
Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

Facultat d’Informàtica de Barcelona (FIB)

Final Master Thesis (FMT)

2015-2016 | Autumn Semester

Master in Innovation and Research in Informatics (MIRI)

High Performance Computing (HPC)

Extending SAIPH

Simulating fluid mechanics and chemistry problems

Sandra Macià Sorrosal
(sandra.macia@bsc.es)

Director: Vicenç Beltran Querol (vbeltran@bsc.es)
Co-director: Eduard Ayguadé Parra (eduard@ac.upc.edu)

Computer Architecture Department (DAC)

”Well, Mr. Frankel, who started this program, be-
gan to suffer from the computer disease that any-
body who works with computers now knows about.
It’s a very serious disease and it interferes com-
pletely with the work. The trouble with computers
is you *play* with them. They are so wonderful.
You have these switches - if it’s an even number
you do this, if it’s an odd number you do that - and
pretty soon you can do more and more elaborate
things if you are clever enough, on one machine.

After a while the whole system broke down.
Frankel wasn’t paying any attention; he wasn’t su-
pervising anybody. The system was going very,
very slowly - while he was sitting in a room figur-
ing out how to make one tabulator automatically
print arc-tangent X, and then it would start and
it would print columns and then bitsi, bitsi, bitsi,
and calculate the arc-tangent automatically by in-
tegrating as it went along and make a whole table
in one operation.

Absolutely useless. We *had* tables of arc-
tangents. But if you’ve ever worked with comput-
ers, you understand the disease - the *delight* in
being able to see how much you can do. But he
got the disease for the first time, the poor fellow
who invented the thing.”

– Richard Feynman, Surely You’re Joking,
Mr. Feynman!: Adventures of a Curious
Character

Acknowledgments

I would like to thank my supervisor Vicenç Beltran for the useful comments, remarks
and engagement through the learning process of this master thesis and for giving me
the opportunity to work on this exciting and engaging project.

Many thanks also to Sergi and Alejandro for introducing me to the topic as well as for
the great support you gave me on the way.
To BSC’s CASE department, specially to Daniel Mira for helping me on the theoretical
scientific view of the project.
In general, thanks to all my colleagues at BSC.

Special thanks to Marc for being always there, believing in me more than I do. You still
keep surprising me with your physicist and global view advices.

Last but not least, I want to thank my family and friends to make this work possible.

iii

Extending Saiph: Simulating fluid mechanics and chemistry
problems

Sandra Macià Sorrosal

Computer Architecture Department (DAC)
Universitat Politècnica de Catalunya (UPC)

2016

ABSTRACT

Nowadays, High-Performance Computing (HPC) is assuming an increasingly central
role in scientific research. It is becoming frequent to see scientists working in super-
computing environments while computer architectures are becoming more and more
heterogeneous and complex with different parallel programming models and techniques.
Under this scenario, the only way to successfully exploit an HPC system requires that
computer and domain scientists work closely towards producing applications to solve
domain problems, ensuring productivity and performance at the same time.
Facing such purpose, Saiph is a Domain Specific Language (DSL) designed to ease the
task of simulating complex Partial Differential Equation systems (PDEs) that model real
physical phenomena, freeing the users from numerical methods and high-performance
complexities.
This project aims to extend Saiph to support fluid mechanics and chemistry -combustion-
simulations, two domains with a high interest within the scientific community. Driven
by use-cases requirements, extensions have been performed at different levels of ab-
straction. New user-functionalities, suitable numerical methods and specific domain
optimizations have been added leading to validated simulation results of the selected
use-cases, obtained through the parallel execution of such Saiph applications.

Keywords: HPC, DSL, PDEs, Fluids, Combustion, Scala, Compilers, Parallelism.

iv

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Objectives . 2

1.2.1 Detailed Objectives . 3

1.3 Context . 3

1.4 Document structure . 3

2 State of the art . 5

2.1 Liszt . 5

2.2 FEniCS . 6

3 Saiph overview . 7

3.1 Saiph design . 7

3.2 Underlying technology . 8

3.2.1 Scala . 9

3.2.2 Lightweight Modular Staging . 10

3.2.3 Scala-virtualized compiler . 10

3.3 Saiph as a language . 11

3.3.1 Units . 11

3.3.2 Cartesian meshes . 14

3.3.3 Terms . 15

3.3.4 Operators . 16

3.3.5 Equations . 20

v

3.3.6 Boundary conditions . 21

3.3.7 Point sources . 24

3.3.8 Problem . 25

3.4 Saiph’s internal features . 27

3.4.1 Numerical methods . 27

3.4.2 Domain specific optimizations . 29

3.4.3 Exploiting parallelism . 30

4 Fluid mechanics and chemistry theory 33

4.1 Governing equations . 33

4.2 Dissecting the equations . 34

4.2.1 Meaning of terms . 35

4.2.2 Operators involved . 37

4.2.3 Vector equations . 41

4.2.4 Non-derivative equation . 42

4.2.5 Coupled system . 42

5 Tools and methodology . 45

5.1 Tools . 45

5.2 Methodology . 45

5.2.1 Scientific method design . 46

5.2.2 Development strategy . 46

6 Extending Saiph . 47

6.1 New functionalities . 47

6.1.1 Vector equations . 47

6.1.2 Non-derivative equations . 49

6.1.3 Coupled scheme . 50

6.1.4 Operations over vector of Units 52

6.1.5 Other operators . 53

6.2 Optimizations . 54

vi

6.2.1 Stabilized gradient . 54

6.2.2 Nested derivatives . 56

7 Results and evaluations . 60

7.1 Fluid mechanics and chemistry use-cases 60

7.1.1 Convection . 60

7.1.2 Sod’s shock tube . 64

7.1.3 Results and validation . 69

7.1.4 Autoignition delay time . 70

7.1.5 Premixed laminar flame . 78

7.1.6 Results and validation . 85

7.1.7 Nomenclature, units and constants 87

7.2 Parallel execution analysis . 90

7.2.1 Platform . 90

7.2.2 Experimental Setup . 91

7.2.3 Scalability Results . 91

8 Summary . 92

9 Conclusions and future work . 94

A Scala . 95

B Lightweight Modular Staging . 97

C Premixed laminar flame; Saiph complete code 101

Bibliography . 109

vii

1 | Introduction

Today, synergy is one of the most important requirements for research and scientific
advances. In any domain, it is necessary to work closely with different domain experts
with different backgrounds and views but ideally binding them in its own domain of
expertise.

For such purpose, Domain Specific Languages (DSLs) are becoming a popular approach.
Ideally, domain experts would just need to specify their problems unambiguously, with
all the details required to formalize the whole simulation description and the domain-
specific compiler would handle the details related to the domain specific problem and
the high-performance execution in a supercomputer. And that is exactly what Saiph
is meant for; Saiph is a Domain Specific Language being developed at the Barcelona
Supercomputing Center (BSC) for simulating physical phenomena modeled by complex
Partial Differential Equations (PDE) systems. Saiph eases the development of scien-
tist applications by allowing domain experts to transcribe their equations into Saiph
code and then generating HPC-ready code that efficiently exploits the computational
resources of modern heterogeneous supercomputers while dealing with all the specific
aspects of solving partial differential equations systems.

1.1 Motivation

In supercomputing environments, scientists model real-world phenomena using partial
differential equation systems. Afterwards, these models are transcribed into a pro-
gramming language in order to numerically estimate the solutions of the equations via
simulation. This scenario requires a strong collaboration between computer experts,
numerical methods experts and scientists lighting up the fact that scientist could not
perform as computer (or numerical methods) experts and vice versa. Without a strong
collaboration, domain experts are forced to leave their domain of expertise and produc-
tivity and efficiency start to plummet. Consequently the productivity can be hindered
by issues related to domains that are, in fact, adjacent to the scientific domain of the
specific research. The Saiph project is motivated by the fact that regarding simulations
involved in science, the unavoidable and essential adjacent domains are the computer
science domain and the numerical method domain, which are fields of expertise by

1

themselves. Domain Specific Languages could, in general, separate and establish the
link between those different but dependent domains, allowing the work to progress in
the same direction while each expert working in its own domain of expertise. Saiph,
in particular, has been designed for users which are not familiar with PDEs resolution,
nor numerical methods neither programming for supercomputers. Saiph is a high-level
language with domain specific syntax that provides to the users, numerical correctness,
specific domain optimizations and high performance computing. However, Saiph is a
tool under development and until this project, it has successfully faced the resolution
of few and small systems.

The idea behind Saiph is strong and powerful, so Saiph could have a long and exciting
trajectory. For this reason, it is important and necessary to validate and use what it has
been done until now as well as to extend it to demonstrate its strength to the scientific
community.

Given the users targeted by the tool, it appears interesting to have a development process
driven by real large, complex and popular use-cases with their specific requirements. To
this end, it seems wise to choose a specific scientific domain, wide and popular enough
to have several use-cases for conducting the development and the extension of Saiph as
a specific language of the domain of resolutions and simulations of physical problems
written as PDEs systems.

1.2 Objectives

The main objective of this project is to make real use of Saiph and to extend it. To
this end, we have chosen a wide enough scientific domain able to provide us with real
applications of interest to drive the development of our tool. This scientific domain
corresponds to fluid mechanics and chemistry.

For quite awhile, fluid mechanics and chemistry has been a domain of high interest in
the scientific community. As a fact of matter, this domain of expertise can provide us
with use-cases as systems of partial differential equations which lead to real, interesting
and complex scientific simulations. Moreover, the popularity of the field allows us to be
able to validate the obtained results of the simulated systems against other.

Thus, the objective is twofold; make real use of Saiph and extend this domain specific
language for the resolution of problems related to fluid mechanics and chemistry offering
a high level syntax that directly maps with a concept of the domain, hiding from the user
all the complexities related to numerical methods, domain specific optimizations and the
generation of specific code to be executed in parallel by a supercomputer, distributing
the work across several nodes and applying intra-node techniques to achieve a high
performance.

2

1.2.1 Detailed Objectives

In particular, the main objective is to develop and extend Saiph to end up with the
simulation of the real application Premixed flame which is a combustion phenomena
and an ideal use-case to drive the development of Saiph since it includes the basic
principles of fluid mechanics and chemistry systems. The steps to achieve that, were set
as follows:

Fluid mechanics applications

Extending Saiph to be able to simulate and validate basic applications of fluid mechanics.
In particular convection phenomena and the Sod’s shock tube application.

Chemistry applications

Extending Saiph to be able to simulate and validate basic applications of chemistry. In
particular the autoignition delay time test.

Fluid mechanics and chemistry applications

Extending Saiph to be able to simulate and validate applications of fluid mechanics and
chemistry. In particular, the premixed flame application.

1.3 Context

The current project starts with the complete Saiph DSL infrastructure already set and
at an advanced stage of development. Within that context, the objectives are to extend
and keep developing the tool, in order to enlarge its applicability and numerical safety.
This project is being developed at the Computer Science (CS) department of the BSC,
by the DSLs group, in collaboration with the Computer Applications in Science &
Engineering (CASE) department, for the Repsolver project. The current project exploits
the natural and required synergy between the two departments and the Repsol entity:
CS acting as computer science experts, CASE contributing with numerical methods
expertise and Repsol providing real use-cases of interest.

1.4 Document structure

The rest of this document is structured as follows: Chapter 2 gives a briefing over the
state of the art on the field of DSLs for HPC for solving PDE systems of fluid mechanics

3

and chemistry problems. Following on, Chapter 3 then introduces Saiph as it was before
the current project which includes all the tools used to develop and extend it, the design
of the DSL, the syntax of the Saiph language, how to use it and the internal features
hidden for the users. Then, Chapter 4 focus on fluid mechanics and chemistry theory,
followed by a methodology overview, in Chapter 5. Chapter 6 nails down the most im-
portant features implemented to extend Saiph including new functionalities, application
of specific numerical methods and domain specific optimizations. Finally, use-cases’ re-
sults are reported and evaluated in Chapter 7 together with a brief scalability analysis.
Chapter 9 concludes with some remarks regarding the integration of new features in an
already functional tool as well as with the promising trajectory a tool as Saiph can have
in the scientific community. To end the document, Appendix C contains the complete
Saiph’s code of the premixed flame use-case reported.

4

2 | State of the art

Saiph is not the first tool designed to provide an abstraction for solving PDE systems.
This section comments on some of the already existing approaches to solve large-scale
PDE systems using DSLs. We describe two different tools, emphasizing the differences
with Saiph to illustrate its potential.

2.1 Liszt

Liszt is a Scala-based domain-specific language for solving partial-differential equations
on meshes [1]. The language is designed for code portability across heterogeneous plat-
forms. Similar to Saiph, Liszt applications are translated to an intermediate represen-
tation which is then compiled by the Liszt compiler to generate native code for multiple
platforms. The aim of Liszt is to exploit information about the structure of the data and
the nature of the algorithms in the code and to apply aggressive and platform specific
optimizations.

Liszt provides features for parallelism. These semantics should be applied by the users
to ensure that the Liszt compiler can infer data dependencies automatically, enabling it
to generate a parallel implementation for code written in a serial style.

Regarding usability, the difference between Saiph and this approach is essentially the
level of abstraction exposed to the user. Liszt assume that the governing PDEs are
already discretized on the mesh over a region of space, on the other hand, Saiph provides
a one-to-one mapping from the formal specification of a PDE system to actual code. This
enables Saiph’ users to perfectly use the language efficiently and without any significant
knowledge on the actual execution details.

On the other hand, Liszt comes with its own runtime system that optimize all the oper-
ations performed on the geometry. Liszt components and optimizations are completely
ad-hoc, not reusable for any other similar DSL and not composable with other libraries.
In contrast, Saiph has been build by layers on top of fully reusable infrastructure, so
optimizations and functionalities are reused.

5

2.2 FEniCS

Another approach relies into expressing the PDEs at the mathematical level. FEniCS [2]
use, as Saiph, a top level of abstraction defining a high-level language for the specification
of finite elements algorithms allowing the users to express the problem in terms of
differential equations, leaving the details of the parallel implementation to a lower-level
library.

The FEniCS Project [3] is a collaborative project for the development of innovative
concepts and tools for automated scientific computing, with a particular focus on auto-
mated solution of differential equations by finite element methods. The goals of Saiph are
similar to the FeniCS ones; FEniCS aims to set a new standard in Computational Math-
ematical Modeling (CMM), which can be described as the Automation of CMM, towards
the goals of generality, efficiency, and simplicity, concerning mathematical methodology,
implementation, and application.

FEniCS has an extensive list of features for automated, efficient solution of differential
equations, including automated solution of variational problems, automated error con-
trol and adaptivity, a comprehensive library of finite elements, high performance linear
algebra and many more. It is organized as a collection of interoperable components
that together form the FEniCS Project. These components include a problem-solving
environment, a form compiler, a finite element tabulator, a just-in-time compiler, a code
generation interface, a form language and a range of additional components. Building
on these components, software specialized to solving different problems are organised
into separate applications.

Although FEniCS is a very powerful solution for a large number of complex problems, it
is not at all meant to be used by scientists without deep expertise in numerical methods.
Therefore, even if it provides a complete simulation infrastructure for many real-world
problems, its target users essentially differ from Saiph’s. In our case, we want a language
that scientists can use to quickly simulate and integrate results in their research process,
where the simulation is just a part of the whole. As a consequence, Saiph can make
much more assumptions regarding the numerical methods used and the abstractions
provided, resulting in a much more abstract syntax, close to any scientists with modest
knowledge in scientific modeling.

6

3 | Saiph overview

This chapter introduces the design and the underlying technology used for developing
Saiph and the resulting high-level language. We briefly describe the Saiph project and
its state of development when the current project (aimed to use and extend Saiph)
started. Hence, this is an overview of the tool as it was before this project.

3.1 Saiph design

Saiph, as a DSL, has been designed to be simple, efficient, largely applicable within a
certain domain, and safe. At a macroscopic level, synergy between domain and DSL
experts should be a must in the production chain.

Fig. 3.1: DSL macroscopic production design

Saiph has been implemented as an embedded compiler in Scala[4] using the Lightweight
Modular Staging (LMS)[5] as a DSL development platform and the Scala Virtualized
Compiler[6].

Saiph applications are compiled with the LMS and the Saiph implementation together
using the Scala Virtualized Compiler. After that, the output of this first phase is com-
piled using our embedded compiler. All the domain specific optimizations are applied
at this point. Finally, the output of the embedded compiler (a C++ file) is compiled

7

and linked with a low-level C++ library developed at BSC that takes care of solving
the applications in parallel. Figure 3.2 shows the whole compilation process and the
internal design structured by layers:

Fig. 3.2: Underlying design and technologies used during the compilation process

At the front end the Saiph application is compiled with LMS and all the compiler
implementations together. At the middle end, the domain specific implementations
are applied and the LMS generates the corresponding IR nodes. Finally, the back end
compiles and links the generated C++ code using our C++ library and produces a
binary ready to be executed in parallel using MPI and OpenMP parallelization.

Saiph is internally designed to have two important and separated layers: the Scala com-
piler and the C++ library. This separation eases the DSL development, as in each of
them the efforts are devoted to the developments naturally belonging to the layer. In
that way, as DSL developers, we can reuse knowledge and take the advantages offered
by each tool being used at its natural layer.
High-level domain-oriented syntax and domain specific optimizations are thus imple-
mented at the Scala compiler, while MPI and OpenMP parallelization and auxiliary
(mainly numerical) methods should be developed in the C++ library.

3.2 Underlying technology

Since the language is embedded in Scala, it may be useful for users to become familiar
with the most basic concepts of Scala. The following sections provide a quick overview
of Scala as well as a short description of the main tools used for developing Saiph.

8

3.2.1 Scala

Scala [7] is a statically typed programming language which unifies and generalizes ob-
ject oriented and functional programming. It provides a powerful set of mechanisms for
composing, abstracting and adapting components. Those mechanisms allow the lan-
guage to be extensible enough so that users can model their domains writing libraries
that are used like they were built-in features provided by the language itself. Scala is
thus an attractive language for embedding DSLs. Using Scala and LMS (explained later
in this chapter), Saiph is embedded as an internal DSL. Therefore, Saiph applications
are actually Scala applications.

The most basic concepts, constructions and features of Scala used in Saiph applications
are introduced in appendix A. In this section we solely mention an interesting Scala
feature used in Saiph to allow domain specific optimizations; pattern matching.

Pattern matching

One of the functional features that Scala implements is pattern matching. Scala allows
the programmer to match values of any type with a match-first policy. However, Scala,
as an object-oriented language, extends this concept for objects. This is achieved with
a special kind of classes called case classes.

The following code illustrates how Function findRoom (line 1) takes a parameter n of
type Int. This parameter is pattern-matched against several cases (lines 2-5). If n is
equal to one of these values, the corresponding string is returned. Line 5 is the default
pattern, which, if reached, it is always executed.

1 def findRoom(n: Int): String = n match {

2 case 103 => "Lab"

3 case 105 => "Dean"

4 case 104 => "Secretary"

5 case _ => "Empty"

6 }

As previously mentioned, Scala allows the programmer to pattern-match case classes.
The definition of a case class is shown as follows:

1 case class Rectangle(x: Int, y: Int, w: Int, h: Int)

The only difference between case classes and regular Scala classes is that case classes
come by default with a constructor with the same name as the case class. Regular scala
classes cannot be pattern-matched.

9

The following code shows how case classes are pattern-matched.

1 def assertRectangle(r: Rectangle): String = r match {

2 case Rectangle(0, 0, _, _) => // When rectange is at (0,0)...

3 // More cases...

