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Abstract

Nowadays, there is a huge amount of information locked up in databases and these in-
formation can be exploited with machine learning techniques, which aim to find and
describe structural patterns in data. After a clear dominance of Hadoop MapReduce as
a Cloud Computing engine, Spark emerged as its successor because works in memory.
This fact improved vastly the performance of machine learning algorithms and streaming
applications.

Our work is focused on create an application capable of mix both concepts to make
the most out of them. Hence, we assumed that a Fraud Detection scenario could be a
great opportunity to show up Spark’s capabilities.

In order to visualize and model the scalability of the application, we ran several and
extensive performance tests at the university computing center, where we had all the
necessary tools in the cluster to make it possible. The results mostly matched our expec-
tations and theoretical analysis, when the application ran over the input transactions.
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Chapter 1

Introduction

1.1 Big Data

1.1.1 Definition

If there are currently a couple of words that are trending today are: Big data. Many
people have heard about them but what is it? Well, in general terms, we might refer to as
the trend in the advancement of technology that has opened the door to a new approach
to understanding and decision-making. Then, Big Data, is used to describe large amounts
of data (structured, unstructured, and semi-structured) that would take too long and are
too expensive to load into a relational database for analysis. Therefore, the concept of Big
Data is applied to any information that can not be processed or analyzed using traditional
tools or processes.

1.1.2 The four V’s of Big Data

Nowadays are emerging in many important applications that require Big Data tools such
as Internet search, business informatics, social networks, social media, genomics, stream-
ing services, meteorology and a big etcetera which are facing this enormous amount of
data, and it is a problem to deal with.

The question now is: when do we consider something as Big Data? Many companies
like to break Big Data in four different V’s [1]:

1. Volume: Every day there are more devices and more complex information systems.
This plus the fact that more and more people have access to them creates huge
amount of data that is increasing exponentially. This would be our first big data
problem.

2. Velocity: As mentioned before, the devices are becoming more complex. Monitoring
functions in real time are increasing and we need to treat them. Handling large
amounts of streaming data is really challenging and Big Data takes care of it.

1



CHAPTER 1. INTRODUCTION 2

3. Variety: Social networks, weareables, health, streaming video . . . We have an endless
of different types of data and they all have to be able to deal with.

4. Veracity: This V does not seem so obvious but it is of great importance. Most
business leaders do not trust the information they use to make decisions. Poor data
quality cost US economy around $3.1 trillion a year.

1.1.3 Big Data platforms

Although Big Data is a very new technology, it has a large variety tools to work with.
The most relevant are the Hadoop environment tools.

Understanding this platform means understand the history of Big Data and of course
Spark (the engine that is going to used in this thesis). So it is interesting to make a brief
summary of its story and then see which elements compose it. [2]

2002-2004: Hadoop pre-history

In 2002 Appears Nutch, a robot and search engine based on Lucene. His goal was web-
scale and crawler-based search. It was not very successful because it was still far from
offering web-scale goal.

2004-2006: Hadoop gestation

GFS & MapReduce papers are published and are directly addressed to Nutch’s scaling
issues. Then they added to it DFS & MapReduce implementation. Even with these
improvements it was still away from web-scale objective.

2006-2008: Hadoop childhood

Finally in 2006 Yahoo hires Doug Cutting and Hadoop spins out of Nutch1. Web-scale
finally achieved.

Figure 1.1 shows the evolution of the platform in a clearly way:

1http://nutch.apache.org/
2oracle4ryou.blogspot.be/2014/09/hadoop-history.html
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Figure 1.1: Hadoop timeline 2

Hadoop ecosystem

Apache Hadoop is a scalable fault-tolerant distributed system for data storage and pro-
cessing (open source under the Apache license). It is composed of two main subsystems:
Hadoop Distributed FileSystem (HDFS) and MapReduce. Basically Hadoop distributes
our files through HDFS and then processes them through the MapReduce programming
model.

Specifying. Hadoop by itself is a framework that allows other programs to interact
over its system. So, in order to take advantage of Hadoop, we need the toolset that we
see in Figure 1.2:

Figure 1.2: Hadoop ecosystem 3

3http://www.mssqltips.com/sqlservertip/3262/big-data-basics–part-6–related-apache-projects-in-
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HDFS and MapReduce

The last step before starting to write about Apache Spark is understand with more detail
the two main concepts of Hadoop: HDFS and MapReduce.

• HDFS: Is a distributed file system. It was created from the Google File System
(GFS). HDFS is optimized for large files and flows of data. Its design reduces the
Input/Output operations on the network. Scalability and availability are some of
its key, because of data replication and fault tolerance. Important elements of the
cluster are: [3]

– NameNode: There is only one in the cluster. It regulates the access to the files
from the clients. It keeps in memory the file system metadata and the block
controls that each DataNode file has.

– DataNode: They are responsible for reading and writing requests from clients.
Files are composed of blocks, these are replicated in different nodes.

In the appendix A are included two images that show the writing process in HDFS
(figure: A.1) and its replication system (figure: A.2)

• MapReduce: Is a batch process, created for distributed processing of data. Allows
in a simple fashion, parallelize work on large volumes of data such as web logs.

MapReduce simplifies parallel processing, abstracting the complexity that distributed
systems have. Map functions basically transform a dataset to a number of key/value
pairs. Each of these elements will be ordered by key, and Reduce function is used
to combine the values (with the same key) in the same result.

A program in MapReduce is generally known as Job. Running a Job begins when
the client sends the configuration to JobTracker, this setting specifies the Map,
Combine (shuffle) and Reduce functions. [4]

Figure 1.3: MapReduce schema 4

hadoop-ecosystem/
4http://hao-deng.blogspot.be/2013/05/mapreduce-data-flow-with-reduce-tasks.html
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1.2 Machine Learning

1.2.1 Definition

Machine learning is a branch of Computer Science which, essentially, studies how systems
learn tasks. Another way to think about machine learning is that it is pattern recognition:
the act of teaching a program to recognize patterns and react to them.

Is not surprising that nowadays, with the amount of data and the computing capacity
we have, the use of machine learning algorithms is increasing vastly. Here are some
examples of its currently uses:

• Fraud detection: identify credit card transactions which may be fraudulent in na-
ture.

• Weather prediction.

• Face detection: find faces in images.

• Spam filtering: identify email messages as spam or non-spam.

• Customer segmentation: predict, for instance, which customers will respond to a
particular promotion.

• Robotics.

• Medical diagnosis: diagnose a patient as a sufferer or non-sufferer of some disease.

1.2.2 Types of machine learning algorithms

In order to teach our system, we have three different methods: supervised learning, unsu-
pervised learning and reinforcement learning. [5]

• Supervised learning : this method has a database that we use to train our system.

• Unsupervised learning : discovers a good internal representation of the input. Unlike
the supervised method, this one takes decisions without a training data base.

• Reinforcement learning : Input data is provided as stimulus to a model from an
environment to which the model must respond and react. Feedback is provided
not from of a teaching process as in supervised learning, but as punishments and
rewards in the environment.
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Finally, in order to show the most relevant algorithms of each learning method there
is a table below:

Supervised

KNN
Linear regression
Logistic regression
Naive Bayes
Decision trees
Random Forests
Neural networks
SVM

Unsupervised

K-means
Hierarchical clustering
Fuzzy clustering
Gaussian mixture models
Self-organizing maps

Reinforcement
Temporal Differences
Sarsa
Q-learning

Table 1.1: Table with most relevant algorithms of each kind of learning methods

1.3 Thesis work description

This thesis has two main objectives. In one hand, learn and understand a considerable
amount of tools related with Big Data, a subject which I were not familiar with. On the
other hand, as a student who loves machine learning, try to combine these two disciplines
by making an application.

For the accomplishment of my objectives, I have used Apache Spark, a new born
platform which pretends to replace the old one: Hadoop MapReduce. Therefore, a big
part of my work has been to understand the capabilities and limits of this tool. Moreover
acquire the criteria to develop an environment able to interconnect several programs.

Figure 1.4: Thesis schema.

