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Abstract. Time-dependent natural phenomena and artificial processes
can often be quantitatively expressed as multivariate time series (MTS).
As in any other process of knowledge extraction from data, the analyst
can benefit from the exploration of the characteristics of MTS through
data visualization. This visualization often becomes difficult to interpret
when MTS are modelled using nonlinear techniques. Despite their flex-
ibility, nonlinear models can be rendered useless if such interpretability
is lacking. In this brief paper, we model MTS using Variational Bayesian
Generative Topographic Mapping Through Time (VB-GTM-TT), a vari-
ational Bayesian variant of a constrained hidden Markov model of the
manifold learning family defined for MTS visualization. We aim to in-
crease its interpretability by taking advantage of two results of the prob-
abilistic definition of the model: the explicit estimation of probabilities
of transition between states described in the visualization space and the
quantification of the nonlinear mapping distortion.

Keywords: Multivariate time series, Nonlinear dimensionality reduc-
tion, Mapping distortion, Magnification Factors, Visualization, Genera-
tive Topographic Mapping, Variational Bayesian methods.

1 Introduction

Most applied analysis of MTS involves, in one way or another, problems with
specific targets such as prediction, forecasting, or anomaly detection. A less
explored avenue of research is the exploratory analysis of MTS using machine
learning and computational intelligence methods [1].

Data exploration may be a key stage in knowledge extraction from MTS
using complex nonlinear methods, as it opens the door to their interpretability
[2]. As in any other process of knowledge extraction from data, the analyst
could benefit from the exploration of the characteristics of MTS consisting of
a high number of individual series through their visualization [3]. The direct
visualization of such high-dimensional data, though, can easily be beyond the
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2 Visualization of multivariate time series through NLDR

interpretation capabilities of human experts. Therefore, the exploration of MTS
can be assisted by dimensionality reduction (DR) methods. In particular, the
visualization of MTS using nonlinear DR (NLDR) methods [4] can provide the
expert with inductive reasoning tools as a means to hypothesis generation [3, 5].
Visualization can thus facilitate interpretation, which is paramount given that
NLDR methods can be rendered useless in practice if interpretability is lacking.

In this brief paper, we merge two strands of previous research on data visu-
alization. The first one involves the visualization of MTS using Statistical Ma-
chine Learning (SML) NLDR methods [6]. The second tackles one of the main
interpretability bottlenecks of NLDR techniques: the difficulty of expressing the
nonlinear mapping distortion they introduce in the data visualization space in
an intuitive manner. Specifically, we attempt to increase the interpretability of
the Variational Bayesian Generative Topographic Mapping Through Time (VB-
GTM-TT), a variational Bayesian variant of a constrained hidden Markov model
(HMM) [7] of the manifold learning family, defined for MTS visualisation [8]. For
this, we use two results of the probabilistic definition of the model: the explicit
estimation of probabilities of transition between states described in the visual-
ization space and the quantification of the distortion introduced by the nonlinear
mapping of the MTS in the form of Magnification Factors (MF).

Note that this paper does not address the assessment of the quality of the
mapping as such. In fact, the proposed visualization strategies are meant to be
independent from it. Although VB-GTM-TT is used here for illustration (as a
method that, even if prone to limitations such as local minima, has been shown
to perform robustly in the presence of noise), the proposed approach could be
extended to alternative MTS DR models for which distortion and probability of
state transition (or some approximations to them) were quantifiable.

2 Methods

2.1 Variational Bayesian GTM Through Time

The Generative Topographic Mapping (GTM: [9]) is a NLDR latent variable
model of the manifold learning family. It can be seen as a mixture of distribu-
tions whose centres are constrained to lay on an intrinsically low-dimensional
space. Given that the generative model specifies a mapping from latent space to
observed data space, such latent space can be used for data visualization when
its dimensionality is 1 or 2. Unless regularization is included, the GTM is prone
to overfitting. Adaptive regularization for GTM was proposed in [10].

The GTM was redefined as a constrained HMM in [6]. The resulting GTM
Through Time (GTM-TT) can be considered as a GTM model in which the
latent states are linked by transition probabilities, in a similar fashion to HMM.
This model, even if useful for MTS clustering and visualization, did not imple-
ment any regularization process.