4 case Rectangle(_, _, w, h) => // Use w and h to...

5 }

This last code illustrates how case classes can be pattern-matched against values of their
members (line 2). Values of case class members can be bound and used (line 4).

Case classes act like regular Scala classes in terms of class hierarchies. This means that
an instance of a superclass can be matched against instances of case classes implemented
as subclasses derived from a given type.

3.2.2 Lightweight Modular Staging

LMS [8] is a Scala library for dynamic code generation. Dynamic code generation is
inherently more flexible because code can be specialized with respect to parameters only
available at runtime. The concept of staging is based on the observation that many com-
putations can naturally be separated into stages distinguished by frequency of execution
or availability of information. The staging approach, although introduced initially as
a set of compiler transformations, can be thought of as a method for embeddeding
domain-specific languages [9]. By means of LMS, the Saiph compiler is embedded as a
Scala application, and the Scala code is translated into C++ code when the LMS Scala
application is run.

LMS is just a library, so a DSL application is compiled together with the DSL imple-
mentation, giving place to an executable code generator. Once the code generator is
run, the DSL application gets translated.

Appendix B shows how to build and use a DSL using the Lightweight Modular Staging
as DSL development platform.

3.2.3 Scala-virtualized compiler

The Scala-Virtualized compiler [6], offers a set of small extensions to the Scala language
to provide even better support for hosting embedded DSLs. LMS allows programmers to
stage any kind of computation resulting on an object of a particular type, however, the
vanilla Scala compiler does not provide us with staging of control flow constructs such
as if-else statements or loops. The functionality of staging control flow is achieved
through this extension (Scala-Virtualized compiler). The control flow constructs are

10

compiled down into regular method calls. Thus, Scala-Virtualized extends the idea of
virtualizing certain language features by defining them as method calls, so that they can
be redefined within the language. Scala-Virtualized redefines most of Scala’s expression
sub-language in this way, enabling DSL implementations to give domain-specific mean-
ing to core language constructs.

3.3 Saiph as a language

Saiph offers a high level syntax to unambiguously define a complete system of par-
tial differential equations which models a physical phenomena. This system is solved,
by Saiph, using finite differences and Euler’s integration methods but those numerical
methods are hidden to the user, as well as issues related to the generation of parallel
code.

It follows a complete description of this new language with the components and construc-
tions needed by the users to describe the complete physical systems and the simulations
parameters.

3.3.1 Units

Units are unavoidable components of Saiph to force the users to provide the physical
dimensions of variables of their system. Saiph internally validates that all operations
within equations are valid, avoiding illegal operations such as adding two variables rep-
resenting different magnitudes. To support this type-checking, Saiph computes the units
of each expression: if x is a variable whose unit is Meters, the unit of the expression
x ∗ x is Meters2. Thus, a unit represents a physical magnitude with its dimensionality
information. There are seven attributes that indicate the exponent of each fundamental
magnitude: Length, Mass, Time, Electric Current, Temperature, Amount of Substance
and Luminous intensity. Apart from those seven fundamental units there is the unit
Unitless which is used to qualify dimensionless variables, constants or expressions. De-
spite the fact that is always recommended to specify the real units of the variables, in
some specific cases it may be a tedious work. Using this unitless unit as a black box
unit type may be helpful in some cases.

Aside from avoiding illegal operations, Saiph also keep away from issues related to the
system of units used by the user. Internally, the numerical value of each magnitude
is stored in the International System of Units, thus, different units can be correctly
used and combined to represent the same magnitude. For instance, miles and kilome-
ters can be used as dimensions of length variables, or Kelvins and Celsius degrees for
temperatures.

Table 3.1 shows the predefined unit’s set for each fundamental physical magnitude.

11

Magnitude Units
Length Micrometers, Millimeters,

Centimeters, Meters, Kilometers
Mass Tons, Kilograms, Grams
Time Nanoseconds, Microseconds, Milliseconds,

Seconds, Minutes, Hours, Days
Electric Current Amperes
Temperature Kelvins, Celsius, Fahrenheit
Amount Of Substance Moles
Luminous Intensity Candelas

Table 3.1: Predefined unit’s set for each fundamental physical magnitude

Apart from the units in table 3.1, Saiph supports several operators to compare units
and combine them to create new ones. The example below shows how to define a new
unit using some of these operators and how to use it:

// Defining new units

def MetersPerSecond = Meters / Seconds

def Seconds2 = Seconds * Seconds

def MetersPerSecond2 = Meters / Seconds2

// Using a new unit: Gravity of Earth

def g = -9.81 * MetersPerSecond2

// Equivalent to

def g1 = -9.81 * Meters / Seconds2

// And also equivalent to

def g2 = -9.81 * Meters / Seconds / Seconds

For the sake of convenience, Saiph has a predefined set of combined units, which is
shown in Table 3.2. However, this set is not fixed and it can be extended if needed.

12

Magnitude Units
Area Micrometers2, Millimeters2,

Centimeters2, Meters2, Kilometers2
Volume Micrometers3, Millimeters3, Decimeters3,

Centimeters3, Meters3, Kilometers3
Energy Joules
Pressure Pascals, Bars, Atmospheres, Psis
Power Watts
Speed MetersPerSecond, KmPerHour

Table 3.2: Predefined combined unit’s set

In order to combine and compare units, there is a specific set of operations between
units that is supported by Saiph:

• Comparison operators

def infix_>(l: Unit, r: Unit) : bool

def infix_<(l: Unit, r: Unit) : bool

def infix_>=(l: Unit, r: Unit): bool

def infix_<=(l: Unit, r: Unit): bool

The types of the arguments l and r must match. The result is always a boolean.

• Add operator

def infix_+(l: Unit, r: Unit) : Unit

The type of Units of the arguments l and r must match. The result type is the
same as the type of the arguments.

• Minus operator

def infix_-(l: Unit, r: Unit) : Unit

The type of Units of the arguments l and r must match. The result type is the
same as the type of the arguments.

13

• Product operator

def infix_*(l: Unit, r: Unit) : Unit

def infix_*(l: Scalar, r: Unit) : Unit

def infix_*(l: Unit, r: Scalar) : Unit

The result type is the product of the argument’s types.

• Division operator

def infix_/(l: Unit, r: Unit) : Unit

def infix_/(l: Scalar, r: Unit) : Unit

def infix_/(l: Unit, r: Scalar) : Unit

The result type is the division of the argument’s types.

3.3.2 Cartesian meshes

Saiph works with implicit cartesian meshes. Simulations take place inside a 3D cartesian
mesh defined using the following constructor:

def Cartesian(xs: Length, ys: Length, zs: Length) : Cartesian

Where xs, ys and zs are the respective sizes of each direction X, Y and Z respectively.
These sizes should be specified using continuous lengths, that is, the user should model
the systems in physical continuous space.

The following example shows how to define a cartesian mesh:

val mesh = Cartesian(12.5 * Meters, 25.0 * Meters, 37.5 * Meters)

Once the mesh has been defined it must be discretized in order to map the physical
coordinates to the actual discrete coordinates. This is done by the mandatory operation
discretize whose parameters are real values representing the physical spacing between
points in each of the dimensions. The following code shows an example on how to define
and discretize a mesh:

14

val mesh = Cartesian(12.5 * Meters, 25.0 * Meters, 37.5 * Meters)

mesh.discretize(2.5 * Meters, 1.0 * Meters, 2.5 * Meters)

In the previous code, the discretized mesh has 6 points in the X axis (origin + 5 points),
26 in the Y axis (origin + 25 points) and 16 in the Z axis (origin + 15 points).

3.3.3 Terms

Saiph offers two types of components to represent dimensional constants and variables
of the problem being simulated. A Term represents a variable whereas a ConstTerm is
used to act for constant values of the problem. The main difference between a Term and
a ConstTerm is how data is allocated: since ConstTerms are used when the data does
not vary over time neither over space, it shares the same data along all the points of
the mesh without being modified at any time. On the other hand, a Term privatizes the
data for each point of the mesh and this data is conveniently updated.

Saiph supports scalar and vector terms, allocating the requested data (a scalar or a
vector) for each point of the mesh. The following code shows how to declare a scalar
and a vector term:

val T1 = Term(Temperature)("Temp1", mesh, 300 * Kelvins)

val T2 = Term(Temperature)("Temp2", mesh,

Vector(0 * Kelvins, 300 * Kelvins), List("Gas1", "Gas2"))

In the example above, the two terms defined have magnitude Temperature. The first
term T1 is a scalar term whereas T2 is a vectorial one. In this example, terms are
initialized uniformly for each point of the mesh, but it is also possible to provide a
function over space specifying how the values vary over the point position of the mesh:

val T3 = Term(Temperature)("Temp3", mesh,

{ x => if (x < XSIZE/2) 0 * Kelvins else 300 * Kelvins})

In this last example T3 is initialized depending on the X axis position.

Scalar and vector constant terms are also supported. Instead of allocating the requested
data for each point of the mesh, a ConstTerm share the same data. As a consequence,
a ConstTerm do not depend on the mesh and their memory consumption is lower than
a Term. Constant terms can be declared as follows:

15

val T4 = ConstTerm(Temperature)("Temp4", 300 * Kelvins)

Because of the nature of a constant term, this component can not be initilized with
spatial functions.

Both components, Term and ConstTerm are aimed to be combined, through operators,
with other ones to build the equation system of the problem.

3.3.4 Operators

The operators that can be used to build the equations operate over scalar/vector terms
and constant terms. Whenever any of the operators have requirements related to argu-
ments units, Saiph checks the validity of the operation before performing it, and emits
an error if units do not match.
The operators supported by Saiph are

• Add operator
This operator defines the + operator over scalars and vectors as follows:

x+ y

~u+ x = (u1, ..., un) + x = (u1 + x, ..., un + x)

~u+ ~v = (u1, ..., un) + (v1, ..., vn) = (u1 + v1, ..., un + vn)

def infix_+(x: scalar-expr, y: scalar-expr) : scalar-expr

def infix_+(u: vector-expr, y: scalar-expr) : vector-expr

def infix_+(u: vector-expr, v: vector-expr) : vector-expr

For the sake of simplicity, for this operator and the ones following, we do not show
the version in which the first argument is a scalar and the second argument is a
vector, even though it is supported.

• Subtraction operator
This operator defines the − operator over scalars and vectors as follows:

x− y

~u− x = (u1, ..., un)− x = (u1 − x, ..., un − x)

~u− ~v = (u1, ..., un)− (v1, ..., vn) = (u1 − v1, ..., un − vn)

16

def infix_-(x: scalar-expr, y: scalar-expr) : scalar-expr

def infix_-(u: vector-expr, x: scalar-expr) : vector-expr

def infix_-(u: vector-expr, v: vector-expr) : vector-expr

• Division operator

This operator defines the / operator over scalars and vectors as follows:

x/y

~u/x = (u1, ..., un)/x = (u1/x, ..., un/x)

~u/~v = (u1, ..., un)/(v1, ..., vn) = (u1/v1, ..., un/vn)

def infix_/(x: scalar-expr, y: scalar-expr) : scalar-expr

def infix_/(u: vector-expr, x: scalar-expr) : vector-expr

def infix_/(u: vector-expr, v: vector-expr) : vector-expr

• Product operator
This operator defines the ∗ operator over scalars and vectors. If the two arguments
are vectors, it defines the dot product between them.

x ∗ y
~u ∗ x = (u1, ..., un) ∗ x = (u1 ∗ x, ..., un ∗ x)

~u · ~v = (u1, ..., un) · (v1, ..., vn) =
n∑
i=1

ui ∗ vi

def infix_*(x: scalar-expr, y: scalar-expr) : scalar-expr

def infix_*(u: vector-expr, x: scalar-expr) : vector-expr

def infix_*(u: vector-expr, v: vector-expr) : scalar-expr

• Unary minus operator
This operator defines an unary - operator over scalars and vectors. It changes the
sign of a scalar or, in the case of vectors, changes the sign of all their components.

−x

−~u = (−u1, ...,−un)

17

def infix_-(x: scalar-expr) : scalar-expr

def infix_-(u: vector-expr) : vector-expr

• Component-wise product operator
This operator computes the component-wise product of two vectors of the same
length. Note that we need this special operator because we have already defined
the ∗ operator over two vectors as the dot product.

~u ∗ ~v = (u1, ..., un) ∗ (v1, ..., vn) = (u1 ∗ v1, ..., un ∗ vn)

def cwiseprod(u: vector-expr, v: vector-expr) : vector-expr

• Exponential function
Given a scalar or a vector, this operator computes the exponential function of it.

ex

e~u = e(u1,...,un) = (eu1 , ..., eun)

def exp(x: scalar-expr) : scalar-expr

def exp(u: vector-expr) : vector-expr

Restriction: the argument’s magnitude must be Unitless.

• Invert function
Given a scalar or a vector, this operator computes the invert function of it.

1/x

1/~u = 1/(u1, ..., un) = (1/u1, ..., 1/un)

def invert(x: scalar-expr) : scalar-expr

def invert(u: vector-expr) : vector-expr

• Sum operator
This operator computes the sum of all the components of a vector.∑

~u =
∑

(u1, ..., un) =
n∑
i=1

ui

18

def sum(u: vector-expr) : scalar-expr

• Subscripting operator
This operator is used to select an specific component of a vectorial expression.

t(i)

(t1 + t2).apply(i)

def apply(i: Int) : scalar

• Gradient operator
Given a scalar, this operator returns the value of the partial derivatives of this
scalar in each direction. Thus, the result type is a vector.

∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
def grad(f: scalar-expr) : vector-expr

• Divergence operator
This function computes the divergence operator of a vector.

∇ · ~u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

def div(u: vector-expr) : scalar-expr

• Laplace operator
The laplace operator is defined as the sum of the second spatial derivatives of each
component of a scalar.

∆f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

def lapla(f: scalar-expr) : scalar-expr

19

• First time derivative
This operator represents a first time derivative of a scalar term.

∂a

∂t

def dt(a: Term) : Term

• Second time derivative
This operator represents a second time derivative of a scalar term.

∂2a

∂t2

def dt2(a: Term) : Term

3.3.5 Equations

Defining equations in Saiph involves declaring terms and combine them through opera-
tors. An equation is formed by the left-hand side and the right-hand side expressions.
Consequently, the units of both sides must match, otherwise, Saiph emits and error.
The next code shows how to define an equation:

val eq1 = Equation(lhs_expr, rhs_expr)

Currently, Saiph is not able to manipulate equations, and thus it can not isolate variables
of the problems. For that reason, the user should write the equation in the convenient
way. Saiph allows the left-hand side of an equation to be one of the following construc-
tions:

• First time derivative of a scalar term

dt(t) = rhsexpr

• Second time derivative of a scalar term

dt2(t) = rhsexpr

20

The left-hand sides allowed corresponds to the ”natural” lhsexpr of partial differential
equations. This constraint appear to be a restriction that ends up helping to put users
on track.

A complete example can be seen as follows:

val mesh = CartesianMesh(XSIZE, YSIZE, ZSIZE)

mesh.discretize(H, H, H)

// Terms and ConstTerms

val ux = Term(Speed)("Velocity_ X", mesh, VX_INIT)

val c = ConstTerm(Speed)("Speed constant", SPEED_COEFF)

// Equation

val convection = Equation(dt2(ux), c*c*lapla(ux))

In this example, the one-dimensional wave equation is defined as its lhsexpr being a
second time derivative of the first component of the velocity vector and its rhsexpr
defined as the product of the square of a certain constant c by the laplacian of the first
component of the velocity.

3.3.6 Boundary conditions

Saiph supports different boundary conditions:

• Periodic conditions to define cyclic volumes.

• Dirichlet conditions to force any variable to have a constant value at the faces of
the mesh.

• Neumann conditions to force fluxes of variables (first-spatial derivative) to have
constant values at the faces of the mesh.

• Absorbing boundary conditions which define an extra region surrounding the mesh
in which variable values are attenuated following a certain smoothing function.

Periodic conditions

Periodic conditions force the cartesian simulation volume to act as a periodic continuous
space. If any direction of a mesh is marked as periodic, the values of the back face of

21

the mesh in that direction correspond to the previous (in a continuous sense) values of
the ones at the front face of the mesh in the same direction.

In Saiph, periodic conditions are specified over a certain direction of the mesh. Thus,
all the terms of the system are affected by these conditions.

def setPeriodic(d: Direction)

Where d is one of the following values: DirX, DirY or DirZ.

The following code shows how to define a periodic condition:

val mesh = CartesianMesh(XSIZE, YSIZE, ZSIZE)

mesh.setPeriodic(DirX)

Dirichlet conditions

Dirichlet conditions are used to have fixed values of certain variables, at mesh faces,
during the whole execution.

Dirichlet conditions are applied over values of Terms at mesh faces. Currently, the fixed
value at the face is not position-time dependent. The following code shows the signature
of the method that defines a Dirichlet condition:

def setDirichlet(cface: Face)(value: scalar-expr)

def setDirichlet(cface: Face)(value: vectorial-expr)

Where cface can be CFaceXMIN, CFaceXMAX, CFaceYMIN, CFaceYMAX, CFaceZMIN or
CFaceZMAX.

The example below shows how to define a Dirichlet condition:

val temp = Term(Temperature)("Temp", mesh, 0 * Kelvins)

temp.setDirichlet(CFaceYMIN)(400 * Kelvins)

22

Neumann conditions

Neumann conditions are used to have fixed values of fluxes of certain variables, at mesh
faces, during the whole execution.

Neumann conditions are applied over values of first spatial derivative of Terms at mesh
faces. Currently, the fixed value at the face is not position-time dependent. The follow-
ing code shows the signature of the method that defines a Neumann condition:

def setNeumann(cface: Face)(value: scalar-expr)

def setNeumann(cface: Face)(value: vectorial-expr)

Where cface can be CFaceXMIN, CFaceXMAX, CFaceYMIN, CFaceYMAX, CFaceZMIN or
CFaceZMAX.

The example below shows how to define a Neumann condition:

val temp = Term(Temperature)("Temp", mesh, 0 * Kelvins)

temp.setNeumann(CFaceYMIN)(400 * Kelvins)

Absorbing conditions

Absorbing boundary conditions are typically used in problems that pretend to simulate
phenomenas in infinite mediums. Saiph, implements these boundary conditions through
the use of sponges, a region that covers the mesh and whose goal is to soft the values
of variables reaching the end of the mesh. Doing so, we avoid to mistakenly take into
account contributions of variables due to rebounds.

To support sponges, Saiph extends the Cartesian constructor specifying the sizes of
the sponge:

def Cartesian(xs: Float, ys: Float, zs: Float)(bxs: Float, bys: Float,

bzs: Float) : Cartesian

Where xs, ys and zs are the sizes of the user’s mesh and bxs, bys and bzs are the
respective boundary size of the sponge in each direction.

The following example shows how to use this new constructor.

23

val mesh = Cartesian(12.5, 25.0, 37.5)(2.5, 2.0, 2.5)

mesh.discretize(0.5, 0.5, 0.5)

The sponge sizes are specified in continuous space, so, as the main mesh, they have
to be discretized. But, once the sponge region is defined within the mesh declaration,
the user does not have to take care of anything else related to it. Note that in some
constructs, like Term construct, the user provides a function that depends on the mesh.
This function has to be written thinking on the user’s mesh sizes, ignoring the sponges.

