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Department of Computer Science, Universitat Politècnica de Catalunya,
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Abstract. After decades of intensive use, K-Means is still a common
choice for crisp data clustering in real-world applications, particularly in
biomedicine and bioinformatics. It is well-known that different initializa-
tions of the algorithm can lead to different solutions, precluding repli-
cability. It has also been reported that even solutions with very similar
errors may widely differ. A criterion for the choice of clustering solutions
according to a combination of error and stability measures has recently
been suggested. It is based on the use of Cramér’s V index, calculated
from contingency tables, which is valid only for crisp clustering. Here, this
criterion is extended to fuzzy and probabilistic clustering by first defin-
ing weighted contingency tables and a corresponding weighted Cramér’s
V index. The proposed method is illustrated using Fuzzy C-Means in a
proteomics problem.
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1 Introduction

G protein-coupled receptors (GPCRs) are cell membrane proteins of interest due
to their role in transducing extracellular signals after specific ligand binding.
They have in fact become a core interest for the pharmaceutical industry, as
they are targets for more than a third of approved drugs [1].

GPCR functionality is mostly investigated from its crystal 3-D structure.
Finding such structure, though, is a difficult undertaking1 and only in the last
decade, a handful of GPCR structures has been found, most of them belonging
to the class A of the GPCR superfamily [2]. Only in 2013, one receptor not
belonging to class A but to the Frizzled class and two class B [3, 4] were reported.

⋆ This research was partially funded by Spanish MINECO TIN2012-31377 research
project.

1 Rhodopsin was the first GPCR crystal structure to be determined, back in 2000.
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The first structures of the 7-trans-membrane (7TM) domains of two class C
receptors were published in 2014 [5, 6].

Our research focuses on class C GPCRs, which have become a key target
for new therapies [7]. The alternative approach when the tertiary 3D crystal
structure is not available, is the investigation of the receptor functionality from
its primary structure, that is, directly from the amino acid (AA) sequences.
The comparative exploration of the sequences of the seven different described
subtypes of this class may constitute a first step in the study of the molecular
processes involved in receptor signalling.

Most of the existing data-based research on primary receptor sequences re-
sorts to their alignment [8], which enables the use of more conventional quanti-
tative analysis techniques. Given that the length of the class C GPCR sequences
varies from a few hundred AAs to well over a thousand, alignment risks the loss
of relevant sequence information. Alternatively, as in this paper, we can resort to
methods for the analysis of alignment-free sequences from their transformation
according to the AA properties (for a review see [9]).

Previous exploration of the class C GPCR sequences through visualization-
oriented clustering [10] and semi-supervised analysis [11] has shown that the
existing formal characterization of this class into seven subtypes only partially
corresponds to the natural data cluster structure according to unaligned se-
quence transformations. In the current study, we investigate this issue within a
more general clustering framework.

Clustering analysis often works by assigning individual data instances to one
out of several clusters according to their similarity to representative examples
Such assignment is often of a dichotomous or crisp nature: the instance either be-
longs to or does not belong to a given cluster. Fuzzy and probabilistic clustering
methods, instead, assign each data instance to each cluster with an estimated de-
gree or probability of membership. As a result, the uncertainty of the assignment
decision is explicitly taken into account in the model.

Over the last decades [12], K-Means has become a stalwart method for data
clustering, spawning many variants while remaining a common choice, even if as
a benchmark, in many real-world applications. K-Means is based on crisp cluster
assignments, although variants such as Fuzzy C-Means (FCM)[13] have extended
the model to account for partial degrees of membership. K-Means limitations are
well studied and include the lack of a closed criterion for the choice of the number
of clusters K and the fact that, under different initializations, the algorithm may
yield very different solutions.

Recent experimental evidence [14] has shown that K-Means solutions that
might be expected to be similar according to the final value of the objective
function may in fact be quite dissimilar, and that this effect increases with the
value of K. This suggests the convenience of using the objective function as a
criterion of model optimality only in combination with some cluster stability
criterion if we aim to achieve cluster partition reproducibility. One such com-
bined criterion is the Separation and Concordance (SeCo) map, which joins the
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standard sum-of-squares (SSQ) error and Cramér’s V stability index, a variation
of Pearson’s χ2, which can also be used to inform the choice of K.

