chapter 2 10

tic operations like addition, multiplication, etc. Memory Instructions operate on data either by

loading them from memory to registers or by storing them from registers to memory. Control-

flow instructions change the value of the Program Counter (PC) register. More infrequently,

specialized instructions can change the machine state by operating on control registers (special

registers that define how the processor behaves).

Naturally, the different types of operations have different complexity and, as a consequence,

different latency. For this reason, in contemporary microprocessors, the execution stage is not a

single pipeline stage. Also, there are usually several different paths in the processor pipeline

that an instruction can follow when it reaches the execute stage. The most obvious ones are the

integer path, memory path, and the floating-point path.

Another important aspect of the execution stage is the bypassing network. This is the network

responsible for forward value results of the computation among the various functional units, the

data cache and the register file. In high performance microprocessors, some form of bypass is

necessary if we want to provide back-to-back execution of dependent instructions. Because of

its importance to performance and its complexity, the bypass network is one of the critical

components of the execution stage.

Floating Point Unit

This unit operates on two floating-point values coming from the floating-point register file or

the memory across of bypass network and produces a floating-point result. A floating-point unit

(FPU) performs arithmetic operations such as addition, subtraction and multiplication. Depend-

ing of the implementation, it can also perform division, square root and other complex opera-

tion as trigonometric functions, exponentials, etc. Normally, floating point and integer register

file state is kept in separate structures. Depending on the architecture, there may be instructions

that convert the floating point values to integers and vice versa. Conversion operations are also

implemented in the floating-point unit.

IEEE-754 standard is a technical standard for floating point computation, define the arithmetic

formats, interchange formats, rounding rules, operations and exception handling, later we will

deepen in this standard. The FPU is a very complex unit, and it is generally several times bigger

than the integer units.

Bypass Logic

When executing instructions in a pipeline, the result of a computation does not update the ma-

chine state until the commit stage, which may be many cycles after the result was generated.

The result of the computation becomes speculatively available after the write-back stage. The

write-back stage is when the result of a functional unit is sent to the architectural register file, to

Background

Chapter 2 11

the merged register file, to the reorder buffer, the rename buffer and so on, depending on the

machine design (in-order, out-of-order, etc.).

Having bypasses improves the executed instructions per cycle metric (IPC), but it may affect

the cycle time and/or power of the microprocessor. Most processors today implement some

form of bypass. The notable exception is the IBM POWER5 [38] processor, where the design-

ers opted to not implement a bypass network in order to keep complexity low and in conse-

quence the frequency high.

Fig. 2.5 Simple execution engine with two functional units, without (left) and with (right)

value bypassing.

If the processor does not implement a bypass, each input of a functional unit is connected di-

rectly to a read port of the register file to read the source value. Similarly, the result of the func-

tional unit is connected directly to a write port of the register file. If we want to implement

value bypassing, the source value of a functional unit can come from three different places in

the machine in this design: the register file (i.e., no bypass), the functional unit itself and other

functional unit. Thus, we need a 3:1 multiplexor at the input of each functional unit. Also, the

results of the functional units, instead of connecting directly to the register file, now form a bus

that spans the width of the execution engine (called the result bus) and connect to all the func-

tional unit input multiplexors [4].

2.1.4. Commit Stage

A processor operates with two separate states: the architectural state and the speculative state.

The architectural state is updated at commit as if the processor would execute instructions in

sequential order. By contrast, the speculative state implies the architectural state plus the modi-

fications performed by the instructions that are in-flight in the processor. This latter state is

called speculative because it is not guaranteed that these modifications will become part of the

architectural state. Note that conventional processors rely on speculative techniques like branch

prediction or speculative memory disambiguation in order to keep executing instructions. Thus,

Background

Chapter 2 12

if some of these speculations fail or an exception occurs, the speculative state becomes invalid,

and it never turns into architectural state.

In out of order processors where the execute instructions is accomplished out of the original

order, we need to emulate the sequential execution of instructions through the implementation

of an additional stage called commit at the end of the pipeline. Instructions flow through this

stage in the original program order. Then, any changes that instructions do on previous pipeline

stages are considered speculative and do not become part of the architectural state until they

reach commit. At this point, we say that the instruction finalizes.

Finally, since the commit is the last stage on the execution path of an instruction, this is the

place where hardware resources allocated by the decode stage, like reorder buffer (ROB) entries

or physical registers are recycled. Note that an instruction should only reclaim those resources

that are not used anymore. Therefore, for those configurations where the instructions write their

outcome in a physical register, the reclamation of this physical register should be done by the

time we know for sure that the content of the register would not be needed anymore. Thus,

before reclaiming a register, we need to be sure that all instructions that may require the value

of this register in the future have already read it or they will be able to read it from a different

place.

Processors that implement a merged register file like Intel Pentium 4 [9], Alpha 21264 [8] or

MIPS R10000 [10] use the same register file for the values belonging to the architectural state

and the speculative values. Basically, a physical register is allocated by an instruction to store

the result’s value, and this register will hold this value until it is not needed anymore, even if

the instruction commits. The compiler uses again this register when its value is not necessary

for the program flow and it is recycled.

Recovery in case of Misspeculation

Instructions that are in flight have sometimes to be flushed due to multiple reasons (e.g., branch

misprediction, exceptions). If these instructions have gone through the allocate stage, then the

resources that they reserved must be released. Besides, the modifications that these instructions

did in the register alias tables (RAT) must be undone so that RAT reflect the same state they

would have if these instructions never would have been executed.

In the event of a branch mispredition, the speculative state of the machine is incorrect because

the processor has been fetching, renaming and executing instructions from wrong path. There-

fore, when we identify a branch misprediction, the speculative processor state and the program

counter should be restored to the point where start the correct path.

Recovery mechanism after a branch misprediction is typically split into two separate tasks:

front-end recovery and back-end recovery. The front-end recovery is usually simpler than the

Background

Chapter 2 13

backend recovery. In general, recovering the front-end implies flushing all intermediate buffers

where instructions fetched from the wrong path are waiting to be renamed, restoring the history

of the branch predictor and updating the program counter to resume fetching instructions from

the correct path. By contrast, recovering the back-end implies removing all instructions belong-

ing to the wrong path residing on any buffer like the Issue queue, Reorder buffer, etc. Moreo-

ver, RAT’s should be restored as well in order to properly rename instructions from the correct

path. Finally, back-end resources like physical registers or issue queue entries allocated by

wrong-path instructions should also be reclaimed.

Therefore, processors like the MIPS R10000 or Alpha 21264 rely on a checkpoint mechanism

in order to reduce the distance of the traversal between the current execution point to mispre-

dicted branch. These processors periodically take a snapshot of the content of the RAT so that

the log does not have to be fully traversed, but the traversal begins on an instruction where a

checkpoint was taken.

For example, in case of MIPS R10000 processor, the first checkpoint younger than the branch is

copied into the RAT, and the renaming log is traversed backwards until the mispredicted branch

is found. Every entry on the log includes the previous mapping of the logical register that the

renamed mechanism overwrote. Then, the RAT is restored based on this information in order to

reflect the precise state of the processor at the moment when the branch was mispredicted.

Besides the Rename scheme, other information like, for instance, the list of available physical

register identifiers should be reclaimed to free those registers allocated by the instructions in the

wrong path. Some processors like Alpha 21264 implement the list of free physical registers as

part of the Rename Structures. Then, this list is restored starting the traversal from the check-

point in the same form that it is done for the renaming table [4].

2.2. Floating Point Numbers

In many scientific and engineering computations, numbers in a wide range, from very small to

extremely large, are processed. Fixed-point number representations can represent fractions but

the fundamental problem is that this notation is severely limited, not have enough range for this

application. For example, a fixed point decimal number system capable of representing both

10−20 and 1020 would require at least 40 decimal digits and even then, would not offer much

precision with numbers close to 10−20. Most of the real values will have to be represented in

an approximate manner; the scientific notation used to overcome this issue, and is called float-

ing-point representation. In general, floating point numbers are generally of the form

(−1)𝑠𝑥𝐹𝑥2𝐸

Where F represents the value in the fraction field, E represents the value in the exponent field

and S is the sign and its codification is shown in Figure2.6. This chosen size of exponent and

Background

Chapter 2 14

fraction give an extraordinary range. Fractions almost as small as 2.0𝑡𝑒𝑛𝑥10−38 and number

almost as large as 2.0𝑡𝑒𝑛𝑥1038 can be represented in a computer for a single precision format.

Fig. 2.6 Codification of Floating Point Numbers

An overflow interrupts can occur in floating point arithmetic as well as in integer arithmetic

operations. One way to reduce chances of underflow or overflow is to offer another format that

has a larger exponent. In C language this number is called double, and operations on doubles

are called double precision floating point arithmetic; single precision floating point arithmetic is

the name of the earlier format which in C is called float. They are part of the IEEE 754 floating

point standard.

2.2.1. IEEE 754 standard

IEEE-754 standard which is a technical standard for floating point computation established in

1985 by the Institute of Electrical and Electronics Engineers (IEEE) [11] in order to improve

the portability of floating-point computations. The standard can be implemented in hardware,

software or a combination of both.

IEEE 754 standard defines much more than just the representation; the main aspects are list

below:

 Basic and extended floating-point formats

 Operations

 Rounding rules

 Exception handling

Floating Point Formats

IEEE 754 standard define three floating point formats:

- 32-bit single-precision floating point (Figure 2.7).

- 64-bit double-precision floating point (Figure 2.8).

- 80-bit Extended-precision floating point

Fig. 2.7 . Single-Precision Floating Point Format (S)

Background

Chapter 2 15

Fig. 2.8 Double-Precision Floating Point Format (D)

The floating point data types represent numeric values as well as other special entities, such as

the following:

- Two zero representations, -0 and +0.

- Two infinities, +∞ and -∞.

- Signaling non-numbers (SNaNs).

- Quiet non-numbers (QNaNs).

- Normal Numbers

- Subnormal Numbers

Fig. 2.9 Floating point representations.

The set of finite floating-point numbers representable within a particular format is deter-

mined by the following parameters:

𝑏: The radix

𝑝: The number of digits in the significant (precision)

𝑒𝑚𝑎𝑥: The maximum exponent

𝑒𝑚𝑖𝑛: The minimum exponent, which is equal to 1- 𝑒𝑚𝑎𝑥 for all formats

The smallest positive normal floating-point number is 𝑏𝑒𝑚𝑖𝑛 and the largest is 𝑏𝑒𝑚𝑎𝑥 ×

 (𝑏 − 𝑏1−𝑝). The non-zero floating point numbers for a format with magnitude less than 𝑏𝑒𝑚𝑖𝑛

are called subnormal because their magnitudes lie between zero and the smallest normal magni-

tude.

Table 2.1 defines the parameters of basic floating-point formats.

Table 2.1 Parameters defining basic format floating point numbers

Parameter Binary32 Binary64

𝑝 24 53

𝑒𝑚𝑎𝑥 +127 +1023

Table 2.2 shows an example of representations of floating-point data types.

Background

Chapter 2 16

Table 2.2 Floating-point representations

Data Type Representation for double precision format

Sign Exponent Fraction

-Zero 1 00000000000 000

+Zero 0 00000000000 000

-Infinity 1 11111111111 000

+Infinity 0 11111111111 000

QNaN x 11111111111 1xx

SNaN x 11111111111 0xx

-Subnormal 1 00000000000 00000100000000000000000010000000000000000000010000000

+Subnormal 0 00000000000 000

-Normal 1 00100000100 10000000001000000000000000000001000000000000000000000

+Normal 0 00100000100 10000000001000000000000000000001000000000000000000000

Table 2.3 exhibits the span of each floating-point format.

Table 2.3 Span of IEEE 754 Floating Point Formats

Format Min Subnormal Min Normal Max Normal

Single 1.4E-45 1.2E-38 5.96E38

Double 4.9E-324 2.2E-308 1.8E308

Floating Point Rounding

Most arithmetic operations do not result in a number that can be represented exactly. In such

cases the result need to be rounded to a number that can be represented in a given format.

IEEE-754 standard define four rounding modes listed in Table 2.8.

The most popular mode is round toward nearest, ties to even. This rounding mode generally

introduces the smallest error, as the result of round toward nearest is the number closest to the

exact value. However, certain applications such as interval arithmetic perform better on simpler

rounding mode like round toward zero. For this reason, IEEE-754 includes directed rounding

modes as well.

Background

Chapter 2 17

Table 2.4 Rounding Definitions

Round Meaning

Round to Nearest Rounds the result to the nearest representable value. When

two representable values are equally near, the result is round-

ed to the value whose least significant bit is zero (that is,

even)

Round Toward Zero Rounds the result to the value closest to but not greater than in

magnitude than the result.

Round Towards Plus Infinity Rounds the result to the value closest to but not less than the

result.

Round Towards Minus Infinity Rounds the result to the value closest to but not greater than

the result.

Exceptions

The following five exception conditions defined by the IEEE standard are described below:

 Invalid Operation Exception: Some arithmetic operations are invalid, such a division

by zero or square root of a negative number. The result of an invalid operation is a

NaN.

 Division by Zero Exception: The division of any number by zero gives infinity as a re-

sult.

 Underflow Exception: Two evens cause this exception, smallness and loss of accuracy.

 Overflow Exception: Is signaled whenever the result exceeds the maximum value that

can be represented due to the restricted exponent range.

 Inexact Exception: This exception should be signaled whenever the result of an arith-

metic operation is not exact due to the precision range.

State of the Art

Chapter 3 18

Chapter 3

3. State of the Art

A typical superscalar processor fetches and decodes more than one instruction at a time. As part

of the instruction fetch process, the conditional branch instructions are usually predicted to

ensure an uninterrupted stream of the code. The incoming instruction stream is then analyzed

for data dependences, and instructions are distributed to functional units, often according to

instruction type. Next, instructions are initiated for execution in parallel, based primarily on the

availability of operand data, regardless of the order of the original program. This important

feature to exploit the instruction level parallelism (ILP), present in the code of applications, is

referred in general as dynamic instruction scheduling [12].

In hardware terms, the processor needs hardware resources to execute multiple instructions in

parallel, more precisely a superscalar processor with dynamic instruction scheduling imple-

ments:

 Fetch strategies that simultaneously fetching multiple instructions.

 Branch prediction strategies that predict the execution path of the instructions and

fetching speculative code.

 Methods for determining true dependences involving register values, and mechanism

for communicating these values to where they are need during execution.

 Methods for issue multiple instructions in parallel (Out of order execution).

 Resources for parallel execution of many instructions.

 Methods for committing the process state in correct order; these mechanisms maintain

an outward appearance of sequential execution.

Modern superscalar architectures include a large number of elements in order to support the out

of order execution.

Superscalar processors like Pentium 4 were processors which was designed to operate with very

high clock frequency up to 10 GHZ [13], (with very good cooling system), the performance was

the main point back then. However, with the entry of mobile devices in the market like

smartphones, tablets, Laptops, etc., the trend of the design of superscalar processors has

changed, the new trend was the low power consumption in order to have grater energy inde-

pendence in these devices. Nowadays, this trend continues, new Laptops as ASUS Ultrabook

series, put a low power consumption processors AMD like A6, A8 or A10, which work in nor-

mal mode at 1.6 GHZ. If the operating system detects that the load work is little, the frequency

State of the Art

Chapter 3 19

is scaled down to 1GHZ or less and have an autonomy proven of HDVT (720p) video playing

for 7 hours [14]. Many researches have been performed in order to obtain a good performance

but with low power consumption in superscalar processors.

Following we shown the state of the art of the issue queue which in processors like Pentium 4 is

one of the main consumers of energy responsible for approximately 25% of the total energy

consumption [15], also we discus about the state of the art of the register banks and the floating

point functional units.

3.1. Issue Queue

Researches have proposed several approaches to improve the issue logic’s power efficiency.

This approach can be classified in two groups: Static approaches, which use fixed structures,

and dynamic approaches, which dynamically adapt some structures according to the properties

of the executed code.

Buyoktusunoglu, Shuster, Brooks, Albonesi and Cook [16] proposed a circuit design to adap-

tively resize an instruction queue partitioned into fixed size blocks (32 entries and 4 blocks

were studied). The resizing was based on IPC monitoring. The use of self-timed circuits al-

lowed delay reduction for smaller queue size.

Moshnyaga Vasily [17] improved this design using voltage scaling. The supply voltage was

scaled down when only a single queue block was enabled.

Folegnani and Gonzáles [15] proposed a design, which divided the IQ into blocks (16 blocks of

8 entries). Blocks which did not contribute to the IPC were dynamically disabled using a moni-

toring mechanism based on the IPC contribution of the last active bank in the queue. In addi-

tion, their design dynamically disabled the wake up function for empty entries and ready oper-

ands.

The energy consumption of a dynamically scheduled superscalar processor like Pentium 4 is

between 50 and 100 Watts. At the micro-architecture level, the issue logic is one of the main

consumers of energy responsible for approximately 25% of the total energy consumption of the

overall processor [15].

Ramírez, Cristal, Valero, Villa and Veidenbaum [18] proposed a design, which reduce the ener-

gy consumption in the wakeup logic by eliminating unnecessary comparisons. They proposed a

new element called block mapping table mechanism, design uses a multi-block instruction

queue. The blocks are inactive until the mechanism determines which blocks to access on

wakeup using a simple successor tracking mechanism.

Results presented are shown in Figure 3.1 for comparisons per committed instructions for float-

ing-point benchmarks for a 32- and 64-queue size. The averages are 12 and 17 comparisons per

State of the Art

Chapter 3 20

committed instruction, there are unnecessary comparisons that can be avoided, and using a

proposed design only require 1.5 comparisons per committed instruction achieve a reduction

near of 73 % for SPEC2000 benchmarks.

Fig. 3.1 Average number of comparisons per instruction for FP Benchmarks.

New processors for mobiles devices such as Nvidia Tegra 4, based on ARM Cortex-A15 micro-

architecture (superscalar architecture), delivers high performance for mobile applications and

improved battery life. Processors such as Tegra 4 uses techniques of high performance and low

power consumption, Tegra 4 has an energy consumption close to 10 Watts. Specifically, the

issue queue consumes approximately 18 % of the total energy consumption of the overall pro-

cessor as is shown in Figure 3.2 [19].

Fig. 3.2 Power consumption in Nvidia Tegra 4 processors.

State of the Art

Chapter 3 21

3.2. Register File

Register files in modern dynamic superscalar processors have been a very modestly sized. The

Alpha 21264 processor has as many as 80 integer physical registers and 72 floating-point phys-

ical registers and use a clustered organization to reduce the number of ports and the access time

[8].

Many researches were performs in order to improve the access time and the energy consump-

tion in the register file.

Lorenzo, Gonzales and Valero [20] proposed a multiple banked register file that can achieve an

IPC rate much higher than a multi-cycle file and close to a single-cycle file, but at the same

time it requires a single level of bypass. Multiple-banked register file architecture consists of

several banks of physical registers with a heterogeneous organization: each bank may have a

different number of registers, a different number of ports and therefore, a different access time.