3.3.7 Point sources

Some physical problems contains point sources of certain magnitudes. A point source
is a single identifiable localised source of any of the magnitudes involved in the problem
which has its own contribution to the equations. This component defines and initialize
the mesh but it is aimed to be combined with terms through equations constructions.
For such purposes, we have the PointSource construct that models these conditions
that can be time-varying:

def PointSource(f: (Float) => Float, m: CartesianMesh, int i, int j, int

k) : PointSource

The first argument f is a function that only depends on time. This given function
has to return the value of the source for each time step. The second argument is the
CartesianMesh and the last three arguments are the coordinates of the point where the
source is placed within the mesh.

The next example shows a synthetic example that defines a temperature point source
situated at the center of the mesh which its value decreases over time.

def function(t: Rep[MUnit]) = {

((300 * Kelvins) / t)

}

val ps = PointSource(Temperature)(f _, mesh, XSIZE/2, YSIZE/2, ZSIZE/2)

Once the point source is defined, we can use it in the equations.

24

3.3.8 Problem

A Problem represents a complete finite-difference formalized problem, aimed to be solved
by Saiph.

Defining a problem

The following code shows the constructor of a Problem:

def Problem(delta_time: Time, num_steps: Float, m: Cartesian)(eqs:

Equation*) : Problem

Where:

• delta_time is the temporal interval between two consecutive simulation steps,
that is, the time step value.

• num_steps is the total number of steps. The simulated time is thus tsimulation =
∆t ∗ numsteps

• mesh is the cartesian mesh.

• eqs are the equations of the system which are going to be solved one by one. Saiph
allows the user to declare a problem which is modelled by one or more equations.
The user should simply enumerate the equations separating them by a comma.

The code below shows an example of how to define a problem called prob which is
defined by the system of equations eq1 and eq2.

val prob = Problem(DELTA_TIME, N_STEPS, mesh)(eq1, eq2)

Solving a problem

Once a problem has been defined, it should be solved and results post-processed.

The resolution of a PDE system involves an integrative method. Currently Saiph only
supports the explicit Euler method which has been implemented as a part of the low-
level C++ library. On the other hand, the post-process defines how the results of the
simulation are sampled and selects the output format.

As sampling modes, Saiph offers three different options:

25

• Final state of the system (SamplingMethod.FinalState):
The simulation only takes one sample of the system at the end of the simulation.

• Snapshoot each x steps (SamplingMethod.Periodic):
This option takes a sample of the system for each x simulation steps. It allows the
user to analyze how the system evolved to its final state and make animations.

• Flush every frame to the output (SamplingMethod.Flush):
It takes a sample of the system at every simulation step, equivalent to a Sampling-

Method.Periodic of one. This mode is the most expensive in terms of space and
computing performance but can be suitable for some particular case studies.

As output format, Saiph supports the following ones:

• VTK images (OuputFormat.VTI), ideal format for visualizing the simulation
results with tools like Paraview or Visit.

• XDMF + Raw binary files (OuputFormat.Binary), suitable format to numer-
ically analyze the data.

• Both VTK and XDMF + Raw (OutputFormat.all).

The next code shows how to use the EulerSolver specifying post-process options:

def EulerSolver(pro: Problem)(on: String, of: OutputFormat, sm:

SamplingFormat, freq: Int = 1)

Where:

• pro is a Problem.

• on is the ouput name.

• of is the ouput format.

• sm is the sampling mode.

• freq is the frequence of the sampling method, only valid when sm is Sampling-

Method.Periodic.

The following code illustrates how to solve the problem prob generating a VTI file for
each simulation step.

EulerSolver(prob)("myProblem", OutputFormat.VTI, SampingMethod.Flush)

26

3.4 Saiph’s internal features

Internal features are completely transparent to the user, which is only concerned about
defining the problem and the governing equations. This illustrates again the potential
of Saiph as a productivity boosting tool for solving PDEs systems, hiding the end
users from the details of numerical methods and generation of parallel code as much as
possible.

3.4.1 Numerical methods

Numerical solution of problems described by partial differential equations need the use of
suitable numerical methods. Moreover, numerical evaluation requires the discretization
of continuous functions, models, and equations which are time-space dependent. Thus,
time-space discretization is the basis of numerical solutions of PDEs. Discretization in
Saiph is accomplished by using finite difference methods.

The three continuous spatial dimensions are discretized through the use of Cartesian
meshes. Within such meshes, equidistant points are the main entities in which the values
of the problem are stored. Each point is identified using the three dimension indexes
(i, j, k).

Regarding time, the PDE system is solved using the Euler’s method. The temporal
evolution of the system is discretized through the use of discrete time steps. At each of
those temporal instants, the complete PDE system is solved and results updated.

Finite differences

In order to obtain numerical approximations of PDEs, Saiph uses the finite difference
method. This method is a discretization method based on the approximations performed
by using Taylor expansions around a point.

The derivative of φ(x) with respect to x can be defined as

∂φ

∂x

∣∣∣
x=i

=
∂φ(xi)

∂x
= lim

δx→0

φ(xi + δx)− φ(xi)

δx

= lim
δx→0

φ(xi)− φ(xi − δx)

δx

= lim
δx→0

φ(xi + δx)− φ(xi − δx)

2δx

27

In all these expressions the approximation converges to the derivative as δx → 0, thus
they are equivalent in a continuous sense. If δx is small but finite, we can deduce
the three different form of approximations of the derivative ux, forward, backward and
central differences:

∂φ

∂x

∣∣∣forward
x=i

≈ φi+1 − φi
δx

∂φ

∂x

∣∣∣backward
x=i

≈ φi − φi−1
δx

∂φ

∂x

∣∣∣central
x=i

≈ φi+1 − φi−1
2δx

Finite difference method is basically the discrete analog of the derivative.

By default, Saiph uses central differences when computing spatial derivatives.

Euler’s method

The Euler’s method is the most basic explicit method for numerical resolution of a
system of partial differential equations with given initial values. It is derived from Taylor
expansion and basically approximates the PDE solution through the approximation of
the temporal derivative using forward finite differences:
From

∂φ

∂t

∣∣∣forward
t=n

≈ φn+1 − φn

δt

the Euler’s method is

φn+1 = φn + δt
∂φ

∂t

∣∣∣
n

where ∂φ
∂t

represents the left-hand side of a partial differential equation expressed as:

∂φ

∂t
= f(t, φ)

At each time step, f(tn, φn) is evaluated and added to current results φn in order to
obtain the next temporal solution φn+1:

φn+1 = φn + δtf(tn, φn)

This methodology is applied starting from the known initial state φ(t0) = φ0 to a final
state determined by a fixed temporal progress.

When having a second order partial differential equation such as

∂2φ

∂t2
= f(t, φ)

28

we approximate the solution through the approximation of the second temporal deriva-
tive using central finite differences:
From

∂2φ

∂t2

∣∣∣central
t=n

≈ φn+1 − 2φn + φn−1

(δt)2

the Euler’s method is then

φn+1 = 2φn − φn−1 + (δt)2
∂2φ

∂t2

∣∣∣
n

3.4.2 Domain specific optimizations

High order operator discretization

In some cases, approximating the value of a derivative using only its direct neighboring
points does not yield an accurate result. For that purpose, some derivative operators
can be discretized using higher-order stencil schemes that use multiple points in each
dimension to minimize the numerical error. This is the case for high-order derivative
operators as ∂n

∂tn
or ∂n

∂xn
. Consequently, those operators imply a higher computational

cost of the whole simulation.

Saiph automatically detects when a particular equation in a system contains higher-
order time derivatives and automatically uses more expensive numerical schemes when
required.

Convective gradient

For numerical reasons, as we are going to see in section 4.2.1, whenever there is a dot
product between a vector and a gradient of some magnitude, the gradient should be a
convective gradient. This can be easily done inside the Saiph compiler, using Scala’s
pattern matching features to identify such case. If that operation takes place, the
generated code corresponds to an upwind scheme instead of a regular gradient and dot
product chain. Below is the Scala code inside the Saiph compiler that recognizes the
pattern and applies the IR node replacement in the application tree:

// Dot product of two vectors

def vecDot(x: Exp[Vector], y: Exp[Vector]) = (x, y) match {

// Replace Grad by StabGrad (upwind gradient) on second argument

case (x, Def(Grad(u))) => VecDot(x, StabGrad(u, x))

// Same for the first argument case

case (Def(Grad(u)), y) => VecDot(StabGrad(u, y), y)

// Otherwise, just compute dot product of x and y

case _ => VecDot(x, y)

29

}

3.4.3 Exploiting parallelism

For solving a PDE, it is necessary to have access only to current time-step values. To
apply a spatial discretization at a certain point, the direct neighboring of the point is
required. Under this scenario Saiph offers either inter-node and intra-node paralleliza-
tion.

Inter-node parallelization

Inter-node parallelization is achieved through the Message Passing Interface (MPI) [10].
The mesh is partitioned by the last dimension Z and a similar workload is distributed
across the available MPI processes. Each process will solve just its part of the mesh
for the whole simulation but has to take care of allocating some extra memory for the
boundary values since spatial derivatives need some extra data that may does not belong
to the current MPI process.

Fig. 3.3: MPI mesh partitioning and shared boundaries

Computations at each time-step are completely parallel and dependence’s free but, after
each of them, each MPI process has to exchange its boundaries with its neighbors in
order to correctly update all the values to be used for the spatial derivatives of future
computational steps.

30

Intra-node parallelization

For the intra-node parallelization, we use OpenMP parallel programming model [11].
At any time, each equation can be integrated in parallel. The current implementation is
very simple; by using only one pragma, the three nested loops traversing the mesh are
forced to collapse and their iteration spaces are distributed across available OpenMP
threads and executed in parallel. There is an implicit barrier at the end of the collapsed
loop, so each equation is solved in parallel for all the points of the mesh, one equation
after the other.

Inter and intra-node parallelism

Inter and intra-node parallelism are harmoniously combined. For instance, executing a
system of equations composed by two equations eq1 and eq2, with two MPI processes
and four OpenMP threads (two threads per MPI process), the execution diagram can
be schematized as follows:

Fig. 3.4: Inter and intra node parallelism

The next figure shows a trace of a time-step of a real execution of a Saiph application
modelled by two equations and executed using two MPI processes with two OpenMP
threads each. For each MPI process, only the master thread is concerned about the
inter-node communications, so in the MPI calls. The trace shows how communications
are done, taking into account that each process need to exchange boundary values with
two neighbours(1) and of two terms; that is 4 message to send and 4 to receive:

(1)By default, the left boundary of the first MPI process corresponds to the right boundary of the
last MPI process.

31

Fig. 3.5: MPI + OpenMP snippet execution trace of a complete time-step

32

4 | Fluid mechanics and chemistry
theory

Fluid mechanics is the study of the effects of forces and energy on liquids and gases,
so-called fluids. This is a wide domain embracing science, engineering, medicine... with
its corresponding large interest within the scientific community. On the other-hand,
chemistry, more concretely combustion, produces nowadays around an 85% of the energy
we consume, thus, it is also a domain of high interest.

Fluid mechanics correspond to the study of flows. Combustion is basically the study
of reacting flows, that is flows in which a chemical process takes place: a reactant
(fuel) reacts rapidly with oxygen (oxidizer) and gives off heat. During combustion, new
chemical substances (products) are created from the fuel and the oxidizer, when the fuel
is hydrogen-carbon-based this products include water and carbon dioxide.

Problems related to those physical domains can be studied through partial differential
equation systems (PDEs). This chapter introduces the governing equations of any fluid
mechanics and chemistry problem and dissects those equations in order to understand
the theoretical meaning of each of its terms and operators.

4.1 Governing equations

The motion of viscous fluid substances is described by the equations of Navier-Stokes.
These equations are balance equations coming from applying Newton’s second law to
fluid motion. Therefore, to take chemistry into account, the equations to be solved
correspond to the compressible Navier-Stokes equations for multi-species reactive flows
with constant multicomponent mixture properties. The systems are governed by the
transport equations of continuity, momentum, species and energy, and they are closed
by the equation of state [12]:

• Continuity equation:
∂ρ

∂t
+∇ · (ρu) = 0 (4.1)

33

• Momentum equation:

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ (4.2)

• Energy equation:
∂(ρcpT)

∂t
+∇ · (ρcpuT) = ω̇T +∇ · (λ∇T)

∂(ρE+p)
∂t

+∇ · (u(ρE + p)) = ω̇T +∇ · (λ∇T)

(4.3)

• Mass equation:
N species: k = 1...N

∂(ρYk)

∂t
+∇ · (ρuYk) = ω̇k +∇ ·

(
λ

cp
∇Yk

)
(4.4)

• Equation of state: 
p = ρRoT ·

∑N
k

Yk
Wk

p = (γ − 1)
(
(ρE)− 1

2
(ρu) u

) (4.5)

where ρ is the density of the fluid, u is the fluid velocity, p is the pressure, E is the
total energy, T is the temperature, λ is the thermal conductivity, Yk the mass fraction
of each specie k, Wk is the molar mass of each specie k, Ro is the ideal gas constant, cp
is the specific heat capacity at constant pressure and γ is the adiabatic gas index.(1)

There are different expression for writing this same system of equations depending on
the variables involved. As can be seen, the energy equation 4.3 and the equation of
state 4.5 are written above using two different ways. Both equations are going to be
used choosing the more convenient one, depending on the context.

This set of equations represents the complete equation system defining a fluid mechanics
and chemistry problem. In order to solve a problem of this type, this system should
be solved at each spatial point of the domain and for each time-step of the temporal
evolution.

4.2 Dissecting the equations

This section correspond to a detailed study and analysis of the PDE system for express-
ing fluid mechanics and chemistry problems that has been presented in the previous
section. The idea is to understand all the terms and operators in a theoretical and also
numerical sense.

(1)See section 7.1.7 for more details regarding variables, constants and units.

34

4.2.1 Meaning of terms

Let’s take φ as an abstract property that represent a scalar property (or a component
of a vector property) of the fluid.
Using the mathematical chain rule, this section it is also meant to simplify or simply
re-write some of the terms of the equation system.

Variation term

This term indicates the gains or losses of φ at each time step t.

∂(ρφ)

∂t

This is the term we want to compute at each time step in order to study the temporal
evolution of φ. Consequently, those variation terms are the terms we want to isolate in
the left-hand side of the equation system to know their value through the computation
of the time-independent right-hand side.

Convective term

When talking about the convective term we actually refer to the advective term. Con-
vection is actually the phenomena enclosing advection and diffusion.
Advection is a physical process that occurs in a flow of gas or liquid in which some
property is transported by the ordered motion of the flow. It can be identified as the
divergence of the product of density, velocity and the property being transported.

∇ · (ρuφ)

φ is being transported by the fluid due to the fluid’s bulk motion characterized by the
fluid-velocity u .

This term is going to be expressed as

ρu · ∇φ+ φ∇ · (ρu)

Diffusive term

Diffusion is a physical process that occurs in a flow of gas or liquid in which some
property is transported down a concentration gradient of that same property. It can
be expressed as the divergence of the product between a diffusion coefficient k and a
gradient of the property transported.

∇ · (k∇φ)

35

φ is being transported due to the presence of gradients of the property. Diffusion results
in transport, without requiring bulk motion.

If k is constant, this term can be written as

k∇2φ

Internal source term

In a typical combustion process, the reactants are transformed into products through
chemical reactions. For each species k, the internal source term ω̇k describes the evolu-
tion of species through the chemical reaction. This source terms induces a heat release
that is taken into account by the term ω̇T in the energy equation that is the internal
energy source term.

Consider k = 1, ..., N species reacting through a chemical reaction:

N∑
k=1

ν ′kXk

N∑
k=1

ν ′′kXk (4.6)

where Xk is a symbol for species k and ν ′k are the molar stoichiometric coefficients of
reactants species k and ν ′′k are the molar stoichiometric coefficients of product species
k. Mass conservation requires:

N∑
k=1

νkWk = 0

where νk = ν ′′k − ν ′k, and Wk is the molar mass of each specie k. The mass rate ω̇k for
species k is

ω̇k = WkνkQ

where Q is the rate of progress of the reaction. This rate Q involves a forward reaction
(from left to right in Equation 4.6 and a backward reaction (right to left) and is:

Q = Kf

N∏
k=1

(
ρYk
Wk

)ν′k
−Kb

N∏
k=1

(
ρYk
Wk

)ν′′k
where Kf and Kb are the forward and backward reaction rates constants, given by the
Arrhenius expressions:

Kf = Afexp

(
−Ea
RoT

)
where Af is the so-called preexponential factor and Ea is the activation energy.
The heat release term is given by

ω̇T = −
N∑
k=1

hkω̇k

where hk are the specific enthalpies of each specie k.

36

Viscous term

The viscous term appears in equation 4.2 as the sum of the negative gradient of pressure
and the divergence of the viscous tensor τ as

−∇p+∇ · τ

where τ is the viscous tensor: τ = µ
((
∇u +∇Tu

)
− 2

3
∇ · u

)
and µ is the dynamic

viscosity.

In presence of a velocity gradient there is a momentum transfer because of the micro-
scopic motion of the fluid particles. In general, momentum will be transferred from the
faster moving layers to the slower moving layers. This net transfer of momentum acts as
a friction force in the direction of the gradient and gives rise to the concept of viscosity.

The expression of this term can be simplified depending on the dimensions of the velocity
field of the fluid. When having a one-dimensional flow, that is a fluid moving in only one
dimension, let say u = (ux, 0, 0), the divergence of the viscous tensor can be expressed
as:

∇ · τ =
4

3
µ
∂2ux
∂x2

4.2.2 Operators involved

Besides some concrete operations, the operators involved in the above system of equa-
tions are common operators already defined in Saiph or operators than can be emulated
through the combination of others. As examples of those operators we have the product
between scalars and vectors, written as ∗ either on the paper and Saiph code, the sum
operator written as

∑
on the paper and as sum in Saiph, the exponential written as

exp, the laplacian operator ∇2 aliased as lapla in Saiph, and much others.
Other operators are not implemented in the Saiph version previous to this project; first
and second spatial derivatives over specific directions as ∂

∂x
, ∂2

∂x2
or the divergence of a

tensor.

Aside simple operators, some more complicated constructions appear in the system.
Convective gradients, or nested derivatives deserve a more detailed approach.

Convective gradient

As already mentioned the convective term represents the propagation of a certain prop-
erty in a flow field in the direction of the flow velocity. This is mathematically translated
as the dot product of the fluid velocity u and the gradient of the scalar property being
transported:

u · ∇φ

37

In order to simulate this propagation of information in the direction determined by the
velocity vector it is convenient to use an adaptive finite difference stencil called upwind
scheme or convective stabilized gradient. This scheme is used for the computation of the
gradient of the property being transported and it is based in a differentiation biased in
the direction determined by the sign of the characteristic velocity of the flow, thus u. If
a central scheme is used when computing this term, numerical errors arise. Those errors
are induced by the fact that finite differences schemes discretize the derivative operators
in a non-continuous space, thus loosing precision. Therefore, upwind schemes minimize
the discretization error by biasing the derivative computation in the direction the data
is ”coming from”, therefore using points in the direction of advection determined by the
sign of the vector velocity components.

In order to illustrate this propagation of information, let’s imagine a fluid with a velocity
field defined as u = (ux, 0, 0), where ux > 0. Then, the spatial derivative of a property
φ in the X direction should be computed as

∂φ

∂x

∣∣∣backward
x=i

=
(φi − φi−1)

δx

with the sub-indexs of φ indicating the spatial position in the X axis. This correspond
to the first order accuracy backward finite difference scheme. For a negative velocity,
the forward scheme should be used.

The problem arises when the velocity vector has more than one non-zero component.
Advection in two or three dimensions can not be modelled through a simple finite
differences upwind scheme. If so, the information is not correctly propagated as it can
be seen in the following example.