Thus, I have focused on the creation of a system able to analyse bank transactions
on-line with the objective to discover fraudulence.
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Finally, the fact that Spark is a new creation engine is a really positive point because
it has a long road ahead, and although is still young it has raised a lot of expectation.
Besides, this fact implies that I will be one of the few developers working on it (Spark
can not be compared to other platforms like Hadoop in amount of developers). However,
the fact of being a new born platform was a handicap too for two reasons:

• There are not many documentation compared to others platforms.

• I had to be continually alert with the new updates. As consequence of this I had to
change some lines of code and even the orientation of my project in one occasion.

1.4 Thesis structure

To structure this thesis as best possible we decided that must proceed with the following
fashion: In Chapter 2 we will introduce the state of the art of technologies: MapReduce
paradigm, Apache Hadoop, Apache Spark, Spark libraries, programs that interact with
our application like Apache Flume and HBase and Scala, the program language used in
this thesis. Chapter 3 introduce a brief but necessary introduction to random forest, the
machine learning algorithm used in this thesis. In Chapter 4 we describe our application
in depth ; in Chapter 5 we explain where are we deploying our application and how the
university cluster works. We will continue discussing the results of our system in Chapter
6. And finally, we provide our conclusions and future works in Chapter 6.



Chapter 2

State of the art

This chapter describes the technology used during this thesis. We will emphasize on Spark,
the main core of this thesis, and will end with Random Forest algorithm explanation.

2.1 Apache Spark

“ Learning Spark is at the top of my list for anyone needing a gentle
guide to the most popular framework for building big data applications.”

—Ben Lorica Chief Data Scientist, O’Reilly Media

2.1.1 History of Spark

Spark is an open source project made and maintained by a community of developers.
Spark begins in 2009 in the UC Berkeley RAD Lab but finally will become part of AM-
PLab. Spark born due the observed inefficiency of MapReduce in iterative and interactive
computing jobs. That is why Spark, even from the beginning, was designed to be fast
for the mentioned algorithms. Also brought ideas like support for in-memory storage and
efficient fault recovery. As a result, once Spark was released was already 10–20 times
faster than MapReduce for certain jobs.

At the very begining the first Spark’s users were from groups inside UC Berkeley.
But in a very short time, over 50 organizations began using Spark, and today, half of them
speak about their use cases at Spark community events such as Spark Meetups and the
Spark Summit. Currently the most important contributors to Spark include UC Berkeley,
Databricks, Yahoo!, and Intel. [6]

2.1.2 Introduction to Spark

Apache Spark is a cluster computing framework built in Scala. It is a fast and general
engine for large-scale parallel data processing.

Spark extends the popular MapReduce model. We can say that one of the most

8



9 2.1. APACHE SPARK

important characteristic of Spark is that works in memory. This fact implies that is
more efficient doing computations like iterative algorithms, interactive queries and stream
processing due the avoidance of the disk read/write bottleneck.

The Spark project contains multiple integrated components. Spark SQL, Spark
Streaming, MlLib and GraphX. These components have been designed to work together
whenever you want. Thus, they can be combined like libraries in a software project.
Where Spark is their core, the one that is responsible for scheduling, distributing, and
monitoring applications over cluster. [6]

Figure 2.1: Spark stack graph. 1

Finally before going deeply into Spark, it is worth to mention that Spark is also very
accessible. It offers a few interesting APIs in Python, Java, Scala, SQL, and built-in
libraries. It also can run in Hadoop clusters, which means that can interoperate with
other Big Data tools like the ones showed on Figure 1.1.

2.1.3 Basic concepts

Key words

In order to understand the functioning of Spark is needed to feel comfortable with the
following words: [7]

• Job: It is a parallel computation which reads some input from HDFS, HBase2,
Cassandra3, local... and performs some computation on the data (e.g save, collect).

• Tasks: Each stage has some tasks, one task per partition. One task is executed on
one partition of data on one executor (machine).

• Executor: The process responsible for executing a task.

The number of executors used in our programs are directly related with the amount
of time that one job takes to be executed. The figure showed below shows the
relevance of using a correct number of executors and how reduces exponentially the
execution time of our jobs. Although we can also appreciate that there is a threshold
where increasing the number of executors does not reduce the execution time any
more.

1Extracted from the book: Learning Spark, Lighting-fast data analysis
2https://hbase.apache.org/
3http://cassandra.apache.org/
5http://spark.apache.org/docs/1.3.0/cluster-overview.html
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Figure 2.2: In this schema we show how a driver program send task for the executors to
run 5

• Driver: The program/process responsible for running the Job over the Spark Engine.

• Master: The machine on which the Driver program runs.

• Slave: The machine on which the Executor program runs.

• Stages: Jobs are divided into stages. Stages are classified as a Map or reduce stages.
They are divided based on computational boundaries, all computations(operators)
cannot be Updated in a single Stage. It happens over many stages.

Spark DAG (directed acyclic graph)

DAG execution model is essentially a generalization of the MapReduce model. Whereas
MapReduce model has two kind of computation steps (a map step and a reduce step),
DAGs created by Spark can contain any number of stages. This allows some jobs to
complete faster than they would in MapReduce. For example if we submit a Spark job
like in the second stage of the Figure: 2.3 which contains a map operation followed by
a filter operation. Spark DAG optimizer would rearrange the order of these operators
and schedule them. This means that, in situations where MapReduce must write out
intermediate results to the distributed filesystem, Spark can pass them directly to the
next step in the pipeline.[?]

7http://blog.cloudera.com/blog/2014/03/apache-spark-a-delight-for-developers/
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Figure 2.3: Example of how Spark computes job stages. Boxes with solid outlines are
RDDs (Section 2.1.3). Partitions are shaded rectangles. The first stage is going to be
executed first and will perform a map action. The second stage applies a map and filter
function. Finally the results of both stages are going to be joined in the third stage. 7

RDD (resilient distributed dataset)

This is the core concept in Spark. Formally, an RDD is a read-only, partitioned collection
of objects which can be stored either in memory or in disk. RDDs can only be created in
two ways: by loading an external dataset, or by distributing a collection of objects using
the command parallelize.

The main characteristics of using RDDs are [7]:

• It is fault tolerant due it uses a coarse-grained transformations. This kind of trans-
formation means that all our transformation will be applied into all the dataset but
not individual elements. With this functionality we lose flexibility, but in the other
hand makes possible to save the operations done in our dataset in the DAG. As a
result if a partition of an RDD is lost, the RDD has enough information about how
it was derived from other RDDs to recompute just that partition. Therefore, lost
data can be recovered without requiring costly replication.

• It uses lazy evaluation. Lazy evaluation means that when we call a transformation
on an RDD, the operation is not immediately performed. Instead, Spark internally
records metadata to indicate that this operation has been requested. This property
is used to reduce the number of passes that Spark has to take over our data by
grouping operations together.

• As we said before RDD is a dataset which is partitioned, that is, it is divided
into partitions. Each partition can be present in the memory or disk of different
machines. So if we process an RDD, then Spark will need to launch one task per
partition of the RDD.

• The RDDs accept two types of operations: transformations and actions. The Figure
2.4 below shows and example of action and transformation.

9http://es.slideshare.net/tsliwowicz/reversim2014
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Figure 2.4: Here we generate our first RDD (textFile) loading a text file. Once we have
generated this RDD we apply a filer transformation which will return us a new RDD
(linesWithSpark) with the dataset filtered by the lines that contain Spark. Finally we
perform two actions to linesWithSpark RDD that will return us the desired values. 9

2.1.4 Scalability

This subsection is going to be quite short, that is because is meant to show how well Spark
scales in a real example. In this case we are going to calculate the correlation matrix of
large datasets.

Figure 2.5: Chart with the time elapsed calculating a matrix correlation with datasets of
different sizes.
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2.1.5 First example

Once explained the key concepts of Spark, we are prepared to see and to explain our first
example. In this case we are going to study probably the most representative example:
Word Count.