Basically authors propose a run-time mechanism, which allocate the values in the registers,

where the most critical values are in the fast bank, whereas the remaining values are in the

slower bank.

Balasubramonian, Dwarkadas and Albonesi [7] proposed a two level register file to reduce the

register file size and a banked organization to reduce the port requirements. If the processor is

capable of issue eight integer instructions and simultaneously write back eight integer instruc-

tions theoretically could use a register file with 24 ports, but the number of ports required on

average is less for several reasons:

 Many operands are read in the bypass network, not from the register file.

 Many instructions have a single register operand.

 Not all instructions write the result in the register file, instructions like branch that

send the result to the branch predictor module do not need save the result in the regis-

ter file, stores instructions save the result in memory.

Then they reduce from 24- ported structure to an 8-ported structure. Their two level register file

uses an allocation policy that leaves values that have potential readers in the level one. When

using the instructions per cycle metric, the two-level organization performs 17% better than the

best single-level organization. Using a banked single-porter- bank register file organization

reduces access times by a factor of more than two and energy consumption by a factor of more

than 18 when compared to a conventional organization, also these improvements are obtained

without a significant degradation in IPC.

As we can see these previous proposals are interesting, but to implement a Multiport Register

file in the configurable devices is not a trivial task. Altera Co. FPGA devices provide an Em-

State of the Art

Chapter 3 22

bedded Memory with Single and Dual port configurations (single port one read, single port one

write, dual ports one read and one write, dual ports two reads or dual ports two writes) [21].

There are two ways to implement multiport memories in FPGA, using logic elements, or us-

ing memory embedded in the device.

Implement Multiport Memories Using logic elements

Implement a Multiport Memory using the logic elements of the FPGA have some inconvenient,

the number of logic elements increases according to the number of read and write ports and the

size of the memory. Figure 3.3 shows a 6R/6W 64-bits x 128-entries Memory block using logic

elements of the FPGA cyclone IV; the advantage is the easy implementation.

Fig. 3.3 Multiport Memory using Logic elements

Implement Multiport Memories Using Embedded Memory

Latest Altera FPGA devices as cyclone and Stratix series provide an Embedded Memory

which are blocks of dedicated memory resources. Following table list and describes the

memory operation modes that are supported for embedded memory blocks [22].

State of the Art

Chapter 3 23

Table 3.1 Supported Memory Operations Modes

Memory Operation

Mode

Description

Single-port RAM Single-port mode supports non-simultaneous read and write opera-

tions from a single address.

Simple dual-port

RAM

Simultaneously perform one read and one write operations to differ-

ent locations where the write operation happens on port A and the

read operation happens on port B.

True dual-port RAM Perform any combination of two port operations:

 Two reads, two writes, or,

 One read and one write at two different clock frequencies

Single-port ROM Only one address port is available for read operation. the memory

blocks are used as a ROM.

 Initialize the ROM contents of the memory blocks using a

.mif or .hex file.

Dual-port ROM The dual-port ROM has almost similar functional ports as single-port

ROM. The difference is dual-port ROM has an additional address

port for read operation.

Because the above specifications, many techniques have been proposed to implement a mul-

tiport memory in the FPGA in [23]. Figure 3.4 show the conventional techniques for provide

more ports; the first is replication, which can increase the number of read ports by maintaining a

replica of the memory for each additional read port. However, this technique alone cannot sup-

port more than only one write port.

The second approach splits the deep memory bank among multiple RAM blocks (sub-

banks), allowing each sub-bank to support an additional read and an additional write port.

However, with this approach each read-port or write-port can only access locations of its corre-

sponding memory sub-bank.

The third is called multipumping, where the core is an asynchronous memory block with

single read port and single write port, to increase the ports number, a Mux (1:N) and Demux

(N:1) are used to read and write all ports in one cycle (external frequency lower than internal

frequency) providing the illusion of a multiple number of ports, also include a register per port

to temporarily hold the addresses and data of pending reads and writes. This approach reduces

the operative frequency of the multiport memory.

State of the Art

Chapter 3 24

Fig. 3.4 Conventional Techniques for providing more ports given a 1W/1R memory.

LaForest and Steffan [23] propose a design for true multi-ported memories that uses the FPGA

block RAMs. They propose a structure called Live Value Table (LVT). Essentially, the LVT

allows a banked design to behave like a true multi-ported design by directing reads to appropri-

ate banks based on which bank holds the most recent write value. LVT is purely implemented

in logic elements. Figure 3.5 show the general design.

State of the Art

Chapter 3 25

Fig. 3.5 A generalized mW/nR memory implemented using a Live Value Table (LVT).

“Mn” Blocks uses replication technique in order to obtain a memory with 1 write port and n

read ports, after they uses banking in order to increases the number of write ports, and finally

with the LVT and multiplexors they can read the most recent write value. This design work a

high frequency but operative frequency depends of the number of ports, the live value table

could uses many logic elements (less than a complete memory with LE).

Laforest, Ming, Rapati and Steffan [24] proposed a new design based on the properties of XOR

operation. This design is based in that XOR is commutative, associative and has the following

properties:

𝐴 ⨁ 0 = 𝐴.

𝐵 ⨁ 𝐵 = 0.

𝐴 ⨁ 𝐵 ⨁ 𝐵 = 𝐴.

State of the Art

Chapter 3 26

Fig. 3.6 A 2W/1R memory implemented using XOR

Figure 3.6 shows a 2W/1R memory implemented using XOR design. In the example, it is re-

quired to save the value A using the W0 write port, thus we need read the value of the other

write port and perform the XOR operation and save the result. In this case we save

𝐴 ⨁ 𝑂𝐿𝐷1, if we want to read the same address we need read all banking blocks and perform

the XOR operation between them, in this case result as 𝐴 ⨁ 𝑂𝐿𝐷1 ⨁ 𝑂𝐿𝐷1 = 𝐴, which is the

most recent write value. Figure 3.7 shows a 2W/2R memory implemented using XOR design.

This design requires m * (m-1+n) RAM Blocks to provide m writes ports and n reads ports as

we can see in Figure 3.8.

Fig. 3.7 A 2W/2R memory implemented using XOR

State of the Art

Chapter 3 27

Fig. 3.8 A generalized mW/nR memory implemented using XOR.

3.3. Execution Stage

The performance and area of a functional unit depend upon circuit style, logic implementation,

and choice of algorithms. The three primary parameters in FP functional unit design are latency,

frequency, and area. The functional unit latency is the time required to complete a computation,

typically measured in machine cycles. Designs can be either Fixed Latency (FL) or Variable

Latency (VL). Over the past two decades a lots of work has been dedicated to performance

improvement of floating point computations, both at algorithmic level and implementation

level. Several works also focused their implementation on FPGA platforms. In [25] we can

found the basic algorithms for floating point operations like Adder/Subtractor, Multiplication,

Division and Multiply-Accumulate with some improvements. Basically all current floating-

point implementations are based in the basics algorithms with little modifications.

Following are described some proposals of Floating-point Adder/subtractor, Multiplication and

Division. Furthermore, are presented the Floating Point LPM modules provided by Altera Cor-

poration in the software Quartus II.

State of the Art

Chapter 3 28

3.3.1. Floating Point Adder/Subtractor

Floating Point Adder/subtractor is one of the most frequent arithmetic operations in scientific

computing. The design of FP adder/subtractor is relatively more complex than other FP arith-

metic operations. The operations consist of three major task, pre-normalization, addition and

post-normalization.

Pre-normalization consists of exponent difference and right shift. Post-normalization consists of

a priority decoder to detect the leading zeros in a number after the addition and a left-shift oper-

ation.

Post-normalization quickly becomes part of the critical path due we need know the number of

zeros to the left in the shortest possible time to after perform the shift and deliver the result.

Exist many ways to obtain the leading zeros, two of the main techniques are called Leading

Zero Counter (or Leading One Detector) and Leading Zero Anticipation.

Several works are available in the literature, for implementations of floating point ad-

der/subtractor unit on FPGA. [26] Proposed a design of FP adder/subtractor that has optimized

the individual complex component of the adder module like dynamic shifter and the leading one

detector (LOD).

In [27] is presented a study on floating-point adders in FPGAs. They analyze the standard float-

ing-point algorithm and the hardware modules designed as part of this algorithm. They com-

pare algorithms that use a Leading One Detector (LOD) and Leading One predictor (LOP).

Both Algorithms are shown in Figure 3.9.

Fist algorithm performs the pre-normalization, addition and post-normalization where use the

Leading One Detector in order to obtain the number of zeros to the left and subsequently per-

form shift left to normalize the result. Second use LOP instead of LOD. The main function of

the module is to predict the leading number of zeros in the operation result and this block is

working in parallel with the adder. Also this specific algorithm was proposed by Bruguera and

T. Lang [28] which detects the error concurrently with the leading one detection. Last one

improves 6.5% in latency but with a cost of 38% more area expensive.

State of the Art

Chapter 3 29

Fig. 3.9 FP Adder Microarchitecture using a) LOD algorithm b) LOP algorithm

State of the Art

Chapter 3 30

Dimitrakopoulos, Galanopoulos, Mavrokefalidis and Nikolos [29] proposed a new Low-Power

Leading-Zero Counter for High-Speed Floating Point Units. Their computation is reduced using

carry-lookahead techniques in a unified manner. They report that significant energy reductions

are achieved by the proposed design compared to the most efficient previous implementations.

Design is presented in Figure 3.10.

Fig. 3.10 16-bit LZC using the shared carry-propagate approach

State of the Art

Chapter 3 31

3.3.2. Floating Point Multiplier

Floating Point multiplication is a core operation in many signal processing computations, and

an efficient implementations of floating point multipliers is an important concern.

Multiplying two numbers in floating point format is performed in three main steps:

 Add the exponent of the two numbers and then subtracting the bias from their result.

 Multiply the significant of the two numbers.

 Calculate the sign by XOR operation of the two signs of the two numbers.

To multiply 2 numbers in double precision format, require the implementation of 53-bits x 53-

bits multipliers in hardware, which is very expensive. This operation is relatively simple; pro-

posals are based in how multiply the mantissa as fast as possible.

Manish Kumar and Chandrachoodan [30] propose an efficient implementation of IEEE double

precision Floating-point Multiplier on FPGA; the proposed method is based on partial block

multiplication. The main idea is divide the mantissa of the operands in small blocks and per-

form the multiplication using small size multipliers as is shown in Figure 3.11.

Fig. 3.11 Block Multiplier for two and three blocks.

For implementing the module, they chose block size of 17-bit because Xilinx FPGAs provides a

signed 18x18 multipliers. Figure 3.12 shows the partial division blocks. Partial products are

arranged (varied for different latency) in suitable manner and added to get the result.

State of the Art

Chapter 3 32

Fig. 3.12 Partial Block multiplier for 53-bits

The cost of the design is an error when compared to the IEEE standard, of up to 1 unit in the

last place when used with partial nearest value rounding, or up to 2 units in last place without

rounding. Design is restricted to only normalized numbers.

3.3.3. Floating Point Divider

Floating Point divider needs many cycles to perform the division operation using an algorithm

based on subtract and shift operations as a core of the functional unit. Among the arithmetic

operations, the division is the operation that consumes more time, because the number of cycles

used to determine quotient is proportional to the number of bits of the dividend and it is diffi-

cult to implement with pipeline due to the dependencies between the iterations.

Floating Point Divider/Reciprocal

Division operation can be expressed as 𝑎 =
𝑏

𝑐
= 𝑏 𝑥

1

𝑐
. Techniques such as Newton- Raphson

and series expansion algorithms are usually used to compute the reciprocal for high-

performance division.

A basic implementation of Newton-Raphson reciprocal for double precision is presented in

[31]. This proposal begin with an initial approximation through a look-up table

State of the Art

Chapter 3 33

(210𝑥20 𝑏𝑖𝑡𝑠 𝑅𝑂𝑀) obtained using a Taylor series expansion. After that, uses two Newton-

Raphson iterations. Complete algorithm is described below.

Obtaining the initial reciprocal approximation takes three clock cycles, which requires reading

the look-up table to obtain the initial value to start, followed by multiplication and addition

operations. In order to iterate the initial approximation, each Newton-Rapson iteration spend

four clock cycles, which has two stages, and each stage consists of a multiplication and an addi-

tion.

This Unit perform the floating point reciprocal operation in only eleven cycles. The disad-

vantage of usesing this kind of method is that it does not guarantee the accuracy of the least

significant bit. The design is presented in Figure 3.13.

Fig. 3.13 Reciprocal Unit implementation - first proposal

State of the Art

Chapter 3 34

Other proposal is presented in [32] where an optimized design and its implementation of

reciprocal unit is proposed, in which the initial approximation of the reciprocal is obtained

using a look-up table and a multiplication. Also they describe in detail how to implement

efficiently the look-up table. Their design utilizes a 27𝑥16 𝑏𝑖𝑡𝑠 𝑅𝑂𝑀 followed by two

Newton-Raphson iterations. Furthermore, this design spends 10 clock cycles to achieve

the 52-bit of accuracy for double precision floating-point number. Design is presented in

Figure 3.14.

Fig. 3.14 Reciprocal Unit implementation – second proposal

State of the Art

Chapter 3 35

Altera IP Cores

Altera provides many useful IP core functions for Floating point operations [33]. All Altera

floating-point IP cores offer the following features:

 Support for floating-point formats.

 Input support for not-a-number (NaN), infinity, zero, and normal numbers.

 Optional asynchronous input ports including asynchronous clear (aclr) and clock ena-

ble (clk_en).

 Support for round-to-nearest-even rounding mode.

 Compute results of any mathematical operations according to the IEEE-754 standard

compliance with a maximum of 1 unit in the last place (u.l.p.) error.

Altera floating-point IP cores do not support subnormal number inputs. If the input is a sub-

normal value, the IP core forces the value to zero and treats the value as a zero before going

through any operation.

Following we describe only 3 IP cores (Adder/Subtract, Multiplier and Divider) in order to

compare with our designs in Chapter 6.

ALTFP_ADD_SUB – Floating Point Adder/Subtract IP core

The ALTFP_ADD_SUB IP core offers the following features:

 Dynamically configurable adder and subtractor functions.

 Optional exception handling output ports such as zero, overflow, underflow, and NaN.

 Optimization of speed and area.

 Output latency available are 7, 8, 9,11,12,13 and 14 clock cycles.

Following table list the resource utilization and performance information for double precision

floating point adder/subtractor for the Cyclone IV device family.

Table 3.2 ALTFP_ADD_SUB Resource Utilization and Performance for the Cyclone Series

Devices.

Optimization Output

Latency

Total Logic

Elements

Total Memory

Bits

Embedded

Multiplier 9-bit

elements

Fmax

(MHZ)

Speed 8 1804 45 0 116.36

 14 2452 150 0 208.77

Area 8 1684 45 0 105.61

 14 2196 150 0 204.12

State of the Art

Chapter 3 36

ALTFP_MUL – Floating Point Multiplier IP core

The ALTFP_MUL IP core offers the following features:

 Optional exception handling output ports such as zero, overflow, underflow, and NaN.

 Optional dedicated multiplier circuitries in Cyclone and Stratix Series.

 Output latency available are 5,6,10 and 11 clock cycles.

Following table list the resource utilization and performance information for double precision

floating point Multiplier for the Cyclone IV device family.

Table 3.3 ALTFP_MUL Resource Utilization and Performance for the Cyclone Series De-

vices with dedicated Multiplier circuitry.

Optimization Output

Latency

Total Logic

Elements

Total Memory

Bits

Embedded

Multiplier 9-bit

elements

Fmax

(MHZ)

- 6 832 0 18 119.0

- 10 1041 110 18 132.59

ALTFP_DIV – Floating Point Divider IP core

The ALTFP_DIV IP core offers the following features:

 Optional exception handling output ports such as zero, division_by_zero, overflow,

underflow, and NaN.

 Optimization of speed and area.

 Low latency option.

 Output latency available for double precision are 10, 24 and 61 clock cycles.

Following table list the resource utilization and performance information for double precision

floating point divider for the Cyclone IV device family.

Table 3.4 ALTFP_DIV Resource Utilization and Performance for the Cyclone Series De-

vices.

Optimization Output

Latency

Total Logic

Elements

Total Memory

Bits

Embedded

Multiplier 9-bit

elements

Fmax

(MHZ)

Speed

24 1344 6441 44 117.91

10 1325 4709 44 88.94

Area

24 1344 6441 44 117.91

10 1325 4709 44 88.94

State of the Art

Chapter 3 37

3.4. Intel Itanium Floating Point Architecture

Focusing on parallelism, the Intel Itanium processor was launched in 2001, followed by the

Itanium 2 processor in 2002 and produced until 2010. Itanium 2 boasts of a particularly power-

ful floating-point architecture.

The Itanium floating-point architectures were designed to combine high performance and good

accuracy. It has features such as floating point register set of 128 registers and the ability to

execute multiple instructions per clock cycle. Furthermore, Itanium wanted to achieve the full

IEEE-754 compliance.

Fig. 3.15 Intel Itanium Architecture

In most computer architectures, there are separate instructions for floating-point multiplication

and floating point addition. Itanium include as a basic arithmetic operation the floating-point

multiply-add, which allows higher accuracy and performance in many common algorithms.

Addition and multiplication can easily be implemented as special cases of the fused multiply

add (fma), for example 𝑥 + 𝑦 = 𝑥. 1 + 𝑦 and 𝑥. 𝑦 = 𝑥. 𝑦 + 0.

Itanium processor support single, double and double-extended precision formats. All rounding

modes have been implemented and all five exceptions in order to be fully compliant with the

IEEE-754 standard. Also Intel define some specific exceptions for subnormal operands. [34]

State of the Art

Chapter 3 38

3.5. AMD Bulldozer Architecture

AMD Bulldozer microarchitecture is used in the AMD CPUs since 2011. Bulldozer is the

codename for the architecture, not for a specific processor.

The 15th AMD Processors family is aggressive, out-of-order, four-way superscalar AMD64

processors. They can theoretically fetch, decode and issue up to four AMD64 instructions per

cycle. As shown in Figure 3.16, the two cores available in each Bulldozer module share the

Fetch unit. The two cores also share the L1 instruction cache because it is an essential part of

the fetch unit, but each CPU core has its own L1 data cache.

The AMD instruction set is complex (CISC). 15th AMD Processors family does not execute

these complex instructions directly. Decode unit is in charge of converting the instructions

provided by the compiler (macro-operations) into simpler fixed-length instructions called mi-

cro-operations [35]. The Bulldozer architecture has four decoders. The decoding of complex

instructions takes several clock cycles to be completed, because they are converted into several

microinstructions. Simple instructions, however, are usually converted in only one clock cycle

because they are translated into a single microinstruction. After the instructions are decoded,

they are sent to the appropriate scheduler, integer or floating-point. The Bulldozer architecture

has only one floating-point unit, which is shared by two “cores” available. On the other hand, it

has two completely independent integer units, the so-called “cores.”

