
Manifold learning visualization of

Metabotropic Glutamate Receptors

Martha-Ivón Cárdenas a,b,1, Alfredo Vellido a,c and Jesús Giraldo b
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Abstract. G-Protein-Coupled Receptors (GPCRs) are cell membrane proteins with

a key role in biological processes. GPCRs of class C, in particular, are of great inter-

est in pharmacology. The lack of knowledge about their 3-D structures means they

must be investigated through their primary amino acid sequences. Sequence visu-

alization can help to explore the existing receptor sub-groupings at different parti-

tion levels. In this paper, we focus on Metabotropic Glutamate Receptors (mGluR),

a subtype of class C GPCRs. Different versions of a probabilistic manifold learn-

ing model are employed to comparatively sub-group and visualize them through

different transformations of their sequences.

Keywords. G-Protein-Coupled Receptors, Metabotropic Glutamate Receptors,

data visualization, Generative Topographic Mapping.

Introduction

The G-protein-coupled receptors (GPCRs) in the human genome form five main families

(A to E) according to their similarity [9]. Class C GPCRs include metabotropic glutamate

receptors (mGluRs), in which we focus our research. They are promising targets for the

development of new therapeutic drugs.

The functionality of GPCRs is often studied from the 3-D structure of their se-

quences. As no complete crystal structure data is currently available for class C GPCRs,

the investigation of their primary structure as amino acid (AA) sequences is necessary.

The unaligned symbolic sequences are unsuitable for direct analysis, but many differ-

ent sequence transformation techniques are available to overcome this limitation. In this

study, we used two relatively simple ones: the first is AA composition (AAC [2]), which

accounts only for the relative frequencies of appearance of the 20 AAs in the sequence.

Recent analysis using semi-supervised and supervised classification [3,4] with this type

of transformation showed that accuracy reaches an upper bound.The second choice is the

digram transformation, which considers the frequencies of occurrence of any given pair
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of AAs. They were used for the more general classification of class C GPCR sequences

in [5], obtaining accuracies in the area of 93-94%.

The target of this study was exploratory mGluR sequence clustering and visualiza-

tion as a preliminary but complementary step towards full-blown mGluR subtype classi-

fication (into their eight known subtypes). This was implemented using different variants

of a nonlinear dimensionality reduction (NLDR) method: Generative Topographic Map-

ping (GTM [6]). This machine learning technique has previously been applied with suc-

cess to the more general problem of class C GPCR visualization [7,8]. MGluR subtype

visual discrimination was quantitatively assessed here using an entropy measure.

1. Materials and methods

1.1. Class C GPCR mGluR data

The GPCRDB [9] database of GPCRs divides them into five major classes (namely, A

to E). The investigated class C data (from version 11.3.4 as of March 2011) include 351

mGluR sequences, in turn sub-divided into 8 subtypes (mGluR1 to mGluR8) plus a group

of mGluR-like sequences. They are distributed as 33 cases of mGluR1, 26 mGluR2, 44

mGluR3, 23 mGluR4, 32 mGluR5, 15 mGluR6, 4 mGluR7, 98 mGluR8 and 76 mGluR-

like. This 8 subtypes can also be grouped into 3 categories according to sequence homol-

ogy, pharmacology and transduction mechanism: group I mGluRs include mGluR1 and

mGluR5; group II includes mGluR2 and mGluR3; whereas group III includes mGluR4,

6, 7 and 8.

1.2. The basic GTM and Kernel GTM

The GTM [6] is a non-linear latent variable model of the manifold learning family that

performs simultaneous data clustering and visualization through a topology-preserving

generative mapping from the latent space inRL (with L= 2 for visualization) onto the RD

space of the observed data in the form y = Φ(u)W , where y is a D-dimensional vector,

Φ is a set of M basis functions, u is a point in the visualization space and W is a matrix

of adaptive weights wmd . The likelihood of the full model can be approximated and

maximum likelihood methods can be used to estimate the adaptive parameters. Details

can be found in [6] and elsewhere. The probability of each of the K latent points uk for

the generation of each data point xn, p(k|xn), also known as a responsibility rkn, can be

calculated as part of the parameter estimation process. For data visualization, it is used

to obtain a posterior mode projection, defined as xn: kmode
n = argmax{kn} rkn, as well as a

posterior mean projection kmean
n = ∑K

k=1 rknuk. The standard GTM is used here to model

and visualize the AAC- and digram-transformed unaligned sequences.