1 val textFile = spark.textFile("hdfs://input.txt")

2 val counts = textFile.flatMap(line => line.split(" "))

3 .map(word => (word, 1))

4 .reduceByKey(_ + _)

5 counts.saveAsTextFile("hdfs://result.txt")

In the first line of code we create an RDD called textFile. This is the result of loading a
distributed file in HDFS called: input.txt. Once we have created this RDD, in the second
line, we can apply several operations. In this case we are using a flatMap, which receive
the lines of textFile. Then flatMap applies a lambda function to each line of the RDD.

NOTE: Lambda functions are used inside some methods like flatMap. Basically
writing:

1 line => line.split(" ")

Is equivalent to do the next function:

1 def function (String lines): RDD(String) = {

2 return lines.split(" ")

3 }

The function applied is split, which will create a new RDD with just the words. Then to
this new RDD, in the third line, we will apply a map function. This map will receive the
words from the new RDD created, and will create a new RDD with a pair of key values
with the word and a number 1. Then in the fourth line we will create the last RDD,
which will be the reduce of the last RDD by its key. Basically the ” ” takes the first
value of the key/value pairs of the last RDD and will make a sum with itself. Finally we
save this last RDD in the variable counts in order to finally save the result in a text file.
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Figure 2.6: Flux diagram of the above explication.

2.1.6 Machine Learning Library (MLLIB)

One of the most important tools in Spark is its machine learning library. MLlib is the
Spark’s library that contains machine learning algorithms meant to work in a cluster.
This library is part of the Spark core, therefore can be used from any other of the other
libraries. MLlib’s design and philosophy are simple: it lets you invoke various algorithms
on distributed datasets, representing all data as RDDs. MLlib introduces a few data types
(e.g., labeled points and vectors), but at the end of the day, it is simply a set of functions
to call on RDDs. [8]

The algorithm that are currently available are:

Basic statistics

summary statistics
correlations
stratified sampling
hypothesis testing
random data generation

Classification and regression

linear models (SVMs, logistic regression, linear regression)
naive Bayes
decision trees
ensembles of trees (Random Forests and Gradient-Boosted Trees)
isotonic regression

Collaborative filtering alternating least squares (ALS)

Clustering

k-means
Gaussian mixture
power iteration clustering (PIC)
latent Dirichlet allocation (LDA)
streaming k-means

Dimensionality reduction
singular value decomposition (SVD)
principal component analysis (PCA)

Frequent pattern mining FP-growth

Optimization (developer)
stochastic gradient descent
limited-memory BFGS (L-BFGS)
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2.1.7 Spark Streaming

The streaming processor of this thesis will be Spark Streaming. Basically, Spark Streaming
is a library of Spark that deals with streaming data. It enables scalable, high-throughput,
fault-tolerant stream processing of live data. [8] [7]

Figure 2.7: Spark streaming diagram. There are many ways to insert data to Spark
streaming, like Kafka13, Flume14, HDFS, etc. Once this data is processed can be saved in
HDFS, databases and dashboards. 15

The main advantages of using Spark streaming are: [9]

• It is scalable.

• Achieve second-scale latencies.

• Is is integrated with batch and interactive processing.

• It has a simple programming model.

• Its is efficient fault-tolerance. That is possible because it works with batches that
are replicated over the cluster.

Internally, Spark Streaming receives data streams and divides this data into batches.
After the division the data is processed by the core of Spark which will generate the final
stream of results in batches.

Figure 2.8: Image that illustrates the above description. 16

In order to deal with streaming processing there are a few different general techniques.
Two of the most common ones the following:

15http://kafka.apache.org/
15https://flume.apache.org/
15Source: https://spark.apache.org/docs/1.3.0/streaming-programming-guide.html#linking
16Source: https://spark.apache.org/docs/1.3.0/streaming-programming-guide.html#linking
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• Treat each record individually and process it on the fly.

• Combine multiple records into mini-batches. These mini-batches can be delineated
either by time or by the number of records in a batch.

The technique used by Spark Streaming is the second one. The main concept that
represent this approach is the DStream. A DStream is a sequence of mini-batches, where
each mini-batch is represented as a Spark RDD.

Figure 2.9: This image represent de concept of DStream.

To create a DStream we need to define the time of its mini-batches, called batch
interval. During this interval the DStream input data will become into RDDs, like in the
above figure. Each RDD in the stream will contain the records that are received by the
Spark Streaming application during a given batch interval. If there is not data in a given
interval, the RDD will be empty. [8]

Transformations in Spark Streaming

The fact that DStreams contain RDDs, make possible that Spark Streaming have a set
of transformations available on DStreams. These transformations are similar to those
available on the typical RDDs of Spark. The figure 2.10 shows all the types of operations
available with DStreams:

Windows operations

As table 2.10 shows, a new kind of operations appears when we are working with DStreams
and it is worth to understand, the windows operations.

• Window duration: The window duration is responsive of how much time Spark
streaming is getting data.

• Sliding window: This one opens a window for an indicate amount of time, where the
DStreams are going to accumulate until the window is closed. Once closed , Spark
streaming is going to process all the Dstreams at the same time.
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Figure 2.10: Table shows all the transformations and operations available in a DStream

Figure 2.11:

2.2 Data integration

This section aims to explain how the data is received in our system. Two of the most
commons data integrators are Apache Flume and Apache Kafka. For the thesis we have
used Flume due its ease of use compared to Kafka. Although Kafka is better for systems
with more than one streams. Let’s explain then each one.

2.2.1 Apache Flume

Apache Flume is a reliable and distributed system for efficiently gathering, collecting and
moving large amounts of log data from different sources to a centralized data store. [10]

Besides, Apache Flume can move massive quantities of event data too, so it is not
only limited to log data aggregation. Then, Apache Flume can be useful in network
traffic data, social-media-generated data, email messages and most likely, any data source
possible. [11]
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Data flow model

Two important concepts have to be understood about the data flow model: Flume event
and Flume Agent.

1. Flume event: Is the unit of data flow that have a byte payload and an optional set
of string attributes.

2. Flume agent: Is a (JVM) process that hosts the components through which events
flow from an external source to the next destination (Hop)

Figure 2.12: This image represents the basic idea of Flume Agent.17

Following the thread, if an external source like a web server is delivered to a Flume
source it will be consumed. If we deep in the explanation, we will see that all of this
happens because the external source sends events to Flume in a format that is recognized
by the target Flume Source. At that point, when a Flume source receives an event, it
stores it into one or more channels and this event will remain in the channels until a
Flume sink consumes it.

How does Flume sink treat that information? It removes the event from the channel
and puts it into an external storehouse like HDFS or forwards it to the Flume source of
the next Flume agent (next hop) in the flow.

Reliability

The fact events are staged in a channel on each agent and that they are only removed
from the channel after they are stored in the channel of next agent or in the terminal
repository provides Flume end-to-end reliability of the flow.

Furthermore, Flume, to guarantee the reliable delivery of the events, uses a trans-
actional approach. In other words, Flume sources and Flume sinks encapsulate in a
transaction the storage/retrieval, respectively, of the events placed in or provided by a
transaction provided by the channel. This ensures that the set of events are reliably passed
from point to point in the flow. Until now, we have focused in single-hoop delivery but it
is important to explain the reliability in multi-hop flow too. In multi-hop cases, the sink
of from the previous hop and the source from the next hop both have their transactions
running to guarantee that the data is safely stored in the channel of the next hop.

17https://flume.apache.org/
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Recoverability

Recovery from failure is possible thanks to the storage of events in the channel. Flume
supports a durable file channel, which is backed by the local file system. There is also a
memory channel, which simply stores the events in an in-memory queue, which is faster,
but any events still left in the memory channel when an agent process dies can not be
recovered.

Spark streaming and flume integration

Here we explain how to configure Flume and Spark Streaming to receive data from Flume.
There are two approaches in order to achieve this.

• Flume style push-based approach: In this approach, Flume push data directly
to Spark Streaming who sets up a receiver that acts an Avro agent for Flume.

• Pull-based Approach using a Custom Sink: This method runs a custom Flume
sink that allows the following. In conclusion, Flume does no push directly Spark
Streaming. It takes the following steps: [12]

– Flume pushes data into the sink, and the data stays buffered.

– Spark Streaming uses a reliable Flume receiver and transactions to pull data
from the sink. Transactions succeed only after data is received and replicated
by Spark Streaming.

