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Abstract. This paper discusses, experimental results of classifying several mass adding in a 

wing aircraft structure, using cross-correlated piezoelectric signals, represented by principal 

components. Piezoelectric signals are applied and recorded at specific points of the structure 

under analysis. Then, statistical features are obtained by means of principal component 

analysis to the correlation between excitation and response signals. Unsupervised learning is 

implemented to the reduced feature space, in order to identify clusters of damaged cases. The 

main result of this paper is the advantage resulting from using cross-correlated signals, 

evaluated through the performance of clustering indexes. Experimental data are collected from 

two test structures: i.) A turbine blade of a commercial aircraft and ii.) The skin panel of the 

torsion box of a wing. Damages are induced adding masses at different locations of the wing 

section surface. The results obtained show the effectiveness of the methodology to distinguish 

between different damage cases. 

1.  Introduction 

An important preoccupation in the aerospace industry is the continuous monitoring of aircraft 
components to avoid catastrophic failures. In recent years, methods for damage identification in 
aerospace structures have been focused on analyzing measurements from Fiber Bragg Grating sensors 
and piezoelectric devices [1], [2], where effectiveness of damage monitoring systems for aircraft 
structures, using a piezo-diagnostics approach, has been demonstrated. For example in [3], 
experimental crack extending on a wing panel using vibration deflection shapes can be detected by 
computing changes in the response from piezo-ceramic actuator patches. 

Thus, this paper deals with a previously proposed piezo-diagnostic methodology, for damage 
detection in aircraft structures [4]. The benefits by including a preprocessing stage based on correlated 
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piezoelectric signals are discussed, based on experimental results. It is shown that it is possible to 
obtain a better classification of different damages, when cross-correlation analysis is considered. 

2.  Aircraft wing damage detection based on Piezo-diagnostic approach 

Piezo-diagnostic principle takes advantage of the elastic wave propagation phenomenon to examine 
the structural signature. Where, piezoelectric devices are used both as actuators and as sensors to 
detect structural changes. Monitoring technologies using piezo-ceramic devices has been presented by 
Staszewski et al with beneficial for military aircrafts [5]. Also, some piezo-diagnostic applications 
include: detection of damage in aircraft joints by processing measurements from piezoelectric patches 
[6], inspection of rivet cracks or corrosion in aircraft wing structures [7] and, the design of a 

monitoring scanning system for a carbon fiber composite wing box [8]. Further application for 
aerospace industry can be found at Adams [9] and Stepinski et al. [10]. 

In piezo-diagnostics, one of the procedure used to distinguish structural damages, is the application 
of principal component analysis (Figure 1). It consists of computing statistical indices from 
piezoelectric measurements recorded from several piezo devices attached to the structure surface. 
Typically, one of the piezoelectric devices (PZT) is excited to induce along the structure a guided 
wave and the others PZTs are used as sensors to capture it at different locations of the structure. Data 

from undamaged and damage experimental cases are projected onto the principal components space, 
and statistical indexes are computed to differentiate several conditions of the structure [11]. 

 

 
Figure 1. Piezo-diagnostic approach for damage detection by using principal component analysis 

The methodology depicted in Figure 1 has been previously tested and validated using different 
structures: an aircraft turbine blade, an aircraft wing and an aircraft fuselage [12], [13]. However, the 
novelty presented in this paper with respect to previous works, is the inclusion of cross correlation 
analysis as a tool for improving separation boundaries for damage conditions. Thus, cross-correlation 

between actuation and sensing piezo-signals is estimated previous to the principal component analysis 
(Figure 2). The cross-correlation function between two signals 𝑋(𝑡) and 𝑌(𝑡) is defined as: 

                                        𝑅𝑋𝑌(𝑡, 𝑡 + 𝜏) = lim
𝑁→∞

1

𝑁
∑ 𝑋𝑘(𝑡)𝑌𝑘(𝑡 + 𝜏)𝑁

𝑘=1                                                 (1) 

Where 𝑁 is the number of signal samples and 𝜏 is the lag time interval used to compute the cross-

correlation function. 
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Figure 2. Piezo-diagnostic approach based on cross-correlated features 

The K-means algorithm is proposed to organize damage cases into groups and then to evaluate the 
effectiveness of cross-correlation as preprocessing stage in the damage detection. This algorithm is 
one of the most commonly used optimization-based unsupervised learning methods. The goal of K-
means clustering is to organize the data into k groups, such that the within-group sum-of-squares be 

minimized [14].  