Let’s consider a two-dimensional advection of a certain scalar magnitude φ being propa-
gated through advection modelled as ∂φ

∂t
= −u ·∇φ with u the constant velocity vector.

Figure 4.1 illustrates two firsts temporal configurations. To evolves from t1 to t2, we
apply Euler’s method at each point.

Taking the (i, j) point as example:

φt2(i,j) = φt1(i,j) + δt
∂φ

∂t

∣∣∣
t1,(i,j)

with
∂φ

∂t

∣∣∣
t1,(i,j)

= (−u · ∇φ)
∣∣∣
t1,(i,j)

In two dimensions, ∇φ =
(
∂φ
∂x
, ∂φ
∂y

)
Computing the gradient using the upwind scheme in finite differences with ux > 0 and

38

uy > 0, we have:

∂φ
∂x

∣∣∣backward
t1,(i,j)

=
φt1
(i,j)
−φt1

(i−1,j)

δx

∂φ
∂y

∣∣∣backward
t1,(i,j)

=
φt1
(i,j)
−φt1

(i,j−1)

δy

 (∇φ)
∣∣∣
t1,(i,j)

= (0, 0)

Thus,
∂φ

∂t

∣∣∣
t1,(i,j)

= 0 ⇒ φt2(i,j) = φt1(i,j)

which is not the expected result.

The same procedure can be applied for all the points of the two-dimensional mesh,
resulting in the wrongly computed configuration (a) at t2 of the figure.

Fig. 4.1: Propagation of information by advection
(a) Using an upwind scheme based on finite differences

(b) Ideal propagation

Therefore, when encountering a convective gradient in which the direction of propagation
has more than one component, the finite differences upwind scheme can not be used.

39

Nested derivatives

As explained above, the diffusive term represents the transport of a certain property
in a flow field due to the inhomogeneous repartition of this property in the physical
domain. This is mathematically translated as the divergence of the gradient of the
scalar property being transported:

∇ · (k∇φ)

The diffusion term has two nested spatial derivatives. When the diffusion coefficient
k is constant over the space, the diffusion term can be written as k∇2φ. Numerically,
∇2 and ∇ · ∇ must be equivalent but when nesting two derivative operators using the
second-order accuracy central scheme we obtain the following result:

∂2φ

∂x2

∣∣∣
x=i

=

∂φ
∂x

∣∣∣
x=i+1

− ∂φ
∂x

∣∣∣
x=i−1

2δx

∂φ
∂x

∣∣∣
x=i+1

= (φi+2−φi)
2δx

∂φ
∂x

∣∣∣
x=i−1

= (φi−φi−2)
2δx


∂2φ

∂x2

∣∣∣
x=i

=
φi−2 − 2φi + φi+2

4(δx)2

which is different than applying the ∇2 operator directly by using the coefficients of the
central differences for a two order derivation, defined by the Taylor series as:

∂2φ

∂x2

∣∣∣
x=i

=
φi−1 − 2φi + φi+1

(δx)2

Thus, applying central difference twice does not result in the appropriate result. In-
stead, numerical correctness can be ensured by using a combined scheme of forward and
backward differentiation as follows:

∂2φ

∂x2

∣∣∣forward
x=i

=

∂φ
∂x

∣∣∣backward
x=i+1

− ∂φ
∂x

∣∣∣backward
x=i

δx

∂φ
∂x

∣∣∣backward
x=i+1

= (φi+1−φi)
δx

∂φ
∂x

∣∣∣backward
x=i

= (φi−φi−1)
δx


∂2φ

∂x2

∣∣∣
x=i

=
φi−1 − 2φi + φi+1

δx2

40

which lead to the correct differenciation.

4.2.3 Vector equations

There are two vector equations in the system, the momentum equation 4.2 and the mass
conservation for each specie 4.4. Those equations seem to be written down as single
equations with single unknowns u and Yk respectively. The velocity vector u represents
actually three unknowns which are the three direction components ux, uy and uz of the
vector velocity. Regarding the mass fraction vector, each component represents the mass
fraction of an specific chemical specie present in the fluid. Each of those components is
an unknown of the system and has its own equation as we can see as follows (2):

∂(ρu)

∂t
= −[ρu · ∇u + u∇ · (ρu) +∇p]⇒



∂(ρux)
∂t

= −[ρu · ∇ux + ux∇ · (ρu) + ∂p
∂x

]

∂(ρuy)

∂t
= −[ρu · ∇uy + uy∇ · (ρu) + ∂p

∂y
]

∂(ρuz)
∂t

= −[ρu · ∇uz + uz∇ · (ρu) + ∂p
∂z

]

The vector mass equation contains as many equations as specie are in the fluid under
study. For a typical combustion process we have the following set of mass fraction
equations.

∂(ρYk)

∂t
= −[(ρu) · ∇Yk + Yk∇ · (ρu)] +∇ ·

(
λ

cp
∇Yk

)

⇒



∂(ρYCH4
)

∂t
= −[(ρu) · ∇YCH4 + YCH4∇ · (ρu)] +∇ ·

(
λ
cp
∇YCH4

)
∂(ρYO2

)

∂t
= −[(ρu) · ∇YO2 + YO2∇ · (ρu)] +∇ ·

(
λ
cp
∇YO2

)
∂(ρYN2

)

∂t
= −[(ρu) · ∇YN2 + YN2∇ · (ρu)] +∇ ·

(
λ
cp
∇YN2

)
∂(ρYCO2

)

∂t
= −[(ρu) · ∇YCO2 + YCO2∇ · (ρu)] +∇ ·

(
λ
cp
∇YCO2

)
∂(ρYH2O

)

∂t
= −[(ρu) · ∇YH2O + YH2O∇ · (ρu)] +∇ ·

(
λ
cp
∇YH2O

)
(2)For the sake of simplicity we neglect the viscous term of the momentum equation

41

As we can see, there are terms on the right-hand side of the equations that depend on
the component of the vector unknown at the right-hand side.

Vector equations allow to define several equations with a common pattern but that are
different in essence.

4.2.4 Non-derivative equation

The equation of state 4.5 is a non-derivative equation. This equation gives us the relation
between state variables. This is the thermodynamic equation that describes the state
of matter under a given set of physical conditions. As a time-independent equation, the
left and right-hand sides must match at any time. Because of the nature of this kind of
equations, the values of the variables involved should be from the same time-step.

The a-temporal relation of the equation of state can be seen as follows:

pt = f((ρT)t, Y t
k)

being t any moment in time and f a function relating both sides of the equation.
Those non-derivative equations should obviously be also verified at each space coordi-
nate.

4.2.5 Coupled system

As we can see, the Navier-Stokes equations for multi-species reactive flows consist of a
time-dependent continuity equation 4.1 for conservation of mass, three time-dependent
conservation of momentum equations 4.2, a time-dependent conservation of energy equa-
tion 4.3 and N time-dependent conservation of mass (for each specie k of the system)
equations 4.4. That is (5 +N) partial differential equations.
In this system of partial differential equations, there are (6+N) unknown variables: den-
sity ρ, pressure p, temperature T (or total energy E), three components of the velocity
vector u and N mass fractions of each specie involved in the reaction.

To solve a flow problem, it is necessary to solve all (5 +N) partial differential equations
simultaneously using values from previous time-steps; that is why we call this a coupled
system of equations. The equation of state 4.5 is actually the closing necessary equation
required to solve the system. We have (5 +N) partial differential equations for (6 +N)
unknowns. The equation of state relates the pressure, temperature, density and mass
fraction of the gas at each time step and thus close the solvable system.

Integration scheme

At each time step, the unknown variables from the partial differential equations are up-
dated using variables values from previous time-steps. Following the Euler’s method, the

42

variation terms are computed and added to the values of previous time-steps applying
the corresponding factors.

The integration scheme of the full system can be expressed as follows:

ρt+1 = ρt + δt · f((ρu)t)

(ρu)t+1 = (ρu)t + δt · f((ρu)t, ut, pt)

(ρT)t+1 = (ρT)t + δt · f((ρu)t, (ρYk)
t, T t)

(ρYk)
t+1 = (ρYk)

t + δt · f((ρu)t, (ρYk)
t, T t)

pt+1 = f((ρT)t+1, Y t+1
k)

Of course, variables should be updated for each time step before being accessed. As
we can appreciate, variables in the right-hand side of the equation of state should be
updated for the same time-step at which the left-hand side variable is being computed.
This fact forces to define an order of equation resolution. Partial differential equations
can be solved simultaneously (no order restriction) on the other hand, time-independent
equations (equation of state) should be the last equations to be solved at each time
step. At a same time step, values updated through the resolution of partial differential
equations are used for the resolution of non-derivative equations.

Initial state

Within fluid mechanics and chemistry theory, problems are commonly initialized defin-
ing different thermodynamic regions in the spatial domain. This fact induces the exis-
tence of interfaces between regions, where the variables should have a defined behaviour.
Usually, values traverse those interfaces following a linear function. The following graph
illustrates the initial profiles of the temperature in a two-regions domain.

43

Fig. 4.2: Initial temperature profile within a domain of two regions and the
correspondent interface, at t=0

As we have already said, the equation of state should be verified at each moment in
time and this includes the t = 0 time step, that is the initial state. Of course, it should
also be verified at any space coordinate since it precisely relates the state variables at
each localization of the domain. Consequently, the state variables at the interfaces must
follow exactly the same function in order to fulfill the equation of state at each point in
the domain at t = 0.

44

5 | Tools and methodology

This chapter lists the tools used for developing and extending Saiph and reports the
development methodology of the project. Bearing in mind that this is a project based
on the extension of an already existing tool, Saiph, the tools used for its extension are
predefined by its nature; a DSL embedded in Scala with LMS and Scala-virtualized
compiler. On the other hand, the concrete methodology of this project has been applied
for the first time resulting in a very appropriate and progress drive way of development.

5.1 Tools

As already mentioned, the principal tool used has been Saiph as it was before this
project presented in chapter 3. Consequently, the main utensils have been all those
tools involved in the creation of the DSL. That is, the Scala language, displayed in 3.2.1
intended for being the final basis language for the end-users’ applications; the lightweight
modular staging (LMS) shown in 3.2.2 and the scala-virtualized compiler explained in
3.2.3 used for the DSL design as the interfaces between the high level Saiph code and the
specific parallel C++ generated code. Because of the design of the DSL, an important
part of the development has also been performed at the C++ level, involving all the
resources provided by this object-oriented language [13].
Visualization and graphing tools as Paraview [14] and Gnuplot [15] have been used in
order to illustrate and validate simulations results and, finally, Extrae [16] and Paraver
[17] for the validation of the parallel executions.

5.2 Methodology

The research design has been stated as application driven design. The Saiph’s extensions
constituting this project have been determined by the requirements encountered on the
selected use-cases. Those use-cases have been picked following a certain scientific method
design explained below. Once the necessary extensions have been theorized, they have
been fulfilled and carried out following a development strategy, also explained as follows.

45

5.2.1 Scientific method design

As stated, the objective of the project is to extend Saiph in order to model and solve
fluid mechanics and chemistry problems. Thus, the goal is to correctly simulate the
use-case enclosing those two scientific domains which is the aforementioned premixed
laminar flame. Before dealing with such a complex use-case, simpler ones have been
gradually faced. Thus, a gradually development progress has been followed. Those
simpler use-cases basically are divided in two main categories, the ones related to fluid
mechanics theory and those related to chemistry, more precisely combustion. Within
those two categories, the same progressive method has been followed; each use-case
contains more equation’s terms than its predecessor. Hence, all the terms explained
in section 4.2.1 have been gradually implemented, tested and validated through the
adequate choose of the use-cases. Finally, the composition of all those validated terms
from the two different scientific domains (fluid mechanics and chemistry) has allowed
the correct resolution of the final use-case.

In order to be able to progress from the simplest use-case to the more complex one, a
validation process is a must. In that sense, use-cases have been selected among others
depending on their popularity within the scientific community and the possibility to
solve them either analytically or/and empirically. Thus, all the selected use-cases have
been validated against results reported by scientific researches, cited in the current
document.

5.2.2 Development strategy

In a first instance, each necessary extension has been faced at the C++ level, fattening
up the C++ library with all those constructions required for the selected use-cases.
Then, applications have been programmed in C++, designed to be compiled and cor-
rectly executed at this low level of abstraction. After validating simulation results, our
embedded compiler based on LMS has been extended in order to support these new
extensions. At that point, the optimizations related to the generation of specific IR
nodes have been performed. Finally, each use-case has been re-wrote in Saiph language,
compiled, executed and validated again. This development method process has been
repeated for each of the faced use-cases.

46

6 | Extending Saiph

The version of Saiph presented in this project has been implemented in order to fulfill
the requirements from fluid mechanics and chemistry problems, presented in chapter
4. In the current chapter, the most important extensions are going to be described.
Those extensions can be divided in two main categories; First, the new general func-
tionalities which are going to be handled by users at the high-level and second, domain
specific optimizations, transparent to the users and very specific for fluids mechanics
and chemistry problems.

6.1 New functionalities

After analysing all the details necessaries to perform the desired simulations, we present
the implementation of the required functionalities. The extensions presented in this
section are general Saiph extensions useful to the resolution of any problem expressed
in PDEs.

6.1.1 Vector equations

In order to allow vector equations, we firstly extend the list-case that the left-hand side
expression of an equation can match. That is to allow the lhsexpr to be either a vector
term (1) and a time derivative of a vector term, which is also a vector as shown in the
example below.

(1)lhsexpr being a non-derivative terms is also an extension of this project, see 6.1.2

47

∂u

∂t
=

(
∂ux
∂t

,
∂uy
∂t

,
∂uz
∂t

)

∂2u

∂t2
=

(
∂2ux
∂t2

,
∂2uy
∂t2

,
∂2uz
∂t2

)

with u = (ux, uy, uz)

Allowing such left-hand sides, the dimensionality of this part of the equation cannot be
assumed any more. Thus, when solving any equation, checking the dimensionality of
the lhsexpr has became a must. Whenever this dimensionality is greater than one, the
evaluation of the right-hand side is performed for each component of the left-hand side.
This process is easily implemented by forcing an iteration over the components of each
lhhexpr at each time step and mesh location, during the evaluation an update process.
In essence, a vector equation internally represents a set of scalar equations. This set
contains as many scalar equations as dimensions of the left-hand side vector.

Those changes have been implemented in the C++ library, modifying the code that
traverses the mesh to apply Euler’s method at each location for each time step and
equation. Before the application of the Euler’s method, the query related to the dimen-
sionality of lhsexpr and the loop iterating on it, have been added in order to force all
the scalar equations of the set to be integrated by the Euler’s method.

The left-hand side of the equation can be written as a vector, but the right-hand side
should remain being evaluated as a scalar. This is achieved through the component
operator, a new operator that can be used to select the component of a vector expression
with the same index than the component being evaluated at the left-hand side of a vector
equation.

t.comp

(t1 + t2).comp

def comp() : scalar

In the following Saiph code the use of this operator is illustrated.

// Velocity; vector term

val u = Term(Speed)("Velocity", mesh, V_INIT, List[Rep[String]]("X", "Y"

, "Z"))

// Pressure; scalar term

48

val p = Term(Pressure)("Pressure", mesh, INIT_P)

// Density; scalar term

val rho = Term(Kg_m3)("Density", mesh, INIT_RHO)

// Vector equation

val eq1 = Equation(dt(u), -(rho / (grad(p)).comp))

Having a vector lhsexpr, through the use of the component operator applied to the vector
terms of the rhsexpr, it can be seen that by writing down a single equation eq1, we are
actually defining a set of scalar equations:

∂ux
∂t

= −1
ρ
∂p
∂x

∂uy
∂t

= −1
ρ
∂p
∂y

∂uz
∂t

= −1
ρ
∂p
∂z

6.1.2 Non-derivative equations

In order to allow non-derivative equations, we also extend the list-case that the left-hand
side expression of an equation can match. That is to allow the lhsexpr to be a term. At
that point, the left-hand side expression of an equation has to be defined matching one
of the following syntax:

• lhsexpr is a scalar or vector term:

t = rhsexpr

• lhsexpr is a first time derivative of a scalar or vector term:

dt(t) = rhsexpr

• lhsexpr is a second time derivative of a scalar or vector term:

dt2(t) = rhsexpr

A non-derivative equation does not have to be integrated. Thus, to solve this kind of
equations, we should not go through the Euler’s method. Instead, at each point of the
mesh, the right-hand side is simply evaluated and assigned to the term at the left-hand
side. This is done within the loop traversing the mesh at the update process for each
time step. Depending on the equation type (which must be checked for each equation),
the Euler’s method is applied or the simple assignation is performed.

49

6.1.3 Coupled scheme

At each time step, the unknown variables of the problem are updated through the
correct evaluation and manipulation of its associated right-hand side expression. The
three equation types allowed and their requirements to be updated are:

• PDEs
At each time step, the Euler’s method should be applied.

– First order PDEs need to access values from the previous time-step in order
to update the unknown variable.

φn+1 = φn + δt
∂φ

∂t

∣∣∣
n

– Second order PDEs need to access values from the two previous time-step in
order to update the unknown variable.

φn+1 = 2φn − φn−1 + (δt)2
∂2φ

∂t2

∣∣∣
n

In any case, the evaluation of the rhsexpr is used to substitute ∂φ
∂t

and ∂2φ
∂t2

respec-
tively and thus, should be evaluated at time step n. That means that the previous
time-step values must be accessible when solving PDEs.

• Non-derivative equations
Those kind of equations need to access values from the current time-step.

ϕn+1 = f(φn+1)

The evaluation of the already updated rhsexpr is directly used to be assigned to
the unknown variable at each time step. That means that the current time-step
values must exist and be accessible when solving non-derivative equations.

Because Saiph is a domain specific language for solving PDE systems, variables at the
right-hand side of an expression refer to values from the previous time-step by default.
Hence, in order to access updated values, those values should exist and the specific
access should be specified.

The existence of the values must be ensured by the users; As explained, the equations
are solved in parallel for all the points of the mesh, one after the other. Thus, the order
in which the user lists the equations of the problem to be solved, is crucial when facing
coupled system problems. Non-derivative equation should be the last equations to be
solved at each time-step in order to allow them to access to the most recent updated
values.

50

On the other hand, accessing to an updated value within the same time-step need to be
specified. This is achieved through the time offset operator, a new operator that can
be used to select a value of any variable at the time-step desired.

t.toff(i)

def toff(i: Int) : Term

where i represents the reference of the desired time-step:

• i = 0 refers to the access at the current time step.

• i = 1 refers to the access at the previous time step (this is the default case when
the time offset operator is not used).

• i = 2 refers to the access at the previous of the previous time step.

Of course, this operator can only be applied to Terms since ConstTerms have the same
value at any time-step.

The following Saiph code illustrates how to handle coupled systems.

// Velocity; vector term

val u = ConstTerm(Speed)("Velocity", V_INIT, List[Rep[String]]("X", "Y",

"Z"))

// Pressure; scalar term

val p = Term(Pressure)("Pressure", mesh, INIT_P)

// Density; scalar term

val rho = Term(Kg_m3)("Density", mesh, INIT_RHO)

// Vector equation

val eq1 = Equation(dt(rho), -(div(rho*u)))

// Non-derivative equation

val eq2 = Equation(p, rho.toff(0) * u(0))

// Problem with ordered equation list

val problem1 = Problem(DELTA_TIME, N_STEPS, mesh)(eq1, eq2)

51

It is also possible to require the access to an updated value within a vector equation.
The component time offset operator has been added for such cases. It is a mix of the
’comp’ and the ’toff’ operators. It can only be applied to vector terms.

t.compWithOffset(i)

def compWithOffset(i: Int) : scalar

Note that allowing non-derivative equations can cause problems from the parallelization
point of view; If a non-derivative equations contains spatial derivatives, a boundary
exchange between MPI processes must precede the evaluation of the equation. Since
such an equation is not present in any of the selected fluid mechanics and chemistry
use-cases, this issue is going to be taken into account as future work.