This ensures stronger reliability and fault-tolerance guarantees than the previous
approach. However, this requires configuring Flume to run a custom sink.

In this thesis we have chosen the second approach due it is the newest one. This new
way to interconnect Flume with Spark has been thought to solve the deficiencies of the
first one, that is why it offers best characteristics.

2.2.2 Apache Kafka

Despite that this thesis is going to integrate Flume and Spark, the integration between
Kafka and Spark is probably the most used. In fact, Apache Kafka was our first option.
But the ease of use of Flume and the fact that we are using just one data source, tip the
scale in favor of Flume. That is why we think that Kafka is still worth to study deeply.

Introduction to Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the func-
tionality of a messaging system. As mentioned, this system is excellent when we have
different data sources. The question which we are asking ourselves is: what does Kafka
offers us that makes it so popular?
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To answer this question we need to understand the problems that other platforms
have. In the figure below we see on a system with many sources have a problem of excess
pipelines. This is really impractical and makes the system complex and inefficient.

Figure 2.13: Image that shows the problem of multiple pipelines in Kafka. 18

To overcome these complications, Kafka, will use a system of producer / consumer
messaging. The Figure 2.14 shows how the complexity of our system has been reduced
drastically.

Figure 2.14: Diagram that shows how Kafka decouple the data-pipelines and simplify our
system. 20

After this brief introduction we need to understand the basics of this messaging
system correctly:

• The first concept and the core of this system is the topic. Topics are categories
where Kafka maintains feeds of messages. Later on we will explain with more detail
this component.

• Of course with a producer / consumer system, the processes that publish messages
to a Kafka topic are producers.

18http://es.slideshare.net/charmalloc/developingwithapachekafka-29910685?from action=save
20http://es.slideshare.net/charmalloc/developingwithapachekafka-29910685?from action=save



21 2.2. DATA INTEGRATION

• Then, the processes that are subscribed to topics and take the published messages
are the consumers.

• Finally, the Broker is one of the servers that comprise a Kafka cluster.

Figure 2.15: This diagram represents a simple system of producer / consumer in a Kafka
cluster. 22

Next, the most important parts in Kafka will be explained in detail.

Topics

A topic is a category or feed name to which messages are published. We can think on
it like a Twitter Hashtag. Imagine a topic called test, this topic is like a Hashtag #test
where the there are subscribers that are subscribed to this topic and will receive all the
messages published by this topic. For each topic, Kafka maintains a partitioned log that
looks like this:

Figure 2.16: This figure shows how a topic is partitioned. 23

As we see in this picture, each partition is like an ordered, immutable sequence of
messages that is continually appended to a commit log. The messages in the partitions
are each assigned a sequential id number called the offset that uniquely identifies each
message within the partition. All these messages are retained inside a Kafka cluster for a
configurable period of time even if they are not consumed.

22https://kafka.apache.org/
23https://kafka.apache.org/
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Another concept appears when we work with this kind of partition model: the offset.
The offset is the only metadata saved for the consumer and it allows it to find the position
of the consumer in the log. The offset is controlled by the consumer. Normally, is that
consumer who will advance its offset as it reads messages, but in Kafka the position is
controlled by the consumer and it can consume messages in any order it likes.

We can summarize the partition purposes in two:

1. They allow the log to scale beyond a size that will fit on a single server.

2. They act as the unit of parallelism.

Producers

The second key element which we are going to explain about Kafka are the Producers.
The producer is responsible of publish data to the topics whom they are assigned. Besides,
the producer is also responsible for choosing which message to assign to which partition
within the topic.

Consumers

Messaging traditionally has two models: queuing and publish-subscribe. In a queue,
a pool of consumers may read from a server and each message goes to one of them;
in publish-subscribe the message is broadcast to all consumers. Kafka offers a single
consumer abstraction that generalizes both of these—the consumer group.

Consumers label themselves with a consumer group name, and each message pub-
lished to a topic is delivered to one consumer instance within each subscribing consumer
group. Consumer instances can be in separate processes or on separate machines.

If all the consumer instances have the same consumer group, then this works just like
a traditional queue balancing load over the consumers.

2.3 HBase

This thesis is going to deal with the fact of storing large amounts of streaming data in
HDFS. To face this situation we have chosen a NoSQL database called HBase. In this
section we are going to describe briefly how this database works and which are the most
relevant concepts used in this thesis.

HBase is the open source implementation of Google’s Big Table [16]. That imple-
mentation basically uses a sparse, distributed, persistent multidimensional sorted map or
dictionary. This one is indexed by its row key, column key, and a timestamp. HBase’s
data model can be described easily in the form of tables, consisting of rows and columns
(like in relational databases). But that is where the similarity between RDBMS data
models and HBase ends. In fact, even the concepts of rows and columns are a little bit
different [17]. Let’s start then with the most relevant concepts:
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• Table: HBase organizes data into tables. Table names are Strings and composed of
characters that are safe for use in a file system path.

• Row: Within a table, data is stored according to its row. Rows are identified
uniquely by their row key. Row keys do not have a data type and are always treated
as a byte[ ] (byte array).

• Column family: Data within a row is grouped by column family. Column families
also impact the physical arrangement of data stored in HBase. For this reason, they
must be defined up front and are not easily modified. Every row in a table has the
same column families, although a row need not store data in all its families. Column
families are Strings and composed of characters that are safe for use in a file system
path.

• Column Qualifier: Data within a column family is addressed via its column qualifier,
or simply, column. Column qualifiers need not be specified in advance. Column
qualifiers need not be consistent between rows. Like row keys, column qualifiers do
not have a data type and are always treated as a byte[ ].

• Cell: Is the intersection between a row key, column family, and column qualifier
that uniquely identifies a cell. The values within a cell do not have a data type and
are always treated as a byte[ ].

• Timestamp: Values within a cell are versioned. This versioning is done with a
timestamp, which is the identifier for a given version of a value. It is important to
keep in mind that when a timestamp is not specified during a writing process, the
timestamp that will be used is the current one.

Figure 2.17: This image shows all the main parameters of a HTable. It has been taken
from Hue 25.

2.4 Scala

To finish this chapter we will talk about the main programming language used: Scala.

25https://en.wikipedia.org/wiki/Hue (Hadoop)
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2.4.1 Why Scala API?

Spark has currently three main types of programming languages APIs: Scala, Python and
Java. The points that tip the scale to choose Scala instead of the others programming
APIs are the following:

• Ease of use: Here Scala and Python are pretty even. The loser of this part is Java.

• Performance: If we are working with simple systems is not a problem, but if we are
working on complex ones Scala is x10 faster than Python because it works on JVM.

• Documentation: All the documentation of Spark is made in Scala, whereas Python
and Java are not used all the examples.

• Libraries: Even though Python has better machine learning than Scala, they are
not Big Data oriented. MLLib, which has machine learning algorithms Big Data
orientes, has all its algorithms available for Spark and not in the others APIs.

In the figure 2.4.1 we have done a comparative table to see more visually the above
points.

Figure 2.18: This a comparison table between Spark APIs.
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2.4.2 History of Scala

Now that we are decided which is going to be our programming language let’s make a
brief introduction. First we are going to start with its history. [18] [19]

2001

Scala was designed by Martin Odersky and his group at the Federal Polytechnic School
of Lausanne (Switzerland). Odersky it aimed to combine functional programming and
object-oriented programming.

2003

This year was launched the first public version.

2006

A second version was released: Scala v2.0.

2011

On 12 May of this year, Odersky and his collaborators launched Typesafe Inc., a company
to provide commercial support, training, and services for Scala. This company received
a $3 million investment from Greylock Partners this year.

2.4.3 What does Scala offer us?

The main advantages of using Scala can be summarized like this:

• It is a programming language designed for general purpose to express common
programming patterns in a concise and elegant fashion.

• The characteristics of object-oriented and functional languages are integrated.

• Scala is not an extension of Java, but it is completely interoperable with it.

• Scala is translated to Java bytecode and program efficiency is usually compiled as
Java.