Recently, the GTM was reformulated within a variational full Bayesian frame-
work in [11], which was extended to the analysis of MTS in [8]. The result was
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the VB-GTM-TT: a model that integrates regularization explicitly and provides
adaptive optimization of most of the model parameters involved. Assuming a
sequence of N hidden states Z = {z1, z2, . . . , zn, . . . , zN} and the observed MTS
X = {x1,x2, . . . ,xn, . . . ,xN}, the complete-data likelihood for VB-GTM-TT is
given by:

p (Z,X|Θ) = p (z1)

N∏
n=2

p (zn|zn−1)

N∏
n=1

p (xn|zn) . (1)

The model parameters are Θ = (π,A,Y, β), where π = {πj} : πj =
p (z1 = j) are the initial state probabilities; A = {aij} : aij = p (zn = j|zn−1 = i)
are the transition state probabilities; and

{Y, β} : p (xn|zn = j) =

(
β

2π

)D/2
exp

(
−β

2
‖xn − yj‖2

)
are the emission probabilities, which are controlled by spherical Gaussian dis-
tributions with common inverse variance β and a matrix Y of K centroids
yj , 1 ≤ j ≤ K. They can be considered as hidden variables and integrated
out to describe the marginal likelihood as:

p (Z,X) =

∫
p (Θ) p (Z,X|Θ) dΘ,

where Θ = (π,A,Y, β) . (2)

VB-GTM-TT assumes its parameters to be independent, so that p(Θ) =
p(π)p(A)p(Y)p(β) , where the set of prior distributions p (Θ) are defined as:

p (π) = Dir ({π1, . . . , πK} |ν)

p (A) =

K∏
j=1

Dir ({aj1, . . . , ajK} |λ)

p (Y) =
[
(2π)

K |C|
]−D/2 D∏

d=1

exp

(
−1

2
yT(d)C

−1y(d)

)
p (β) = Γ (β|dβ , sβ) .

Here, Dir (·) represents the Dirichlet distribution and Γ (·) is the Gamma
distribution. The vector ν, the matrix λ and the scalars dβ and sβ correspond
to the hyperparameters of the model which are fixed a priori. The prior over
the parameter Y defines the mapping from the hidden states to the data space
as a Gaussian Process (GP), where y(d) is each of the row vectors (centroids) of
the matrix Y and C is a matrix where each element is defined by the covariance
function as:
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Ci,j = c (ui,uj) = exp

(
−‖ui − uj‖2

2α2

)
, i, j = 1 . . .K. (3)

The α parameter controls the flexibility of the mapping from the latent space
to the data space. The vector uj , j = 1 . . .K corresponds to the state j in a
latent space of usually lower dimension than that of the data space (for MTS
visualization purposes). Thus, a topography over the states is defined by the
GP as in the standard GTM. The VB-GTM-TT is optimized using variational
approximation techniques. A more detailed description of the VB-GTM-TT and
its formulation is provided in [8, 12].

2.2 Distortion measures and local metrics

NLDR techniques usually attempt to minimize the unavoidable distortion they
introduce in the projection of the high-dimensional data from the observed space
onto lower-dimensional spaces. For a more faithful interpretation of models,
many distortion measures have been proposed and adapted to visualization tech-
niques for different methods. While reducing dimensionality, different levels of
local mapping distortion are generated, leading to a loss of information that we
aim to recover, to some extent, to improve the interpretability of the model.

An interesting approach, proposed in [13] for GTM (and extended to Self
Organizing Maps), is the calculation of the MFs. The concept of magnification
has been applied to manifold learning methods in order to quantify the distortion
due to the embedding of a manifold in a high-dimensional space. Importantly,
the distortion caused by the mapping can be explicitly computed in a continuous
way over the low-dimensional latent space of visual representation.

From the theory of differential geometry, we can describe the local geometry
of a q-dimensional differential manifold through the mapping between two sets
of coordinates systems ξj 7→ ζ(ξ) defined in the high dimensional space. The
Jacobian of this transformation can be written as:

J =

(
∂ζi

∂ξj

)
i,j

. (4)

Every point on the manifold has local geometrical properties which are given
by its metric tensor gi,j , which is defined by:

gi,j = δi,j
∂ζ

∂ξ

∂ζ

∂ξ
, (5)

where δ is the Kronecker delta. From (4) and (5), it follows that | J |=| g | 12 .