6.1.4 Operations over vector of Units

When a user defines a vector term, it may be useful to support also operations over
vector of Units. This extension eases the task of defining the complete initial state of a
coupled problem containing non-derivative equations with related vector terms. Hence,
a term could be initialized through the adequate combination of other initialized terms
in order to verify the relation stated by the non-derivative equation.

The Unit’s operators added are in fact the same as the ones for scalar Units listed in
section 3.3.1 but extended to allow vector Units to be taken as arguments. Those vector
operators are all defined to perform component-wise operations.

Add operators

def infix_+(l: Vector[Unit], r: Vector[Unit]) : Vector[Unit]

def infix_+(l: Vector[Unit], r: Unit) : Vector[Unit]

def infix_+(l: Unit, r: Vector[Unit]) : Vector[Unit]

Minus operators

def infix_-(l: Vector[Unit], r: Vector[Unit]) : Vector[Unit]

def infix_-(l: Vector[Unit], r: Unit) : Vector[Unit]

def infix_-(l: Unit, r: Vector[Unit]) : Vector[Unit]

52

Product operators

def infix_*(l: Vector[Unit], r: Vector[Unit]) : Vector[Unit]

def infix_*(l: Vector[Unit], r: Unit) : Vector[Unit]

def infix_*(l: Unit, r: Vector[Unit]) : Vector[Unit]

def infix_*(l: Scalar, r: Vector[Unit]) : Vector[Unit]

def infix_*(l: Vector[Unit], r: Scalar) : Vector[Unit]

Division operators

def infix_/(l: Vector[Unit], r: Vector[Unit]) : Vector[Unit]

def infix_/(l: Vector[Unit], r: Unit) : Vector[Unit]

def infix_/(l: Unit, r: Vector[Unit]) : Vector[Unit]

def infix_/(l: Scalar, r: Vector[Unit]) : Vector[Unit]

def infix_/(l: Vector[Unit], r: Scalar) : Vector[Unit]

The following code shows an example using these vector operations:

// Defining a vector of velocities

def velocities = Vector(2 * MetersPerSecond, 1 * MetersPerSecond, -1 *

MetersPerSecond)

// Scaling velocities. The result is also a vector of velocities

def scaled_velocities = 0.5 * velocities

// Meters walk in 10 seconds. The result is a vector of lengths

def time = 10 * Seconds

def meters_walk = time * velocities

6.1.5 Other operators

First spatial derivative

This operator computes the first spatial derivative of a scalar expression in a certain
direction using central differences.

∂f

∂d

53

def der(d: Direcion, f: scalar-expr) : scalar-expr

The d argument must be one of the following keywords: DirX, DirY and DirZ.

Second spatial derivative

This operator computes the second spatial derivative of a scalar expression in a certain
direction using central differences.

∂2f

∂d2

def der2(d: Direcion, f: scalar-expr) : scalar-expr

The d argument must be one of the following keywords: DirX, DirY and DirZ.

6.2 Optimizations

This section presents the specific domain optimizations internally added to Saiph, trans-
parent to the users. They are new Saiph features or components which does not change
the user external interface while changing the Saiph internal behaviour. Those opti-
mizations are specific for the resolution of PDEs systems and even more specific for the
resolution of fluids and chemistry problems expressed in PDEs. Thus, specific numer-
ical methods, terms identification and operators utilization are internally implemented
and applied to correctly model proper fluids and chemistry phenomenas. Therefore, the
optimizations presented below are not general but have been implemented in order to
show its potential use and, as a first attempt to face numerical problems arising from
real use-cases.

6.2.1 Stabilized gradient

As we have seen in 4.2.2, two or three dimensional velocity fields induce problems for the
correct modeling of advection phenomena. The upwind scheme is no longer correct for
the two-dimensional phenomena. Nevertheless, the possibility of advecting at different
speeds in different dimensions should be contemplated.

Because the equation type (first order partial differential equations) and because the
discretization factor δt is constant for the whole execution, we can face the two or three
dimensional advection through the Corner Transport Upstream (CTU) method [18] [19].

54

This method consists of breaking a finite-difference formula into a series of steps. In the
2D problem that we have been using, it corresponds to take the x integration step first,
followed by a y integration step.

From the advection equation ∂φ
∂t

= −u · ∇φ we have:

φ∗i,j =

(
1− uxδt

δx

)
φti,j +

uxδt

δx
φti−1,j

φt+1
i,j =

(
1− uyδt

δy

)
φ∗i,j +

uyδt

δy
φ∗i,j−1

where ux > 0 and uy > 0

This last form can be interpreted as applying the upwind scheme successively in each
direction, using the latest values at each stage. The following figure illustrates this
method.

Fig. 6.1: Propagation of information by 2D-advection using a Corner Transport
Upstream method

Since a convective gradient can be a term of a right hand-side equation among others,
we should ensure that the whole equation is correctly integrated. To ensure that, we
need to be able to isolate the contribution from this convective term in order to design
and code the most suitable stabilized gradient operator whose result is going to be
multiplied by the velocity vector (as dot product) added to the rest of the equations’
contributions and finally integrated through Euler’s method.

From the CTU expressions, we re-write φt+1
i,j including the φ∗i,j definition. Arranging

such expression we obtain:

55

φt+1
i,j = φti,j − uxδt

(
φti,j − φti−1,j

δx

)
− uyδt

(
φti,j − φti,j−1

δy

)
− uyδt

(
uxδt

(
φti−1,j − φti,j + φti,j−1 − φti−1,j−1

δyδx

))
(6.1)

The integration and the dot product are going to be performed latter, thus identifying
coefficients we can isolate the gradient contributions; Those terms in 6.1 being multiplied
by uxδt must belong to the first component of the gradient, those being multiplied by
uyδt belong to the second component. Finally, those terms being multiplied by uyδt
and uxδt correspond to crossed spatial derivatives that can be associated either to the
first, the second or both (half to each) components of the gradient. The 2D convective
gradient can thus, be computed as:

(∇φ)convective =

((
φti,j − φti−1,j

δx

)
,

(
φti,j − φti,j−1

δy
+ uxδt

(
φti−1,j − φti,j + φti,j−1 − φti−1,j−1

δyδx

)))

This method relies on the 1D upwind scheme and depending on the sign of the vector
velocity, we take backward or forward spatial differentiation. A positive two-dimensional
vector has been used for this demonstration although the convective gradient operator
of Saiph is generalized to well-perform for any vector velocity up to three dimensions.

The major drawback of this method is the necessity to be integrating a first-order partial
differential equation using a constant time discretization factor. If it is not the case,
this method can not be applied.

Identifying convective terms

The mathematical definition of convection u∇φ is already being identified inside the
Saiph compiler, and forced to be computed using the convective gradient, see 3.4.2.
What becomes interesting is to identify the equation type (non-derivative, first-order
temporal derivative, second-order temporal derivative) containing the term, and apply
the specific and adequate convective gradient method to compute it. Within fluids and
chemistry theory, this term only appears in first-order PDEs and thus, the above method
implementation is going to be used any time the convective term is identified.

6.2.2 Nested derivatives

In order to correctly compute two nested spatial derivatives, as we have seen in sec-
tion 4.2.2, we should apply a combined derivative scheme using forward and backward

56

differentiation. When possible, the nesting can also be substituted directly by the cor-
responding high-order derivative operator ∇2. Those two numerical scenarios are found
within fluids and chemistry problems; They correspond to the diffusive term in which
the diffusion coefficient can be spatial dependent or not.

When the diffusion constant is not spatial-dependent we should use the already existing
laplace operator (3.3.4). If not, we need to combine forward and backward derivative
schemes. To do so, we have added to the internal spatial derivative function, an argu-
ment meant to indicate the derivative scheme to be used for a first order derivative:

• 0, being the default value, forces the central scheme to be used.

• 1 forces the forward scheme to be used.

• 2 forces the backward scheme to be used.

When, internally calling the derivative function, it is now possible to specify the deriva-
tive scheme to be used. Hence, internal derivative operators (not visible for the users)
have been added, for such schemes:

• Forward gradient ∇forward =
(
∂forward

∂x
, ∂

forward

∂y
, ∂

forward

∂z

)
• Backward gradient ∇backward =

(
∂backward

∂x
, ∂

backward

∂y
, ∂

backward

∂z

)
• Forward divergence ∇forward· = ∂forward

∂x
+ ∂forward

∂y
+ ∂forward

∂z

• Backward divergence ∇backward· = ∂backward

∂x
+ ∂backward

∂y
+ ∂backward

∂z

When identifying nested derivatives, those operators should be combined in a correct
manner to correctly compute them.

Identifying diffusive terms

Inside the Saiph compiler, we use Scala’s pattern matching features to identify when the
argument of a standard divergence operator is the result of a multiplication, in which
one of the arguments is the result of a gradient operation. The latter, is the definition
of the diffusive term. Thus, we identify the diffusion phenomena and try to apply
optimizations on it; We use pattern matching again to recognize whenever the other
argument is a constant expression. In such cases, the generated code corresponds to a
product between the constant and a laplacian. If not, we apply the combined derivative
scheme to compute nested derivatives.

Below is the Scala code inside the Saiph compiler that recognizes the patterns and
applies the IR node replacement in the application tree:

57

//Divergence of an expression x

def term_div(x: Exp[Term]) = {

x match {

// Diffusive term optimization

// The second argument is a gradient

case (Def(TermTimes(x1, Def(TermGrad(x2))))) =>

// Replace nested derivative by second order derivative

if (x1 match {

case Def(ConstTermNew(_, _, _ , _)) => true

case _ => false

}) TermTimes(x1, TermLapla(x2))

// Replace central derivatives by combination of forward

and backward derivatives

else TermDivForward(TermTimes(x1, TermGradBackward(x2)))

// The first argument is a gradient

case (Def(TermTimes(Def(TermGrad(x1)), x2))) =>

// Replace nested derivative by second order derivative

if (x2 match {

case Def(ConstTermNew(_, _, _ , _)) => true

case _ => false

}) TermTimes(TermLapla(x1), x2)

// Replace central derivatives by combination of forward

and backward derivatives

else TermDivForward(TermTimes(TermGradBackward(x1), x2))

// Otherwise, just compute a standard divergence

case _ => TermDiv(x)

}

}

The following figure illustrates in a schematic way the pattern matching driving to the
emission of correct (or more adequate) IR nodes in the application tree, when facing a
diffusive term.

58

Fig. 6.2: Schematized pattern matching for diffusive term optimizations

59

7 | Results and evaluations

This chapter is devoted to show the complete use-cases that have been simulated with
Saiph and some scalability results of the most expensive application.

7.1 Fluid mechanics and chemistry use-cases

The use-cases that have driven the development of Saiph are shown below. We present
a complete theoretical definition and translation of the problems, to Saiph applications,
for each of the use-cases faced. Results, validation and nomenclature are also reported.
Those use-cases put together all the language features shown along this document.

7.1.1 Convection

This first application corresponds to the simulation of two different phenomenas and
the combination of them. This is not a real use-case, it is only meant to verify the
computation of basic fluid terms that are going to be used for the real use-cases and the
correct behaviour of the main method’s implementation and optimizations presented
above.

Background

As said, convection is the transport of a fluid, through the combination of advection
and diffusion phenomenas. In order to correctly model this combined phenomena, we
firstly simulate advection and diffusion separately. After visual validations, we end up
simulating the combination of them, the convection. Each of those phenomenas are
mathematically translated as follows:

• Advection equation
∂T

∂t
= −u · ∇T (7.1)

60

• Diffusion equation
∂T

∂t
= ∇ · (k∇T) (7.2)

• Convection equation
∂T

∂t
= −u · ∇T +∇ · (k∇T) (7.3)

This equations are translated to Saiph as follows:

For the advection application:

1 val advection = Equation(dt(T), -u*grad(T))

For the diffusion application:

1 val difussion = Equation(dt(T), div(k*grad(T)))

For the convection application:

1 val convection = Equation(dt(T), -u*grad(T) + div(k*grad(T)))

Initial and boundary conditions

We simulate a small 3D hot cube. The domain is initialized as

T (x, y, z, 0) =

{
300K for Xmesh

2
−Xcube ≤ x, y, z ≥ Xmesh

2
+Xcube

100K otherwise

This cube is moving along two dimensions(1) by the advection phenomena, due to a
constant velocity vector set as u = (1,−1, 0). The advection, when present, is forced
to be periodic through the periodic boundary condition applied at each direction of the
movement. Regarding diffusion, a constant diffusion coefficients k has been used.

Those initial and boundary conditions are translated to Saiph as follows:

(1)1D or 3D convection can also be simulated. For the sake of illustrative comprehension, we present
the two-dimensional.

61

1 // Function to initialize the magnitude being transported

2 def cube(x: Rep[MUnit], y: Rep[MUnit], z: Rep[MUnit]) = {

3 if (x >= CUBEX - EDGE_SIZE && x <= CUBEX + EDGE_SIZE &&

4 y >= CUBEY - EDGE_SIZE && y <= CUBEY + EDGE_SIZE &&

5 z >= CUBEZ - EDGE_SIZE && z <= CUBEZ + EDGE_SIZE) HOT_TEMP

6 else AMBIENT_TEMP

7 }

8 ...

9 // Periodic boundaries

10 mesh.setPeriodic(DirX)

11 mesh.setPeriodic(DirY)

12

13 // Initializing Variables

14 val T = Term(Temperature)("Temperature", mesh, cube _)

15

16 val u = ConstTerm(Speed)("Velocity", V_INIT, List("X", "Y", "Z"))

17 val k = ConstTerm(M2_s)("Diffusion coeff", DIFFUSION_COEF)

Results

• Advection
Figures in 7.1 show the results of the simulation by different temporal frames.
Starting at t = 0 and transporting the cube until it reaches the initial position
again.

Fig. 7.1: Two-dimensional advection

62

• Diffusion
For the diffusion application we show the initial state and a latter one illustrating
how temperature is transported only by the diffusion phenomena.

Fig. 7.2: Two-dimensional diffusion

• Advection & Diffusion
Finally, figure 7.3 shows the results from the combination of the advection and
the diffusion phenomena.(2)

Fig. 7.3: Two-dimensional convection

(2)In order to combine, and visually identify advection and diffusion phenomenas, the coefficients
and initial values of the convection application have been adequately modified with respect to the
ones from advection and diffusion applications.

63

7.1.2 Sod’s shock tube

Background

This is a use case of a temporal integration scheme based on properties updated at
different stages. The problem corresponds to the well known shock tube originally
proposed by Sod[20]. It is a transient case that has analytical solution. It consists of
a one-dimensional tube, closed at its ends and divided into two equal regions by a thin
diaphragm. Each region is filled with the same gas, but with different thermodynamic
parameters; the left and right sides of the tube present different density, energy and
pressure. The region with the highest pressure is called the driven section of the tube,
while the low-pressure part is the working section.
The fluid is initially at rest, that is, it has zero initial velocity. It starts to move because
of the sudden breakdown of the diaphragm, the discontinuous initial condition of the
left and right states entails a shock wave that propagates to both left and right sides.
The equations that are being solved correspond to the Euler equations, a particular case
of the Navier-Stokes equations for which the viscous forces are neglected. The system
is governed by the continuity, momentum and energy transport equations and closed by
the equation of state. The problem is assumed to be one-dimensional (1D) and the 1D
equations are given by:

• Continuity equation:
∂ρ

∂t
+∇ · (ρu) = 0

⇒ ∂ρ

∂t
= −∇ · (ρu) (7.4)

• Momentum equation:
∂(ρu)

∂t
+∇ · (ρuu) = −∇p

⇒ ∂(ρui)

∂t
= −

[
ρu · ∇ui + ui∇ · (ρu) +

∂p

∂xi

]
(7.5)

• Energy equation:
∂(ρE)

∂t
+∇ · (ρuE) = −∇ · (up)

⇒ ∂(ρE)

∂t
= − [ρu · ∇E + E∇ · (ρu) + u · ∇p+ p∇ · u] (7.6)

64

• State equation:

⇒ p = (γ − 1)

(
(ρE)− 1

2
(ρu) u

)
(7.7)

The fluid behaves like an ideal gas, so γ is assumed to be constant and equal to γ = 1.4.
To control the Mach regimes of this use-case we also compute the Mach number as

⇒ Ma =
ux
c

(7.8)

where c is the speed of sound in the medium

c =

√
γ

(
p

ρ

)

The problem contains 4 unknowns: ρ, (ρu), (ρE) and p and has 4 governing equations
(Equation 7.4, 7.5, 7.6 and 7.7) which should be solved in the appropriate order. The
full system can be expressed as:

ρt+1 = ρt + δt · f((ρu)t)

(ρu)t+1 = (ρu)t + δt · f((ρu)t, ut, pt)

(ρE)t+1 = (ρE)t + δt · f((ρu)t, ut, Et, pt)

pt+1 = f((ρE)t+1, (ρu)t+1, ut+1)

This governing equations are translated to Saiph as follows:

1

2 // Equation 1: Continuity equation

3 val density = Equation(dt(rho), -(div(rho_u)))

4

5 // Equation 2: Momentum equation (rho*u)

6 val mass_flow = Equation(dt(rho_u), -((u.comp * div(rho_u)) + (rho_u

* grad(u.comp)) + (grad(p)).comp))

7

8 // Equation 3: Energy equation (rho * E)

9 val rho_energy = Equation(dt(rho_e), -((e * div(rho_u)) + (rho_u *

grad(e)) + (u * grad(p)) + (p * div(u))))

10

65

11 // Equation 4: State equation (Pressure)

12 val pressure = Equation(p, (gamma - unit) * (rho_e.toff(0) - (cte *

rho_u.compWithOffset(0) * u.compWithOffset(0))))

Initial and Boundary conditions

The initial state is defined with a diaphragm in the middle of the tube separating the
two states. The density, energy and pressure are discontinuous across the diaphragm at
t = 0 with values [21]:

ρ(x, 0) =

{
1.0 for x < 1

2
xtube

0.125 for x > 1
2
xtube

,

E(x, 0) =

{
2.5 for x < 1

2
xtube

2 for x > 1
2
xtube

,

p(x, 0) = (γ − 1)ρ(x, 0)E(x, 0) =

{
1.0 for x < 1

2
xtube

0.1 for x > 1
2
xtube

66

Fig. 7.4: Sod’s shock tube profiles of main variables at t=0

This initial conditions are translated to the code as follows:

1 // Initial values (with units)

2

3 // Domain parameters

4 // Discontinuity thinness

5 def JUMP = 10 * H;

6 def preJUMP = (XSIZE - JUMP)/2;

7 def postJUMP = preJUMP + JUMP - H;

8

9 ...

10

11 // Variables

67

12 // Density

13 def Kg_m3 = Kilograms / Meters3;

14 def DENSITY_LEFT = 1.0 * Kg_m3;

15 def DENSITY_RIGHT = 0.125 * Kg_m3;

16

17 // Velocity

18 def MpSec = MetersPerSecond;

19 def V_INIT = Vector(0 * MpSec, 0 * MpSec, 0 * MpSec);

20

21 ...