2.4.4 First look at Scala code

This subsection aims t show and easy example to see our first lines in Scala. The code
used has been extracted from Programming Scala book. [20]
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1 class Upper {

2 def upper(strings: String*): Seq[String] = {

3 strings.map((s:String) => s.toUpperCase())

4 }

5 }

6 val up = new Upper

7 Console.println(up.upper("A", "First", "Scala", "Program"))

The class of above converts Strings to uppercase. So, in the first line we are defining
our class and giving to it the name of Upper. After that we define the method upper where
we are going to introduce several strings (the operator * is the responsive of permit it).
After the : we indicate to this method which kind of parameter we are going to receive, in
this case a sequence of strings. Finally the last line of this method uses the method map
into the strings variables. Inside the map we are doing the same as the code provided in
the subsection of Spark ”First example”.

Once we have created the method upper we are going to create an object in line 6.
Finally in the next line we will use the object up which will contain the method upper in
order to finally print in console the uppercase of the strings introduced inside the method.
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Random Forest

3.1 Introduction

In a supervised classification problem a sample S is defined as:

S = {(xn, yn)|n = 1, 2, ..., N, xn ∈ Rd, yn ∈ {1, 2, ..., C}} (3.1)

being N the number of elements of the set of data, C is the number of different classes
and d the number of variables that define the samples xn of the set of data. Each of
these examples is represented by a vector xn, which is associated with a corresponding
class label yn and is defined by different variables, which can be numeric (values are real
numbers ) or categorical (take values in a finite set in which there is no order relation).
Such vectors xn are also known as feature vectors.

Based on these data, a learning algorithm tries to find a function f : Rd � 1, 2, ..., C
able to predict the class of new items and whose classification error is minimal. This
objective function f is an element of a family of functions F , which is called hypothesis
space.

The application developed in this thesis is working with Random Forest algorithm.
This algorithm is one of the most used tool for classification and regression. It relies on
building several predictors each one trained with a different training subset data, and
aggregate predictions into a final one. This chapter is meant to explain this algorithm in
depth. So we will focus first on Decision Trees.

3.2 Decision Trees

To understand Random Forest we must first understand Decision Forest Trees. A decision
tree T is an ordered sequence of questions where the question depends on the answer to
the current question. Those questions are raised about the variables that define each
element x in order to end up assigning a particular class y. This procedure, with their
corresponding questions and forks, is naturally represented by a tree.

In a decision tree the first node is called the root node, which is in turn connected to
other nodes until reaching the leaf nodes, those without descendants. Each internal node

27
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is assigned one of the questions in sequence while each leaf node it is assigned a label of
class. Thus, the question of the root node is made to the whole S, which subdivide itself
until reach the leaf node.

Graphic example of the explanation:

Figure 3.1: Decision tree example in R2 space: right decision.

Figure 3.2: Decision tree example in R2 space: wrong decision.

The figure 3.1 is an example of a right decision of our tree. There is an input, in this
case a cross with the value (1,3). Once this input has been introduced in our tree the first
question to classify is: Is the first value lesser than two? In this case there is a one as a
value so the tree directly classify this sample as a cross, which is correct in this case. The
figure 3.2 shows a fail in the decision. In this case the sample is (4,3) which means that
the first question is not enough to classify it. Then the classificatory goes to the second
question. Is the second value greater than 2? The condition is satisfied, finally the sample
is classified as a cross again. Which is incorrect in this case.

After explaining the basics of decision trees it is interesting to note two major ad-
vantages over other classification algorithms:

• Allow to include categorical variables in the set of attributes of the elements x.

• They can to be interpreted and understood as sets of rules such as if and then. Which
makes decisions based on them they can be justified. Other learning algorithms,
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such as neural networks, act as black boxes in which the decision is difficult to
explain.

3.3 Ensembles of classifiers

Ensembles of classifiers are systems in which the results obtained by a series of individual
classifiers are combined to predict labels of new examples, so that the accuracy of the
assembly is greater than that obtained by each of the classifiers individually.

This section will explain the best known and currently used. Especially it will do
more emphasis upon Random Forest, which is the method used in this thesis.

3.3.1 Bagging

One of the most widespread methods and also one of the simpler to build sets of classifiers
is bagging. The term bagging is an acronym of bootstrap aggregating since the algorithm
constructs each set classifiers from what is known as a bootstrap sample, which are gen-
erated by taking of the training set as many elements with replacement as this contains.
Thus, T sets of the same size as the original set are generated (one for each classifier).
Once built the set, the outputs of each of the classifiers are combined by a non weighted
polling.

Due to each individual classifier is built from a sample of the training set in which N
elements, not all are used in each classifier, this fact has been thought in order to achieve
independence between the classifiers. Therefore, the accuracy of each individual classifiers
is lesser than would be obtained if a classifier would have been built with the whole but,
when they are combined, the errors of each one are offset and the accuracy would get an
improvement compared with one that only uses all data.

Bagging is an approach based on the manipulation of the training data, in which it
is vital that the basic classifier used is unstable (high variance). In fact, bagging reduces
very significantly the generalization error for such classifiers while it may not affect the
performance in stable classifiers. This is so because bagging reduces the variance of the
base algorithm, stabilizing the classification obtained by polling and getting predictions
do not fluctuate much when using different sets of training. As a result, decision trees are
good candidates on which apply bagging although this technique produce the loss of one
of its great advantages, the easy interpretation of the trees in rules fashion.

Another advantage of this method is its high scalability: each of the classifiers can be
built (and evaluated) in parallel since the construction of each is completely independent
to the others, which means that the time required to construct a set of classifiers does not
increase proportionally to the number of classifiers used.
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3.3.2 Boosting

Another effective technique used to build sets and classifiers is boosting [24]. Boosting
is an adaptive algorithm in which each classifier is built based on the results obtained
in previous classifiers by assigning weights to each of the training samples: patterns that
have been misclassified by previous classifiers will be more important when building a new
classifier. Thus classifiers focus on those examples that are more difficult to label correctly.
In this case, once the classifiers are built, the outputs are combined in a weighted way
according to the importance of each classifier in order to obtain the result if the whole.

Originally, boosting was defined as a technique which significantly reduces the error
of any algorithm whose error is a little lower than the random classifier (weak algorithm).
In practice, is a method which is combined with decision trees, which are not considered
weak. Whichever is the algorithm used, there are two variants of boosting: resampling and
reweighting. In the case that the algorithm can be adapted to handle weighted data, all
examples and their respective weights are used by each base classifier, which is responsible
for taking them into account (boosting by reweighting). Otherwise if the algorithm can
not handle weighted data, it is necessary to perform a sample with replacement depending
on the weight of each sample. So that, the classifier receives a data set without weight
(boosting by resampling).

As for the results, boosting is one of the best algorithms to build sets of classifiers.
This is because boosting combines two effects: it reduces bias of the base classifier since
it forces them to not make the same mistakes and also reduces the variance by combining
by polling different hypotheses.

However, it presents problems of generalization in the presence of noisy data because
the classifiers focus on the difficult examples regardless if the data is valid or not. Instead,
bagging seems able to exploit the noise data to generate more different classifiers with
very good results for these datasets. Finally, another disadvantage is that boosting is not
parallelizable since each classifier is built based on the results obtained by the previous
classifier.

3.3.3 Random Forest

Finally the algorithm used in this thesis is reached. This application uses Random Forest
since as shown in the publication Learned lessons in credit card fraud detection from a
practitioner perspective [27] this algorithm outperforms the others in this type of environ-
ment.

Thus, as mentioned above, there are various techniques for constructing sets of classi-
fiers, which are aimed at increasing diversity among individual classifiers. In many cases,
the way of how to carry out these techniques is from a set of random numbers:

• In bagging [25] each classifier is built from a bootstrap sample, which is generated
using as many random numbers as elements have the training set.

• In random subspace each base classifier uses only a subset of randomly selected
attributes from the total variables. Thus, each classifier is restricted to a random



31 3.3. ENSEMBLES OF CLASSIFIERS

subspace of attributes.

• Randomization introduces randomness in the learning algorithm, building sets of
classifiers with decision trees where the cutoff value is randomly selected among the
best F possible cuts.