Fig. 3.16 Bulldozer building block

http://www.hardwaresecrets.com/wp-content/uploads/bulldozer_041.jpg
http://www.hardwaresecrets.com/wp-content/uploads/bulldozer_041.jpg
http://www.hardwaresecrets.com/wp-content/uploads/bulldozer_041.jpg

State of the Art

Chapter 3 39

The Bulldozer architecture uses an out-of-order execution engine, like AMD64 CPUs and Intel

CPUs since the Pentium Pro (P6 architecture). After instructions are executed, perform commit

in order as any out-of-order processor today.

The optimization comes from the fact that on a typical multi-core CPU several units inside the

CPU remain idle, and these units could be combined in the Bulldozer architecture. And since

the CPU will have less units, it can save area, register ports, save energy and reduce cost ac-

cording AMD.

Each integer engine has four Execution units; it also has a Load/Store unit (“LD/ST”), which is

in charge of getting from the memory or storing in the memory a data requested by an instruc-

tion.

Bulldozer architecture was designed to provide improved FADD and FMUL bandwidth over

Opteron and Athlon 64 processors. It achieves this by means of two 128-bit fused multiply

accumulate (FMAC) units which supports four single precision or two double precision opera-

tions. The FPU is a coprocessor model that is shared between the two cores. As such it contains

its own scheduler, register files and rename units. In addition to the two FMACs, the FPU also

contains two 128-bit integer units that perform arithmetic and logical operations on AVX,

MMX and SSE packed integer data. Only one 256-bit operation can issue per cycle [35].

Users may notice differences in the results of program when using FMAC instead to perform a

multiplication an addition. However, the combined result of the MUL and ADD is more pre-

cise, as is explained in chapter 4.3.

Bulldozer architecture includes support for Intel's Advanced Vector Extensions (AVX) instruc-

tion set, which supports and extended set of 128-bit (XMM) and 256-Bit (YMM) media regis-

ters [36]. The physical registers internally are 128-bits in size, equal to an XMM or half of a

YMM register (it takes two internal registers to represent a YMM 256-bit register). To represent

the Instruction Set Architected (ISA) registers it takes: 16 registers (YMM0-YMM15), or 32

(XMM0-XMM31) as shown in Figure 3.18.

State of the Art

 40

Fig. 3.17 Inside Floating Point 128 FMAC

Fig. 3.18 Execution of AVX instructions

State of the Art

 41

Figure 3.19 shows the die of one bulldozer module in the AMD FX processors. The area

consumed by the Floating-Point/SIMD Unit is bigger than each Integer datapath, also the bene-

fits to share the same hardware between both units is huge due to usually the current processors

can issue 2x64-bits or 4x64-bits FP scalar instructions per cycle, bulldozer module shares the

FP hardware, then using 2x128-bits FMAC units can perform 1x256-bits or 2x128-bits SIMD

operations or 4x64-bits FP scalar operations. The area of this units separated is almost the same,

therefore share this hardware bring a huge benefit in terms of die area.

Fig. 3.19 AMD Bulldozer Die (Fx Processors)

Design and implementation

Chapter 4 42

Chapter 4

4. Design and implementation

Because exploiting instruction level parallelism (ILP), superscalar processors are capable of

execute more than one instruction in a clock cycle. As we mention in Chapter 3, to do a dynam-

ic scheduling we need:

 Fetch strategies that simultaneously fetching multiple instructions.

 Branch prediction strategies that predict the execution path of the instructions and

fetching speculative code.

 Methods for determining true dependences involving register values, and mechanism

for communicating these values to where they are need during execution.

 Methods for issue multiple instructions in parallel (Out of order execution).

 Resources for parallel execution of many instructions.

 Methods for committing the process state in correct order; these mechanisms maintain

an outward appearance of sequential execution.

Lagarto II Processor has Instruction fetch strategies to fetch multiple instructions, while in same

stage implement a 2 level branch predictor (GShare) in order to predict the branches. After-

ward, decode stage identifies the main attributes of the instruction such as type and resources

that it will require for their execution. The following stage performs a rename to delete the

name dependences. Also, will execute instructions out of the original program order, then it has

implemented a Reorder Buffer to preserve the original program order, also will need an out of

order issue queue to send all possible ready instructions in a cycle which is part of the presented

design in this work. Furthermore, Lagarto will have resources for parallel execution of many

instructions (integer and floating point).

Processors that implement a dynamic scheduling exploit the instructions level parallelism but at

the same time, these processors spend more energy than processors that implement a static

scheduling. This leads to a tradeoff between power consumption and high performance. To

implement an efficient power-performance dynamic scheduling designer needs know about low

power techniques as we said in last chapters, nowadays, power consumption is very important

to obtain a large autonomy in mobile devices.

In this chapter we describe our implementations of each component of the general out of order

execution engine, which include the Issue queue, the register File, execution units and the by-

pass logic. Was proposed two designs which are compared in Chapter 5.

Design and implementation

Chapter 4 43

4.1. First Proposal

4.1.1. Issue Queue

As we can see in previous chapters, issue queue design is an important component to exploit

the instruction level parallelism, but in processors like Pentium 4 the issue logic is one of the

main consumers of energy responsible for approximately 25% of the total energy consumption

[15], then we need considerate some low power consumption techniques in order to get a low

power consumption processor.

Also the width of fetch is an important parameter in the process design, a processor with large

emission width it becomes more complex design and the complexity not produce performance

necessarily, for example 2-wide processors has an average of 1.1 commit instructions per cycle,

4-wide processors has an average of 1.52 commit instructions per cycle, 6-wide processors has

an average of 1.79 commit instructions per cycle and 8-wide processors has an average of 2

commit instructions per cycle, for integer benchmarks [37].

Fig. 4.1 IPC for n-wide for a baseline processor

Lagarto II Architecture perform fetch, decode and dispatch up to 2 instructions per clock cycle

to 3 different Buffers, Load/store Queue, Integer Queue and Floating Point Queue. Integer and

Floating Point Queues can issue up to two instructions each one if instructions are ready, and

0

1

2

b
zi

p
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

p
ar

se
r

p
er

lb
m

k

tw
o

lf

vo
rt

ex vp
r

IP
C

2-wide processor

0

1

2

3

b
zi

p
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

p
ar

se
r

p
er

lb
m

k

tw
o

lf

vo
rt

ex vp
r

IP
C

4-wide processor

0

2

4

b
zi

p
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

p
ar

se
r

p
er

lb
m

k

tw
o

lf

vo
rt

ex vp
r

IP
C

6-wide processor

0

2

4

b
zi

p
2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

p
ar

se
r

p
er

lb
m

k

tw
o

lf

vo
rt

ex vp
r

IP
C

8-wide processor

Design and implementation

Chapter 4 44

Load/Store Queue can issue 1 instruction per clock cycle, these parameters were taken in order

to reduce the number of ports in register bank and reduce the general complexity of the design

because performance-complexity trend. The idea is that the design of the Instruction Issue

Queue used in Lagarto II be a low power consumption architecture, and we decide take account

the element proposed in [18] and add this element to our design which is described below.

Instruction Queue Design

Once the instructions have been decoded and renamed, they are allocated in a structure called

Mapper, in this structure we read the operation vector (OPVEC) associated with each instruc-

tions to determinate the instruction queue in which should stay until their source operands are

ready and execution unit required for their execution is available.

Lagarto II processor has 3 types of issue queues: Integer Instruction (Integer Instruction Issue

Queue), floating point instructions (Floating Point Issue Queue) and Memory Access Instruc-

tions (Load / Store Queue). The wakeup instruction mechanism (Wakeup Logic) and selection

(Selection Logic) are closely associated in an IQ, they determine the behavior of the instruc-

tions are stored in it.

Due to our design we will take account the Block Mapping Table presented in [18] the IQ de-

sign divide the queue in N blocks with M entries each one, then, according with the results

presented in [18] where IQ is divided in 4 and 8 blocks with a similar performance (a little more

in 8 blocks design), but later we will see that in the selection logic, the larger number of blocks

becomes the selection logic a bit more complex. From this point 4 blocks are selected for this

design.

Allocation Logic

Due to the CAM and RAM memories were divide in 4 blocks of 8 entries each one, an assigna-

tion algorithm was implemented which will define in which block the instruction should be

allocate when one or two instructions arrive from the previous stage (MAPPER/DISPATCH) in

the same clock cycle.

Allocation Logic receive a pair of signals called Active Instructions from the previous stage

(MAPPER). It then passes them through inter-stage latch DISPATCH/ISSUEQUEUE, which

signalize how many instructions are incoming to the floating point queue in this clock cycle. If

the FP-Queue is full, Allocation Logic will send a signal (Full) in order to the FETCH UNIT not

perform more fetch cycles.

An assignation algorithm was implemented based in the round-robin scheduler, in this scheme

one instructions is allocated in each blocks. The algorithm can’t assign more than 1 instruction

to the same block in the same clock cycle. Thus storage starts at the block B0 and ends in block

Design and implementation

Chapter 4 45

B3 to after that restarting. Figure 4.1 show the design of the Allocation Logic, showing the

blocks Round robin, Data Assignation, FIFO B0, CAM B0 and PlayLoad RAM, the last three

should be repeated 4 times.

Fig. 4.2 Block diagram of Allocation Logic

Data Assignation block only is a 2 to 4 Demultiplexor which put in the correct way the incom-

ing instructions according to the signal write_block which is generated in the Round Robin

block.

Round Robin block is a finite state machine with Active instructions [1:0] as entries and

write_block[3:0] as outputs, depending of value of Active instructions this are distributed one

by one in each IQ Blocks.

FIFO B0 is a little buffer of 8 locations of 3 bits each one, which contain the free locations in

the IQ Block, which comprise both CAM and PAYLOAD RAM Blocks. When a new instruction

arrives, FIFO Block select a free entry of each particular IQ Block appointed by the position of

the rd_pointer. In the other hand when an instruction waiting in the IQ Block is issue to execu-

tion, the entry freely is recycled to FIFO block performing a write to entry appointed by

wr_pointer.

Low Power WakeUp Logic Mechanism

As a part of dynamic scheduling, in the issue stage is required a wakeup mechanism for waking

up instructions waiting in each IQ Block. The waking up are accomplished by associative com-

parisons of the destination register tag of the instructions computed each clock cycle with

source register tags of instructions sleeping in the IQ Blocks while its operands become ready.

One operand is ready when destination tag and source tag matched. This mechanism is power

hungry because comparisons are always performed although it not produces operands ready.

Design and implementation

Chapter 4 46

One instruction is ready when all its operands become ready and the functional unit required for

execution is free. Ready logic is responsible for signalize instruction ready to issue.

Fig. 4.3 Ready Logic

The destination tag of current execution is broadcasted to all instruction in the queue N-Cycles

before its execution will be completed. N is the number of cycles required for schedule the

wakeup, selection, issue and read registers of consumer instructions. This Schedule must en-

sure that result’s value is present in the bypass network at same cycle when consumer instruc-

tion arrives to the functional unit.

The destination tag in traditional CAM/RAM designs must be compare with all elements of the

queue, 64 comparisons every clock cycle for a queue with 32-entries (two source operands for

instruction). In the design also was added one source operand more in each location because

Lagarto II Architecture execute instructions as Multiply Accumulate which uses three sources

as shown in Figure 4.2, also in the design add an extra logic proposed in [18] called Block

Mapping Table. In the following sequence illustrate the behavior of the design using the Block

Mapping table.

Design and implementation

47

Fig. 4.4 Behavior of the Wakeup using the Block Mapping

Table

Fig. 4.5 Behavior of the Wakeup using the Block Mapping

Table

Design and implementation

Chapter 4 48

Fig. 4.6 Behavior of the Wakeup using the Block Mapping

Table

Fig. 4.7 Behavior of the Wakeup using the Block Mapping

Table

Design and implementation

Chapter 4 49

Fig. 4.8 Behavior of the Wakeup using the Block Mapping

Table

Fig. 4.9 Behavior of the Wakeup using the Block Mapping

Table

Design and implementation

50

In-flight instructions have only one identifier through all the time of its execution, specifically

the destination register tag, then the Block Mapping Table is a structure associated to the regis-

ter file to encoded IQ-blocks where instruction successor was allocated by the round robin log-

ic. The length of the Block Mapping Table is same to the physical register file and the width is

the number of blocks witch IQ was divided.

Figure 4.3 shows the first part of our design, the queue is divided in 4 blocks as we mentioned

above and also the Block Mapping Table is included in the design.

Figure 4.4 show the first instruction (R5 <- R2+R3) arriving to the Queue, the Round Robin

Block send the signal “0001” which means that only one instruction is arriving in this cycle and

this instruction will be saved in the CAM-B0 block, FIFO-B0 block give the address in which

the instruction will be allocated inside the CAM-B0, in this case, the address is “000”, at the

same time the source operands read the Registers ready bit vector in order to know if its sources

operands are ready or not, if one of the sources or both are ready, the ready flag are setting,

otherwise the Block Mapping Table is set, indexed by the source operand tag that is not ready,

in this case, the address two and three in the column B0 are set.

In the next cycle (Figure 4.5), a new instruction (R6 <- R1 + R4) is arriving, now the Round

Robin block assigns the next CAM block (CAM-B1) to allocate the current instruction, also the

Block Mapping Table is updating by setting the addresses one and four, in column B1 indicat-

ing that this operands R1 and R4 are not available.

In Figure 4.6 a new instruction is arriving (R7 <- R1 + R4), now CAM-B2 is selected by the

Round Robin Block to allocate this new instruction, also the Block Mapping Table is updated in

the column B2 indexed by R1 and R4 designating that this sources are not available.

In Figure 4.7, functional units start the successor wakeup 3 cycles before that finalize the execu-

tion, sending the Tag destination register to read the Block Mapping Table. The data read is

useful to enable the CAM blocks for comparison. Comparisons are not performed in CAM

Blocks without successors. In this example CAM-B1 and CAM-B2 blocks only are enabled for

comparisons.

At this moment any instruction can be issued to execute because still not comply with the con-

dition that both source operands must be ready.

In the next cycle (Figure 4.8), Consider that R4 is at 3-Cycles to be computed, then the succes-

sors wakeup logic is started as was described above, reading the 4-entry of Block Mapping

Table and enabling the blocks CAM-B1 and CAM-B2 for comparisons, resulting in two in-

structions ready for select and issue in the next cycle.

Design and implementation

Chapter 4 51

Adding the Block Mapping table to the design, wakeup logic can avoid perform comparisons in

blocks without successors.

Priority Arbiter

To have more than one instruction ready to be issue in each one of the four CAM Blocks is

possible, however only is possible perform the issue of two instructions per clock cycle to the

execution units, it is important to minimize the number of ports in order to achieve a power-

efficient design. For this reason, is necessary define a selection criteria.

Priority Arbiter is a structure implemented in two stages, which choose just 2 instructions to be

issued to the execution. Both stages employ an aging policy for the selection of instructions,

meaning, the instructions allocated first in the Payload-RAM will be the first to be issued.

The first stage consists of 4 modules of selection, one for each block. In each selection module

the ready instructions signals are received. The second stage is capable of receiving up to 4

instructions lists, one for each block of the previous level and finally chooses only two instruc-

tions to be issued to execution.

Fig. 4.10 Priority Logic

Design and implementation

Chapter 4 52

IQ Payload RAM

IQ Payload RAM block is a set of 4 RAM blocks of 8-locations each one, where new instruc-

tions are allocated. Each instruction is composed for many fields:

Format which encode the instruction format (Single, Double, Word or Long).

Source_0 , Source_1 and Source_2 which encode the operand address of the instructions. Note

that each Source is composed of 7 bits to address 128 possible locations in the register file.

Destination which encode the physical register to save the result of the operation.

Resource_Vector which encode functional unit (Branch, MovToFrom, MulA, ALU, SQRT,

DIV, MUL and ADD) needed to execute.

Function which encode what operation must be done.

Dir_ROB which encode the place of the instruction in the Reorder-Buffer.

Fig. 4.11 FP Instruction Format for the Issue Queue design

Each IQ Payload RAM Blocks has only one read port and one write port and only can write and

read one instruction per cycle, because the module Round Robin require this behavior, so if two

instructions are received in the same clock they are saved in two different Blocks RAMs. Simi-

larly, when many instructions are ready can issue only two instructions per cycle and these

instructions come strictly from different blocks. The design use a PAYLOAD RAMs splitting in

blocks with 1 read and 1 write port each one.

Design and implementation

Chapter 4 53

Fig. 4.12 Payload RAMs

When an instruction is issue, the entry address used by the instruction is sent to the Allocation

Mechanism in order to recycle it as a free entry in the corresponding FIFO, for future incoming

instructions.

In Figure 4.13 the complete Low Power Issue Queue Design is show.

Design and implementation

Chapter 4 54

Fig. 4.13 Complete Low Power Issue Queue Design

In following chapter, is detailed the results of this implementation.

Design and implementation

Chapter 4 55

4.1.2. Register Bank

Design considerations

The number of read and writes ports depend of the number of issue instructions and the number

of functional units that have a dedicated write port. For this reason, was defined an issue width

of only 2 instruction per clock cycle, in order to reduce the number of read ports in the register

bank.

The Register Bank need 6 read and 6 write ports.

The six read ports are:

-SourceI0_0: read the Source 0 of the instruction 0

-SourceI0_1: read the Source 1 of the instruction 0

-SourceI0_2: read the Source 2 of the instruction 0

-SourceI1_0: read the Source 0 of the instruction 1

-SourceI1_1: read the Source 1 of the instruction 1

-Store : read the data to store in memory

Instruction 0 have 3 read ports, it is because Lagarto II processor can execute instructions as

Fused Multiply Accumulate (FMAC) which need read 3 source operands, when one FMAC

instruction is ready to be issue, is forced to leave for the port 0.

The six write ports are:

 -Read_1: to write the result from the Add/sub functional unit.

 -Read_2: to write the result from the Mul functional unit.

 -Read_3: to write the result from the Div functional unit.

 -Read_4: to write the result from the ALU functional unit.

 -Read_5: to write the result from the MulAdd functional unit.

 -Read_6: to write the result from the load or Move instructions

The implementation of the register file is based in the proposals [23] and [24].

LVT design

Basically to implement the proposal presented in [23] , first the replication technique is used in

order to obtain a 1W/6R memory as is shown in Figure 4.14.

Design and implementation

Chapter 4 56

Fig. 4.14 Replication technique to implement 1W/6R memory.

After that, banking technique is used in order to increase the number of write ports, and us-

ing the LVT table which select in the multiplexors the more recent write value to be read. The

LVT table will use pure logic elements, but instead of build a memory of 64x128, only build a

memory of 3-bits x128 locations with 6W/6R ports; therefore, the total logic elements will be

dramatically reduced. The 3-bits are because with 3-bits is possible represent 8 possible combi-

nations and although need 6 combinations.