                                            𝑚𝑖𝑛 [∑ ∑ (𝑥𝑖𝑔 − 𝑥̅𝑔)
′
(𝑥𝑖𝑔 − 𝑥̅𝑔)

𝑛𝑔

𝑖=1
𝑘
𝑔=1 ]                                                    (2) 

Each 𝑔𝑡ℎ-cluster in the partition is defined by 𝑛𝑔 datacase members and by its centroid 𝑥̅𝑔, or 

center. The centroid for each cluster is the point to which the sum of distances from all members in 
that cluster is minimized. Gap statistic and Davies-Bouldin index are computed to evaluate the data 

clustering analysis. Therefore, the optimal clustering solution occurs with a largest gap statistic and 
smallest Davies-Bouldin index values. The K-mean centers represent adequately the data in a cluster if 
the observations within a group are more similar to each other. 
The gap value is defined as [15]: 

                                              𝐺𝑎𝑝𝑛(𝑘) = 𝐸𝑛
∗{𝑙𝑜𝑔(𝑊𝑘)} − 𝑙𝑜𝑔(𝑊𝑘)                                                    (3) 

where n is the sample size, k is the number of clusters, and 𝑊𝑘 is the cluster dispersion, defined by: 

                                                                𝑊𝑘 = ∑ 2𝑛𝑟𝐷𝑟
𝑘
𝑟=1                                                                  (4) 

where 𝑛𝑟  is the number of data points in the cluster r and 𝐷𝑟  is the sum of the pairwise distances 

for all points in cluster r. 𝐸𝑛
∗  is the expected value determined by a reference distribution and 

𝑙𝑜𝑔(𝑊𝑘) is computed from the sample data. 

The Davies-Bouldin criterion is based on a ratio of within-cluster and between-cluster distances, 
defined as [16]: 

                                                             𝐷𝐵 =
1

𝑘
∑ max

𝑗≠𝑖
{𝐷𝑖,𝑗}𝑘

𝑖=1                                                             (5) 

 

where 𝐷𝑖,𝑗 is the distance ratio between the ith and jth clusters. 

In addition to the Gap statistic and Davies-Bouldin index, the quantization error (squared sum of 
errors) and the dispersion in each cluster (standard deviation) are computed as quality indices to 

evaluate the clustering process in order to compare the piezo-diagnostic approach when cross-
correlation analysis is included. 

 

PIEZO-ACTIVE SYSTEM

PCA-BASED MODELLING CLUSTERING ANALYSIS





n

i

ijvj x
n 1

1


vjijij xx 

ni ,,1

Projected Data
Reduced Space

MinMax

























nmnjnn

imijii

mj

xxxx

xxxx

xxxx

X

......

..................

......

..................

......

21

21

111211

PCA

CROSS-CORRELATION ANALYSIS

0.9 0.95 1 1.05 1.1
-5

-4

-3

-2

-1

0

1

2

3

4

 

 

Actuator signal

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

-10

-5

0

5

10

0.6 0.8 1 1.2 1.4 1.6

x 10
4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

ACTUATOR SIGNAL

SENSOR SIGNAL

CORRELATED 
SIGNAL

CROSS-
CORRELATION 

Q

T 2

PIEZO 
DEVICES

PIEZO DEVICES

ADQUISITION 
SYSTEM

SIGNALS 
RESPONSES

DATA 
BASE 

GENERATOR 
WAVE

11th International Conference on Damage Assessment of Structures (DAMAS 2015) IOP Publishing
Journal of Physics: Conference Series 628 (2015) 012129 doi:10.1088/1742-6596/628/1/012129

3



 
 
 
 

 
 

3.  Experimental procedure 

Two test structures were used to validate the damage detection approach (Figure 3). The specimens 
are hosted in the “Universidad Politécnica de Madrid” (UPM – Spain). The first structure belongs to 
an aircraft wing, which is divided by stringers and ribs and the second one to an aircraft turbine blade, 

which has an irregular form and includes stringers in both faces. 
 

 

 
Figure 3. Aircraft section structures used to validate the methodology. Above: skin panel of aircraft 

wing, Below: turbine blade 

The skin panel was instrumented with 10 PZTs, while the turbine blade with 8 PZT’s. An 80 KHz 
burst type signal was configured to produce guided waves along the surface structures. Reversible 
damages were induced in both structures by adding masses in different positions, four damages for 
skin panel experiment (D1,…, D4) and five damages for turbine blade case (D1, …, D5). For both 
specimens 150 experiment repetitions for each damage were recorded. 

4.  Results and discussion 

Results for each experiment consider a number of clusters for the K-means algorithm equal to the 
number of damages in the respective structure. Therefore, each damage can be grouped in an 
individual cluster. In addition, 50 replicates of the K-means algorithm are executed to avoid local 
minima. Data normalization by means of variance values are used before K-means algorithm to 
minimize the within-cluster dispersion. 

The steps for applying PCA in practice regarding to data collection and organization, baseline 
model building, scaling preprocessing, statistical indices formulation, model testing, and iterative 

procedure to estimate principal components, can be found with most detail in previous works [11], 
[17], and [18]. Thus, data normalization by means of variance values are used before K-means 
algorithm to minimize the within-cluster dispersion. In addition, NIPALS algorithm is configured to 
estimate a number of principal components equal to the number of experiments induced for each 
damage case, i.e. 150. 