If the basic classifier used is a decision tree, the concept random forest [26] covers
all these techniques. Any set of classifiers where the base classifier is a decision tree
constructed from a table of random numbers Θt, where Θt are independent and identically
distributed and the result of the final classifier is obtained by unweighted polling is known
as random forest.

The purpose of such methods is to inject to the algorithm randomness to maximize the
independence of the trees maintaining reasonable accuracy. In the case of random forests,
these qualities are measured in the whole and are denoted as strength and correlation.
The strength of the set of classifiers is defined as

s = EX,Y mr (X, Y ) (3.2)

Where mr(X,Y) is the margin function of a random forest that in case of two classes
is defined as

mr (X, Y ) = EΘ[c (X,Θ = Y )]− EΘ[c (X,Θ 6= Y )] = 2 · [c (X,Θ = Y )]− 1 (3.3)

where EΘ[c (X,Θ = Y )] is the limit of the proportion of trees ct that, given a pattern x,
classifies correctly when T is increased:

1

T

T∑
t=1

I (ct (x,Θt) = Y ) � EΘ[c (X,Θ = Y )] (3.4)

The concept of margin in the set of classifiers is used to measure the certainty with
which the set is right or wrong in its prediction as it is the difference between the pro-
portion of trees that are right and which are wrong. Thus, the margin is a definite value
in the range [−1, 1] being positive when the sample is classified correctly and negative
otherwise. Therefore, the higher average margin received by a forest on a set of random
data, the greater the strength.

Furthermore, also in the case of problems of two classes, the correlation between the
trees within the set is measured as follows:

ρ̄ = EΘ,Θ′[ρ(c(·,Θ), c(·,Θ′))] (3.5)

where ρ It corresponds to the coefficient of correlation between two random variables,
where class labels should be fixed as +1 and -1 and where Θ and Θ′ are independent with
the same distribution. In this case, it is desirable that the correlation of the set is minimal
in order to increase the independence between different trees of the set.

Although all the above techniques are aimed at reducing the correlation of the classi-
fiers maintaining its accuracy and all are able to reduce the classifier error, none achieved
in general, the performance obtained by methods which assign weights adaptively during
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construction of the set of classifiers. However, random forests were able to equate and
even improve the accuracy achieved.

Then, the pseudocode of random forest is:

1 Inputs set $ D = \{(x_{n}, y_{n}) | n = 1, 2, . . . , N, x_{n}\in \mathbb{R}^d

, y_{n} \in \{1, 2\}\} $

2 Number of trees: T

3 Number of variables to select in each node F

4

5 for t := 1 to T do

6 $ L_{bt} := Bootstrap sampling (D) $

7 $ c_{t} := Build random tree (L_{bt}, F) $

8

9 Output: C(x) = $ arg max_{y} \sum_{t=1}^{T} I(c_{t}(x) = y) $

With all this is worthy to distinguish:

• One of the most surprising results of experiments carried out in [26] is that the
generalization error is not very sensitive to the number of randomly selected variables
on each node. The measures of strength and correlation of all classifiers justify this
fact, because if the strength and the correlation of a set of classifiers built with
different values of F is measured, it is observed that the force increases to a certain
point (lower than the total numer of variables) from which it is stabilized, while
the correlation between classifiers always increases when the value of F is increased.
Therefore, there is a certain optimum F value that for maximum strength, the
correlation of classifiers is minimal though in any case the oscillations in the error
by using different values of F are not very significant.

• By increasing the number of trees, the generalization error converges, in the case of
two classes to:

EX,Y [I(EΘ[c(X,Θ) = Y ]− EΘ[c(X,Θ) 6= Y ] < 0)] (3.6)

Therefore, in summary, the five major advantages of this algorithm are:

1. It is one of the most accurate learning algorithms available. For many data sets, it
produces a highly accurate classifier.

2. It runs efficiently on large databases.

3. It is robust to noisy data. Being a method based on bagging inherits this stability
against noise.

4. It is computationally faster than bagging, that evaluates all possible cuts for all
variables, and boosting, which is sequential.

5. Easy to implement and parallelize.

In the other hand the most important disadvantages are:
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1. It can be overfit for some datasets with noisy/regression tasks

2. The variable importance scores from random forest are not reliable for categorical
variables with different number of levels.



Chapter 4

Application description

4.1 Introduction

After all the theoretical explanation we are now ready to start with the practical part of
this thesis.

As explained in the introduction of this thesis, this project aims mixing machine
learning with big data. To do this, the environment with which we will face is the
banking transactions.

Nowadays our planet is around 7 billion inhabitants. Day by day people increasingly
have more access to credit and debit cards. For example, Figure 4.1 shows as only
US payment by debit cards has almost tripled in nine years. If we add the number
of transactions made by credit and debit card in the US in 2012 we see that we reach the
impressive amount of 75 billion annual transactions.

Figure 4.1: Chart with the trend of noncash payments by number and type of transaction
2.

34
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As it is expected with more transactions the likelihood of fraud increases. In fact the
the estimated annual number of unauthorized transactions (third-party fraud) in EEUU
in 2012 was 31.1 million, with a value of $6.1 billion. [21]

4.2 Summary

Looking at these numbers it is normal for the detection of fraud in transactions to be a
very important research field in which many companies are investing. In the case of this
thesis we will work with real-time transactions provided by the company ATOS3.

To explain in more detail this application, we will return to the diagram used in
Section 1.3.

Figure 4.2: Thesis schema.

For starters we have a Flume agent to receive real-time data from the web server.
This data is received by the source, which will send them to the cannel in order to be
gathered. These data will be extracted by Spark through a custom Sink (as discussed in
the second spark closer integration with flume). After that Spark will create streaming
data batches in each batch interval. This stream of batches will be processed by Streaming
and in our case it will take care of five steps:

• Convert the categorical variables inside the transaction into a integer variable ac-
cording to an external dictionary.

• Compute historical values.

• Classify using the most recent model (models will be saved with different times-
tamps).

• Update the dashboard.

• Finally store the current batch of data.

2https://www.frbservices.org/files/communications/pdf/research/2013 payments study summary.pdf
3http://atos.net/en-us/home.html
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4.3 A deeper look into the application

This section is intended to give a more detailed explanation of the steps performed by
Spark Streaming as well as the difficulties that have emerged in the development. We will
place particular stress upon the operation of the dictionary as well as in the operation of
the dashboard and its use for the update of our model.

This application was initially designed to save data in three HBase tables (one for
the dashboard, one for the dictionary, another one for the data prepared to train our
Random Forest and finally a last one to store input raw transactions) in order to then
work with them through Spark. However, we had to change the approach due to open
multiple HBase tables Spark is not trivial and so we had not enough time to implement
it. This was definitely the biggest difficulty we encounter in developing this application.
To overcome this problem we made a number of changes that are the following:

• On one hand the new dashboard would include more data than originally thought
and would join with the original transactions to finally store all this information in
HBase. Finally, selecting the columns needed, we could use this dashboard to train
our Random Forest.

• On the other hand we have stored the dictionary in HDFS directly, instead of saving
it in HBase.

4.3.1 Dashboard part

To explain the final structure of our Dashboard we believe that a picture is worth a
thousand words:

Figure 4.3: Here we show the structure of our Dashboard. We can see how complete is
because it includes all the possible data. Besides this example shows how if one feature
is detected as categorical two column into our column family will be created. One with
the categorical value and another one with the integer value associated.

We can see how this dashboard also includes the Label that tells us if the transaction
with which we are treating is fraudulent or not. This field is initially empty (our program
is responsible for providing the likelihood that a transaction is fraudulent, but do not
determine it). The ones in charge of filling this field will be the detectives. Once labelled,
after a ∆T , transactions will become part of the training database training of our Random
Forest. In this section timestamp field is vital because we have to train the algorithm to
select the new transactions and not the older ones.

Conceptually this would be the followed flow:
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Figure 4.4: Random Forest and Dashboard update.

Once we have trained our Random Forest a new model will be created. This model
is associated with a timestamp in order to identify it.