2.3 Magnification Factors for VB-GTM-TT

As stated in [13], the MF can be explicitly computed for the batch-SOM and
GTM. In this paper, we provide the calculation of the MF for the VB-GTM-TT
model. For this, we first consider the jointly Gaussian random variables:
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[
y
y∗

]
∼ N

(
0,

[
C C(∗,·)

C(·,∗) C(∗,∗)

])
, (6)

where y∗ is a test point and C(·,·) is the covariance matrix defined according to
(3). Due to the properties of Gaussian distributions, we can explicitly write the
posterior probability as follows:

y∗|u∗,U,Y, θ ∼ N
(
C(∗,·)C

−1Y,C(∗,∗) −C(∗,·)C
−1C(·,∗)

)
. (7)

The Jacobian J of this mapping can be obtained computing the derivatives
of 〈(y∗|u∗,U,Y, θ)〉 with respect to u, using:

∂c(∗,j)

∂ul
∗

=
1

α2
(ul∗ − ulj) exp

(
−‖u∗ − uj‖2

2α2

)
, l = 1 . . . q, j = 1 . . .K, (8)

being q the dimension of the latent space. As a result, the MF is calculated as:

µ∗ = det−
1
2

(
JJT

)
(9)

The MF does not only provide us with a quantification of the local mapping
distortion that separates areas of the visual map which have undergone much
compression or stretching from those which have not; it also tells us about data
sparsity: the model distorts the most in areas which are mostly empty of data
and the least in densely populated areas. For this reason, the MF has been used
as an indicator of the existence of data clusters and the boundaries between those
clusters [14]. For MTS, we would expect the time series to flow over time through
areas of low MF mostly when the MTS evolve slowly, whereas fast transitions
between MTS regimes might require crossing areas of higher distortion.

2.4 Cumulative state transition probabilities

Another metric that might help improving the interpretability of the mapping
is the likelihood for a state to be transited by any of the potential trajectories
through states. Again, this can explicitly be quantified, for each state j defined by
VB-GTM-TT, as the estimated cumulative state transition probability (CSTP)
defined as the sum of the probabilities of transition from all states to it:

CST Pj =

K∑
i=1

aij . (10)

We would expect the MTS trajectory to happen through areas of high CSTP ,
because these should be areas of highly likely transition. As such, the CSTP
plays the opposite role to MF, because the areas of large manifold stretching
(high MF) should mostly be areas that the MTS is unlikely to cross (low CSTP ).
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3 Experiments and discussion

3.1 Materials and experimental setup

We illustrate the proposed MTS visualization using two different datasets. The
first is an artificial 3-variate time series, with 1, 000 time points. The second set
is the Shuttle-data from Space Shuttle mission STS-571: a time series consisting
of 1,000 points described by 6 features. This data set has previously been used
for cluster detection in [15].

3.2 MTS Visualization

The considered MTS are particularly suitable for the illustration of the proposed
visualization techniques due to the nature of their regimes and transitions pe-
riods. The artificial dataset (displayed in Fig.(1), top-row, left) is characterized
by two intervals with regular regimes, divided by a sudden transition at point
700. The VB-GTM-TT model was trained over a 8 × 8, 2 − D grid of hidden
states and each of the MTS points was mapped by VB-GTM-TT to a particu-
lar state in the grid. The result of this mapping assignment is shown in Fig.(1)
(top-row, right). Before point 700, the periodicity of the data is well-captured
by the roughly circular structure of populated states. The sudden transition to
a higher-amplitude periodic interval is also neatly visualized.

On the other hand, Shuttle Data presents four periods of little variability A-
C-D-E and one period of high (quasi-periodic) variability B, which are separated
by sudden transitions, as evidenced by their display in Fig.(2) (top row, left).
The VB-GTM-TT model was trained over a 13 × 13 grid of hidden states and
each of the MTS points was mapped by VB-GTM-TT to a particular state in
the grid, as shown in Fig.(2) (top row, right). There is a clear interpretation for
this state membership mapping, as the Shuttle-data trajectory is confined to a
limited number of its states (a common characteristic of VB-GTM-TT mappings,
in which over-complexity is penalized). Only a few of them are relatively big:
these are mostly stationary states with little MTS change in intervals C, D and
E. The quasi-periodic interval B evolves slowly through a cloud of states on the
top-left and center of the map.