Design and implementation

Chapter 4 57

Fig. 4.15 6W/6R Memory using LVT Design

Implementing this proposal are used 36 memory blocks of 64-bit x128-locations, and the logic

elements is reduced a lot, the exact numbers are presented in the following chapter.

Design and implementation

Chapter 4 58

XOR design

Furthermore, proposal presented in [24] was implemented for resources evaluation, which is

based on the XOR operations. The design requires m * (m-1+n) RAM Blocks to provide m

writes and n reads ports, for the requirements presented before, are needed 6W/6R ports, then

are needed 66 memory blocks of 64-bit x 128-locations, almost double that with using the LVT

design, but the LVT table and its logic is removed, instead of latter, XOR gates are used. Be-

cause one XOR logic is added every new port, the performance of this design depends of the

ports number.

Fig. 4.16 A generalized mW/nR memory implemented using XOR.

In following chapter are compared both designs and both designs have a good result, depending

of the needs of the final design requirements, but both designs reduce a lot of logic elements

used compared with multiported registers array implementation.

4.1.3. Execution Stage

In this sections are presented several designs of FP functional units based on the fundamental

algorithms with some modifications taken account the proposals of the state of the art, which

were mentioned before. Designs for the basics operation as Add/subtract, multiply, and Di-

vide/Reciprocal are presented, also the Fused Multiply-Accumulate unit was implemented

Design and implementation

Chapter 4 59

which first multiply two operands, then accumulate the result and finally add to a third operand

to produce the result; Furthermore, an ALU unit is built in order to execute comparisons, moves

and others instructions, and finally a branch unit to compute the conditional branch instructions.

Last units were performed in order to try to execute all possible instruction set of the MIPS 64

R6 for evaluation purpose.

FP Add/Subtract Unit

In contrast to the integer arithmetic units, FP addition and subtraction are more complicated

than multiplication and division. As mention in Chapter 3.3.1, three major task are presented in

this operation, pre-normalization, addition and post-normalization. The integer adder is a cru-

cial part of the design, but, also is needed a quick Leading Zero Detection which becomes part

of the critical path due to is needed known the number of zeros to the left in a word in the short-

est possible time and release the result; Furthermore it is possible predict the leading zeros in

parallel with the integer addition operation, but this method may be erroneous by one position

[27], if this is the case, then it can be fixed by shifting to the right one position. Also other tech-

niques exist to produce an exact result, however these techniques are very expensive in terms of

area [28].

The proposed design follows the basic algorithm but adding elements from other proposals [28]

[29] and own proposals, also the design will support subnormal numbers which increases the

complexity of the design compared with all presented in the state of the art including the IP

Cores provided by Altera. This unit will execute two instructions that are shown in following

table.

Table 4.1 Add/subtract instructions

Instruction Description

ADD.fmt Floating-Point Add

SUB.fmt Floating-Point Subtract

Figure 4.17 show adder/subtractor input signals where Enable (1 bit) which encodes a valid

operation, Source 1(64 bits) and Source 2(64 bits) are the source operands and Operation (1 bit)

encodes if the current operation is an addition or subtraction. In the other hand, the output sig-

nals are: Ready that indicates that current operation is complete, Result give the final result of

the operation. 4 exceptions are contemplated according to the IEEE 754 standard, which are

Invalid Operation, Overflow, Underflow and Inexact; Also MIPS 64 R6 specify Not Imple-

mented Operation exception which for this case not apply.

Design and implementation

Chapter 4 60

Fig. 4.17 FP Add/Subtract Inputs/Outputs.

Figure 4.22 show the complete design of FP Add/Subtract Unit, which is divided in 8 stages.

First Stage perform 5 main activities:

 In block Initial Conditions is monitored if some source is Infinity, Zero, QNaN or

SNaN, if someone of this condition is true, means that the operation can finalize be-

cause the result is known and the operation can skip the following steps.

 Identify the bigger number (absolute value) to in following stage perform a prenormal-

ization. This is doing by obtain the exponents difference between both exponent, if the

operation results negative minds that Source 2 is bigger and using the MUX block is

possible change the path of this Sources. If result is positive, can be for 2 reasons,

Source 1 is bigger than Source 2 or both have the same exponent and then is needed

check which mantissa is bigger in order to obtain the bigger and smaller numbers.

 Is necessary check if smallest number is subnormal in order to adjust the exponent dif-

ference, if smallest number is denormalized, subtract operation is performed to the

previous difference calculated (previous difference calculated -1).

 Is necessary build the complete format of the mantissas which is given by 55-bits in-

stead of the original 52-bits. The format is presented in Figure 4.18, basically are 55-

bits vector where in the two less significant bits are added two zeros which help to

save some digits after pre-normalization and to perform the rounding in future stages;

next are concatenate the 52-bits of the mantissa and finally 1 bit for the signal normal-

ized which for normalized numbers is equal to 1, for subnormal numbers is equal to 0.

Fig. 4.18 Complete 55-bits mantissa format

 And finally, in block Sign is readjust the operation and the sign bits in order to always

obtain a positive result, doing this step, 2-complement after addition is don’t needed

Design and implementation

Chapter 4 61

because ensure that result ever will be positive, also is performed in parallel with the

other activities. Figure 4.19 shows the eight combinations, for “000” and “011” cases,

don’t perform any change. Basically the final sign is the sign of the biggest number.

Fig. 4.19 Readjustment of the Add/Subtract operation

Second stage basically performs 2 activities, pre-normalize and 1-complement if it is neces-

sary:

 Pre-normalize is done by Shift to the right the smaller mantissa using the difference

obtained between the two exponents.

 Complement a1 is performed if the final operation re-defined in the last stage is

subtraction. Finally, in the following step in Carry_in signal is added “1” in order to

complete the 2-complement.

Third stage perform only the addition of modified mantissas, in this block a 55-bits KoggeStone

Adder is used in order to perform the addition as faster as possible.

Result is given in a 56-bits vector, where bit 56 indicates if some overflow occurs during the

operation, in order to normalize the result in future cycles.

Fourth stage is in charge of count the zeros to the left after addition. Figure 4.20 show an ex-

ample where is necessary to obtain as faster as possible the number of zeros to the left after a

subtraction or can be an addition of two subnormal numbers that need to be shift to the left one

position. For this stage in the design the proposal presented in [29] is used, but adapted to 55-

bits. Bit 56 as mentioned before, only say that overflow has occurred, then is not taken account

to the Leading Zero Counter.

Design and implementation

Chapter 4 62

Fig. 4.20 Example of result that needs shift to the left n number of bits.

Taking into account the previous example and considering that both number have an exponent

with the value “1010” binary (not shown in figure 4.20), the Leading Zero Count algorithm

only give the number of zeros to the left in order to perform the Normalization (in this case 52

position to the left). However, it can’t shift all this position because when 1 shift to the left is

performed, the exponent field decrease by one, then if the current exponent is 10 decimal, only

can perform shift to the left 10 positions and decrease the exponent to 0, then the final result

will be:

“0.0001100000000000”

With exponent “0”, then in this stage taking advantage that the Leading Zero Count (LZC) is so

faster, one extra operation is performed, it consists of comparing the LZC result with the expo-

nent in order to send the shift final value, and if LZC is less than the Exponent the result is

given by the Leading Zero Count in other case by the Exponent.

Fifth stage performs the normalization, basically check next cases: if the operation is a subtrac-

tion, a shift to the left some positions is needed. If overflow occur a shift to the right one posi-

tion is perform. If both numbers are subnormal and a normalized number is obtained as result,

then the exponent need increased by one.

The normalized results often need to be rounded because most of them cannot be represented

exactly in floating point representation. Next stage is in charge to round the result according to

the rounding mode configured in FCRS (FP Control/Status register); In order to support all

possible, the IEEE 754 Standard the Round module was designed to support the four rounding

modes provided by the Standard which are Round to zero, Round to infinity, Round to minus

infinity and Round to nearest.

Basically with 3 bits all floating-point arithmetic can be rounded as if it was computed with

infinite precision. These three bits are called Guard, Round and Sticky bits, Figure 4.21 show

the position of this bits.

Design and implementation

Chapter 4 63

Fig. 4.21 Guard, Round and Sticky bits

Sticky bit is required to guarantee correct rounding in the final stage of floating point arithme-

tic. The purpose of sticky bit is to indicate that the unrounded result is inexact.

Round to Nearest

Perhaps Round to nearest is the most common used in IEEE floating point arithmetic. In this

rounding model all numbers are rounding to the nearest representation. Following is presented

the algorithm implemented to Round to Nearest.

Algorithm IEEE-754 round to nearest

Input: G-guard bit, R-round bit, S-sticky bit

Output:

If G = 0 then

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅

else if (R = 1 or S=1) then

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 + 𝟏

else

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅

Round Toward Zero

This is the simplest rounding mode. Basically is a truncation regardless of the state of the guard,

round and sticky-bit. Because this mode is so simple, does not require any additional hardware

to implement. Some high-speed floating-point units choose to support only this rounding mode

as the Cell Processor.

Round Towards Plus Infinity

This mode rounds the result to the value closest to but not less than the result.

Algorithm IEEE-754 round towards plus infinity

Input: G-guard bit, R-round bit, S-sticky bit, sign bit

Output:

If (G = 1 or R = 1 or S=1) and sign bit=0 then

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 + 𝟏

else

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 (𝒕𝒓𝒖𝒏𝒄𝒂𝒕𝒆)

Round Towards Minus Infinity

Design and implementation

Chapter 4 64

This mode rounds the result to the value closest to but not greater than the result.

Algorithm IEEE-754 round towards minus infinity

Input: G-guard bit, R-round bit, S-sticky bit, sign_bit

Output:

If (G = 1 or R = 1 or S=1) and sign_bit=1 then

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 + 𝟏

else

 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒓𝒐𝒖𝒏𝒅𝒆𝒅 = 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 (𝒕𝒓𝒖𝒏𝒄𝒂𝒕𝒆)

Seventh stage is in charge to identify if some exception occurs during execution. Floating Point

adder/subtractor can produce four exceptions: Invalid Operation, Overflow, Underflow and

Inexact Operation.

Eighth stage is in charge to check if some overflow exception occurs in seventh stage, then

taking account the current rounding mode put the correct representation as +infinity, -infinity,

largest representable positive number or the largest representable negative number and finally

use a MUX in order to select if the final result come from seventh stage or first stage.

Design and implementation

Chapter 4 65

Fig. 4.22 Design of FP Add/Subtract Unit

FP Multiply unit

Floating Point multiplication is a core operation in many kernels application, and efficient im-

plementation of floating point multipliers is important concern.

Multiplying two numbers in floating point format is perform in three main steps:

 Add the exponent of the two numbers and then subtracting the bias from their result.

 Multiply the significant of the two numbers.

 Calculate the sign by XOR operation of the two signs of the two numbers.

To multiply 2 numbers in double precision format, require implementation of 53x53 multipliers

in hardware, which is very area and power expensive.

This unit will execute only one instruction, which is shown in following table.

Table 4.2 Multiply instruction

Instruction Description

MUL.fmt Floating-Point Multiply

Following image show Multiplier input signals where: Enable (1 bit) say that this is a valid

operation, Source 1(64 bits) and Source 2(64 bits) are the operands. In the other hand, the out-

put signals are Ready that indicates that the operation is complete. Result give the final result of

the multiply and can to expose 4 exceptions according to the IEEE 754 standard which are:

Invalid Operation, Overflow, Underflow and Inexact; Also MIPS 64 R6 specify Not Imple-

mented Operation exception which for this case not apply.

Fig. 4.23 FP Multiply Inputs/Outputs.

Design and implementation

Chapter 4 66

Figure 4.24 shows the complete design of 7 stages FP multiply and in following lines are de-

scribed each stage.

First stage basically performs 4 main activities:

 In block Initial Conditions is monitored if some source is Infinity, Zero, QNaN,

SNaN, both subnormal or overflow (obtaining the final exponent), if someone of

this condition is true means that the operation can finalize because the result is

known and the following steps can be skip. This module accepts subnormal num-

bers, but if both are subnormal means that the result will be Zero.

 Add the exponent of the two numbers and then subtracting the bias from their re-

sult.

 Calculate the sign by XOR operation of the two signs of the two numbers.

 And Start the Multiplication of the mantissas.

Design and implementation

Chapter 4 67

Fig. 4.24 Design of FP multiply unit

Figure 4.24 shown the complete design, 53x53 Multiplier takes 3 cycles, the design of this

multiplier is based in the proposal of Manish Kumar [30], where the proposal is perform the

multiplication using small size multipliers, also in Cyclone IV Device Handbook [38] specify

that for Altera FPGA Cyclone IV which is the FPGA on which the implementation took place,

provide of dedicated 9x9 or 18x18 bits multipliers configurations and also propose the design

presented in Figure 4.27 which is basically the same idea presented in [30].

Design and implementation

Chapter 4 68

This idea is presented in Figure 4.25, where to multiply two numbers of 54 bits each one, the

mantissa is divided in three small blocks of 18 bits each one, just the size of multipliers provid-

ed by Altera Cyclone IV FPGA.

Fig. 4.25 Multiplication using small size multipliers

Basically if in one stage are performed 9 18x18-bits multiplications in parallel and perform the

addition in pairs of results, in a second stage the addition of the previous results in pairs is per-

formed, the 36x36-bits multiplier could be designed with two stages as is show in Figure 4.26.

Design and implementation

Chapter 4 69

Fig. 4.26 Two stage 36x36 bits multiplier

Third stage performs the final addition to obtain a 108-bit result. Following stage perform a

rounding to reduce the result to 53 bits check. Next stage checks for subnormal case, if the

Leading Zero Count give a value bigger than the exponent, signalize to the next stage to start

the normalization, to only perform a shift of the value of the exponent, obtaining a subnormal

number.

Design and implementation

Chapter 4 70

Fig. 4.27 Three stages 54x54 bits multiplier

Five stage is in charge to normalize the multiplier result, if someone of the operands was

subnormal, then is needed perform a shift to the left according the result of Leading Zero

counter of the previous step, if after rounding stage detect an overflow then perform one shift

to the right and increase the exponent by 1.

Design and implementation

Chapter 4 71

Fig. 4.28 Normalization

Exceptions are similar to the module presented in PF Adder/Subtractor.

FP Divide unit

Floating Point Divide was implemented using a Reciprocal unit presented in [32] and after that

performing a multiplication using the previous FP Multiply design.

This unit will execute two instructions, which are shown in following table.

Table 4.3 Multiply instruction

Instruction Description

DIV.fmt Floating-Point Divide

RECIP.fmt Floating-Point Reciprocal Approximation

Following image show Divider/Reciprocal input signals where: Enable (1 bit) say that this is a

valid operation, Source 1(64 bits) and Source 2(64 bits) are the operands. In the other hand, the

output signals are: Ready that indicates that some operation is complete, Signal Result give the

final result of the operation, and implements 5 exceptions according to the IEEE 754 standard

which are Invalid Operation, Overflow, Underflow, Inexact and Division by Zero; Also MIPS

64 R6 specified “Not Implemented Operation” exception which for this case is not apply.

Fig. 4.29 FP Divide/Reciprocal Inputs/Outputs.

Design and implementation

Chapter 4 72

The first step performs the initial approximation of the reciprocal which is obtained reading a

value of 16 bits from the look-up table using the 7 most significant bits of the mantissa without

the leading 1, and after that a multiplication between the read value and the 15 most significant

bits modified previously. Next, the design is described in detail, including the design of the

look-up table.

First approximation is based on Taylor series expansion taking until the first derivative term, as

is presented in formula 1.

𝑓(𝑥𝑖 + 1) = 𝑓(𝑥𝑖) + 𝑓′(𝑥𝑖)𝑓(𝑥𝑖+1 − 𝑥𝑖) (1)

And the 53-bits mantissa is represented as:

𝑋𝑚𝑎𝑛𝑡𝑖𝑠𝑎 = [1. 𝑥1𝑥2𝑥3 … 𝑥52] (2)

To represent 𝑋−1 by Taylor series expansion, operand 𝑋 can be split into two parts as in formu-

la 3 and 4.

𝑋𝑚1 = [1. 𝑥1𝑥2𝑥3 … 𝑥𝑚] (3)

𝑋𝑚2 = [0. 𝑥𝑚+1𝑥𝑚+2𝑥𝑚+3 … 𝑥52]𝑥2−𝑚 (4)

𝑋𝑚𝑎𝑛𝑡𝑖𝑠𝑎 = 𝑋𝑚1 + 𝑋𝑚2 (5)

The initial reciprocal approximation 𝑋−1 is computed by following equation:

𝑋−1 = (𝑋𝑚1 + 2−𝑚−1)−1 − (𝑋𝑚1 + 2−𝑚−1)−2(𝑋𝑚2 − 2−𝑚−1) (6)

And can be rewriting as:

𝑋−1 = (𝑋𝑚1 + 2−𝑚−1)−2[(𝑋𝑚1 + 2−𝑚−1) − (𝑋𝑚2 − 2−𝑚−1)] (7)

Where the first term (𝑋𝑚1 + 2−𝑚−1)−2 is read from ROM and the remaining term (𝑋𝑚1 +

2−𝑚−1) − (𝑋𝑚2 − 2−𝑚−1) will be formed with the operand modifier module. Basically the

operand modifier module performs an inversion of the bits from (𝑚 + 1)𝑡ℎ 𝑡𝑜 2𝑚𝑡ℎ bits.

In order to obtain a ROM with reasonable size, in [32] perform many test with different values

of m, first they do a test with m=6 because theoretically 52-bit accuracy can be achieved with

only 2 iterations, but in their simulations more than half of the result not achieve this accuracy,

then performed more proves with m = 7, 8 and 9 and results presented shown that with this

three values the results are very similar, and the accuracy was better. Finally m=7 then needs a

ROM of 27𝑥16 𝑏𝑖𝑡𝑠. Table 4.3 shows some of the first and last locations of the ROM.

Design and implementation

Chapter 4 73

Table 4.4 Some calculated values for the ROM memory using the method above explained.

Address bits

(7bits)

ROM values (16 bits)

0000000 1111111000000010

0000001 1111101000011010

0000010 1111011001001001

0000011 1111001010001101

0000100 1110111011101000

0000101 1110101101010111

0000110 1110011111011010

0000111 1110010001110001

0001000 1110000100011100

0001001 1101110111011000

0001010 1101101010100111

0001011 1101011110001000

0001100 1101010001111001

0001101 1101000101111011

0001110 1100111010001101

0001111 1100101110101111

Address bits

(7bits)

ROM values (16 bits)

0010000 1100100011011111

0010001 1100011000011111

0010010 1100001101101101

… …

1110100 0100000001000000

1110101 0100010110010111

1110110 0100010100000111

1110111 0100010001111000

1111000 0100001111101011

1111001 0100001101100000

1111010 0100001011010111

1111011 0100001001001111

1111100 0100000111001001

1111101 0100000101000100

1111110 0100000011000001

1111111 0100011000101001

Operand modifier will read 1. 𝑥1𝑥2𝑥3𝑥4𝑥5𝑥6𝑥7𝑥8𝑥9𝑥10𝑥11𝑥12𝑥13𝑥14 and perform the inver-

sion of the bits from 𝑥8 𝑡𝑜 𝑥14.