4.3.2 Dictionary part

The other key file in this application is the dictionary. Through it, at the time that we
have a categorical variable, this variable will be translated and if it does not exist it will
automatically create a new entry. Let’s see an example of the structure of our dictionary:

Figure 4.5: Dictionary example.

With this example we can see a basic dictionary structure where if we get a categorical
variable we first need to check if it exists in it. In the case that the variable exists it will
replace the key for its value. Otherwise it will create a new variable with the corresponding
mapping.

As you have probably noticed the explanation above works perfectly for an offline
system, but not for a system in real time. That is why the dictionary above includes the
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Timestamp field and the New categorical value. Let’s understand the use of each of these
variables:

• New categorical: This variable is used to associate a value of 0 to new variables, in
order to introduce our feature on the model.

Below is a picture showing different cases explained using the dictionary Figure 4.5.

• Timestamp: The timestamp serves as a validator. Suppose we get a new variable
that does not exist in our dictionary. To this one will be assigned the New categorical
variable and thereupon will create a new entry in the dictionary. Now suppose
this new feature comes back with the new value. Following the procedure it will
look if there is a categorical variable with de same key, in this case will exist,
so in theory it should use the new value created. What it happens? That our
model is not trained yet with the new value, therefore if we introduce the new
dictionary entry our model it would not understand it. Timestamp solves this
problem. As discussed in the section of the dashboard, every time we train the
Random Forest it gives to the model used a timestamp. This is done to make sure
that the variables in the dictionary are in range of the Model time. In the case that
the value of a timestamp of a categorical variable is greater than the model, the
program automatically continues using the value 0 as the value to be entered into
the model.

Below there is a picture that shows different cases explained using the dictionary
Figure 4.5.

• First case: Existing feature entry with timestamp feature <timestamp Model.

• Second case: Non existing feature.
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• Third case: Existing feature entry with timestamp feature >timestamp Model.



Chapter 5

Deployment

Having explained the functioning of our application we will move to the chapter of the
deployment. This chapter aims to detail:

1. The cluster where we work.

2. Give the steps to follow in order to reproduce the environment where we work.

3. Submit our programs.

5.1 IRIDIA cluster

In this thesis we have been fortunate to work in a high-performance cluster designed to
primarily to work with Big Data. In this cluster we have found a very powerful hardware
and software that is perfectly suited to our needs. Simplifying the deployment in our
work.

5.1.1 Hardware setup

The cluster infrastructure is located at IRIDIA. It has 1 machine managing the cluster,
2 master machines (32 Gb RAM) and 12 slave machines. All this resulting to a 48 TB of
disk space usable for Hadoop and Spark. The architecture overview is shown in Figure
5.1, and details are reported in the Table 5.1.
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Table 5.1: BridgeIRIS hardware infrastructure details.
Nodes RAM Disk Space Description
Master 8 GB 4 TB Node for communicating with ULB network

Storage 8 GB 2 TB
Node non Hadoop used for storing the network of citations
(ElasticSearch Neo4J)

2 Nodes
001-002

32 GB 4 TB Primary and secondary Namenodes (all services for CDH)

12 Nodes
003-010

16 GB 4 TB Slave/Worker

Figure 5.1: BridgeIRIS architecture overview.

5.1.2 Software setup

Distributed Framework

All machines are installed under Ubuntu 12.04 LTS Server except for the node linking the
cluster to the ULB network which is under Ubuntu 14.04 LTS Server.

Apache Hadoop has been deployed using Cloudera Express (CDH 5.1.3), which is an
open source software distribution providing an unified querying options (including batch
processing, interactive SQL, text search, and machine learning) and necessary enterprise
security features (such as role-based access controls). The active frameworks are : HDFS
et Yarn (MapReduce2) (core Hadoop), HBase, Hive, Hue, Impala, Oozie, Sqoop 2 and
ZooKeeper.

User interfaces

Hue is an open source Web interface that supports Apache Hadoop and its ecosystem.
Username and password are required to access to the interface, through which it is possible
to browse the data in HDFS or HBase and query the data using Hive, Pig or Impala. In
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Figure 5.2 is reported one screenshot of the interface.

Figure 5.2: Hue interface (job browser tab).

5.2 Cluster manager

This section is very short, but we think that is worth to be included because it is impor-
tant in order to have clear how the applications are deployed through the cluster. Besides,
we have discussed between the use of several cluster managers.

To begin we need to understand what is a cluster manager. To do that we will pro-
ceed to define this concept: A cluster manager is a program that runs on one or all
cluster nodes. The cluster manager works together with a cluster management agent.
These agents run on each node of the cluster to manage and configure services, a set of
services, or to manage and configure the complete cluster server itself.

Another common uses of a cluster manager are: dispatch work for the cluster and
manage the availability, load and balancing of a cluster services. [22].

Then in a simplified fashion we can process in a distributed way with Spark as follows:

In the figure above we see how we can access to HDFS or database in two ways:
directly with spark (if one machine) or through a cluster manager. Spark has 3 types:
YARN, mesos and standalone.

In this thesis we will use YARN because mainly it was already installed on the cluster
and on the other hand offers advantages over its rivals. Below is a list of advantages:[23]

• YARN allows us to dynamically share and centrally configure the same pool of
cluster resources between all frameworks that run on YARN. Which means that we
can start a job on a cluster, and the use some of this job on others programs like
Hive without any changes on configuration.

• YARN offers a very interesting features like schedulers for categorizing, isolating,
and prioritizing workloads.



43 5.2. CLUSTER MANAGER

Figure 5.3: Distributed processing with the Spark Framework.

• In YARN we can choose the number of executors to use, whereas in Spark standalone
is not possible (the applications will run on every node of the cluster).

• YARN is the only cluster manager for Spark that supports security (i.e Spark can
run agains Kerberized Hadoop1 and uses secure authentification between processes).

Finally in Appendix C is detailed in an accurate way all the necessary downloads
and integrations related to Spark in order to make work our application.

1http://henning.kropponline.de/2014/10/05/kerberized-hadoop-cluster-sandbox-example/



Chapter 6

Results and scalability

In order to test our application performance, we have created a script that was able to
send to our application any amount of transactions. The idea is getting a reference from
one machine: the maximum amount of lines sent per seconds without appreciate delay
between the lines sent and the lines counted. After getting this value we will be able to
measure the performance improvement increasing the amount of nodes. It is important
to keep in mind that the channel capacity of flume has been set to keep more than 100
MB of transactions in queue, that means that in these tests we wont see any transaction
loss.

6.1 Scalability

1 Machine:

Sending 10 lines/second to our application.

The reception is perfect there is no delay.
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Sending 20 lines/second to our application.

Again no delay between both measures.

Sending 30 lines/second to our application.

There is a delay delay between both measures, we have calculated the pendent because
the amount of lines sent are linear and the pendent give us the maximum amount of lines
sent in this case. Hence, the max amount of lines that our application can accept without
delay are 27.
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2 Machines:

Sending 30 lines/second to our application.

As expected, increasing the amount of nodes resolve the last delay issue.

Sending 50 lines/second to our application.
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Sending 60 lines/second to our application.



CHAPTER 6. RESULTS AND SCALABILITY 48

3 Machines:

Sending 60 lines/second to our application.

Sending 80 lines/second to our application.
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4 Machines:

Sending 90 lines/second to our application.

Sending 110 lines/second to our application.
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5 Machines:

Sending 120 lines/second to our application.

Sending 130 lines/second to our application.
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6 Machines:

Sending 160 lines/second to our application.

Sending 180 lines/second to our application.
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12 Machines:

Sending 320 lines/second to our application.

Sending 360 lines/second to our application.
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Relative performance

Taking into account these results we observe the following chart:

This chart represents the relative performance of our application by increasing the
amount of machines. This means that if with one machine we were able to send 27 lines,
with two machines we send approx 4% less than the expected; with three machines the
value is increased to 6% and looks like this trend continues until twelve machines. This is
the result of using different machines in the cluster, with this chart we can conclude that
there are two machines with better specs than the others, and the rest are very similar.