22

23 // Initialization

24

25 // Variables

26 // Density

27 val rho = Term(Kg_m3)("Density", mesh, { x =>

28 if (x < preJUMP) DENSITY_LEFT

29 else if (x > postJUMP) DENSITY_RIGHT

30 else DENSITY_LEFT + (((DENSITY_RIGHT-DENSITY_LEFT)/JUMP)

*(x-preJUMP))

31 })

32

33 // Velocity

34 val u = Term(Speed)("Velocity", mesh, V_INIT, List[Rep[String

]]("X", "Y", "Z"))

35

36 ...

At t = 0 the diaphragm is broken and the system evolves in time. The tube is supposed
to be closed at both ends but the computation stops before the waves reach the end-
walls of the tube. Note that the boundary conditions should not influence the solution
as they are defined far away from the region of interest.

Physical Description

At time t = 0, when the diaphragm breaks, a process that naturally tends to equalize
the pressure in the tube is generated. The gas at high pressure (L) expands through
an expansion wave and flows into the working section, pushing the gas of this part.
This expansion is a continuous process that takes place inside a well-defined region (the
expansion fan) and propagates to the left (region (E), whose width grows in time).

68

The compression of the low-pressure gas (R) generates a shock wave propagating to
the right. The expanding gas is separated from the gas being compressed by a contact
discontinuity, which can be regarded as a fictitious membrane travelling to the right at
constant speed [22].

Fig. 7.5: Sketch of the initial configuration of the shock tube (t = 0) and waves
propagating in the tube after the diaphragm breakdown (t > 0)

7.1.3 Results and validation

Figure 7.6 shows the results of the simulation showing profiles of the main variables at
t > 0. For this use-case, the results from Moragues (2015) [23] are used for comparison.
The results indicate an acceptable level of correlation with the reference data for all
quantities.

69

Fig. 7.6: Resulting profiles of the shock tube use-case at t > 0 and its validation
results

7.1.4 Autoignition delay time

Background

The study of combustion systems is of primary interest to reduce global warming and
requires the investigation of alternative yet more efficient fuel blends. Combustion
performance is dependent of many factors such as fuel composition, mixture preheating
and system configuration. An important aspect in engine development and research
is the ignition delay time τign, since the residence time of the combustor can induce

70

undesired phenomena depending on the autognition delay time of the fuel. There is a
need to increase the autoignition characteristics of methane-based fuels to gain a better
understanding of the effect of fuel composition on ignition phenomena. This use-case
aims to simulate the temporary evolution of a premixed fuel/air mixture at a given
initial temperature to determine its autoignition delay time.

The equations that are being solved correspond to the conservation of each specie k and
temperature:

• Species equations:

⇒ ∂(ρYk)

∂t
= ω̇k (7.9)

• Temperature equation:
∂(ρcpT)

∂t
= ω̇T

⇒ ∂(ρT)

∂t
=

1

cp
ω̇T (7.10)

cp is assumed constant.

The problem contains (N + 1) unknowns: (ρYk) and (ρT) and has (N + 1) governing
equations (Equation 7.9 and 7.10). The full system can be expressed as:

(ρYk)
t+1 = (ρYk)

t + δt · f1

(N∏
k=1

(ρYk)

)t

, T t



(ρT)t+1 = (ρT)t + δt · f2

(N∏
k=1

(ρYk)

)t

, T t


The governing equations are translated to Saiph as follows:

1

2 // Rate constant

3 val Kf = Af * exp(Ea / (R*T))

4 // Species concentrations

5 val XCH4 = rho_Y(0) / MolarMassVector(0)

6 val XO2 = rho_Y(2) / MolarMassVector(2)

7 // Reaction rate progress

8 val Q = Kf * XCH4 * XO2 * XO2

9 // Mass rate

71

10 val omega_k = cwiseprod(MolarMassVector, nu) * Q

11 // Heat release

12 val omega_T = -(sum(cwiseprod(h, omega_k)));

13

14

15 // Equation1: Species equation

16 val rho_species = Equation(dt(rho_Y), omega_k.comp)

17

18 // Equation2: Temperature equation

19 val rho_temperature = Equation(dt(rho_T), omega_T / cp)

Initial and Boundary conditions

The initial conditions correspond to a premixed methane flame at fixed equivalence ratio
and under constant initial temperature, using a 1-step chemical mechanism (Kb = 0).
The chemical reaction rate is given by:

CH4 + 2 O2 CO2 + 2 H2O

where the reaction coefficients are

Specie ν ′k ν ′′k νk
CH4 1 0 -1
N2 0 0 0
O2 2 0 -2
CO2 0 1 1
H2O 0 2 2

Table 7.1: Reaction coefficients

which leads to

Q = Kf

(
ρYCH4

WCH4

)1

·
(
ρYO2

WO2

)2

Simulations are performed using two different initial gas compositions

72

Mass fraction ER= 0.8 ER= 1.0
YCH4 0.0445 0.0550
YN2 0.7328 0.7248
YO2 0.2227 0.2202

YCO2 0.0 0.0
YH2O 0.0 0.0

Table 7.2: Two initial mass fractions for gas composition at ER = 0.8 and ER = 1.0

and different initial temperatures T={1000 K, 1100 K, ...,1900 K, 2000 K}

The fluid is supposed to behave as a perfect gas, so the equation of state holds, the
density is initialized as ρ = Wp

RoT
where Ro is the ideal gas constant and W , the molar

mass of the mixture is 1
W

=
∑

k
Yk
Wk

.

Finally, the pre-exponential factor Af and the activation energy Ea are coefficients
depending on the composition of the gas. Simulations have been performed using values
from two well-established chemical kinetics mechanisms: Mantel at al. [24] and Liñán
et al. [25]:

Reference Af

(
m6

mol2s

)
Ea
(
kJ
mol

)
1-step Mantel et al. (1996) [24] 1.1 · 1010 167.360
1-step Liñán et al. (2006) [25] 6.9 · 108 132.200

Table 7.3: Reference coefficients for the 1-step chemical mechanism of the
CH4 + 2 O2 CO2 + 2 H2O reaction

Note that the boundary conditions should not influence the solution as this application
is restricted to study the temporary evolution of the system.

This initial conditions are translated to Saiph as follows:

1 // Initial values (with units)

2

3 // Constants

4 // Ideal gas constant

5 def JpMK = Joules / Moles / Kelvins

6 def R_VALUE = 8.314462175 * JpMK

7 // Activation energy

8 def JpMol = Joules / Moles

9 def EA_VALUE_MANTEL = -167360 * JpMol

10 def EA_VALUE_LINAN = -132200 * JpMol

11 ...

73

12

13 // Variables

14 // Mass fractions

15 def INIT_Y = Vector(0.0445 * Unitless, 0.7324 * Unitless,

0.2231 * Unitless, 0 * Unitless, 0 * Unitless)

16 // Temperature

17 def INIT_T = 1500 * Kelvins

18 // Pressure

19 def INIT_P = 1 * Atmospheres

20 ...

21

22 // Initialization:

23

24 // Constants

25 val R = ConstTerm(JpMK)("Ideal gas constant", R_VALUE)

26 val Ea = ConstTerm(JpMol)("Activation Energy",

EA_VALUE_MANTEL)

27 ...

28

29 // Variables

30 val rho_T = Term(Kg_ms2)("Rho*T", mesh, DENSITY*INIT_T)

31 val rho_Y = Term(Kg_m3)("Rho*Y", mesh, INIT_rho_Y, GAS_NAMES)

32 ...

Physical Description

Departing from an initial composition and thermal state (p, T)0, the system evolves
oxidizing the fuel until either the fuel or oxidizer are totally consumed.
The consumption time of reactants is measured for each temperature investigated. As
an example, the evolution of the system using the chemical scheme from Mantel et al.
(1996) at T = 1500K is shown in figure 7.7.

74

Fig. 7.7: Methane autoignition temporal evolution. Chemical scheme from Mantel et
al. (1996) at Tini = 1500K and chemical composition ER=0.8

Results and validation

Developing the tests for the two-schemes and the two compositions, the autoignition
delay times of the mixtures under investigation can be obtained for different initial
temperatures. The results are shown in figure 7.8 and 7.9.

75

Fig. 7.8: Methane autoignition delay time measurements using Mantel et al. (1996)
and Liñán et al. (2006) chemical schemes, with ER = 0.8

76

Fig. 7.9: Methane autoignition delay time measurements using Mantel et al. and
Liñán et al. chemical schemes, with ER = 1.0

For this use-case, the results from Holton (2008) [26] are used for comparison. The
results, in figure 7.10 indicate an acceptable level of correlation. For clarity purposes
simulation results and reference data have been plotted using a logscale in time axis.

77

Fig. 7.10: Methane autoignition delay time measurements (ER = 1.0) plotted
alongside reference data (Holton (2008)[26])

7.1.5 Premixed laminar flame

This is the final use-case enclosing fluids mechanics and chemistry domains, stated as the
final objective of this project. The premixed laminar flame contains all the theoretical
terms seen in Chapter 4 and being progressively validated by the above simpler use-
cases. The complete Saiph code of this application can been seen in Appendix C.

Background

The premixed laminar flame is another example use-case of a temporal integration
scheme based on properties updated at different stages. The problem to be solved cor-
responds to a premixed, freely propagating, steady, laminar, flat flame. The system is
characterized by a premixed mixture of fuel (CH4) and air entering in the reaction zone
of the computational domain, where it reacts chemically releasing energy.
The problem is assumed to be one-dimensional (1D); the domain represents a tube in

78

which the dimension of motion is much longer than the vertical and spanwise directions.
The initial conditions correspond to a situation of unburnt and burnt conditions sepa-
rated in the center of the tube. The flame front will be located at this position. Each of
these regions is initialized with its corresponding physical conditions: density, velocity,
species concentrations, temperature and pressure [27].
The equations being solved correspond to the compressible Navier-Stokes equations
for multi-species reactive flows with constant multicomponent mixture properties. In
this case, the system is governed by the transport equations of continuity, momentum,
species and energy, and it is closed by the equation of state [12]:

• Continuity equation:
∂ρ

∂t
+∇ · (ρu) = 0

⇒ ∂ρ

∂t
= −∇ · (ρu) (7.11)

• Momentum equation:

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · τ

where τ is the viscous tensor: τ = µ
((
∇u +∇Tu

)
− 2

3
∇ · u

)
⇒ ∂(ρux)

∂t
= −

[
ρu · ∇ux + ux∇ · (ρu) +

∂p

∂x

]
+

4

3
µ
∂2ux
∂x2

(7.12)

• Species equation:
N species: k = 1...N

∂(ρYk)

∂t
+∇ · (ρuYk) = ω̇k +∇ ·

(
λ

cp
∇Yk

)

⇒ ∂(ρYk)

∂t
= − [(ρu) · ∇Yk + Yk∇ · (ρu)] +∇ ·

(
λ

cp
∇Yk

)
+ ω̇k (7.13)

• Temperature equation:

∂(ρcpT)

∂t
+∇ · (ρcpuT) = ∇ · (λ∇T) + ω̇T

⇒ ∂(ρT)

∂t
=

1

cp
[−cp ((ρu) · ∇T + T∇ · (ρu)) +∇ · (λ∇T) + ω̇T] (7.14)

79

• State equation:

p = ρRoT ·
N∑
k

Yk
Wk

(7.15)

The problem contains (4 + N) unknowns: ρ, ρux, ρT , ρYk and p and has (4 + N)
governing equations (Equation 7.11, 7.12, 7.13, 7.14 and 7.15), which should be
solved in the appropriate order. The full system can be expressed as:

ρt+1 = ρt + δt · f((ρu)t)

(ρu)t+1 = (ρu)t + δt · f((ρu)t, ut, pt)

(ρT)t+1 = (ρT)t + δt · f((ρu)t, (ρYk)
t, T t)

(ρYk)
t+1 = (ρYk)

t + δt · f((ρu)t, (ρYk)
t, T t)

pt+1 = f((ρT)t+1, Y t+1
k)

This governing equations are translated to Saioh language as follows:

1 // Equation 1: Continuity equation

2 val density = Equation(dt(rho), -div(rho_u))

3

4 // Equation 2: Momentum equation

5 val momentum = Equation(dt(rho_u), -((rho_u * grad(u.comp)) + (u.comp *

div(rho_u)) + (grad(p)).comp) + (mu_cte * mu * der2(DirX)(u.comp)))

6

7 // Auxiliar equations: Species source term & heat release

8 // Reaction rate progress

9 val Q = Af * exp(Ea / (R*T)) * (rho_Y(0) / MolarMassVector(0)) * (

rho_Y(2) / MolarMassVector(2) * rho_Y(2) / MolarMassVector(2))

10

11 val omegak = Equation(omega_species_k, (MolarMassVector.comp * nu.comp *

Q))

12 val omegaT = Equation(omega_heat, - (sum(cwiseprod(h, omega_species_k)))

)

13

80

14 // Equation 3: Species equations

15 // Convective & Diffusion term

16 val Yconv = - ((rho_u * grad(Y.comp)) + (Y.comp * div(rho_u)))

17 val Ydiff = div((lambda / cp) * grad(Y.comp))

18 val rho_species = Equation(dt(rho_Y), Yconv + Ydiff + omega_species_k.

comp)

19

20 // Equation 4: Temperature equation

21 // Convective & Diffusion term

22 val Tconv = - (cp * ((rho_u * grad(T)) + (T * div(rho_u))))

23 val Tdiff = div(lambda * grad(T))

24 val rho_temperature = Equation(dt(rho_T), (Tconv + Tdiff + omega_heat) /

cp)

25

26 // Equation 5: State equation (pressure)

27 val pressure = Equation(p, rho_T.toff(0) * R * sum(Y.toff(0) /

MolarMassVector))

Initial and Boundary conditions

The initial state is defined with a flame front in the middle of the tube separating the
two states: fresh gases or unburnt conditions and products or burnt conditions. The
temperature, mass fraction, velocity and density are discontinuous across the flame at
t = 0. The pressure is initially constant and equal to the atmospheric pressure.

Fig. 7.11: Domain and initial conditions for the one-dimensional premixed flame

The initial conditions in the unburnt section correspond to a premixed methane flame
at fixed equivalence ratio ER = 0.8 and under constant initial pressure. The burnt
conditions are initialized at equilibrium conditions.
The chemical reaction:

81

CH4 + 2 O2 CO2 + 2 H2O

is defined using a 1-step chemical mechanism (Kb= 0). (3)

Initial values are:

T (x, 0) =

{
300 K for x < 1

2
xUnburnt

2011 K for x > 1
2
xBurnt

,

p(x, 0) = 101325 Pa,

Mass fraction Unburnt Burnt
YCH4 0.0445 0.0
YN2 0.7328 0.7328
YO2 0.2227 0.0360

YCO2 0.0 0.1270
YH2O 0.0 0.1042

Table 7.4: Initial mass fractions for gas composition at ER = 0.8

(3)See the Autoignition use-case chapter 7.1.4 for more details regarding chemical reactions and its
coefficients

82

Fig. 7.12: Initial profiles of the premixed laminar flame use-case

Two types of boundary conditions are employed: inlet and outlet. The inlet boundary
conditions correspond to the unburnt conditions, which can be imposed as Dirichlet-
type. The outlet boundary conditions are of Neumann-type; all fluxes are set equal to
zero.

This initial conditions are translated to Saiph language as follows:

1 // Initial values (with units)

2 // Domain parameters

3 // Discontinuity thinness

4 def FLAME_THICKNESS = 10 * DXYZ

5 def FLAME_START_X = (LX - FLAME_THICKNESS) / 2

6 def FLAME_END_X = FLAME_START_X + FLAME_THICKNESS - DXYZ

7 ...

8 // Constants

9 // Thermal conductivity

10 def W_mK = Watts / Meters / Kelvins

11 def LAMBDA_INIT = 0.0457 * W_mK

12 ...

83

13 // Variables

14 // Temperature

15 def INIT_T_UNBURNT = 300 * Kelvins

16 def INIT_T_BURNT = 2011 * Kelvins

17 def TFLUX = 0 * KpS

18 // Pressure

19 def INIT_P = 1 * Atmospheres

20 ...

21

22 // Initialization

23 // Constants

24 val lambda = ConstTerm(W_mK)("Thermal conductivity", LAMBDA_INIT)

25 ...

26 // Variables

27 // Temperature

28 val T = Term(Temperature)("Temperature", mesh, { x =>

29 if (x < FLAME_START_X) INIT_T_UNBURNT

30 else if (x > FLAME_END_X) INIT_T_BURNT

31 else INIT_T_UNBURNT + (((INIT_T_BURNT - INIT_T_UNBURNT) /

FLAME_THICKNESS) * (x - FLAME_START_X))

32 })

33 T.setDirichlet(CFaceXMIN)(INIT_T_UNBURNT)

34 T.setNeumann(CFaceXMAX)(TFLUX)

35

36 // Pressure

37 val p = Term(Pressure)("Pressure", mesh, INIT_P)

38 ...

Physical Description

In the flame front, the temperature of the gas rises due to heat release and the effects of
diffusion smoothes out the flame front. Eventually, the temperature reaches the point at
which combustion takes place (4) releasing energy. From that point, the temperature rises
up to the equilibrium conditions. The heat release and mixture composition (kinetics
and chemistry) control the flame speed and the different thermal states. As we can see
in figure 7.13 the transition from one state to the other takes place in a short spatial
scale so-called the flame front.

(4)See the Autoignition use-case chapter 7.1.4

84

Fig. 7.13: Premixed laminar flame evolution. Zoom at the flame front

7.1.6 Results and validation

Simulating the temporal and spatial evolution of the system, its steady state and the
conditions of the combustion products under investigation are given below, figure 7.14
and 7.15.

85

Fig. 7.14: Resulting temperature profiles of the premixed laminar flame use-case at
t > 0 and its validation results

Fig. 7.15: Resulting mass fractions profiles of the premixed laminar flame use-case at
t 0 and its validation results

86

For this test-case, the results from Mira et al. [28] are used for comparison. The re-
sults, in figure 7.14 and 7.15 indicate an acceptable level of correlation despite the use
of constant transport properties. Including mixture and temperature dependency on
transport properties and heat capacity would increase the level of correlation.

7.1.7 Nomenclature, units and constants

• Density: ρ
Units:

[ρ] =
kg

m3

• Velocity: u = (ux,uy,uz)
Units:

[ui] =
m

s

• Energy: E
Units:

[E] =
m2

s2

• Temperature: T
Units:

[T] = K

• Pressure: p
Units:

[p] = Pa =
kg

ms2

• Adiabatic gas index: γ
Units: Adimensional magnitude

• Speed of sound: c
Units:

[c] =
m

s

• Mach number: Ma = u
c

Units: Adimensional magnitude

• Ideal gas constant: Ro

Ro = 8.31447
J

mol ·K
Units:

[Ro] =
J

mol ·K

87

• Thermal conductivity(5): λ
It is assumed constant at:

λ = 0.0457
W

K ·m
Units:

[λ] =
W

K ·m

• Dynamic viscosity: µ
It is assumed constant at:

µ = 1.8 · 10−5
Kg

m · s
Units:

[µ] =
Kg

m · s

• Mass fraction of the kth specie k: Yk

Ratio of one specie k with mass mk to the mass of the total mixture. The sum of
all the mass fractions is equal to one.
Units: Adimensional magnitude

• Molar mass of the mixture: W

1

W
=
∑
k

Yk
Wk

Units:

[W] =
kg

mol

• Molar mass of each specie k: Wk

Species Molar mass (kg/mol)
CH4 0.0160425
N2 0.0280134
O2 0.0319988
CO2 0.0440095
H2O 0.0180153

Units:

[Wk] =
kg

mol

(5)The thermal conductivity and the specific heat are actually functions of the concentrations of the
species. They are assumed constants in these use-cases

88

• Specific heat(6): cp

It is assumed constant at:

cp = 1012
J

kg ·K
Units:

[cp] =
J

kg ·K

• Specific enthalpy of each specie k: hk

Species Specific enthalpy (J/kg)
CH4 -4666.97834
N2 0.0
O2 0.0
CO2 -8941.70577
H2O -13423.368

Units:

[hk] =
J

kg

• Coefficients of species k for the reaction: νk
ν ′k → Reactants species
ν ′′k → Products species

Units: Adimensional magnitude

• Reaction rate constant: Kf

Kf = Afe
−Ea
RT

Units:

[Kf] =
m3(n−1)

s ·mol(n−1)
where n is the order of the reaction.