In the second stage, the result of operand modifier and the value obtained from the ROM will

be multiplied in order to obtain an initial approximation. The result is truncated to 16 bits and

concatenated by 13 bits zeros.

Following steps are in charge to perform two Newton-Raphson iterations. Newton-Raphson is a

sophisticated method that needs less number of iterations to reach convergence than other itera-

tion methods as Gauss-Seidel, which is one of the common iterative methods. Newton-Raphson

takes less computation time.

Iterations will be given by:

𝑥𝑖+1 = 𝑥0 −
𝑓(𝑥0)

𝑓′(𝑥0)
 (8)

Where 𝑥0the initial approximation is calculated cycles before and

𝑓(𝑥0) =
1

𝑥
− 𝑋 (9)

𝑓′(𝑥0) = −
1

𝑥2 (10)

Design and implementation

Chapter 4 74

Substituting the equations (9) and (10) into equation (11) is obtained:

 𝑥𝑖+1 = 𝑥𝑖(2 − 𝑋𝑥𝑖) = 2𝑥𝑖 − 𝑋𝑥𝑖
2 (11)

Is possible to implement the first term 2𝑥𝑖 with only a left shifter of one position (one shift to

the left is equal that multiply by two). Second 𝑋𝑥𝑖
2 term is implemented using a squarer to

obtain 𝑥𝑖
2 and a 53x53 multiplier to obtain the product which must be rounded to 53 bits, and to

finalize the iteration perform a subtraction of the two terms. This process will be doing 2 times

(2 iterations to obtain a 52-bits of accuracy). Design is presented in Figure 4.30.

Design and implementation

Chapter 4 75

Fig. 4.30 Design of FP Divider/Reciprocal unit

Design and implementation

Chapter 4 76

FP Fused Multiply Accumulate Unit

Many floating-point units can actually be thought of as collection of datapaths, one for each

operation. In some modern microprocessors designs the FMAC unit entirely replaces all inde-

pendent execution units. Good examples are presented in Itanium Processors [34] and more

recent in AMD bulldozer microarchitecture [35].

Table 4.5 Fused Multiply Accumulate Instructions and compatibles with this unit

Instruction Description

MADDF.fmt Fused Floating Point Multiply Add

MSUBF.fmt Fused Floating Point Multiply Subtract

ADD.fmt Floating Point Add

SUB.fmt Floating Point Subtract

MUL.fmt Floating Point Multiply

Following image show the Fused Multiply Accumulate input signals where Enable (1 bit)

which encode if it is a valid operation, Source 1(64 bits), Source 2(64 bits) and Source 3(64

bits) are the operands and Operation (3 bits) encode the type of operation that will be execute

for the functional unit. This unit can execute 5 instructions (Table4.5). In the other hand, the

output signals are Ready that indicates that some operation is complete, Signal Result give the

final result of the operation, and give 4 exceptions according to the IEEE 754 standard which

are Invalid Operation, Overflow, Underflow and Inexact; Also MIPS 64 R6 specify Not Imple-

mented Operation exception which for this case is not apply.

Fig. 4.31 FP Divide/Reciprocal Inputs/Outputs.

Design and implementation

Chapter 4 77

Fused Multiply Accumulate performs a Multiplication of A (Source1) and B (Source2) and the

result if added to C (Source3) as is shown in Figure 4.32. Also not only offers improved per-

formance, the precision also increases due to the elimination of a rounding operation after the

first operation (multiply).

Fig. 4.32 Fused Floating Point Multiply-Add

Figure 4.33 shown the complete design of the Fused Multiply Add unit, basically take the pre-

vious individual designs of ADD/SUB and MUL and join with some little modifications as the

elimination of the round after multiplication, and sticky bit take an important role. The most

significant 53 bits plus Round- bit and Sticky- bit are kept, also sticky bit perform a OR opera-

tion between the ten most significant reminder bits in order to give to the addition operation a

more precise value, not only the 53 bits as in traditional operation.

Fused Multiply Accumulate takes only 13 cycles to perform the operations instead of perform

first the multiplication with latency of 7 cycles and after an addition with latency of 8 cycles

with a latency total of 15 cycles in the best case, because when multiplication send the tag to the

FP Queue to perform wakeup of the next operation (ADD), other instruction can take this cycle

to be issue to execute delaying the accumulation.

Furthermore, other important feature of this unit, is that was designed to perform individual

operations as addition, subtraction or multiplication.

Design and implementation

Chapter 4 78

Fig. 4.33 Design of Fused Multiply Add Unit

Design and implementation

Chapter 4 79

FP Comparison unit

In order to try to support all possible of the MIPS64 R6 instruction set for the execution of

benchmarks for testing and verification, were implemented all FPU Comparison instructions, all

FP Formatted Unconditional Operand Move Instructions and all FP Branch Instructions (40

instructions). Basically the implementation of these instructions is simpler than arithmetic in-

structions and all instruction are executed in one cycle.

Table 4.6 FP Comparison Instructions

Mnemonic Instruction

MAX.fmt Floating Point Maximum

MAXA.fmt Floating Point Value with Maximum Absolute Value

MIN.fmt Floating Point Minimum

MINA.fmt Floating Point Value with Minimum Absolute Value

CLASS.fmt Scalar Floating-Point Class Mask

CMP.cond.fmt Floating Point Compare

Table 4.7 FP CMP.cond.fmt instructions

AF False Always False

UN Unordered

EQ Equal

UEQ Unordered or Equal

LT Ordered Less Than

ULT Unordered or Less Than

LE Ordered Less than or Equal

ULE Unordered or Less Than or Equal

SAF Signalling always False

SUN Signalling Unordered

SEQ Ordered Signalling Equal

SUEQ Signalling unordered orEqual

SLT Ordered Signalling Less Than

SULT Unordered or Less Than

SLE Ordered Signalling Less Than or Equal

SULE Signalling Unordered or Less Than or Equal

AF False Always False

UN Unordered

Design and implementation

Chapter 4 80

Table 4.8 FPU Formatted Unconditional Operand Move Instructions

Mnemonic Instruction

ABS.fmt Floating-Point Absolute Value

NEG.fmt Floating-Point Negate

MOV.fmt Floating-Point Move

Table 4.9 FP Branch Instructions

Mnemonic Instruction

BC1EQZ Branch on FP condition Equal to Zero

BC1NEZ Branch on FP condition Not Equal to Zero

EQ Equal

UEQ Unordered or Equal

LT Ordered Less Than

ULT Unordered or Less Than

LE Ordered Less than or Equal

ULE Unordered or Less Than or Equal

SAF Signalling always False

SUN Signalling Unordered

SEQ Ordered Signalling Equal

SUEQ Signalling unordered orEqual

SLT Ordered Signalling Less Than

SULT Unordered or Less Than

SLE Ordered Signalling Less Than or Equal

SULE Signalling Unordered or Less Than or Equal

Design and implementation

Chapter 4 81

4.1.4. Bypass design

An important aspect to improve the IPC performance metric is to include the bypass network.

Most processors today implement some form of bypass. A simple bypass network is used in our

design to interconnect all output of our Floating Point Functional Units to all inputs in order to

forward the values to improve the performance of the processor.

Figure 4.34 shown the Bypass Network. Three cycles before each functional unit obtains its

result, the tag address is broadcast to the tag bus in order to notify to the wakeup mechanism

that this value will be ready in the next 3 cycles. Then, in the best case, instruction perform

wakeup in 1 cycle, is selected to be issue in other cycle, after that instruction read the operands

from the register file (maybe read an erroneous value), and finally in the following cycle the

correct value is present in the bypass network and is selected with the multiplexors that have

each input of each functional unit. This previous steps increase significantly the performance in

the current processors. Is possible anticipate 3 cycles for the FP execution engine using the

bypass network.

Fig. 4.34 Bypass Network

Design and implementation

Chapter 4 82

4.1.5. Complete design

Figure 4.35 shows the complete design of the “Out of Order FP Execution Engine” which

was modeled in Verilog and the result are presented in Chapter 6.

The FP Issue queue can perform issue up to two instructions per clock cycle, after needs read

the source operand to the register file or obtain the value from the bypass network in order to

compute the operation. The latencies of each operation are list in Table 4.10.

Table 4.10 Latency of FP functional units

Functional Unit Latency

FP Adder/Subtractor unit 8

FP Multiplier unit 7

FP Multiply Add unit 13

FP Divide/Reciprocal unit 14

FP Compare unit 1

FP Branch 1

When an instruction is issue to Read register stage is sent to the Reorder Buffer the ROBEntry

of this instruction in order to update the ROB structure. Same case when an instruction is exe-

cuted, the same ROBEntry is sent to notify the state of the instruction in the window.

Recovery

As was mentioned in the background chapter, a superscalar processor with dynamic scheduling

can execute instructions speculatively. When a misprediction occur the speculative state of the

machine is incorrect because the processor has been fetching, renaming and executing instruc-

tions from wrong path. Therefore, when a branch misprediction is identified, the speculative

processor state and the program counter should be restored to the point where the correct path

starts.

In general, recovering the front-end (Fetch, Decode, Dispatch) implies flushing all intermediate

buffers where instructions fetched from the wrong path are in-fly, restoring the history of the

branch predictor and updating the program counter to resume fetching instructions from the

correct path. By contrast, recovering the back-end implies removing all instructions belonging

to the wrong path residing on any buffer like the Issue queue, Reorder buffer, etc. Moreover,

RAT’s should be restored as well in order to properly rename instructions from the correct path.

Finally, back-end resources like physical registers or issue queue entries allocated by wrong-

path instructions should also be reclaimed.

Design and implementation

Chapter 4 83

Lagarto II processor every cycle takes a snapshot of the current state, the number of snapshots

that LagartoII can save is defined by the size of the Reorder Buffer which is 128 locations,

means that can has 128 in fly instructions. Also Lagarto II can perform fetch decode and dis-

patch up to two instructions per clock cycle, that means that in 64 cycles the reorder buffer will

be full. Then are needed 64 snapshots of the state of the processor to recovery if some recovery

is necessary.

In the execution engine the snapshot is taken every cycle of the next three structures: The Ready

Bit Vector, the Fifo_Blocks and the valid bit of the CAM blocks in the issue queue.

When new value is written in the Register File, the same location in the Ready Bit Vector is set,

in order to notify to new instructions that needs this register as source operand that it is ready.

The content of the Register File doesn’t matter because can be written some values that were

written during a speculative execution, but this values can be discarded only with the Ready Bit,

and this location not be valid until a new correct value is written. Same case occurs with the

valid bit of the CAM blocks, when a new instructions arrives to the Queue the valid bit of this

locations is set, and when a misprediction occur, the recover mechanism give the address of the

snapshot to recovery the correct state at the time of the branch predictor perform a miss predic-

tion. Also are needed a snapshots of the Fifo_Blocks in order to recover the empty localities of

each IQ block and the state of the pointers.

Fifo_Blocks and valid bit shares a first shadow memory of 34-bits x 64-entries. The content

of each entry is shown in Figure 4.35.

Fig. 4.35 1 entry of the first recovery shadow memory (Fifo_Blocks and valid bit).

A second memory only save the 128 Ready-bit-Register, then is needed a 128-bits x 64 entries

Memory. Both are dual-port memory.

Design and implementation

84

Fig. 4.36 Out of Order Floating Point Execution Engine Version 1

Design and implementation

85

4.2. Second Proposal

Many floating-point units can actually be thought of as collection of datapaths, one for each

operation. In some current microprocessors the FMA unit entirely replaces all independent

execution units. Good examples are presented in Itanium Processors [34] and more recent in

AMD bulldozer microarchitecture [35], last is present until today in many processors as FX

series. For some applications several units inside the CPU remain idle for a lot time, and these

units could be combined, it can save area, register ports, save energy and cut cost according

AMD.

Lagarto II processor only can issue two instructions, means that in the first design presented in

Figure 4.35, five of the total seven units remain idle in the first stage, and in general in each

same stage of all units.

A new redesign taken account the Bulldozer Microarchitecture [35] is proposed, where basical-

ly hardware of the Scalar Floating Point execution units with the SIMD execution units is

shared. These architectures use a 128-bit FMAC, which under this block finally put two 64-bit

MAC as shown in Figures 4.37 and 4.38. This 64-bit FMAC perform all arithmetic and logical

operations.

FPU also contains two 128-bit integer units, which perform arithmetic and logical operations on

AVX, MMX and SSE packed integer data.

Fig. 4.37 Bulldozer Microarchitecture

Design and implementation

Chapter 4 86

Fig. 4.38 Floating-point Bulldozer Microarchitecture

A similar idea is proposed, but for our architecture which at the moment can only execute scalar

FP instructions, one 128-FMAC is implemented, that means that only are needed 2x64-bit

FMAC to execute 2 instructions per clock cycle using the same issue scheme. General design is

presented in Figure 4.40.

With this design are obtained a various benefit in area, performance and energy efficiency

which are described below:

 In the Issue Queue the number of tag to compare in the CAM blocks are re-

duced, the first design performs 6 comparisons per source, with new proposal only per-

form 3 comparisons when the Block Mapping Table designate (2 from FMAC and 1

from load/move). Also in the Block Mapping Table are deleted three read and three

write ports. That implies reduction in area and improves in frequency the design.

 In the Register File 1 read port is added and three write ports are deleted. The

design of the Register File will occupy less area and the operative frequency increases.

 The bypass logic becomes less complex.

 Execution Engine has less idle stages of executions units.

 The extra logic needed after the register file to send the data to corresponding

functional unit is deleted.

 Complete design works a higher frequency.

Many improvements were obtained with these modifications, in fact the IPC is more or less the

same, the maximum IPC for this design is two.

Design and implementation

Chapter 4 87

In order to perform all this changes, some modifications to the 64-bit FMAC are needed to

execute all arithmetic and logical operations in the same unit. Basically is implemented an extra

logic to compute comparisons and other instructions previously implemented in Comparison

unit and put this in the penultimate stage. Design is presented in Figure 4.39. The new FMAC

design can execute all instructions previously mentioned. Fused Multiply Accumulate instruc-

tions and Multiply have priority, addition/subtraction and compare instructions needs check if

the two or eight stages are free in order to be issue to execute.

Design and implementation

Chapter 4 88

Fig. 4.39 New FMAC design

Design and implementation

89

Fig. 4.40 Out of Order Floating Point Execution Engine Version 2

Implementation

90

Chapter 5

5. Implementation

In this chapter is presented the implementation of proposed designs, each independent building

blocks and the complete design. Both proposals were implemented in Hardware Description

Languages (HDL-Verilog) and was used the Altera DE2-115 FPGA [39] as platform of proves.

The main features of the Develop Platform Altera DE2-115 are listed below:

 Altera Cyclone IV FPGA

 50 MHZ oscillator for clock sources.

 114 480 Logic elements.

 432 M9K memory blocks

 3888 Kbits embedded memory

 128 MB (32Mx32-bit) SDRAM

 2 MB (1Mx16) SRAM

 8MB (4Mx16) Flash

5.1. First Version

5.1.1. Issue Queue

In table 5.1 are shown the resource used in the implementation of the Out of Order Issue Queue.

As was mentioned in chapter 3, the Issue Queue design is some of the elements of the processor

which consumes more energy, even in new processor, for this reason the needed of choose a

low power design is critical for Lagarto II.

First is presented the BMT implementation version which includes the low power mechanism.

This design is using 10864 Logic elements, which is less than the 10 % of logic elements of

Cyclone IV device. Also the Frequency achieve up to 92.04 MHZ in the worst case (Slow

1200mV 85C Model). Some of the objectives of this project is that the complete design (Lagar-

to II) reach a operating frequency between 80 and 90 MHz, but in the complete design the fre-

quency become down because long wires from functional units to the Issue Queue , this results

will be show latter.

Implementation

Chapter 5 91

Table 5.1 Implementation results of FP Issue Queue

Design Area

 (Logic Elements)

Embedded

Memory bits

FMAX (MHZ)

Worst case

(Slow 1200mv 85C

Model)

With BMT 10864 64512 92.04

Without BMT 8056 0 110.61

Furthermore, is presented use of resources of a design of the Issue Queue without the low pow-

er mechanism (BMT), the area is less than the first design because don’t needs the extra logic to

perform comparisons in the BMT and in the Wakeup Logic, also not use embedded memory

and the frequency is better than the low power consumption design.

As shown in Chapter 3.1, comparisons per committed instructions for floating-point bench-

marks for a 32- and 64-queue size, the averages are 12 and 17 comparisons per committed in-

struction, there are unnecessary comparisons that can be avoided, and using a proposed design

(with BMT) only require 1.5 comparisons per committed instruction achieve a reduction near of

73 % for SPEC2000 benchmarks. The operative frequency is reduced by only 7%, but the ener-

gy saving is too much, which justifies the loss of performance, Lagarto II processor is a proces-

sor designed for mobile devices, so the power consumption is an important factor.

If a low power consumption in processors is required, the performance inevitably declines,

basically the designer must decide which is more important. Therefore, today the big companies

of processors like AMD or Intel have several processor families, families focused to mobile

devices such as laptops or tablets, these processors use low power consumption techniques and

inevitably they have less performance than processor families targeted to desktop market which

do not care about power consumption as they are always connected to a power outlet.

5.1.2. Register Bank

As mentioned in chapter 3.2, the implementation of Multiport Memory in FPGAs has some

inconvenient, the number of logic elements (LE) increases according to the number of read and

write ports and the size of the memory, for this reason is necessary to use techniques in order to

reduce needed the LE. The register file is a 64-bits x 128-entries multiport memory with 6-read

and 6-write ports.

Table 5.2 show the comparison between the implementation of LVT and XOR designs versus

the implementation using only Logic Elements. All designs have 6-read and 6-write ports. First

one is the implementation using only Logic Elements, is clearly the abundant use of LE, near of

the 33% of the total LE provided by the Altera DE2-115 FPGA, also de frequency is enough for

the requirements. Second version was implemented using the LVT design, this proposal uses

only 5,188 LE and 294, 912 embedded memory bits (7.4% of the total embedded memory bits),

the reduction of needed LE is notable, also the operative frequency increase up to 221 MHZ.

Third version was implemented using the XOR design, this proposal uses the small amount of

1536 LE, but the embedded memory bits increase versus the LVT design up to 540, 672 em-

Implementation

Chapter 5 92

bedded memory bits (14% of the total embedded memory bits, also the operative frequency

obtained is 116.71 MHZ.