The MFs were computed for artificial and Shuttle-data and represented in
Figs.1 and 2 (bottom, right) through color maps over the grid of hidden states.
For both datasets, it might seem at first sight that the MTS cross through areas
of high MF (high distortion), a behaviour that would refute the hypothesis that
the densely data populated areas correspond to low mapping distortion. In fact,
this is not the case: the MTS mostly flows over time through channels of low
distortion surrounded by borders of high distortion. These borders seem to act as
barriers that compel the MTS to follow a given trajectory. In fact, these barriers
are only breached (with the MTS moving briskly towards higher MF) in sudden
transitions between regimes. These can clearly be seen for Shuttle-data if we plot

1 Which can be requested from www.cs.ucr.edu/∼eamonn.
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Fig. 1. Top row, left: Artificial dataset: a 3-variate time series, characterized by a
sudden transition at n = 700. Top row, right: State-membership map of VB-GTM-
TT, with a 8 × 8 grid of hidden states represented as squares, whose relative size is
proportional to the time data points assigned to them; the starting point of the MTS
is represented as a star and the ending point is represented as a circle. The sudden
transition point is signaled by an arrow. Bottom row, right: MF gray-shade color map,
represented in the VB-GTM-TT latent space visualization grid. The trajectory of the
MTS over the map is displayed as a white solid line.

the value of MF over time, as in Fig.(2) (bottom row, left): MF narrow spikes
of varying magnitude (particularly strong in the transition from B to C) appear
in the transitions between time intervals. These spikes take values well over the
mean MF of the map. This result suggests that the evolution of the MF over
time could directly be used to detect sudden regime transitions in MTS.
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Fig. 2. Top left: Plot of the Shuttle-data; the five intervals or regimes separated by
sudden transitions are identified as A, B, C, D and E. Top right: State-membership
map generated by VB-GTM-TT, with a 13 × 13 grid of hidden states represented as
squares; the relative size of these squares is again proportional to the ratio of time data
points assigned to them; the starting point of the MTS is represented as a star, while
the ending point is represented as a circle. Bottom Left: The Magnification Factors as a
function of time, including the mean MF over all states (represented as a dashed line);
narrow peaks of distortion are detected precisely in the areas of sudden transitions.
Bottom Right: MF gray-shade color map, represented in the VB-GTM-TT latent space
visualization grid; white areas correspond to high distortion.

The CSTP maps in Fig.3 are very consistent with their MF counterparts,
and complement them. Alternatively displayed as 3 −D maps over the grid of
hidden states, they provide an intuitive illustration of the previously described
behaviour. Following a geographical representation visual metaphor, the MTS
can be seen to flow across cumulative state transition probability ridges, where
rapid transitions between regimes see the MTS moving through relatively lower-
valued depressions in those ridges. An opposite graphical metaphor could be
used for the MF distortion, with the MTS flowing through its valleys, that is,
across areas of the map characterized by low MF values.
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Fig. 3. A 3 − D representation for the CSTP plots. The values in the vertical axis
correspond to the CSTP values over the latent space. Left: artificial data; right: Shuttle-
data.

4 Conclusions

Data visualization can be of great assistance in knowledge extraction processes.
High dimensionality is always a barrier for visualization. In the case of MTS, this
is compounded by their i.i.d. nature, because the search for patterns over time
is often relevant in their study. Dimensionality reduction can make visualization
operative for high-dimensional MTS. The use of NLDR methods to this purpose
poses a challenge of model interpretability due to the existence of locally-varying
distortion.

In this study, we have proposed two methods to improve interpretability
for VB-GTM-TT, a manifold learning NLDR method. The model mapping dis-
tortion has been explicitly quantified in the latent space continuum and the
probabilistic nature of the method has allowed us to define a cumulative proba-
bility of state transition. The reported preliminary experiments have shown that
both metrics can provide interesting insights that enhance the low-dimensional
visualization of the MTS provided by the model.

This exploration approach is quite flexible and could be extended to other
dimensionality reduction models for MTS analysis, provided their local distor-
tion can be quantified. Examples of this may include Gaussian process latent
variable models (GP-LVM, [16]) and dynamical models (GPDM, [17]) or tempo-
ral Laplacian eigenmaps ([18]). It could also be extended to alternative display
methods, such as the recently proposed cartograms2 [19],[20] and topographic
maps [21]. Following the line of this paper, we also aim to investigate the VB-
GTM-TT model and its properties in more depth, focusing on its generalization
capabilities and its use for prediction.

2 www.worldmapper.org/
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