• Reaction rate progress: Q
Units:

[Q] = [Kf] ·
(
mol

m3

)∑
k ν
′
k

• Pre-exponential factor: Af

Units:
[Af] = [Kf]

(6)The specific heat is actually function of the concentrations of the species. It is assumed constants
in these use-cases

89

• Activation energy: Ea

Units:

[Ea] =
kJ

mol

7.2 Parallel execution analysis

Finite-difference stencil computations are very common in numerical modeling and they
exhibit high degree of data parallelism and regular structure. In this section we analyse
the scalability of the application premixed laminar flame setting the following parame-
ters:

• Number of steps: 200 time-steps

• Temporal discretization factor: 5 ns

• Z dimension: 8 cm

• X, Y dimensions: 100 µm

• Spatial discretization factor: 20 µm

• Total number of spatial points: 1 · 105

7.2.1 Platform

We describe here the hardware used to collect real performance data on the Saiph
application.
The platform used is Marenostrum III cluster, comprised (among others resources) of:

• 3108 IBM dx360 M4 compute nodes.

• Every IBM dx360 M4 node has:

– 2x E5-2670 SandyBridge-EP 2.6HHz cahce 20MB 8-core

– 32GB of RAM

The networks that interconnect the cluster using 296 switches are:

• Infiniband Network: High bandwidth network used by parallel applications com-
munications (MPI).l’

• Gigabit Network: 10GbitEthernet network used by the GPFS Filesystem.

The results that follow are intrinsically subjected to this architecture.

90

7.2.2 Experimental Setup

In order to start the evaluation, we first of all, install the application in the Marenos-
trum cluster. Saiph applications allow sequential and parallel (MPI and/or OpenMP)
executions. To create the desired executable, we use a Makefile for configuring the com-
pilers, linkers, and their command line flags.
Finally, in order to submit jobs we have created scripts according to the requirements
of the machine. Inside those scripts we can finally tune the number of nodes and/or
threads we want to use for the execution.

At that point, we want to test if Saiph applications can be advantageously executed
in a distributed environment. Because Saiph still lacks on efforts devoted to increase
performance, we only present results from inter-node parallel executions. For a good
use of the resources, we bind 1 MPI process per core resulting in 16 MPI processes per
node. As said, OpenMP parallelism is not set.

7.2.3 Scalability Results

The complete sequential execution took around 28 min to finish. On the other hand, the
most resource-consuming execution tested (160 MPI processes), took less than 12 s. The
following figure shows the execution times and Speed up of several parallel executions
taking the sequential one as reference.

Fig. 7.16: Scalability plot for the Saiph application premixed laminar flame.

Linear speed up is reached up to 10 nodes, which corresponds to 160 MPI processes.

91

8 | Summary

The computational modelling of any physical problem is composed by three important
steps: (1) the problem definition, (2) the mathematical model and (3) the computer
simulation. Saiph has been extended in this project in order to ease the whole modelling
process for those physical problems related to fluid mechanics and chemistry theory.

The problem definition, being the first natural step, is devoted to define the problem of
interest in terms of a set of relevant quantities. Initial and boundary conditions are thus
defined at that point. For this first step, Saiph provides an easy way to define and ini-
tialize variables and constants of the problem. Through the use of Terms, ConstTerms
and units constructions users can unambiguously define their problems. Regarding ini-
tialization, Saiph offers the possibility to set variable values through spatial-dependent
functions and a large set of operations over units, allowing mathematical relations be-
tween sets of dependent variables. In particular, Saiph provides intuitive constructions
to well-define a spatial discontinuity over the physical domain ensuring a proper be-
haviour of linked variables at the interfaces. Although the domain expert is in charge
of this first stage, Saiph put at his disposal a scientific high-level syntax to allow him
to define the problem by directly translating his on-paper physical problem definition.

The second step of the modeling process is to represent the physical reality by a math-
ematical model: the governing equations of the problem. This task also belongs to the
domain expert, but again, Saiph allows the direct and intuitive translation of the govern-
ing equations into Saiph’ equations. Our tool, permit to express vector equations, partial
differential equations (first and second order) and non-derivative equations commonly
used to close PDE systems to define coupled problems. Users can correctly combine any
of the aforementioned type of equations turning to the adequate use of Saiph’ operators.

For this two first steps, the domain expert has been in charge, devolving upon him the
responsibility of the correct problem definition and mathematical model statements. The
rest of the modelling process is conceived within Saiph to be completely transparent to
the users.

After the selection of an appropriate mathematical model, together with suitable bound-
ary and initial conditions, we can proceed to the numerical solution through the com-
puter simulation. Is in that point where all the specific numerical methods are applied.
From methods for the resolution of PDEs and non-derivative equations, to specific meth-

92

ods directly related to the computation of specific terms from fluid mechanics and/or
chemistry problems. Alternatives to Euler’s method have been added for the non-
derivative equations, methods for modelling convective terms, internal operators to be
combined for the computation of diffusive terms, identification of such terms... every-
thing being transparent to the user.

Nowadays a fourth step on the described computational modelling process, should be
take into account, that is the parallel execution. Saiph also takes care internally of
adapting the applications for being executed in parallel. MPI and OpenMP paralleliza-
tion are thus implemented to allow Saiph’ applications to be efficiently executed in a
high-performance environment.

The described 4-steps process has been successfully followed by the different fluid me-
chanics and chemistry use-cases faced in this project.

Saiph appears to be a powerful tool that can be advantageously used by scientists with-
out knowledge on numerical methods and supercomputing while internally providing
the advantages of such expertise.

93

9 | Conclusions and future work

In this project, general user-level functionalities have been added to Saiph enlarging and
easing the modelling constructions offered to the users. Internally, new features and
optimizations have also been implemented in order to ensure the specific and correct
computation of those new available user-constructions. Saiph provides more and easier
features. Still, is important to remark that some of those extensions are subjected to the
specific scientific domain faced. Those extensions still lack of genericity before being
implicitly and systematically applied to any Saiph application. The development of
Saiph should continue being driven by use-cases, whose requirements and impositions
can light up the development progress. New use-cases can require the computation of
more nesting derivatives levels or will need a convective gradient computation in a non-
first-order differential equation or could contain a non-derivative equation enclosing a
spatial differentiation as well as other situations leading, currently, to incorrect results.
Therefore, some of the specific optimizations performed, are still not as general as desired
but have resolved the problems and necessities encountered in this fluid mechanics and
chemistry support extensions. In that sense, we have proposed solutions displaying the
potential of Saiph ant its layer structure and they can be seen as first approaches to
face more general requirements that can be encountered in the future.
As a present and future recommendation, all the new features and functionalities should
be integrated without breaking backward compatibility of the tool and trying to take
into account all the possible situations that can be confronted in the future. Saiph’
extensions should be general enough to be applied for any computational modelling of
any physical problem expressed through a partial differential equation system. Facing
more use-cases from different scientific domains is a must for the future development of
Saiph.

From the numerical point of view, lot of work can be done; The addition of an internal
check of the numerical stability, the dynamic computation of the more efficient time
discretization factor at each computational step, the support to either 1D, 2D or 3D
simulation problems are just examples of features that can be incorporated to Saiph to
ease and enlarge its correctness, usability and efficiency.
Regarding high performance complexities, we have demonstrated that a real and expen-
sive Saiph application can be executed in a distributed environment without wasting
the available resources. Nevertheless, in the current scenario, after validating the func-
tioning of the tool, Saiph performance should be faced intensively.

94

A | Scala

This appendix introduces the most basic concepts, constructions and features of Scala
that are being used in Saiph applications.

Variables

The most relevant basic types for Saiph users are: Int, Float, Boolean and String.
Scala has type inference, therefore, it automatically deduces the type of the initializing
expression when it is known at compile time. Yet, this is not always the case, as it can
be seen in line 4, if a value is initialized with an empty list, the type of this list should
be specified either in the value or in the constructor. Values in Scala are declared as:

1 val azero = 0

2 val pi = 3.1416

3 val l1 = List(1, 2, 3)

4 val l2 : List[Int] = List() // Type specified as the value type

5 val l3 = List[Int]() // Type inferred from the constructor type

Functions

Functions are defined using the def keyword. Specifying the formal parameter types is
mandatory and, for recursive functions, the return type must also be specified:

1 def add(x: Int, y: Int) = x + y

2 def fibonacci(n: Int) : Int = {

3 if (n < 0) -1

4 else if (n == 0 || n == 1) n

5 else fibonacci(n-1) + fibonacci(n-2)

6 }

95

Objects and classes

Scala provides classes, objects and traits. These language constructs are used to imple-
ment abstract data types. Objects are created through class instantiation so, through
keyword class. Scala provides singleton objects which act as group of static functions
(they operate on no particular implicit instance) declared as object. If a class and an
object share the same name they are called companion classes/objects. Companions
objects and classes have access to each other’s private members. Scala allows declaring
values, methods and types as abstract. Abstract type members are used to build generic
components.
Abstract classes cannot be instantiated and its abstract members need to be defined
in their subclasses. This is achieved through the extends keyword. Subclasses inherit
non-private members of its superclasses. In Scala, multiple inheritance is not allowed,
meaning classes cannot inherit from multiple superclasses.

Traits and mixin components

Traits are declared in a similar way as regular classes with the exception that the
programmer uses keyword trait instead of keyword class. A trait is actually, a special
form of an abstract class which does not have any value parameters for its constructor.

Consider the following abstraction for iterators.

1 trait AbsIterator[T] {

2 def hasNext: boolean

3 def next: T

4 }

Traits can be used in all context where other abstract classes appear but only traits can
be used as mixins. Mixin class composition is a form of multiple inheritance. By mixing
in several traits into classes Scala provides stackable composition.

The following code illustrates how a trait extends AbsIterator with a new method
(foreach method):

1 trait RichIterator[T] extends AbsIterator[T] {

2 def foreach(f: T => unit): unit =

3 while (hasNext) f(next)

4 }

Scala classes can mix in several traits with the keywords extends and with. The order
in which traits are mixed in matters.

96

B | Lightweight Modular Staging

Building a DSL

The definition of a DSL in LMS consists of three main parts:

• DSL interface

The interface of the DSL must be defined with types and operations the program-
mer will use in the application. We build Vector DSL as an example. This DSL
provides a generic type VT[_] and vector addition operation. The interface of
Vector DSL is as follows:

1 trait VectorOps extends Base {

2 class VT[O]

3 def infix_+[O:Manifest](x: Rep[VT[O]], y: Rep[VT[O]]) =

4 vector_plus(x,y)

5 def vector_plus[O:Manifest](x: Rep[VT[O]], y: Rep[VT[O]]):

6 Rep[VT[O]]

7 }

The basic type of the language, VT[_], is represented here by an empty Scala
class (line 2). In line 3, operation for adding two vectors is defined. The body of
this method consists on a call to an abstract method vector_plus (line 5). This
abstract method will be implemented in a later phase of the process.

The meaning of having type Rep[VT] is that x and y represent a computation
that will yield a VT in the next stage. For example, type Rep[Int] indicates that
the staged computation will result in type Int in the next stage[5]. VectorOps is
a trait mixed in with Base. Base is a part of LMS library.

• Internal representation

The following code shows the implementation of the Vector DSL:

97

1 trait VectorOpsExp extends VectorOps with Expressions {

2 case class VtPlus[O:Manifest](x: Exp[VT[O]], y: Exp[VT[O]])

3 extends Def[VT[O]]

4 def vector_plus[O:Manifest](x: Exp[VT[O]], y: Exp[VT[O]]) =

5 (x,y) match {

6 case _ => VtPlus(x, y)

7 }

8 }

The implementation is defined in trait VectorOpsExp (line 1). It implements
the interface of our DSL, VectorOps. The trait Expressions provides an in-
frastructure for implementing an intermediate representation (IR) of our DSL as
expression tree. The tree contains IR nodes of our DSL.

The IR nodes are implemented as case classes (line 2) which take arguments of type
Exp[_]. This LMS type constructor represents constants and symbols. Each case
class extends a parametrized type constructor Def[_] which represents definitions.
Symbols are bound to definitions. Each composite construct (such as case class
VtPlus) refers to its parameters through symbols.

Line 4 shows the body of method vector_plus. This method was declared ab-
stract in the interface. This is the way the implementation is bound to its interface.
However, this binding is loose, meaning interface and implementation of the DSL
are implemented as separate traits.

As we can see in the previous code, definitions are implemented as Scala case
class, so they can be pattern-matched. This in turn allows the implementation of
optimizations as we are going to see later. Here, since there is only the default
case, a regular addition IR node is emitted (VtPlus) each time any argument is
passed to the + operator.

• Code generation

This last stage, implements code generator for the DSL to target language. The
following code shows the code generetor to C++ of the Vector DSL:

1 trait VectorCppGen extends CGen {

2 val IR: VectorOpsExp

3 import IR._

4 override def emitNode(sym: Sym[Any], rhs: Def[Any]): Unit =

5 rhs match {

6 case VtPlus(x, y) => emitValDef(sym,

7 quote(x) + " + " + quote(y))

8 case _ => super.emitNode(sym, rhs)

98

9 }

10 }

The code generator is implemented as a trait that extends the LMS trait CGen

(line 1). Trait CGen extends the core code generation traits with code generators
for regular C code, so we do not have to redefine regular assignment or looping,
for example. The quote method obtains the symbol corresponding to a given
particular definition.

In lines 2 and 3, there is the information about the intermediate representation
and the implementation of the DSL interface. The import statement in line 3
injects the types of IR nodes into the scope of the code generator so it can refer
to them through pattern matching (body of method emitNode in lines 4-9).

While LMS is traversing an expression tree of our DSL, each IR node is pattern-
matched (lines 4-8). If the definition is matched (left-hand side of a case state-
ment), C code is generated for a given IR node (right-hand side of the statement).
If no match is found, the symbol and definition of the IR node are passed forwarded
to the next mixed-in trait (or superclass) on the chain.

Using the DSL

Once we have all the parts of a DSL (representation, implementation and code genera-
tion), our DSL is ready to translate applications into the target language. Let’s consider
the following application for the Vector DSL

1 object VectorDSLApp {

2 trait SimpleApp {

3 val v = Vector(1, 2, 3)

4 val w = Vector(2, 5, 2)

5 val sum = v + w

6 show(sum)

7 }

8 }

For simplicity, we will not show all the details of the operations not described in this
section (like the Vector(...) constructor or the show operation. For a complete
documentation about LMS, see the referenced material and its official website [29].

The code emitted after running the generator of the application is shown as follows.

99

1 #include <iostream>

2 #include "vectorDataStruct.h"

3 int main() {

4 Vector x0(1, 2, 3);

5 Vector x1(2, 5, 2);

6 Vector x2 = x0+x1;

7 for (size_t i = 0; i < x2.len(); ++i) std:cout << x2[i] << " ";

8 std::cout << std::endl;

9 }

100

C | Premixed laminar flame; Saiph
complete code

1 package saiph.app

2

3 import saiph._

4 import java.io.PrintWriter

5

6 /** One-dimensional premixed flame simulation.

7 * Coupled system of species concentration,

8 * energy (temperature) and density.

9 * Low Mach regime: hydrodynamics + reactions at low gas spedd:

delfagration.

10 * ==Overview==

11 * Illustrates the use of a good amount of Saiph operators, complex

custom

12 * unit definitions and non-differential equations

13 */

14 object Flame1D {

15 trait Flame1DProg { this: SaiphOps =>

16

17 def LX = 2 * Centimeters

18 def LYZ = 0.1 * Millimeters

19 def DXYZ = 20 * Micrometers

20 def FLAME_THIKNESS = 10 * DXYZ

21 def FLAME_START_X = (LX - FLAME_THIKNESS) / 2

22 def FLAME_END_X = FLAME_START_X + FLAME_THIKNESS - DXYZ

23

24 // Simulation parameters

25 def DELTA_TIME = 5 * Nanoseconds

26 val N_STEPS = 15000

27

28 // Gas names

29 val GAS_NAMES = List[Rep[String]]("CH4", "N2", "O2", "C2O", "H2O")

101

30

31 // Constants

32 // Activation energy

33 def JpMol = Joules / Moles

34 def EA_VALUE = -167360 * JpMol

35

36 // Pre-exponential factor

37 def M6pM2s = MUnit(DLength -> 6, DAmount -> -2, DTime -> -1)

38 def AF_VALUE = 1.1e10 * M6pM2s

39

40 // Thermal conductivity

41 def W_mK = Watts / Meters / Kelvins

42 def LAMBDA_INIT = 0.0457 * W_mK

43

44 // Air viscosity constant

45 def Kg_ms = Kilograms / Meters / Seconds

46 def AIR_VISCOSITY = 1.8e-5 * Kg_ms

47

48 // Specific heat capacity (at cte pressure)

49 def JpKKg = Joules / Kelvins / Kilograms

50 def CP_INIT = 1200 * JpKKg

51

52 // Adiabatic index (cp/cv)

53 def ADIABATIC_INDEX = 1.4 * Unitless

54

55 // Ideal gas constant

56 def JpMK = Joules / Moles / Kelvins

57 def R_VALUE = 8.314462175 * JpMK

58

59 // Reaction coefficients

60 def nu_v = Vector(-1 * Unitless, 0 * Unitless, -2 * Unitless, 1 *

Unitless, 2 * Unitless)

61

62 // Specific Enthalpy

63 def JpKg = Joules / Kilograms

64 def h_v = Vector(-4666.97834 * JpKg, 0 * JpKg, 0 * JpKg,

-8941.70577 * JpKg, -13423.368 * JpKg)

65

66 // Molar mass of each gas

67 def GramsPerMoles = Grams / Moles

68 def wCH4 = 16.0425 * GramsPerMoles

69 def wN2 = 28.0134 * GramsPerMoles

70 def wO2 = 31.9988 * GramsPerMoles

102

71 def wCO2 = 44.0095 * GramsPerMoles

72 def wH2O = 18.0153 * GramsPerMoles

73 def vW = Vector(wCH4, wN2, wO2, wCO2, wH2O)

74

75

76 // Variables

77 // Mass fractions

78 def UNBURNT = Vector(0.0445 * Unitless, 0.7324 * Unitless, 0.2231

* Unitless, 0 * Unitless, 0 * Unitless)

79 def BURNT = Vector(0 * Unitless, 0.7329 * Unitless, 0.0360 *

Unitless, 0.1270 * Unitless, 0.1041 * Unitless)

80 //flux boundary conditions

81 def pM = Unitless / Meters

82 def YFLUX = Vector(0 * pM, 0 * pM, 0 * pM, 0 * pM, 0 * pM)