Table 5.2 Implementation results of Register Bank

Design Area

 (Logic Elements)

Embedded

Memory bits

FMAX (MHZ)

Worst case

(Slow 1200mv 85C

Model)

Logic Elements 37, 337 0 130.82

LVT design 5, 188 294, 912 221

XOR design 1, 536 540, 672 116.71

Finally, the chosen design was de XOR design, because the needed of LE’s resources is small

and the operative frequency full fit the requirements.

5.1.3. Execution Stage

FP Adder/Subtractor

Table 5.3 show the implementation results of the FP Adder/subtractor proposal versus the IP

Core provided by Altera. Both designs contemplate 8 stages of pipeline.

Table 5.3 Implementation results of FP Adder/Subtractor

Design Area

 (Logic Ele-

ments)

Embedded

Memory bits

Embedded

Multiplier

FMAX (MHZ)

Worst case

(Slow 1200mv 85C

Model)

Altera IP

Core

1804 0 0 116.36

Proposal IP

Core

2537 0 0 124.83

Implementation

Chapter 5 93

Table 5.4 shows the comparisons between both designs (Proposal/Altera IP Core).

Table 5.4 Comparisons between both FP adder/Subtractor

Design Advantages Disadvantages

Altera IP

Core

 Less area Not support subnormal numbers

 Only support one rounding

mode

 Slower

Proposal IP

Core

 Support subnormal num-

bers

 Early execution Logic

 4 Rounding modes

 Faster

 More area

Altera FP adder/subtractor IP Core consumes less area, but this is because is more simple, only

implement one rounding mode and the most important, not support subnormal numbers which

increase a lot the complexity of the design and of course the accuracy of the functional unit.

The frequency obtained with the proposal is higher than the IP Core although the design is more

complex due to be implemented some of the best high performance algorithms in the critical

parts like Leading Zero Count and Kogge-Stone Adder.

FP Multiplier

Table 5.5 show the implementation results of the FP Multiplier proposal versus the IP Core

provided by Altera. Proposal design contemplate 7 stages of pipeline, Altera IP Core contem-

plate 6 and 10 stages.

Table 5.5 Implementation results of FP Multiplier

Design Stages Area

 (Logic

Elements)

Embedded

Memory

bits

Embed-

ded

Multipli-

er

FMAX (MHZ)

Worst case

(Slow 1200mv

85C Model)

Altera IP

Core

6 stages 832 0 18 119

Altera IP

Core

10 Stages 1041 110 18 132.59

Proposal

IP Core

7 Stages 1932 0 30 118.89

Implementation

Chapter 5 94

Table 5.6 show the comparisons between both designs (Proposal/Altera IP Core).

Table 5.6 Comparisons between both FP adder/Subtractor

Design Advantages Disadvantages

Altera IP

Core

 Less area

 Faster

 Not support subnormal numbers

 Only support one rounding

mode

Proposal Support subnormal num-

bers

 Early execution Logic

 4 Rounding modes

 More area

 Slower

Altera FP Multiplier IP Core consumes less area, but this is because is more simple, only im-

plement one rounding mode and the most important, not support subnormal numbers which

increase a lot the complexity of the design and of course the accuracy of the functional unit.

The frequency obtained with the proposal is slightly less than the IP Core, it is because the

design is more complex due to the support of subnormal numbers and all rounding modes de-

fined in the standard IEEE754.

FP Divider

Table 5.7 show the implementation results of the FP Divider proposal versus the IP Core pro-

vided by Altera. Proposal design contemplate 19 stages of pipeline, Altera IP Core contemplate

24 and 10 stages.

Table 5.7 Implementation results of FP Divider

Design Stages Area

 (Logic

Elements)

Embedded

Memory

bits

Embedded

Multiplier

FMAX (MHZ)

Worst case

(Slow 1200mv

85C Model)

Altera IP

Core

24 stages 1, 344 6, 441 44 117.91

Altera IP

Core

10 Stages 1, 325 4, 709 44 88.94

Proposal

IP Core

19 Stages 3, 550 2, 048 62 118.55

Table 5.8 shows the comparisons between both designs (Proposal IP Core /Altera IP Core).

Implementation

Chapter 5 95

Table 5.8 Comparisons between both FP adder/Subtractor

Design Advantages Disadvantages

Altera IP

Core

 Less area Not support subnormal numbers

 Only support one rounding

mode

Proposal IP

Core

 Support subnormal num-

bers

 Early execution Logic

 4 Rounding modes

 Faster

 More area

Altera FP divider IP core implement a similar algorithm using a memory for initial approxima-

tion. The memory used is bigger than the implemented in the proposal IP core. Also the pro-

posal consumes more area than Altera IP core. Finally, the operative frequency is given by the

lower stage which is the multiplier, the complete design of the proposal FP divider IP Core is

faster than the Altera FP divider.

FP Fused Multiply Accumulate

Table 5.9 shows the implementation results of the FP Multiply Accumulate IP Core proposal.

IP Core for FMAC is not provided by Altera. Proposal FMAC IP Core design contemplates 13

stages of pipeline.

Table 5.9 Implementation results of FP Multiply Accumulate

Design Stages Area

 (Logic

Elements)

Embedded

Memory

bits

Embedded

Multiplier

FMAX (MHZ)

Worst case

(Slow 1200mv

85C Model)

Altera

FMAC IP

Core

- - - - -

Proposal

FMAC IP

Core

13 Stages 3612 0 30 113.34

FP Comparison Unit

Implementation

Chapter 5 96

Table 5.10 shows the implementation results of the FP Comparison. This module compute 40

instructions like comparisons, mask, movements, absolute value and others.

Table 5.10 Implementation results of FP ALU

Design Stages Area

 (Logic

Elements)

Embedded

Memory

bits

Embedded

Multiplier

FMAX (MHZ)

Worst case

(Slow 1200mv

85C Model)

Altera FP

Comparison

IP Core

- - - - -

Proposal FP

Comparison

IP Core

1 1068 0 0 166.06

5.1.4. Recovery

Recovery basically is a set of dual-port memories (1-read and 1-write). Table 5.11 shows the

implementation results of the shadow memories needed for recovery from a speculative state.

Table 5.11 Implementation results of recovery

Design Memory size Embedded

Memory bits

FMAX (MHZ)

Worst case

(Slow 1200mv 85C

Model)

Ready bit

vector

128-bitsx64-entries

Dual-port

8192 311.33

FIFO

blocks and

Valid bit

4 x (34-bitsx64-entries)

Dual-port

8704 311.33

This memory blocks basically each cycle save a vector which contain information about the

current state of the processor. Each memory has 64 entries because are needed 64 snapshots.

5.1.5. Complete design

Table 5.12 show the resource utilization of the complete FP engine, are used 26, 893 LE, near

of the 23% of the total LE of the FPGA and 574, 976 embedded memory bits which is the 14.7

% of the total embedded memory.

Implementation

Chapter 5 97

Table 5.12 Implementation results of the complete design

Design Area

 (Logic Elements)

Embedded

Memory bits

FMAX (MHZ)

Worst case

(Slow 1200mv 85C Model)

FP Engine 26 893 574 976 88.1

Also the operative frequency decreases up to 88.1 MHZ due to the interconnection (wires)

between the outputs of the FP units and the Wakeup Logic in the issue queue and the intercon-

nection of the Bypass Network. This frequency full fit the requirements.

Figure 6.1 shows the RTL viewer of the complete FP engine generated by Quartus II, which

include the Issue Queue, the Read Register, the Ready Bit Vector, the functional units and the

Bypass Network.

Fig. 5.1 RTL viewer of the Complete FP Engine.

Implementation

Chapter 5 98

5.2. Second Version

An enhancement of the first version is presented. Improvements are shown in each sub-chapter.

With this design are obtained a benefit in area, performance and energy efficiency.

5.2.1. Issue Queue

In Table 5.13 are presented the implementation results of the improvement of the Out of Order

Issue Queue versus the first design.

Table 5.13 Implementation results of FP Issue Queue

Design Area

 (Logic Elements)

Embedded

Memory bits

FMAX (MHZ)

Worst case

(Slow 1200mv 85C

Model)

First design 10864 64 512 92.04

Improvement 6628 24 576 111.17

The area is reduced and the performance increased due to many causes as the number of tag to

compare in the CAM blocks, with first design 6 comparisons per source are performed, with

new proposal only 3 comparisons are performed. Also in the Block Mapping Table are deleted

three read and three write ports. That implies reduction in area and improves the frequency of

the design.

5.2.2. Register Bank

In Table 5.14 are shown the implementation results of the improvement of the Register File

versus the first design.

Table 5.14 Implementation results of Register Bank

Design Area

 (Logic Elements)

Embedded

Memory bits

FMAX(MHZ)

Worst case

(Slow 1200mv 85C

Model)

XOR design 1, 536 540, 672 116.71

Improvement 576 196, 608 151.06

The area is reduced because are added 1 read port and deleted three write ports. The frequency

increases due to the number of XOR operation in writes and read operation decrease almost by

2 times. Furthermore, the extra logic needed adjacent to the register file to send the data to

corresponding functional unit is removed.

Implementation

Chapter 5 99

5.2.3. Fused Multiply Accumulate Unit (FMAC)

New proposal is based in the use of only FMAC units which can compute almost all FP arith-

metic operations. Table 5.15 show the implementation results of the FP Multiply Accumulate

proposal versus the first design proposed before.

Table 5.15 Implementation results of FP Multiply Accumulate

Design Stages Area

 (Logic

Elements)

Embedded

Memory

bits

Embed-

ded

Multipli-

er

FMAX (MHZ)

Worst case

(Slow 1200mv

85C Model)

First

FMAC

13 Stages 3612 0 30 113.34

New

FMAC

13 Stages 4680 0 30 110.34

In the new proposal are used 2 FMAC units, Lagarto II can perform issue up to 2 instructions

per cycle, for these reason the new design can execute any combination of instructions unlike

the first version which could only execute 2 different instructions in a given cycle. FP divider

is executed by software with the new design.

5.2.4. Recovery

Recovery basically is the same that the presented in first version.

5.2.5. Complete design

Table 5.16 show the resource utilization of the new complete FP engine versus the first version,

are used 14, 635 LE, near of the 13% of the total LE of the FPGA and 245 760 embedded

memory bits which is the 6 % of the total embedded memory.

Table 5.16 Implementation results of FP Multiplier

Design Area

 (Logic Ele-

ments)

Embedded

Memory bits

FMAX (MHZ)

Worst case

(Slow 1200mv 85C Model)

FP Engine

First Version

26, 893 574, 976 88.1

FP Engine

Second Version

14, 635 245, 760 100.07

Implementation

Chapter 5 100

Compared with the first version, the area reduction is huge, and the performance increases no-

ticeably. This new proposal is obtained many benefits in area and energy consumption, which is

one of the specific goals of this work due to Lagarto II processors is designed for mobile devic-

es and the energy efficiency is important aspect to obtain more autonomy in the mobile devices.

Also the operative frequency increases up to 100.07 MHZ due to the bypass logic become less

complex, and in general all blocks work at higher operative frequencies compared with the first

version.

Figure 5.2 shown the RTL viewer of the complete new FP engine generated by Quartus II,

which include the Issue Queue, the Read Register, the Ready Bit Vector, the FMAC’s units and

the Bypass Network.

Fig. 5.2 RTL viewer of the Complete FP Engine.

Testing

Chapter 6 101

Chapter 6

6. Testing

Each functional y unit was tested individually in order to check all exceptions, rounding modes

and special cases, also complete design was testing with a set of programs in order to prove the

correct functionality. Following is presented a little example in order to see easily the correct

functionality of the complete design, checking the issue, read register, bypass logic and execu-

tion unit at detail. Furthermore, to prove the accuracy of the execution units is compared a little

program in assembler language running in the current proposal versus the result provided by a

program written in C language running in the Intel i5 processor.

The following code was written in MIPS assembler language, basically perform 3 arithmetic

operations, the load/store instructions are emulated because this instruction are executed in the

Load/store unit.

The following code was written in C language, basically perform the same arithmetic operation

that the last example in assembler language.

#include<stdio.h>

main()

{

double num1,num2,num3,num4.num5;

double result0, result1, result2; // $f8, $f9, $t7

num1 = 899.5612547825644; // $f10

num2 = 8979.56546454515; // $f11

num3 = 7895.1212121289; // $f12

num4 = 124.2525465741; // $f13

num5 = 999.978569887878; // $f14

result0= num1 * num2 + num3;

result1= num3 * num4 - num5;

result2= result0* result1+ num1;

printf("\n Final Result: %lf", result2);

return 0;

}

//Example

LDC1 $f10, 0x0080($0) // Load Double Word

LDC1 $f11, 0x0088($0) // Load Double Word

LDC1 $f12, 0x0090($0) // Load Double Word

MADDF$f8, $f10, $f11, $f12 // Fused Multiply Add

LDC1 $f13, 0x0098($0) // Load Double Word

LDC1 $f14, 0x00A0($0) // Load Double Word

MSUBF$f9, $f12, $f13, $f14 // Fused Multiply Subtract

MADDF$f15, $f8, $f9, $f10 // Fused Multiply Add

SDC1 $f15 ,0x00A8($0) // Store Double Word

Testing

Chapter 6 102

With a bigger program follow the results is more complicated because the amount of data, for

this reason only is show a little example, the main idea is check the back-end pipeline stages:

Instruction Wakeup, Instruction Issue and the Read register. In this section of the instruction

data path perhaps the values read from register file are erroneous but the bypass logic fix the

correct value at input ports of the execution units.

Still is not possible execute complete benchmarks due to the Lagarto II processors is not com-

plete, the back-end of the Lagarto II processor still is in development, but the current proves is

possible observe the expected behavior.

Table 6.1 shows the values of the corresponding variables used in the proposed program (C and

assembler), both uses the same data in order to compare the final result to prove the accuracy of

the functional units of the proposal.

Table 6.1 Values of the load operations in decimal and Floating-point representation.

Variable Decimal Floating Point Representation (Double Precision)

num1,$f10 899.5612547825644 0 10000001000 1100000111000111110101110011001001011011111010110100

num2,$f11 8979.56546454515 0 10000001100 0001100010011100100001100001001001000110100000111100

num3,$f12 7895.1212121289 0 10000001011 1110110101110001111100000111110000100001000110000001

num4,$f13 124.2525465741 0 10000000101 1111000100000010100110111001000110110001111001111100

num5,$f14 999.978569887878 0 10000001000 1111001111111101010000011100011100110000101001001011

Table 6.2 shows the logic registers used in the assembler program.

Table 6.2 Logic Register used in the assembler program.

Name Logic

Register

$f8 8

$f9 9

$f10 10

$f11 11

$f12 12

$f13 13

$f14 14

$f15 15

Testing

Chapter 6 103

The following Figures show the simulation of the assembler program proposed before. This

simulation was doing in Altera ModelSim Simulator.

Figure 6.1 show up to 15ps, basically at 3 ps enter to the queue the first instruction which is a

Fused Multiply Add, in the following cycle enter to the queue 2 instructions, Fused Multiply

Subtract and Fused Multiply Add. In next cycles arrive data from the Load/Store unit, the phys-

ical registers $f10, $f11 and $f13, also its corresponding tags (Tag_LoadPF) is used to read the

Block Mapping Table in order to enable the comparisons with the source operands in the CAM

Blocks enabled with the EnableComparison bits.

 Fist Instruction Second & Third Instruction

 Data from Data Cache L1

Fig. 6.1 Simulation from 2ps to 15ps

At 7 ps is shown the first comparisons with the EnableComparison bits in CAM-blocks 0 and 2,

means that the data from the first load instruction is needed by Instruction 1 and instruction 3 to

be issue. The next tags from load data enable comparisons for CAM-blocks 0 and 1.

Signal Generated by Block Mapping Table

to enable the comparisons in CAM-blocks

Tag from Load Data

Testing

Chapter 6 104

Data from Data Cache L1

Fig. 6.2 Simulation from 15ps to 28ps

Figure 6.2 shows the simulation from 15ps to 28ps; In the signals section named Load Data is

shown the data arrive from the Load/Store unit, the physical registers $f14 and $f12, also its

corresponding tags (Tag_LoadPF) is used to read the Block Mapping Table in order to enable

the comparisons with the source operands in the CAM Blocks enabled with the EnableCompar-

ison bits, in this case, Blocks 0 and 1 are enable to comparisons.

As described previously, the requirements to issue an instruction to execute are that it should

have all sources ready, the needed functional unit free and be selected by the Priority Arbiter.

All conditions were complying by first and second arithmetic instructions, in time 23ps both

instruction are Issue, the Issue_valid bit is enable and its corresponding ROB_entry is used to

notify the Reorder Buffer that the instructions was Issue.

At 25ps are shows the final values that will arrive to the functional units ports, this values come

from the Register File or the Bypass Network. In this case, this values come from the Register

File due to all values were written in early cycles.

Signal Generated by Block Mapping Table

to enable the comparisons in CAM-blocks

Sources values after the bypass multiplexors

Issue of Instructions

1 and 2

Testing

Chapter 6 105

Figure 6.3 shows the simulation from 40ps to 53ps; At 43ps in the signal section named Tag to

Wakeup are shown two values: Tag_FMAC1 and Tag_FMAC2 which were send by the func-

tional units to notify the Wakeup Logic that these instructions will be complete in the next three

cycles and the Wakeup process can start. Third instruction comply with all condition and is

Issue at 47ps.

Fig. 6.3 Simulation from 40ps to 53ps

Also at 49ps is shown the results of the first and second instruction, these values are needed to

execute the instruction that was issue one cycle before, and then this values go through the

Bypass Network to replace the old value read from the register file.

FMAC tags (3 cycles

before finalize the

execution)

Results of instructions 1 and 2

Issue of Instruction 3

Values chose by

the bypass Network

Testing

 106

Finally, in Figure 6.4 is show the final result of the third instruction. This data is read by a Store

instruction in order to save this data in memory.

Fig. 6.4 Simulation from 64ps to 78ps

The final result shown in Figure 6.4 corresponding to 0x429CD39473615714 (Hexadecimal)

which is the representation in the IEEE-754 double precision format. The conversion of this

value to decimal representation correspond to 7923763566677.76953125d.

Figure 6.5 show the final result of the previous example written in C language and executed in a

Intel X86 architecture, this result is exactly the same obtained with the program written in As-

sembler language and running in the proposal FP Execution Engine design.

Fig. 6.5 Result of the program written in C language.

FMAC tag (3 cycles

before finalize the

execution)

Final result

Store Instruction

Conclusions, Results, Future works and Research’s Products

Chapter 7 107

Chapter 7

7. Conclusions, Results, Future works and

Research’s Products

Embedded processors oriented to mobile devices needs a high performance in order to support

the new applications, furthermore, these architectures need to use of low power consumption

techniques in order to provide the greatest possible energy autonomy.

In superescalar processors with Out of Order execution the issue queue play an important role

in the design because is one of the elements which consumes more power of the total power

consumption in the processor. Lagarto II now has a high performance Issue Queue accompa-

nied with low power consumption techniques. With the current design is expected save near of

the 70% in energy only in the Issue Queue unlike use a traditional design using RAM-CAM

Schemes.