The calculation of Cramér’s V index is based on the use of contingency tables,
which are only suitable for crisp cluster assignments. In this study, we extend
the SeCo criterion to fuzzy and probabilistic clustering by first defining weighted
contingency tables and a corresponding weighted Cramér’s V index. This should
be a more faithful assessment of the clustering solution stability for fuzzy and
probabilistic methods.

The proposed methods are employed to investigate a class C GPCR primary
sequence data set extracted from a publicly available database. Two experimen-
tal settings for the clustering experiments are used. The first fixes the number of
clusters to the number of formal subtypes in the class in order to investigate the
level of correspondence between both, while the second relaxes this constraint
in order to analyze the stability of the clustering solutions using SeCo maps.

2 Methods

2.1 Alignment-Free Sequence Transformation Methods

As previously mentioned, in this paper we resort to methods for the analysis of
alignment-free sequences from their transformation according to the AA prop-
erties. Three transformations were used in our experiments:

– Amino Acid Composition (AAC): This simple transformation reflects the AA
composition of the primary sequence. The frequencies of the 20 sequence-
constituting AAs are calculated for each sequence and, as a result, an N×20
data matrix is obtained, where N is the number of data instances.

– Auto Cross Covariance (ACC): The ACC transformation aims to capture
the correlation of the physico-chemical AA descriptors along the sequence.
The method relies on the translation of the sequences into vectors based on
the principal physicochemical properties of the AAs. Data are transformed
into a uniform matrix by applying a modified autocross-covariance transform
[15]. First, the physico-chemical properties are represented by means of the
five z-scores of AA as described in [16]. Then the Auto Covariance (AC) and
Cross Covariance (CC) are computed on this first transformation. They, in
turn, measure the correlation of the same descriptor (AC) or the correlation
of two different descriptors (CC) between two residues separated by a lag
along the sequence. From these, the ACC fixed length vectors can be obtained
by concatenating the AC and CC terms for each lag up to a maximum lag,
l. This transformation generates an N × (z2 · l) matrix, where z = 5 is the
number of descriptors.

– Digram Transformation: The digram transformation is a particular instance
of the more general n-gram transformation. It considers the frequencies of
occurrence of any given pair of AAs. The n-gram concept has previously
been used in protein analysis [17]. This particular transformation generates
an N × 400 matrix.
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2.2 Data Clustering Using K-Means and Fuzzy C-Means

The K-Means algorithm creates a partition of a setX = {x1, . . . ,xN} of observed
data into a set of K clusters Γ = {Γ1, . . . , ΓK} by defining a fixed number K
of data centroids or prototypes {µ1, . . . , µK}. It does so by assigning individ-
ual data observations to their closest prototypes according to a given similarity
measure or distance. Such assignment is crisp in the sense that individual ob-
servations are associated to individual clusters with complete certainty. Fuzzy
and probabilistic clustering techniques relax this approach by assigning, to each
observation, a fuzzy degree (for instance in FCM) or a probability (for instance
in mixture models) of membership to each cluster. Most approaches to K-Means
opt for different forms of random initialisation of the prototypes (seeds). The
algorithm’s objective is finding the set Γ that minimises a SSQ error in the form∑K

k=1

∑
x∈Γk

∥x− µk∥2. FCM generalizes this objective function to become:

C∑
c=1

N∑
n=1

ωm
nc∥xn − µc∥2 (1)

for C fuzzy clusters, fuzzy weights ω and fuzziness parameter m. It is well known
that different initialisations of the algorithm make it converge to different local
minima and that there is no guarantee of convergence to a global minimum of the
objective function. In practical applications, K-Means and FCM are run with a
sufficient number of random initialisations and the Γ generating minimum error
is chosen among the rest.

2.3 Clustering Stability Measures

Even if finding a minimum error Γ is a central objective of K-Means, the stability
of the clustering solution is also relevant. Solutions that are reproducible are
required. That is, cluster partitions that do not change (much) under different
initialisations, i.e., that are stable. This cluster stability is paramount in practical
applications and can be quantified using different indices [18].