83

84 // Temperatures

85 def INIT_T_UNBURNT = 300 * Kelvins

86 def INIT_T_BURNT = 2011 * Kelvins

87 //flux boundary conditions

88 def KpM = Kelvins / Meters

89 def TFLUX = 0 * KpM

90

91 // Flow velocity

92 def MpSec = MetersPerSecond;

93 def V_UNBURNT = Vector(90 * MpSec, 0 * MpSec, 0 * MpSec)

94 //flux boundary conditions

95 def pS = Unitless / Seconds

96 def UFLUX = Vector(0 * pS, 0 * pS, 0 * pS)

97

98 // Pressure

99 def INIT_P = 1 * Atmospheres

100 //flux boundary conditions

101 def PpM = Pascals / Meters

102 def PFLUX = 0 * PpM

103

104 // Density

105 def Kg_m3 = Kilograms / Meters3

106 def mol_Kg = Moles / Kilograms

107 def Winv_UNBURNT = (UNBURNT(0) / vW(0)) + (UNBURNT(1) / vW(1)) + (

UNBURNT(2) / vW(2)) + (UNBURNT(3) / vW(3)) + (UNBURNT(4) / vW

(4))

108 def DENSITY_UNBURNT = ((INIT_P / (R_VALUE * INIT_T_UNBURNT)) / (

Winv_UNBURNT))

103

109

110 def Winv_BURNT = (BURNT(0) / vW(0)) + (BURNT(1) / vW(1)) + (BURNT

(2) / vW(2)) + (BURNT(3) / vW(3)) + (BURNT(4) / vW(4))

111 def DENSITY_BURNT = ((INIT_P / (R_VALUE * INIT_T_BURNT)) / (

Winv_BURNT))

112

113 // Rho*u, rho*T and omega units

114 def Kg_m2s = Kilograms / Meters2 / Seconds

115 def KgK_m3 = Kilograms * Kelvins / Meters3

116 def Kg_m3s = Kilograms / Meters3 / Seconds

117 def J_m3s = Joules / Meters3 / Seconds

118

119 def Flame1D = {

120 val mesh = CartesianMesh(LX, LYZ, LYZ)

121 mesh.discretize(DXYZ, DXYZ, DXYZ);

122

123 // Combustion constants

124 val MolarMassVector = ConstTerm(GramsPerMoles)("Molar mass", vW,

GAS_NAMES)

125 val R = ConstTerm(JpMK)("Ideal gas constant", R_VALUE)

126 val Ea = ConstTerm(JpMol)("Activation Energy", EA_VALUE)

127 val Af = ConstTerm(M6pM2s)("Pre-exponential factor", AF_VALUE)

128 val nu = ConstTerm(Unitless)("Reaction coefficients", nu_v,

GAS_NAMES)

129 val h = ConstTerm(JpKg)("Enthalpy", h_v, GAS_NAMES)

130 val lambda = ConstTerm(W_mK)("Thermal conductivity", LAMBDA_INIT)

131 val cp = ConstTerm(JpKKg)("Specific heat (cte pressure)", CP_INIT

)

132 val cv = ConstTerm(JpKKg)("Specific heat (cte volume)", CP_INIT /

ADIABATIC_INDEX)

133 val mu = ConstTerm(Kg_ms)("Viscosity", AIR_VISCOSITY)

134 val mu_cte = ConstTerm(Unitless)("Mu factor (4/3)", 4/3 *

Unitless)

135

136 def linear_window_vector(x: Rep[MUnit], left_value: Rep[Vector[

MUnit]], right_value: Rep[Vector[MUnit]]) : Rep[Vector[MUnit

]]= {

137 left_value + (((right_value - left_value)/FLAME_THIKNESS)* (x

-FLAME_START_X))

138 }

139 def linear_window_scalar(x: Rep[MUnit], left_value: Rep[MUnit],

right_value: Rep[MUnit]) : Rep[MUnit] = {

104

140 left_value + (((right_value - left_value)/FLAME_THIKNESS)* (x

-FLAME_START_X))

141 }

142

143 // Mass fraction

144 val Y = Term(Unitless)("Yk, mass fractions", mesh, { x =>

145 if (x < FLAME_START_X) UNBURNT

146 else if (x > FLAME_END_X) BURNT

147 else linear_window_vector(x, UNBURNT, BURNT)

148 }, GAS_NAMES)

149 Y.setDirichlet(CFaceXMIN)(UNBURNT)

150 Y.setNeumann(CFaceXMAX)(YFLUX)

151

152 // Temperature

153 val T = Term(Temperature)("Temperature", mesh, { x =>

154 if (x < FLAME_START_X) INIT_T_UNBURNT

155 else if (x > FLAME_END_X) INIT_T_BURNT

156 else linear_window_scalar(x, INIT_T_UNBURNT, INIT_T_BURNT)

157 })

158 T.setDirichlet(CFaceXMIN)(INIT_T_UNBURNT)

159 T.setNeumann(CFaceXMAX)(TFLUX)

160

161 // Pressure

162 val p = Term(Pressure)("Pressure", mesh, INIT_P)

163 p.setDirichlet(CFaceXMIN)(INIT_P)

164 p.setNeumann(CFaceXMAX)(PFLUX)

165

166 // Density

167 val rho = Term(Kg_m3)("Density", mesh, { x =>

168 if (x < FLAME_START_X) DENSITY_UNBURNT

169 else if (x > FLAME_END_X) DENSITY_BURNT

170 else {

171 val vec = linear_window_vector(x, UNBURNT, BURNT)/vW

172 val sum_win = vec(0) + vec(1) + vec(2) + vec(3) + vec(4)

173 INIT_P / sum_win / (R_VALUE * linear_window_scalar(x,

INIT_T_UNBURNT, INIT_T_BURNT))

174 }

175 })

176

177 // Velocity

178 val u = Term(Speed)("Velocity", mesh, { x =>

179 if (x < FLAME_START_X) V_UNBURNT

105

180 else if (x > FLAME_END_X) V_UNBURNT * (DENSITY_UNBURNT/

DENSITY_BURNT)

181 else {

182 val vec = linear_window_vector(x, UNBURNT, BURNT)/vW

183 val sum_win = vec(0) + vec(1) + vec(2) + vec(3) + vec(4)

184 V_UNBURNT * (DENSITY_UNBURNT / (INIT_P / sum_win / (R_VALUE *

linear_window_scalar(x, INIT_T_UNBURNT, INIT_T_BURNT))))

185 }

186 }, List[Rep[String]]("X", "Y", "Z"))

187 u.setDirichlet(CFaceXMIN)(V_UNBURNT)

188 u.setNeumann(CFaceXMAX)(UFLUX)

189

190 // Mass flow (rho*u = cte)

191 val rho_u = Term(Kg_m2s)("Rho * u", mesh, { x => DENSITY_UNBURNT

* V_UNBURNT }, List[Rep[String]]("X", "Y", "Z"))

192

193 // Rho * Y

194 val rho_Y = Term(Kg_m3)("Rho * Y", mesh, { x =>

195 if (x < FLAME_START_X) DENSITY_UNBURNT * UNBURNT

196 else if (x > FLAME_END_X)DENSITY_BURNT * BURNT

197 else {

198 val vec = linear_window_vector(x, UNBURNT, BURNT)/vW

199 val sum_win = vec(0) + vec(1) + vec(2) + vec(3) + vec(4)

200 (INIT_P / sum_win / (R_VALUE * linear_window_scalar(x,

INIT_T_UNBURNT, INIT_T_BURNT))) * linear_window_vector(x,

UNBURNT, BURNT)

201 }

202 }, GAS_NAMES)

203

204 // Rho * T

205 val rho_T = Term(KgK_m3)("Rho * T", mesh, { x =>

206 if (x < FLAME_START_X) DENSITY_UNBURNT * INIT_T_UNBURNT

207 else if (x > FLAME_END_X) DENSITY_BURNT * INIT_T_BURNT

208 else {

209 val vec = linear_window_vector(x, UNBURNT, BURNT)/vW

210 val sum_win = vec(0) + vec(1) + vec(2) + vec(3) + vec(4)

211 (INIT_P / sum_win / (R_VALUE * linear_window_scalar(x,

INIT_T_UNBURNT, INIT_T_BURNT))) * linear_window_scalar(x,

INIT_T_UNBURNT, INIT_T_BURNT)

212 }

213 })

214

215

106

216 // Omega. Species source term

217 val omega_species_k = Term(Kg_m3s)("Species source terms", mesh,

Vector(0 * Kg_m3s, 0 * Kg_m3s, 0 * Kg_m3s, 0 * Kg_m3s, 0 *

Kg_m3s), GAS_NAMES)

218

219 // Omega. Heat release

220 val omega_heat = Term(J_m3s)("Heat release", mesh, 0 * J_m3s)

221

222

223 // Premixed laminar flame equations

224

225 // Species source term

226 // Rate constant

227 val Kf = Af * exp(Ea / (R*T))

228 // Species concentrations

229 val XCH4 = rho_Y(0) / MolarMassVector(0)

230 val XO2 = rho_Y(2) / MolarMassVector(2)

231 // Reaction rate progress

232 val Q = Kf * XCH4 * XO2 * XO2

233 val omegak = Equation(omega_species_k, (MolarMassVector.comp * nu

.comp * Q))

234

235 // Heat release

236 val omegaT = Equation(omega_heat, - (sum(cwiseprod(h,

omega_species_k))))

237

238 // Equation 1: Continuity equation

239 val density = Equation(dt(rho), -div(rho_u))

240

241 // Equation 2: Momentum equation

242 val momentum = Equation(dt(rho_u), -((rho_u * grad(u.comp)) + (u.

comp * div(rho_u)) + grad(p).comp) + (mu_cte * mu * der2(DirX)(

u.comp)))

243

244 // Equation 3: Species equations

245 // Convective term

246 val Yconv = - ((rho_u * grad(Y.comp)) + (Y.comp * div(rho_u)))

247 // Diffusion term

248 val Ydiff = div((lambda / cp) * grad(Y.comp))

249 val rho_species = Equation(dt(rho_Y), Yconv + Ydiff +

omega_species_k.comp)

250

251 // Equation 4: Temperature equation

107

252 // Convective term

253 val Tconv = - (cp * ((rho_u * grad(T)) + (T * div(rho_u))))

254 // Diffusion term

255 val Tdiff = div(lambda * grad(T))

256 val rho_temperature = Equation(dt(rho_T), (Tconv + Tdiff +

omega_heat) / cp)

257

258 // Auxiliar equations:

259 // Species

260 val species = Equation(Y, rho_Y.compWithOffset(0) / rho.toff(0))

261

262 // Temperature

263 val temperature = Equation(T, rho_T.toff(0) / rho.toff(0))

264

265 // Velocity

266 val velocity = Equation(u, rho_u.compWithOffset(0) / rho.toff(0))

267

268 // Equation 5: State equation (pressure)

269 val pressure = Equation(p, rho_T.toff(0) * R * sum(Y.toff(0) /

MolarMassVector))

270

271 val flame1D = Problem(DELTA_TIME, N_STEPS, mesh)(omegak, omegaT,

density, momentum, rho_species, rho_temperature, species,

temperature, velocity, pressure)

272

273 EulerSolver(flame1D)("FLAME", OutputFormat.VTI, SamplingMethod.

Periodic, 1)

274 }

275 }

276 def main(args: Array[String]): Unit = {

277 new Flame1DProg with SaiphOpsExp { self =>

278 val codegen = new SaiphCGen { val IR: self.type = self }

279 codegen.emitSource(Flame1D _, new PrintWriter(Console.out))

280 }

281 }

282 }

108

Bibliography

[1] Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat
Medina, Mike Barrientos, Erich Elsen, Frank Ham, Alex Aiken, Karthik Duraisamy,
et al. Liszt: A domain specific language for building portable mesh-based pde
solvers. 2011. 5

[2] Anders Logg, Kristian B. Ølgaard, Marie E. Rognes, and Garth N. Wells. FFC:
the FEniCS Form Compiler, chapter 11. Springer, 2012. 6

[3] Todd Dupont, Johan Hoffman, Claus Johnson, Robert C Kirby, Mats G Larson,
Anders Logg, and L Ridgway Scott. The FEniCS project. Chalmers Finite Element
Centre, Chalmers University of Technology, 2003. 6

[4] Martin Odersky and al. An Overview of the Scala Programming Language. Tech-
nical Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004. 7

[5] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In Proceedings of the
ninth international conference on Generative programming and component engi-
neering, GPCE ’10, pages 127–136, New York, NY, USA, 2010. ACM. ISBN 978-
1-4503-0154-1. doi: 10.1145/1868294.1868314. URL http://doi.acm.org/10.

1145/1868294.1868314. 7, 97

[6] Adriaan Moors, Tiark Rompf, Philipp Haller, and Martin Odersky. Scala-
virtualized. In Proceedings of the ACM SIGPLAN 2012 workshop on Partial
evaluation and program manipulation, PEPM ’12, pages 117–120, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1118-2. doi: 10.1145/2103746.2103769. URL
http://doi.acm.org/10.1145/2103746.2103769. 7, 10

[7] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian
Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
and Matthias Zenger. An overview of the scala programming language. Technical
report, 2004. 9

[8] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In Acm Sigplan Notices,
volume 46, pages 127–136. ACM, 2010. 10

109

http://doi.acm.org/10.1145/1868294.1868314
http://doi.acm.org/10.1145/1868294.1868314
http://doi.acm.org/10.1145/2103746.2103769

[9] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally tagless, par-
tially evaluated: Tagless staged interpreters for simpler typed languages. J.
Funct. Program., 19(5):509–543, September 2009. ISSN 0956-7968. doi: 10.1017/
S0956796809007205. URL http://dx.doi.org/10.1017/S0956796809007205. 10

[10] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel
programming with the message-passing interface, volume 1. MIT press, 1999. 30

[11] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP: portable
shared memory parallel programming, volume 10. MIT press, 2008. 31

[12] TJ Poinsot and DP Veynante. Combustion. Encyclopedia of Computational Me-
chanics. 33, 79

[13] Scott Meyers. Effective Modern C++: 42 Specific Ways to Improve Your Use of
C++ 11 and C++ 14. ” O’Reilly Media, Inc.”, 2014. 45

[14] Amy Henderson, Jim Ahrens, Charles Law, et al. The ParaView Guide. Kitware
Clifton Park, NY, 2004. 45

[15] Thomas Williams and Colin Kelley. many others, gnuplot 4.4: an interactive plot-
ting program, 2010. 45

[16] Extrae. User guide manual -for version 2.5.1. URL https://www.bsc.

es/computer-sciences/performance-tools/trace-generation/extrae/

extrae-user-guide. 45

[17] Paraver: a flexible performance analysis tool . URL https://www.bsc.es/

computer-sciences/performance-tools/documentation. 45

[18] Hugo Winter and John Thuburn. Numerical advection schemes in two dimensions.
2011. 54

[19] Dale R Durran. Numerical methods for wave equations in geophysical fluid dynam-
ics, volume 32. Springer Science & Business Media, 2013. 54

[20] G. Sod. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. Journal of Computational Physics, 27(1):1–31, 1978.
ISSN 00219991. URL http://dx.doi.org/10.1016/0021-9991(78)90023-2. 64

[21] Ali Ben Moussa and Hatem Ksibi. Numerical simulation of a one-dimensional
shock tube problem at supercritical fluid conditions. International Journal of Fluid
Mechanics Research, 35(1):38–50, 2008. ISSN 1064-2277. 66

[22] Gas dynamics: The riemann problem and discontinuous solutions: Applica-
tion to the shock tube problem. In Ionut Danaila, Pascal Joly, SidiMah-
moud Kaber, and Marie Postel, editors, An Introduction to Scientific Comput-
ing, pages 213–233. Springer New York, 2007. ISBN 978-0-387-30889-0. doi:
10.1007/978-0-387-49159-2_10. 69

110

http://dx.doi.org/10.1017/S0956796809007205
https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
https://www.bsc.es/computer-sciences/performance-tools/documentation
https://www.bsc.es/computer-sciences/performance-tools/documentation
http://dx.doi.org/10.1016/0021-9991(78)90023-2

[23] M. Moragues. Variational multiscale stabilization and local preconditioning for
compressible flow. phd thesis submitted to universitat politécnica de catalunya.
147, 2015. 69

[24] T. Mantel, F.N. Egolfopoulos, and C.T. Bowman. A new methodology to determine
kinetic parameters for one- and two-step chemical models. Center for Turbulence
Research, Proceedings of the Summer Program, 1996. 73

[25] Eduardo Fernández-Tarrazo, Antonio L. Sánchez, Amable Liñán, and Forman A.
Williams. A simple one-step chemistry model for partially premixed hydrocarbon
combustion. Combustion and Flame, 147(1-2):32–38, 2006. 73

[26] M.M. Holton and College Park. Mechanical Engineering University of Maryland.
Autoignition Delay Time Measurements for Natural Gas Fuel Components and
Their Mixtures. University of Maryland, College Park, 2008. ISBN 9780549957867.
77, 78

[27] Dipl-Ing Dieter Kaufmann and Ing Paul Roth. The method of fractional steps
applied to laminar flat flame calculations. Forschung im Ingenieurwesen A, 53(4):
113–117, 1987. 79

[28] D. Mira, M. Zavala, M. Avila, Herbert Owen, J.C. Cajas, G. Houzeaux, and
M. Vázquez. Heat transfer effects on a fully premixed methane impinging flame,
17-10 Sept. 2014. 87

[29] LMS Official website. URL http://scala-lms.github.io/. 99

111

http://scala-lms.github.io/

	Abstract
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.2.1 Detailed Objectives

	1.3 Context
	1.4 Document structure

	2 State of the art
	2.1 Liszt
	2.2 FEniCS

	3 Saiph overview
	3.1 Saiph design
	3.2 Underlying technology
	3.2.1 Scala
	3.2.2 Lightweight Modular Staging
	3.2.3 Scala-virtualized compiler

	3.3 Saiph as a language
	3.3.1 Units
	3.3.2 Cartesian meshes
	3.3.3 Terms
	3.3.4 Operators
	3.3.5 Equations
	3.3.6 Boundary conditions
	3.3.7 Point sources
	3.3.8 Problem

	3.4 Saiph's internal features
	3.4.1 Numerical methods
	3.4.2 Domain specific optimizations
	3.4.3 Exploiting parallelism

	4 Fluid mechanics and chemistry theory
	4.1 Governing equations
	4.2 Dissecting the equations
	4.2.1 Meaning of terms
	4.2.2 Operators involved
	4.2.3 Vector equations
	4.2.4 Non-derivative equation
	4.2.5 Coupled system

	5 Tools and methodology
	5.1 Tools
	5.2 Methodology
	5.2.1 Scientific method design
	5.2.2 Development strategy

	6 Extending Saiph
	6.1 New functionalities
	6.1.1 Vector equations
	6.1.2 Non-derivative equations
	6.1.3 Coupled scheme
	6.1.4 Operations over vector of Units
	6.1.5 Other operators

	6.2 Optimizations
	6.2.1 Stabilized gradient
	6.2.2 Nested derivatives

	7 Results and evaluations
	7.1 Fluid mechanics and chemistry use-cases
	7.1.1 Convection
	7.1.2 Sod's shock tube
	7.1.3 Results and validation
	7.1.4 Autoignition delay time
	7.1.5 Premixed laminar flame
	7.1.6 Results and validation
	7.1.7 Nomenclature, units and constants

	7.2 Parallel execution analysis
	7.2.1 Platform
	7.2.2 Experimental Setup
	7.2.3 Scalability Results

	8 Summary
	9 Conclusions and future work
	A Scala
	B Lightweight Modular Staging
	C Premixed laminar flame; Saiph complete code
	Bibliography