In the complete design there are some other ways to save energy, in the register file design there

are a large number of proposals in order to save energy, but this designs do not apply to imple-

mentation on FPGA, also implement multiport memory in the FPGA is not a trivial task, are

needed a special techniques special for FPGA as the presented in this work.

High performance FP functional units were designed and implemented, also still we can per-

form improvements on energy consumption in these units. Usually the floating-point units have

a large latency and techniques like Clock gating are used in order to reduce the dynamic power

dissipation in stages that not doing any work in a given cycle.

The bypass network is an important element in the processor, in fact all processors today in-

clude a bypass network in order to increase the performance due to in combination with the

wakeup logic, the back to back execution is supported.

The current thesis work accomplishes with the all goals, also were designed and implemented

extra FP units in order to support all possible the FP instruction set.

Results

High performance Floating-Point IP Cores for:

 Addition/Subtraction

 Multiplication

 Division

Conclusions, Results, Future works and Research’s Products

Chapter 7 108

 Fused Multiply Accumulate

Multiport memories for FPGA.

Issue Queue with two stages:

 Low power consumption Wakeup Logic

Synchronization for back-to-back execution.

Testing of the complete design in order to prove the functionality and accuracy of the complete

design.

Future works
Second proposal was designed in order to in a near future the FP Execution Engine can execute

SIMD instructions with the adding of a little extra logic. Sharing the FPU unit with SIMD unit

Lagarto II could save a lot of area due to FP scalar hardware occupy a big area comparable with

the FP SIMD unit. Furthermore, the plan is not only execute 128-bits SIMD instructions, with

the adding of 2 extra FMAC units (similar to the Bulldozer microarchitecture) can execute 4

scalar floating-point instructions in the same cycle or 2x128-bit, 1x256-bit SIMD instruction or

combine of these instructions, as is shown in Figure 7.1. Furthermore, integer SIMD instruc-

tions will be contained in the complete floating point unit. The Logic in the Issue queue will be

simpler because the proposal was divided in four blocks, and performing Issue of 4 instructions

the Priority Arbiter will be simpler due to can remove one level of priority. The register bank

will be bigger due to it can read words of 128-bits for 128-bits SIMD instructions or 2-words of

128-bits for 256-bits SIMD instructions.

Conclusions, Results, Future works and Research’s Products

Chapter 7 109

Floating Point
Queue

128 x 128-bits FP
Register File

64b
FMAC

BYPASS NETWORK

64b
FMAC

64b
FMAC

64b
FMAC

INT
SIMD

INT
SIMD

INT
SIMD

INT
SIMD

256-bits SIMD instruction

128-bits SIMD instruction 128-bits SIMD instruction

64-bits FP Scalar
instruction

64-bits FP Scalar
instruction

64-bits FP Scalar
instruction

64-bits FP Scalar
instruction

32-bits FP Scalar
instruction

32-bits FP Scalar
instruction

32-bits FP Scalar
instruction

32-bits FP Scalar
instruction

Fig. 7.1 FP Scalar/SIMD units sharing hardware.

Finally, the current design was not proven in conjunction with Lagarto II, due to the processor

still is not complete, for this reason complete benchmarks was not proven in order to obtain data

of the real performance.

Research products

 Prototype of the out-of-order floating-point execution engine.

 4 High performance Floating-Point IP Cores

 Currently working on writing a paper for publish in Microprocessors and Microsys-

tems: Embedded Hardware design (MICPRO) Journal

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 110

APPENDICES

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

The following information was extracted from “MIPS Architecture For Program-

mers” Volume I-A [40] and Volume II-A [41].

In the MIPS architecture, the FPU is implemented via Coprocessor 1, an optional processor

implementing IEEE 754 floating point operations.

The FPU also provides a few additional operations not defined by the IEEE standard.

FPU Data types

The FPU provides both floating-point and fixed-point data types

- The single and double precision floating-point data types are those specified by the

IEEE standard.

- The fixed-point types are signed integers provided by the CPU architecture.

Floating Point Formats

The following floating point formants are provided by the FPU:

- 32-bit single-precision floating point.

- 64-bit double-precision floating point.

The floating point data types represent numeric values as well as other special entities, such as

the following:

- Two infinities, +∞ and -∞.

- Signaling non-numbers(SNaNs).

- Quiet non-numbers(QNaNs).

- Numbers of the form: (−1)𝑠2𝐸 𝑏0. 𝑏1𝑏2 … 𝑏𝑝−1 where

- s = 0 or 1

- E = any integer between E_min and E_max, inclusive.

- 𝑏𝑖= 0 or 1 (the high bit, 𝑏0, is to the left of the binary point)

- p is the signed-magnitude precision

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 111

Table A. 1 Parameters of Floating Point Data Types

Parameter Single Double

Bits of mantissa 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of 𝒃𝟎 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

The single and double floating point data types are composed of three fields: sign, exponent and

fraction as we can see in Figures A.1 and A.2.

Fig A. 1 Single-Precision Floating Point Format (S)

Fig A. 2 Double-Precision Floating Point Format (D)

Values are encoded in the specified format by using unbiased exponent, fraction, and sign val-

ues listed in Table A.2

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 112

Table A. 2 Value of Single or Double Floating Point Data Type Encoding

Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one

encoding; numbers are kept in normalized form. The high-order bit of the p-bit mantissa, which

lies to the left of the binary point, is “hidden,” and not recorded in the Fraction field. The en-

coding rules permit the value of this bit to be determined by looking at the value of the expo-

nent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number is

normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the

exponent would be less than E_min, then the representation is denormalized and the encoded

number has an exponent of E_min-1 and the hidden bit has the value 0. Plus and minus zero are

special cases that are not regarded as denormalized values.

Reserved Operand Values – Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by unini-

tialized variables, violations of mathematical rules, or results that cannot be represented. If a

program does not choose to trap IEEE exception conditions, a computation that encounters

these conditions proceeds without trapping but generates a result indicating that an exceptional

condition arose during the computation. To permit this, each floating-point format defines rep-

resentations, listed in Table A.2, for plus infinity (+∞), minus infinity (-∞), quiet non-numbers

(QNaN), and signaling non-numbers (SNaN).

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 113

Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format and exists

to represent a magnitude overflow during a computation. A correctly signed ∞ is generated as

the default result in division by zero and some cases of overflow.

Once created as a default result, ∞ can become an operand in a subsequent operation. The infin-

ities are interpreted such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting

case of real arithmetic with operands of arbitrarily large magnitude, when such limits exist. In

these cases, arithmetic on ∞ is regarded as exact and exception conditions do not arise. The out-

of-range indication represented by ∞ is propagated through subsequent computations.

For some cases, there is no meaningful limiting case in real arithmetic for operands of ∞, and

these cases raise the Invalid Operation exception condition.

Signaling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are

useful values to put in uninitialized variables. An SNaN is never produced as a result value.

Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or

unavailable data and results. Propagation of the diagnostic information requires information

contained in a QNaN to be preserved through arithmetic operations and floating-point format

conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-

point result is to be delivered, a QNaN operand causes an arithmetic operation to supply a

QNaN result. When possible, this QNaN result is one of the operand QNaN values. QNaNs do

have effects similar to SNaNs on operations that do not deliver a floating-point result—

specifically, comparisons.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 114

Table A. 3 Value supplied when a new Quiet NaN is created

Fixed Point Formats

The FPU provides two fixed-point data types:

- 32 bit Word fixed-point (type W)

- 64 bit Longword fixed-point (type L)

The fixed-point values are held in the 2’s complement format used for signed integers in the

CPU. Unsigned fixed-point data types are not provided by the architecture; application software

may synthesize computations for unsigned integers from the existing instructions and data

types.

Fig A. 3 Word Fixed Point Format (W)

Fig A. 4 LongWord Fixed Point Format (L)

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 115

Floating Point Registers

This section describes the organization and use of the two types of FPU register sets:

• Floating Point General Purpose Registers (FPRs) are 32 or 64 bits wide. These registers trans-

fer binary data between the FPU and the system, and are also used to hold formatted FPU oper-

and values. A 32-bit FPU contains 32, 32-bit FPRs, each of which is capable of storing a 32-bit

data type. A 64-bit floating point unit contains 32, 64-bit FPRs, each of which is capable of

storing any data type.

• Floating Point Control Registers (FCRs) are 32 bits wide and are used to control and provide

status for all floating-point operations.

In Release 6 the 32-bit register model does not support 64-bit data types (stored in even-odd

pairs of registers), and 64-bit operations are required to signal the Reserved Instruction ex-

ception.

FPU Register Models

The MIPS architecture supports two FPU register models:

 32-bit FPU register model: 32 , 32-bit registers

o 32-bit data types stored in any register

o Pre-release 6 : 64-bit data types stored in even-odd pairs of registers

In release 6 the 32-bit register model does not support 64-bit data types (Stored in

even-odd pairs of registers), and 64-bit operation are required to signal the Re-

served Instruction exception.

 64-bit FPU register model: 32 , 64-bit registers, with all formats supported in a regis-

ter.

Release 6 supports both FPU register models. However, with a 64-bit FPU (FIRF64=1), Release

6 requires the 64-bit FPU register model and does not support the 32-bit FPU register model,

i.e., StatusFR=1 is required. With a 32-bit FPU (FIRF64=0, 32-bit FPRs), Release 6 does not

support 64-bit data types and requires instructions manipulating such data types to signal a

Reserved Instruction exception. In particular, Release 6 does not support even-odd register

pairs.

In Table A.4 we show the availability and compliance requirements of FPU register widths,

register models, and data types.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 116

Table A. 4 FPU Register Models Availability and Compliance

Where “Required” means “required if an FPU of specified type is present”. “Available” means that the

feature is available to implement, i.e., is optional. “Not available” means that the feature cannot be imple-

mented.

Floating point control registers (FCRS)

The MIPS64 Architecture supports the following Floating Point Control Registers (FCRs):

 FIR: FP Implementation and Revision Register

 FCSR: FP Control/Status register

 FEXR: FP Exceptions Register

 FENR: FP Enables register

Access to the FCRs is not privileged; they can be accessed by any program that can execute

floating point instructions.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 117

Floating Point Implementation Register (FIR, CP1 Control Register 0)

The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains

information identifying the capabilities of the floating point unit, the floating point processor

identification, and the revision level of the floating point unit.

Figure A.5 shows the format of the FIR register and Table A.5 describes the FIR register fields.

Fig A. 5 FIR Register Format

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 118

Table A. 5 FIR Register Field Descriptions

Field Description

Revision Specifies the revision number of the floating point unit. This field allows software

to distinguish between one revision and another of the same floating point proces-

sor type.

Processor

ID

Identifies the floating point processor

S Indicates that the single precision (S) floating point data type and instructions are

implemented.

0 – not implemented

1 - implemented

D Indicates that the double precision (D) floating point data type is implemented.

0 – not implemented

1 - implemented

PS Indicates that the paired-single (PS) floating point data type and instructions are

implemented:

0 – not implemented

1 – implemented

Note: In release 6 PS data type is removed.

3D Indicates that MIPS 3D is implemented:

0 – not implemented

1 – implemented

W Indicates that the word fixed-point (W) data type and instructions are implemented:

0 – not implemented

1 – implemented

L Indicates that the longword fixed-point (L) data type and instructions are imple-

mented:

0 – not implemented

1 – implemented

F64 Indicates that the floating point unit has registers and data paths that are 64-bits

wide.

0 - FPU is 32 bits

1 – FPU is 64 bits

Has2008 Indicates that one or more IEEE-754-2008 features are implemented. If this bit is

set, the ABS2008 and NAN2008 field within the FCSR register also exist.

Impl These bits are implementation-dependent and are not defined by the architecture.

UFRP Indicates user-mode FR switching is supported.

FREP User mode access of FRE is supported.

0 – Support for emulation of statusFR =0 handling on a 64-bit FPU with statusFR =0

only is not available.

1 – Support for emulation of statusFR =0 handling on a 64-bit FPU with statusFR =1

only is available.

0 Reserved

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 119

Floating Point Control and Status Register (FCSR, CP1 Control Register 31)

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the

operation of the floating point unit, and shows the following information:

 Selects the default rounding mode for FPU arithmetic operations

 Selectively enables traps of FPU exceptions conditions

 Controls some denormalized number handling options

 Reports any IEEE exceptions that arose, cumulatively, in complete instructions.

 Release 6 removes the FP condition codes.

The access to FCSR is no privileged; it can be read or written by any program that has access to

the floating point unit.

Figure A.6 shows the format of the FCSR register and Table A.6 describes the FCSR register

fields.

Fig A. 6 FCSR Register Format

Table A. 6 FCSR Register Field Descriptions

Fields Description

RM Rounding Mode. This field indicates the rounding mode used for most floating

point operation (some operations use a specific rounding mode). See the Table A.7

for the meaning of the encodings of this field.

Flags Flag bits. This field shoes any exception conditions that have occurred for com-

pleted instructions since the flag was last reset by software.

When a FPU arithmetic operation raises an IEEE exception condition that does not

result in a Floating point exception, the corresponding bits in the Flags field are

set, while the others remain unchanged. Arithmetic operation that result in a Float-

ing point exception do not update the Flag bits.

This field is never reset by hardware and must be explicitly reset by software.

Refer to Table A.8 for the meaning of each bit.

Enables Enable bits. These bits control whether or not a exception is taken when an IEEE

exception condition occurs for any of the five conditions. The exception occurs

when both an Enables bit and the corresponding Cause bit are set either during an

FPU arithmetic operation or by moving a value to FCSR or one of its alternative

representations. Note that Cause bit E has not corresponding Enables bit; the non-

IEEE Unimplemented Operation exception is defined by MIPS as always enabled.

Refer to Table A.8 for the meaning of each bit.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 120

Fields Description

Cause Cause bits. These bits indicate the exception conditions that arise during execution

of an instruction and is set to 0 otherwise. By reading the registers, the exception

condition caused by the proceeding FPU arithmetic instruction can be determined.

Refer to Table A.8 for the meaning of each bit.

NAN2008 Quiet and Signaling NaN encodings recommended by the IEEE standard 754-

2008, i.e.,a quiet NaN is encoded with the first bit of the fraction field being 0.

MIPS legacy FPU encodes NaN values with the opposite polarity, i.e.,a quiet NaN

is encoded with the first bit of the fraction being0 and signaling NaN is encoded

with the first bit of the fraction field being 1.

Refer to Table A.3 for the quiet NaN encoding values.

This fields exist if FIRHAS2008 is set.

0 – MIPS legacy NaN econding

1 – IEEE 754-2008 NaN encoding

ABS2008 ABS.fmt and NEG.fmt instructions compliant with IEEE Standard 754-2008.

The IEEE 754-2008 standard requires that the ABS and NEG functions are non-

arithmetic and accept NAN inputs without trapping.

This fields exist if FIRHAS2008 is set.

0 – ABS and NEG intructions are arithmetic and trap for NAN inputs. MIPS

legacy behavior

1 – ABS and NEG intructions are non-arithmetic and accept NAN inputs without

trapping. IEEE-754-2008 behavior.

0 Reserved for future use; reads as zero.

Impl Available to control implementation-dependent features of the floating point unit.

If these bits are not implemented, they must be ignored on write and read as zero.

FS Flush to Zero (Flush subnormals).

0 – Input subnormal values and tiny non-zero result are not altered. Un-

implemented Operation exception may be signaled as needed.

1 – When FS is one, subnormal results are flushed to zero. The unimple-

mented Operation exception is not signaled for this reason.

FCC Floating point Condition Codes, removed in realease 6.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 121

Table A. 7 Rounding Mode Definitions

RM Field

Encoding

Meaning

0 RN – Round to Nearest

Rounds the result to the nearest representable value. When two representable

values are equally near, the result is rounded to the value whose least significant

bit is zero (that is, even)

1 RZ - Round Toward Zero

Rounds the result to the value closest to but not greater than in magnitude than

the result.

2 RP - Round Towards Plus Infinity

Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity

Rounds the result to the value closest to but not greater than the result.

Most arithmetic operations do not result in a number that can be represented exactly. In such

cases the result need to be rounded to a number that can be represented in a given format.

IEEE-754 standard define four rounding modes listed in Table A.7.

The most popular mode is round toward nearest, ties to even. This rounding mode generally

introduces the smallest error as the result of round toward nearest is the number closest to the

exact value. However, certain applications such as interval arithmetic perform better on simpler

rounding mode like round toward zero. For this reason, IEEE-754 includes directed rounding

modes as well.

Table A. 8 Cause, Enable, and Flag Bit definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exist only in the cause field)

V Invalid operation

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Floating Point Exception Register (FEXR, CP1 Control Register 26)

The floating Point Exception Register (FEXR) is an alternative way to read and write the Cause

and Flags fields that also appear in FCSR. Figure A.7 shows the format of the FEXR register;

Table A.9 describes the FEXR register fields.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 122

Fig A. 7 FEXR Register Format

Table A. 9 FENR Register Format

Fields Description

0 Must be written as zero; return zero on read

Cause Cause bits. Refer to the description of this field in the FCSR Regis-

ter.

Flags Flags bits. Refer to the description of this field in the FCSR register.

Floating Point Enables Register (FENR, CP1 Control Register 28)

The floating Point Enables Register (FENR) is an alternative way to read and write the Enables,

FS and RM fields that also appear in FCSR. Figure A.8 shows the format of the FENR register;

Table A.10 describes the FENR register fields.

Fig A. 8 FENR Register

Table A. 10 FENR Register Field Description

Fields Description

0 Must be written as zero; returns zero on read

Enables Enable bits. Refer to the description of this field in the FCSR regis-

ter.

FS Flush to zero bit. Refer to the description of this field in the FCSR

register.

RM Round mode. Refer to the description of this field in the FCSR

register.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 123

FPU Exceptions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enable and

Flag fields of the Control/Status register. The Flag bits implement IEEE exception status flags,

and the Cause and Enable bits control exception trapping. Each field has a bit for each of the

five IEEE exception conditions and the Cause field has an additional exception bit, Unimple-

mented Operation, used to trap for software emulation assistance.

A trap occurs before the instruction that causes the trap, or any following instruction, can com-

plete and write its results. If desired, the software trap handler can resume execution of the

interrupted instruction stream after handling the exception.

A floating point trap is generated any time both a Cause bit and its corresponding Enable bit are

set.

Exceptions Conditions

The following five exception conditions defined by the IEEE standard are described below:

 Invalid Operation Exception

 Division by Zero Exception

 Underflow Exception

 Overflow Exception

 Inexact Exception

Also MIPS include a specific exception condition called Unimplemented Operation that is used

to signal a need for software emulation of an instruction.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a

trap. The IEEE standard specifies the result to be delivered in case the exception is not enabled

and no trap is taken. The MIPS architecture supplies these results whenever the exception con-

dition does no result in precise trap. The default action taken depends on the type of exception

condition, and in the case of the Overflow, the current rounding mode. The default results are

summarized in Table A.11

Table A. 11 Exceptions

Bit Description Default Action

V Invalid Operation Supplies a Quiet NaN

Z Divide by zero Supplies a signed infinity

U Underflow Supplies a rounded result.