It was recently brought into attention [14] that K-Means partitions with
similar errors might be greatly different from each other (thus unstable) and that
this effect increases with the value of K. Assuming that solutions that strike a
balance between low error and high stability ought to be sought, Lisboa et al.
[14] proposed a framework based on the calculation of Separation/Concordance
(SeCo) maps for settings using multiple random initializations of K-Means for
different values of K. This entails the simultaneous display of a pair of values
for each run of the algorithm, namely: The ∆SSQ, calculated as the total SSQ
minus the within-cluster SSQ:

K∑
k=1

N∑
n=1

∥xn − µk∥2 −
K∑

k=1

∑
xn∈Γk

∥xn − µk∥2 (2)

and a concordance index (CI) quantifying stability. In [14], the use of Cramér’s
V index is recommended as a basis for it. The CI is calculated as the median of
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the (nin − 1) pairwise Cramér’s V calculations for nin initializations. For two
cluster partitions Γ and Γ ′ of, in turn, K and K ′ clusters, Cramér’s V index is
a variation of a χ2 test, calculated as V =

√
χ2/N �min(K − 1,K ′ − 1), where

χ2 =
K∑

k=1

K′∑
k′=1

(Okk′ − Ekk′)2/Ekk′ (3)

Here, O is an observed contingency table (K ×K ′) matrix, whose values Okk′

indicate the number of instances in X that have been assigned to cluster k in
one run of the algorithm and to cluster k′ in another run. The K×K ′ matrix E
contains the corresponding expected values for independent cluster allocations,

calculated as Ekk′ = 1
N (

∑K′

j=1 Okj

∑K
i=1 Oik′).

This use of contingency tables is suitable for crisp cluster assignments such
as those provided by K-Means. For soft assignments such as those provided by
FCM or Gaussian Mixture Models, instead, this use occludes the richness of the
cluster solution by requiring the assignment of instances to clusters to be based
on the highest degree of membership or probability.

In this paper, we propose a variation of contingency tables that better suits
the characteristics of fuzzy and probabilistic models. Elements in what we call
weighted observed (wO) contingency tables will now be calculated, following
the notation of Eq.1 for FCM, as wOcc′ = sumN

n=1ωncωnc′ ; this is, for data
instance n, the product of the degree of membership to cluster c in a first run
of the algorithm and the degree of membership to cluster c′ in a second run.
Consequently, we can obtain a weighted expected (wE) contingency table matrix

whose elements are defined as wEcc′ = (
∑C′

j=1 wOcj

∑C
i=1 wOic′)/N . This leads

to the definition of a new weighted Cramér’s V index, where O is replaced by
wO and E by wE in the calculation of χ2 in Eq.3.

If FCM estimated that all instances had a degree of membership of 1 for
a single cluster, the weighted Cramér’s V index would reduce to its standard
formulation. This is unlikely to happen, which means that the proposed index
will lead to lower levels of CI in SeCo. This should, therefore, be not only a con-
servative concordance estimator, but also a more reliable clustering assessment
tool, capable of distinguishing solutions with varying levels certainty.

Note that SeCo can be used as a flexible tool to chose adequate values of the
K parameter (number of clusters). This is equally true when using the modified
index, but, in this case, there should be no bias in favour of “over-optimistic”
solutions.

3 Experiments

3.1 Materials and Experimental Setting

The data in the following experiments were extracted from GPCRDB2 [19] (ver-
sion 11.3.4 as of March 2011), a public database of G Protein-Coupled Receptor

2 http://www.gpcr.org/7tm
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(GPCR) protein primary sequences. The data set comprises a total of 1,510
class C GPCR sequences, belonging to seven subfamilies and including: 351
metabotropic glutamate (mG), 48 calcium sensing (CS), 208 GABA-B (GB),
344 vomeronasal (VN), 392 pheromone (Ph), 102 odorant (Od) and 65 taste
(Ta). Their AA lengths vary from 250 to 1,995.

Previous research [20] investigated the supervised classification of these data
sequences, from several of their alignment-free transformations, including AAC,
digram, and ACC, among others. Here, we use K-Means and FCM to investigate
to what extent the natural clustering structure of the data fits the subfamilies
(classes) description. For that, we first report the results of experiments in which
the number of clusters is fixed a priori to be the same as the number of class C
GPCR subtypes. These will provide us with a preliminary evaluation of the level
of natural subtype overlapping. We then proceed to relax that constraint and
the SeCo framework, with the proposed modification of the concordance index
in the case of FCM, is applied in a setting with 500 random initializations of
the algorithms for different number of clusters. Following [14], only the best 10%
△SSQ results are displayed in the SeCo plots.