4.1.  Skin Panel Experiment 

Variance of the principal components are depicted in Figure 4. In which can be observed that the 
variance evolution is similar for both cases, when cross-correlated functions are used and without it. 
According to this, 100 components capture most of the principal components variability. In 
consequence, only 100 components for both uncorrelated and cross-correlated approaches are selected.  
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Figure 4. Principal component variances for skin panel experiment. Left: unmodified piezo-diagnostic 
scheme. Right: cross-correlated piezo-diagnostic approach 

The Figure 5 presents statistical indices and K-means clusters computed for uncorrelated signals. 
From Figure 5 can be concluded that atypical data dominate one of the clusters. Besides, damage 2 
(‘D2’) and undamaged cases (‘UND’) are closer when cross correlation are not estimated. In this case, 
K-means assigns a cluster for atypical data. 

 

 
Figure 5. K-means centroids with atypical data with uncorrelated signals for skin panel experiment. 

When atypical data are removed from original data matrix, the cluster centers for each damage type 

are located as it is shown in Figure 6. 

 
Figure 6. K-means centroids for skin panel experiment. Left: unmodified piezo-diagnostic scheme. 

Right: cross-correlated piezo-diagnostic approach 

In Figure 6, it can be observed that more dispersion appears without correlation analysis. 
Additionally, if correlation analysis is included in the damage classification approach, then the 
atypical data-cases are filtered. Table 1 summarizes the quality indexes of the clusters obtained by K-
means algorithm. 
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Table 1. Quality clustering indexes for skin panel experiment. 

  

Approach 

  

Uncorrelated with 

original data 

Uncorrelated eliminating 

atypical data 

Cross-correlated with 

original data 

  

In
d

ex
 

Gap statistic 3,595 3,504 5,885 

Davies-Bouldin 0,241 0,275 0,089 

Quantization Error 11,798 13,615 0,439 

Dispersion for each 

cluster 

[0.3178, 0.0655, 0.0684, 

0.0570, 0.2467] 

[0.0335, 0.1315, 0.0147, 

0.1032, 0.2467] 

[2.2434e-04, 0.0032, 

0.0404, 0.0350, 0.0078] 

 
According to Table 1, a better dispersion in all clusters and improved clustering indexes are 

obtained when cross-correlated signals are used instead of raw data. In addition, the uncorrelated 

approach has comparable clustering indexes values even when atypical cases are removed. 

4.2.  Turbine Blade Experiment 
Similarly than the previous experiment, most of the principal components variability is captured with 
100 components as shown in Figure 7. 
 

 
Figure 7. Principal component variances for turbine blade experiment. Left: unmodified piezo-

diagnostic scheme. Right: cross-correlated piezo-diagnostic approach 

Immediately after, the cluster procedure is performed. The final clusters for damages in turbine 
blade experiments are depicted in Figure 8. Here it is possible to highlight a clear separation between 

different types of damage when cross-correlation analysis are included in the piezo-diagnostic 
approach. 
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Figure 8. K-means centers for turbine blade experiment. Left: uncorrelated piezo-diagnostic scheme. Right: cross-correlated 

piezo-diagnostic approach 

The respective clustering errors are summarized in Table 2. According to these results, the 

clustering indexes confirm the best performance for cross-correlated analysis. 
 

Table 2. Quality clustering indexes for turbine blade experiment. 

  
Approach 

  

Uncorrelated Cross-correlated 

In
d

ex
 

Gap statistic 3,681 6,865 

Davies-Bouldin 0.4054 0.0618 

Quantization Error 16,787 0.2909 

Dispersion for each 

cluster 

[0.0092, 0.1236, 0.1362, 0.0828, 

0.8833, 0.2380] 

[0.0357, 0.0069, 0.0090, 0.0168, 

0.0147, 0.0050] 

 

5.  Conclusion 

In this paper is shown that by using common clustering techniques is possible to distinguish damages 
in a simple way. However, a better damage differentiation can be obtained if cross-correlation 

technique is used as preprocessing technique. This effectiveness was validated by computing the error 
clustering. 

In order to avoid abnormal data, dispersion preprocessing was achieved filtering typical cases by 
using cross-correlated piezoelectric signals, where an adequate rejection of abnormal data was 
obtained. 

Related to evolution of variances for principal components it can be concluded that no differences 
are presented for both structures of different properties. Also, since, K-means centers are assigned to 

damage types when cross-correlation analysis is included, classification can be achieved representing 
damage cases with this optimal value. 

Effectiveness of cross-correlation was validated with the error clustering calculation where 
improvements were obtained for the two experiments. 
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