I Inexact Supplies a rounded result. If caused by an overflow without the

overflow trap enabled, supplies the overflowed result.

O Overflow Depends on the rounding mode, as shown below.

 0 (RN) Supplies an infinity with the sign of the intermediate result.

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 124

 1(RZ) Supplies an format’s largest finite number with the sign of the

intermediate result.

 2(RP) For positive overflow values, supplies positive infinity. For nega-

tive overflow values, supplies the format’s most negative finite

number.

 3(RM) For positive overflow values, supplies the format’s largest finite

number. For negative overflow values, supplies minus infinity.

Invalid Operation Exception

The Invalid Operation exception is signaled if one or both of the operands are invalid for the

operation to be performed. The result, when the exception condition occurs without a precise

trap, is a quiet NaN.

These are invalid operations:

 One or both operands are a signaling NaN (except for non-arithmetic FPU instruc-

tions such as MOV.fmt).

 Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (-∞)

or (-∞) - (-∞).

 Multiplication: 0 × ∞, with any signs.

 Division: 0/0 or ∞/∞, with any signs.

 Square root: An operand of less than 0 (-0 is a valid operand value).

 Conversion of a floating point number to a fixed-point format when either an

overflow or an operand value of infinity or NaN precludes a faithful representa-

tion in that format.

 Some comparison operations in which one or both of the operands is a QNaN val-

ue. (The detailed definition of the compare instruction, C.cond.fmt, in Volume II

has tables showing the comparisons that do and do not signal the exception.)

Division By Zero Exception

An implemented divide operation signals a Division By Zero exception if the divisor is zero and

the dividend is a finite nonzero number.

The result, when no precise trap occurs, is a correctly signed infinity.

Divisions (0/0) and (∞/0) do not cause the Division By Zero exception. The result of (0/0) is an

Invalid Operation exception.

The result of (∞/0) is a correctly signed infinity.

Underflow Exception

Basically two events contribute to underflow:

APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754

APPENDICES 125

 Tininess: the creation of a tiny nonzero result between ∓ 2𝐸_𝑚𝑖𝑛 which, because it is

tiny, may cause some other exception later such as overflow on division.

 Loss of accuracy: the extraordinary loss of accuracy during the approximation of such

tiny numbers by denormalized numbers.

The MIPS architecture specifies that tininess be detected after rounding.

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Alternative Flush to Zero Underflow

When register FCSRFS=1 every tiny non-zero result is replaced with zero of the same sign.

Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating point result, were

the exponent range unbounded, is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the

intermediate result.

Inexact Exception

An Inexact exception is signaled if one of the following occurs:

• The rounded result of an operation is not exact

• The rounded result of an operation overflows without an overflow trap

Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides support for

software emulation.

This exception is not IEEE-compliant.

Operations that are not fully supported in hardware cause an Unimplemented Operation excep-

tion so that software may perform the operation.

APPENDIXE B FPU Instruction Set (Release 6)

APPENDICES 126

APPENDIXE B FPU Instruction Set (Release 6)

The FPU instructions comprise the following functional groups:

 Data Transfer Instructions

 Arithmetic Instructions

 Conversion Instructions

 Formatted Operand-Value Move Instructions

 FPU Conditional Branch Instructions

Data Transfer Instructions

Data is transferred between registers and the rest of the system with dedicated load, store, and

move instructions.

Data Transfer instructions are listed in Table B.1 and B.2.

Table B. 1 FPU Loads and Stores

Mnemonic Instruction Defined in MIPS ISA

LDC1 Load Doubleword to Floating Point MIPS32

LWC1 Load Word to Floating Point MIPS32

SDC1 Store Doubleword to Floating Point MIPS32

SWC1 Store Word to Floating Point MIPS32

Load and Store Instructions are executed in the Load/Store Queue, therefore only we mention

about that.

Table B. 2 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA

CFC1 Move control Word From Floating Point MIPS32

CTC1 Move control Word to Floating Point MIPS32

DMFC1 Doubleword Move From Floating Point MIPS64

DMTC1 Doubleword Move to Floating Point MIPS64

MFC1 Move Word From Floating Point MIPS32

MFHC1 Move Word from High Half of Floating Point Regis-

ter

MIPS32 R2

MTC1 Move Word To floating Point MIPS32

MTHC1 Move Word to High Half of Floating Point Register MIPS32 R2

Move To and From Instructions are not implement.

APPENDIXE B FPU Instruction Set (Release 6)

APPENDICES 127

Arithmetic Instructions

FPU IEEE-Approximate arithmetic operations

FPU IEEE-Approximate arithmetic operations are listed in Table B.3.

Table B. 3 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

ADD Floating Point Add MIPS32

CMP.cond.fmt Floating Point Compare (setting FPR) Release 6

DIV.fmt Floating Point Divide MIPS32

MUL.fmt Floating Point Multiply MIPS32

SQRT.fmt Floating Point Square Root MIPS32

SUB.fmt Floating Point Subtrac MIPS32

Instructions in green color was implemented.

FPU Approximate arithmetic operations

Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approxima-

tion (RSQRT), may be less accurate than the IEEE specification.

FPU Approximate arithmetic operations are listed in Table B.4.

Table B. 4 FPU-Approximate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

RECIP.fmt Floating Point Reciprocal Approximation MIPS64

RSQRT.fmt Floating Point Reciprocal Square Root Approxima-

tion

MIPS64

FPU Fused Multiply-Accumulate Instructions (Release 6)

Release 6 provides IEEE 2008 compliant fused multiply-accumulate add and subtract instruc-

tions. These instructions are listed in Table B.5.

Table B. 5 FPU Fused Multiply-Accumulate Instructions

Mnemonic Instruction Defined in MIPS ISA

MADDF.fmt Fused Floating Point Multiply Add MIPS32 Release 6

MSUBF.fmr Fused Floating Point Multiply Subtract MIPS32 Release 6

APPENDIXE B FPU Instruction Set (Release 6)

APPENDICES 128

Floating Point Comparison Instructions

Floating point comparison instructions are listed in Table B.6.

Table B. 6 Floating Point Comparison Instructions

Mnemonic Instruction Defined in MIPS ISA

CLASS.fmt Scalar Floating Point Class Mask MIPS32 Release 6

CMP.cond.fmt Floating Point Compare MIPS32 Release 6

MAX.fmt Floating Point Maximum MIPS32 Release 6

MAXA.fmt Floating Point Value with Maximum Absolute Value MIPS32 Release 6

MIN.fmt Floating Point Minimum MIPS32 Release 6

MINA.fmt Floating Point Value with Minimum Absolute Value MIPS32 Release 6

Conversion Instructions

These instructions perform conversions between floating point and fixed point data types. Some

conversion instructions use the rounding mode specified in the Floating Control/Status register

(FCSR), while others specify the rounding mode directly.

Table B. 7 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic Instruction Defined in MIPS ISA

CVT.D.fmt Floating Point convert to Double Floating Point MIPS32

CVT.L.fmt Floating Point convert to Long Fixed Point MIPS64

CVT.S.fmt Floating Point convert to Single Floating Point MIPS32

CVT.”.fmt Floating Point convert to Word Fixed Point MIPS64

RINT.fmt Scalar Floating Point convert round to integer MIPS32 release 6

Table B. 8 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction Defined in MIPS ISA

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point MIPS64

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point MIPS32

FLOOR.L.fmt Floating Point Floor to Long Fixed Point MIPS64

FLOOR.W.fmt Floating Point Floor to Word Fixed Point MIPS32

ROUND.L.fmt Floating Point Round to Long Fixed Point MIPS64

ROUND.W.fmt Floating Point Round to Word Fixed Point MIPS32

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point MIPS64

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point MIPS32

APPENDIXE B FPU Instruction Set (Release 6)

APPENDICES 129

Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers.

There are four kinds of move instructions:

 Unconditional move

 Instructions which modify the sign bit (ABS.fmt and NEG.fmt when

FCSRABS2008=1)

 FPU conditional select instructions, based on testing bit 0 of an FPT

Table B. 9 FPU Formatted Unconditional Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA

ABS.fmt Floating Point Absolute Value MIPS32

MOV.fmt Floating Point Move MIPS32

NEG.fmt Floating Point Negate MIPS32

Table B. 10 FPU Conditional Select Instructions

Mnemonic Instruction Defined in MIPS ISA

SEL.fmt Floating Point Select MIPS32 Release 6

SELEQZ.fmt Floating Point Select if condition Equal to Zero MIPS32 Release 6

SELNEZ.fmt Floating Point Select if condition is Not Equal to

Zero

MIPS32 Release 6

The Floating-point instruction format can be check in “MIPS Architecture For Program-

mers” Volume II-A [41].

References

References 130

References

References

[1] M. Lab, "Lagarto: Un procesador Superscalar," [Online]. Available:

http://www.microse.cic.ipn.mx/lagarto. [Accessed 5 Enero 2015].

[2] J. A. Lewis, "Buildng an Information Technology Industry in China, National

Strategy, Global Markets," 2007.

[3] "RISC-V," [Online]. Available: http://riscv.org/. [Accessed 21 09 2015].

[4] A. González, Processors Microarchitecture: An implementation perspective, Mark

D. Hill, 2011.

[5] V. G. Oklobdzija, The Computer Engineering Handbook, Second Edition, CRC

Press, 2008.

[6] J. Abella, R. . Canal and A. Gonzalez, "Power- and complexity-aware issue queue

de-signs," Micro, IEEE, vol. 23, no. 5, pp. 50-58, 2003.

[7] Balasubramonian, D. S and A. D.H, "Reducing the complexity of the register file in

dynamic superscalar processors," in Microarchitecture, 2001. MICRO-34.

Proceedings. 34th ACM/IEEE International Symposium on, pp. 237-248, Dec. 2001.

[8] R. Kessler, "The Alpha 21264 Microprocessor Architeture," Proceeding ICCD '98

Proceedings of the International Conference on Computer Design, p. 90, 1998.

[9] D. B. e. al, "The Microarchitecture of the Intel® Pentium® 4 Processor on 90nm

Technology," Intel Technology Journal, February 2004.

[10] K. Yeager, "The MIPS R10000 Superscalar Microprocessor," IEEE Micro, April

1996.

[11] "IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2008 , Aug. 29

2008, pp. 1-70.

[12] J. E. Smith, "The Microarchitecture of Superscalar Processors," Proceedings of the

IEEE , vol. 83, no. 12, pp. 1609-1624, 1995.

[13] Wikipedia, "Pentium 4," [Online]. Available:

https://en.wikipedia.org/wiki/Pentium_4. [Accessed 11 9 2015].

[14] ASUS, " Ultrabook U38N," [Online]. Available:

https://www.asus.com/mx/Notebooks_Ultrabooks/U38N/specifications/. [Accessed 11

9 2015].

[15] D. Folegnani and A. Gonzáles, "Energy Effective Issue Logic," Proceedings of 28th

Annual of International Symposium on Computer Architecture, pp. 230-239, 2001.

[16] A. Buyoktusunoglu, S. E. Shuster, D. Brooks, P. Bose, D. H. Albonesi and P. W.

Cook, "An Adaptive Issue Queue for Reduced Power at High Performance,"

Workshop on Power Aware Computer Systems, in conjunction with ASPLOS-IX,

November 2000.

[17] V. G. Moshnyaga, "Reducing Energy Dissipation of Complexity Adaptive Issue

Queue by Dual Voltage Supply," Workshop on Complexity Effective Design, June

References

References 131

2001.

[18] M. A. Ramírez Salinas, A. Cristal, M. Valero, L. Villa and A. V. Veidenbaum, "A

partitioned instruction queue to reduce instruction wakeup energy," Int. J. High

Perform. Comput. Netw., pp. 153-161, 2004.

[19] NVIDIA, "Nvidia Tegra4 Family CPU Architecture, 4-PLUS-1 Quad Core,"

Whitepapper.

[20] J. L. A. Gonzales and M. Valero, "Multiple-banked register file architectures,"

Proceeding ISCA '00 Proceedings of the 27th annual internation-al symposium on

Computer architecture, pp. 316-325, 2000.

[21] A. Corporation, "Memory Blocks in Cyclone IV Devices," in Cyclone IV Device

Handbook, pp. Volume 1, Chapter 3.

[22] A. Corporation, Embedded Memory (RAM: 1-port, RAM:2-port, ROM: 1-port,

ROM:2-port). User Guide, Dic 2014.

[23] C. E. LaForest and G. S. , "Efficient multi-ported memories for FPGAs,"

Proceedings of the 18th annual ACM/SIGDA international symposium on Field

programmable gate arrays, February 21-23, 2010 , Monterey, California, USA.

[24] C. . E. Laforest, M. G. Liu, E. Rae Rapati and G. Steffan, "Mul-ti-ported memories

for FPGAs via XOR," Proceedings of the ACM/SIGDA interna-tional symposium on

Field Programmable Gate Arrays, February 22-24, 2012, Monterey, California, USA.

[25] David Patterson and John Hennessy, Computer Architecture: A quantitative

Approach, 5th edition, McGraw-Hill, 2012.

[26] M. K. Jaiswal and R. Cheung, "High Performance FPGA Implementation of

Double Precision Floating Point Ad-der/Subtractor," International Journal of Hybrid

Information Technology, vol. 4, no. 4, p. 71, 2011.

[27] M. A and Seok-Bum Ko, "A Study on floating-point adder in FPGAs," Electrical

and Computer Engineering, pp. 86-89, 2006.

[28] J. Bruguera and Lang, T, "Leading-one prediction with concurrent position

correction," in Computers, IEEE Transactions on, vol. 48, no. 10, pp. 1083-1097,

1999.

[29] Dimitrakopoulos, G, Galanopoulos, K, Mavrokefalidis, Christos and Nikolos, D,

"Low-Power Leading Zero Counting and Anticipation Logic for High-Speed Floating

Point Units," Very Large Scale Integration (VLSI) Systems, vol. 16, no. 7, pp. 837-850,

2008.

[30] M. K. Jaiswal and Nitin Chandrachoodan, "Efficient Implementation of IEEE

Double Precision Floating-Point Multiplier on FPGA," Industrial and Information

Systems, 2008. ICIIS 2008, pp. 1-4. 8-10, 2008.

[31] Umut K. and Ahmet Akkas, "Design and Implementation of Reciprocal Unit Using

Table Look-up and Newton-Raphson Iteration," Proceedings of the EUROMICRO

Systems on Digital System Design, 2004.

[32] Dongdong Chen, Bintian Zhou, Zhan Guo and Peter Ni, "Design and

Implementation of reciprocal unit," Midwest Symposium on Circuits and Systems, pp.

1318-1321, 2005.

[33] Altera, Floating-Point IP Cores User Guide, December 2014.

[34] M. Cornea, J. Harrison and P. Tang, "Intel itanium Floating-Point Architecture,"

References

References 132

Workshop on Computer Architecture Education, no. Intel Corporation, 2003.

[35] AMD, "Software Optimization Guide for AMD Family 15h Processors," 2014.

[36] G. Torres, "Hardware Secrets: Inside the AMD Bulldozer Architecture," [Online].

Available: http://www.hardwaresecrets.com/inside-the-amd-bulldozer-architecture/.

[Accessed 2015 10 07].

[37] S. Eyerman and Lieven Eeckhout, "A Mechanistic Performance Model for

Superscalar Out-of-Order Processors," ACM Transactions on Computer Systems, vol.

27, no. 2, May 2009.

[38] A. Corporation, Cyclone IV Device Handbook , Volumen 1, San Jose, CA, Oct,

2014.

[39] Altera, "Altera DE2-115 User Manual," Terasic Technologies, 2010.

[40] M. b. Imagination, MIPS Architecture for Programers, Volume I-A: Introduction to

the MIPS64 Architecture, Revision 6.01, August 2014.

[41] M. b. Imagination, MIPS Architecture for Programers, Volume II-A: The MIPS64

Instruction Set, Revision 6.01, August 2014.

[42] B. Sinharoy, R.N. Kala, J.M. Tendler, R.J. Eickenmeyer and J.B. Joyner,

"POWER5 System Microarchitecture," IBM Journal of Research and Development,

July/September 2005.

[43] David Patterson and John Hennessy, Computer, Organization and Desing. The

Hard-ware/Software Interfaz, Tercera edición. McGraw-Hill, 2005.

[44] L. CPU. [Online]. Available:

http://www.lemote.com/en/products/cpu/2010/0310/113.html. [Accessed 3 2 2015].

[45] Govindu, G, Ling Zhuo, Seonil Choi and Prasanna, V, "Analysis of high-

performance floating-point arithmetic on FPGAs," Parallel and Distributed

Processing Symposium, p. 149, 2004.

[46] Olivieri, N, Pappalardo, F, Smorfa, S and Visalli, G, "Analysis and Implementation

of a Novel Leading Zero Anticipation Algorithm for Float-ing Point Arithmetic

Units," Circuits and Systems II: Express Briefs, vol. 54, no. 8, pp. 685-689, 2007.

	Table of contents
	List of Figures
	List of Tables
	Glossary
	1. Introduction
	1.1. Motivation
	1.2. Objectives
	1.3. Justification
	1.4. Organization

	2. Background
	2.1. Superscalar Architectures
	2.1.1. Issue Stage
	2.1.2. Read Register stage
	2.1.3. Execution Stage
	2.1.4. Commit Stage
	2.2. Floating Point Numbers
	2.2.1. IEEE 754 standard

	3. State of the Art
	3.1. Issue Queue
	3.2. Register File
	3.3. Execution Stage
	3.3.1. Floating Point Adder/Subtractor
	3.3.2. Floating Point Multiplier
	3.3.3. Floating Point Divider
	3.4. Intel Itanium Floating Point Architecture
	3.5. AMD Bulldozer Architecture

	4. Design and implementation
	4.1. First Proposal
	4.1.1. Issue Queue
	4.1.2. Register Bank
	4.1.3. Execution Stage
	4.1.4. Bypass design
	4.1.5. Complete design
	4.2. Second Proposal

	5. Implementation
	5.1. First Version
	5.1.1. Issue Queue
	5.1.2. Register Bank
	5.1.3. Execution Stage
	5.1.4. Recovery
	5.1.5. Complete design
	5.2. Second Version
	5.2.1. Issue Queue
	5.2.2. Register Bank
	5.2.3. Fused Multiply Accumulate Unit (FMAC)
	5.2.4. Recovery
	5.2.5. Complete design

	6. Testing
	7. Conclusions, Results, Future works and Research’s Products
	APPENDIXE A MIPS 64 Revision 6 and the IEEE standard 754
	APPENDIXE B FPU Instruction Set (Release 6)
	References