3.2 Results and Discussion

The three transformed data sets were fed to the FCM and K-means algorithms.
The class (subtype) specificity for each cluster for each data set was measured
and the results are provided in the following paragraphs along with class-entropy
measures. This will inform us to what extent the clusters extracted by K-means
and FCM algorithms correspond (or not) to the theoretically labeled subtypes.

The class-entropy for a given cluster k is calculated as Ek = −
∑C

j=1 pkj lnpkj ,
where j is one of the C = 7 class C GPCR subtypes and pkj = mkj/mk, where,
in turn, mk is the number of sequences in cluster k and mkj is the number of
subtype j sequences in cluster k.

For FCM, Figure 1 and Table 1 show that, for the AAC data transformation,
almost none of the defined clusters show clear class (subtype) specificity. Only
in cluster 1, the first subtype (mG) of GPCR achieves a specificity that is close
to 60%, but even in this case, the third subtype (GB) reaches a non-negligible
30%. Several clusters show common specificity profiles: for instance, clusters 1
and 3 are predominantly a mixture of mG and GB, which means that they
might truly be a single cluster with some substructure. Cluster 4 is a very mixed
combination of Ph and VN, but clusters 2, 6 and 7 seem to be variations of this
combination, again suggesting one main cluster with further substructure and
important levels of overlapping. The ACC and Digram transformations (Figures
2 and 3, and, again, Table 1), instead, manage to separate some of these clusters
to become more subtype-specific. mG and GB are now more clearly discriminated
(clusters 1 plus 5 and cluster 3, in turn) with the rest of subtypes showing clear
overlapping in some clusters but also high specificity in others (for instance,
Ph in ACC cluster 6 and Digram in cluster 7). In any case, the more complex
transformations (ACC and Digram) seem to make the FCM clustering model
more class C GPCR subtype-specific.
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Fig. 1. Class specificity bar chart (with percentage values) for each FCM cluster of
class C GPCR data set with the AAC transformation. Classes 1 to 7 are, in turn, mG,
CS, GB, VN, Ph, Od and Ta.

Fig. 2. As Figure 1, for the ACC transformation.

Fig. 3. As Figure 1, for the Digram transformation.
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Table 1. Number of GPCR sequences-per-cluster (♯) and cluster-specific (Ek) and total
entropies for the FCM clustering of class C GPCR data with the three transformations.

AAC ACC Digram

♯ Ek ♯ Ek ♯ Ek

Cluster 1 245 1.45 107 0.13 112 0.12

Cluster 2 239 2.16 207 1.52 374 2.39

Cluster 3 200 1.34 202 0.33 200 0.37

Cluster 4 193 1.30 237 1.17 277 1.09

Cluster 5 67 1.97 199 0.89 179 0.26

Cluster 6 263 2.15 279 1.99 205 2.02

Cluster 7 303 1.95 279 2.20 163 1.28

Total Entropy 1.77 1.34 1.29

The results of the K-means algorithm for the seven subtypes of class C
GPCRs, for which, for the sake of brevity, we only report the entropy results in
Table 2, are consistent with those of FCM. Again, almost none of the defined
clusters show clear class (subtype) specificity with AAC data transformation.
The ACC and Digram transformations, instead, manage to separate some of
these clusters to become more subtype-specific. The similarity between the two
algorithms is that mG and GB are more clearly discriminated than the rest of
subtypes. Moreover, in the ACC transformation, Ph receptors can also be dis-
criminated from the rest subtypes due to their high specificity in cluster 2. The
remaining subtypes show clear overlapping in some of the clusters.

Table 2. Number of GPCR sequences-per-cluster (♯), together with cluster-specific
(Ek) and total entropies for the K-Means clustering of class C GPCR data with the
three transformations.