The kernel-GTM (KGTM) [10] is a kernelized version of the standard GTM

that is specifically well-suited to the analysis of symbolic sequences such as those

characterizing proteins. This is achieved by describing sequence similarity through

a kernel function based on the mutations and gaps between sequences: K (x,x′) =

ρ exp

{

ν
π(x,x′)

π(x,x)+π(x′,x′)

}

for sequences x and x′; ρ and ν are prefixed parameters, and π (·)

is a score function of common use in bioinformatics. Further details on these parameters

can be found in [10]. KGTM is used here to model and visualize the multiple sequence

alignment (MSA)-transformed sequences, using the posterior mode projection.



2. Results

The standard GTM visualization of the AAC- and digram-transformed mGluR sequences

according to their posterior mean projection is shown in Fig.1.

Figure 1. Visualization map of the standard GTM-based posterior mean projection of the mGluR AAC- (left)

and digram-transformed (right) sequences. Different mGluR subtypes are identified by color, as in Fig. 2.

Given that, for KGTM, all the conditional probabilities (responsibilities) rkn are

sharply peaked around the latent points uk, the visualization of the mGluR is better and

more intuitively represented by their posterior mode projections as shown in Fig.2.

Figure 2. KGTM-based visualization of the mGluR subtypes through their posterior mode projection. Left)

Individual pie charts represent sequences assigned to a given latent point and their size is proportional to the

ratio of sequences assigned to them by the model. Each portion of a chart corresponds to the percentage of

sequences belonging to each mGluR subtype. Right) The same map without sequence ratio size scaling, for

better visualization.

An entropy-based measure, suitable for discrete clustering visualizations, was used

to quantify the level of mGluR subtype overlapping: If map areas are completely subtype

specific, entropy will be zero, whereas high entropies will characterize highly overlap-

ping subtypes. For a given latent point k, the entropy is Sk = −∑C
j=1 pk jlnpk j, where j

is one of the C = 9 mGluR plus mGluR-like subtypes and pk j =
mk j

mk
, where, in turn, mk

is the number of sequences in cluster k and mk j is the number of subtype j sequences in

cluster k. The total entropy of a given GTM map can thus be calculated as S=∑K
k=1

mk
N

Sk,

where
mk
N

is the proportion of mGluR sequences assigned to latent point k. The entropy

results for the standard GTM representation of the transformed sequences are summa-

rized in Table 1.



Table 1. Entropies for each of the 8 mGluR and mGluR-like subtypes, together with total entropy.

1 2 3 4 5 6 7 8 Like Total

AAC 0.35 0.41 0.69 0.65 0.55 0.19 0.41 0.33 0.48 0.31

digram 0.77 0.55 0.53 0.59 0.50 0.80 0.69 0.48 0.35 0.37

KGTM 0.50 0.65 0.51 0.47 0.53 0.57 0.64 0.27 0.50 0.33

3. Discussion

All GTM visualizations provide insights about the inner grouping structure of mGluRs.

The first overall finding is that most subtypes show a reasonable level of separation, but

none of them avoids subtype overlapping. Most subtypes also show clear inner structure.

The differences between the AAC sequence mapping and its digram counterpart in Fig.1

are noticeable, although there are also clear coincidences, such as the neat separation

of the heterogeneous mGluR-like sequences in the bottom-left quadrants of both maps,

with mGlu3 located nearby. These differences indicate that the visual data representation

is at least partially dependent on the type of sequence transformation. This is further

corroborated by the KGTM visualization in Fig.2. The mapping differs in many ways

from the previous ones, although many characteristics remain consistent. As stated in

section 1.1, the 8 main mGluR subtypes are commonly grouped into 3 categories. The

visualizations in Figs.1 and 2 provide only partial support to these categories.

The entropy measure described in the previous section provides us with a quantita-

tive measure of subtype location specificity. The results in Table 1 are quite telling. First,

because the overall entropy is not too dissimilar between transformations; despite this,

the transformation yielding lowest entropy (highest level of subtype discrimination) is,

unexpectedly, the simplest one: AAC, which does not even consider ordering in the AA

sequence. It is clear, in any case, that subtype overlapping is substantial. Second, because

the dependency of results on the type of sequence transformation is clearly confirmed.
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