AAC ACC Digram

♯ Ek ♯ Ek ♯ Ek

Cluster 1 270 1.65 260 0.26 222 0.10

Cluster 2 406 2.17 136 0.72 398 1.47

Cluster 3 196 1.33 150 0.23 121 0

Cluster 4 189 1.24 188 1.07 284 1.10

Cluster 5 54 1.34 165 1.57 184 1.90

Cluster 6 56 1.74 379 1.79 197 1.95

Cluster 7 339 2.03 232 1.97 104 1.63

Total Entropy 1.77 1.19 1.39

Comparing the results of both algorithms in terms of the total entropy mea-
sure, conclusions are not clear-cut. ACC and Digram show a clear advantage
both in FCM and K-Means, but neither shows a clear advantage over the other.
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We now move to the clustering stability analyses results, based on random
algorithm initializations and varying number of clusters, using the SeCo maps.
For each one of the transformed sets, three SeCo maps were created using:

– The K-means objective function and the standard Cramér’s V index.
– The FCM objective function and the standard Cramér’s V index.
– The FCM objective function and the novel weighted Cramér’s V index pro-

posed.

As previously mentioned, a threshold for the △SSQ values to select the 10%
top values for each value of K is expected to allow the degeneracy of similar
SSQ values to be resolved. The FCM 10% top results, as reported in Figs. 4 to
6, are very parsimonious (much more so than the complete ones, not reported
here), revealing a high concentration of stability results around just a handful
of median Cramérs V index values, in comparison with the still wide spread of
K-Means. These results are also very consistent over data transformations. For
K-Means, this effect does not necessarily increase as K increases for any of the
data transformations. For FCM, though, an increase in spread as K increases is
revealed. Overall, this indicates that FCM is much more resilient than its crisp
K-Means counterpart to the variability introduced by random initializations.

Fig. 4. Separation-Concordance maps for the AAC data set, including the 10% best
results. Top: results for K-Means; bottom: results for FCM, a) with standard Cramér’s
V index; b) with proposed weighted Cramér’s V index.
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Fig. 5. Separation-Concordance maps for the ACC data set. Layout as in previous
figure.

Fig. 6. Separation-Concordance maps for the digram data set. Layout as in previous
figure.
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Moreover, the stability results as measured by the standard Cramérs V index
and the proposed weighted Cramérs V index are again very similar for all data
transformations (even better for the latter, providing further support for the
proposed method, which is a more faithful account of the true belief of the
algorithm regarding cluster membership).

Also, the restricted 10% SeCo maps offer some guidance to make a decision
about the most adequate value of K, as supported by the data. For FCM, a
solution beyond 7 clusters is clearly not supported by the AAC transformation,
as maximum stability suddenly decreases at the same point the cluster model
becomes more unstable (with more spread values). Note that this is consistent
with the “natural” description of subtypes for this data set. A similar conclusion,
though, is not supported for ACC and only partially for Digram, whose low-K
solutions are clearly polarized. In any case, these results are hardly conclusive,
which means that SeCo maps have limited applicability for the choice of K in
highly overlapping data sets such as those analyzed in this study.

4 Conclusions

Crisp clustering provides a simplified partition of the observed data as a descrip-
tion of its structure. K-Means, the most commonly used algorithm of this type,
is known to be strongly dependent on initialization. Furthermore, recent studies
suggest that different K-Means solutions with apparently similar error may in
fact be quite dissimilar. In this context, it is recommended to base the choice of
solution on a combination of error and stability criteria.

Separation-Concordance maps provide such combined criterion. They were
originally developed for K-Means and, in this study, we have extended them to
FCM by defining weighted contingency tables and a weighted Cramér’s V index
that could also be used in other fuzzy and probabilistic techniques in which
cluster assignment is not of a crisp nature any longer.

We have experimented with this approach in a problem concerning the clus-
tering of class C GPCRs, which have a pre-defined subtype structure. This
sub-typology is known to have a highly overlapping structure from a clustering
viewpoint, which has been confirmed in our experiments. The SeCo maps have
revealed the FCM algorithm to yield much more stable results that K-Means
under multiple random initializations, but they have also been shown to provide
limited guidance for the choice of the K and C parameters, due to the highly
overlapping nature of the data. In any case, the proposed weighted Cramér’s V
index provided consistent with and often better results than the standard one in
our experiments. This is encouraging, given that the modified index is meant to
reflect the nature of the clustering results more faithfully, something that might
have revealed lower stabilities.
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