6.2 Random Forest accuracy

As a result of the unavailability of the ATOs investigators, we were not able to train our
model as we would like. This caused that this section has been relegated as we have found
in a situation of lack of knowledge of certainty of our predictions. Thus, we conducted
the test with our labeled dataset splitting 70% of it to training and 30% to test. With
this scenario we got an error of 22.3% (approx 22300 errors over 100000 samples) data
the certainly we believe we can improve.
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Conclusions

In this thesis we have created a system of near real-time streaming working in parallel.
The results of these have been very satisfying to have been our first approach with Spark
and other tools. Experience with this type of platform has been very satisfactory, all
elements are easily scalable and combinable. Fortunately the cluster used has greatly
facilitated the implementation of this application as it had all the tools necessary to do
so, something that is very positive for implementation but also makes lose knowledge
about the deployment.

Regarding the computing paradigm, MapReduce has been a challenge to adapt with
it has been a total change in the way of think and programming. There is a big difference
in programming an application for a single machine than for a cluster, details like how
are the variables distributed in memory have to be taken into account in order to create
an efficient application.

Even being very satisfied of this thesis it is noteworthy the disappointment of not
being able to deploy our application to its full potential. It was originally intended to be
implemented in a real scenario with Atos, but finally due confidentiality issues we could
not work with them. So we had to work with one of their allowed dataset of 2010. Yet we
believe our system is robust and scalable enough to be able to adapt to a real environment.

Undoubtedly Cloud Computing is already a notable feature of the new technologies
and will certainly continue to grow to eventually become a must when it comes to compute
complex algorithms, this thesis is a proof of that. We have seen how increasing the number
of nodes increased computing capacity greatly. The results are easily extrapolated to all
kinds of scenarios that require this kind of computation power.
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Appendix A

HDFS architecture

Writing files to HDFS

Figure A.1: Writing files to HDFS 1

1http://bradhedlund.com/2011/09/10/understanding-hadoop-clusters-and-the-network/
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Replication system of HDFS

Figure A.2: Replication system of HDFS 2

2https://searchenginedeveloper.wordpress.com/tag/hadoop/



Appendix B

Matrix correlation example

1 import org.apache.spark.SparkContext

2 import org.apache.spark.mllib.linalg._

3 import org.apache.spark.mllib.stat.Statistics

4 import org.apache.spark.{SparkConf, SparkContext}

5

6 object MatrixCorrelation {

7 def main(args: Array[String]) {

8

9 val conf = new SparkConf().setAppName("MatrixCorrelation")

10 val sc = new SparkContext(conf)

11

12 val data = sc.textFile(args(0))

13 val parsedData = data.map(x => Vectors.dense(x.split(’,’).slice(0,100).

map(_.toDouble))).cache()

14 val correlMatrix: Matrix = Statistics.corr(parsedData, "pearson")

15 println(correlMatrix)

16 }

17 }
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Appendix C

Deploying Spark

During this thesis we have talk about Spark quite a lot, but still we have not explained
how to deploy it. In this section we aim to show how to install Spark in a cluster step by
step.

C.0.1 Download Spark

In order to install Apache Spark we have to go to the official webpage https://spark.apache.org/downloads.html.
Then we click on Downloads, where we will see several downloads available.

In this this thesis we choose the 1.3.0 version and a Pre-built version already config-
ured for hadoop 2.3. This is the version of Hadoop that we use on the cluster IRIDIA, also
is the the minimum required one to use the cluster manager YARN. Since we are working
remotely on IRIDIA, we used wget + mirror URL of the download file to download Spark
in every cluster node.

Once we have downloaded Spark we have to download Scala with the version 2.10.4
or above. The download link is: http://www.scala-lang.org/download/.
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Again like in the Spark part, we will use the linux command wget to download the
mirror in every node.

Since Scala is a programming language that runs on top of JVM of Java we also
will need to download it. So we will go to the official Java webpage and will select the
following link:

Once we installed all the necessary dependences we finally need to export some en-
vironment variables in .bashrc file.

export JAVA_HOME=/your_path_to_java

export SCALA_HOME=/your_path_to_scala

export SPARK_HOME=/your_path_to_spark

export PATH=$PATH:$JAVA_HOME/bin:$SCALA_HOME/bin:$SPARK_HOME/bin

Finally everything is set up. Now we are able to submit our applications through the
cluster. But before starting with this part we believe that is worth to mention the Spark
Shell before.
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C.0.2 Spark Shell

Spark shell is a very useful tool which Spark provide us. This allows us to try our code
in a shell before compile and submit it. This is very grateful, because Hadoop users who
wanted to test their code had to compile it all over again every time they wanted to test
something, making the phase of testing quite tedious.

As we can see in the image the access to Spark Shell is simple, we just need to type
bin/spark-shellwithin Spark folder.

C.0.3 Submitting applications

To use spark-submit we must create an application folder with its classes. In this example
we have created the test folder, which contains Test.scala. The structure of the application
should be set up with the following fashion.

Finally we have to create a sbt file in order to compile our application. The content
of this file must be as follows:

name:= "nameapp" //App name

version:= "1.0" //Version of our application

scalaVersion:= "2.10.4" Scala version

libraryDependencies++= Seq(

"org.apache.spark" %% "spark-core" % "1.3.0",

"org.apache.spark" %% "spark-mllib" % "1.3.0"

) //Dependencies
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In order to simplify and automatize this process we created two bash scripts: app creator.sh
and compile.sh.

Resuming the process to make an application run would be:

app creator.sh

#!/bin/bash

if [ $# -eq 0 ]

then

echo "One argument has to be introduced."

exit

elif [ $# -gt 1 ]

then

echo "Too many arguments."

exit

fi

NAME_APP=$1

NAME_CLASS=${1^} #upper case the first letter

mkdir $NAME_APP

mkdir $NAME_APP/src

mkdir $NAME_APP/src/main

cp utils/build.sbt $NAME_APP/.

cp utils/compile.sh $NAME_APP/.

sed -i "s/nameapp/$NAME_CLASS/g" $NAME_APP/build.sbt

mkdir $NAME_APP/src/main/scala

touch $NAME_APP/src/main/scala/$NAME_CLASS.scala
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echo -e "import org.apache.spark.{SparkConf, SparkContext}

\n\n object $NAME_CLASS {\n def main(args: Array[String]) {\n }\n}" > $NAME_APP/src/main/scala/$NAME_CLASS.scala



65 C.1. SPARK AND FLUME INTEGRATION GUIDE

Once we have set up our environment we just need to understand how spark-submit
works. Let’s use an example for a better understanding:

C.1 Spark and flume integration guide

Fortunately in IRIDIA cluster flume was already installed. This means that in this case
we just needed to configure the corresponding Flume Agent and integrate it with Spark.

In order to simplify this part we are going to explain directly the configuration file
of flume and relate it to the theoretical part in the section 2.2.1.

1 #Name the components on this agent

2 a1.channels = c1

3 a1.sources = r1

4

5

6 #Configure sink spark

7 a1.sinks = spark

8 a1.sinks.spark.type = org.apache.spark.streaming.flume.sink.SparkSink

9 a1.sinks.spark.hostname = node001

10 a1.sinks.spark.port = 11111

11 a1.sinks.spark.channel = memoryChannel

12

13

14 # Describe/configure the source

15 a1.sources.r1.type = netcat

16 a1.sources.r1.bind = node001

17 a1.sources.r1.port = 44444

18 a1.sources.r1.max-line-length=5096

19

20

21 # Use a channel which buffers events in memory

22 a1.channels.c1.type = memory

23 a1.channels.c1.capacity = 1000

24 a1.channels.c1.transactionCapacity = 100

25

26

27 # Bind the source and sink to the channel

28 a1.sources.r1.channels = c1

29 a1.sinks.spark.channel = c1
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Let’s analize the first two lines of the configuration file:

a1.channels = c1

a1.sources = r1

Here we are creating an agent a1. In this agent we are defining the name of it
channel (c1) and source (r1). So, every time that we want to add properties or define
new channels, sources or sinks to the agent a1 we will use a dot after it. If we would want
to create another agent we just would need to add one line following the same structure
than before (i.e a2.channels = c2 and so on).

Well this is the standard part of the configuration. And we still need to add a sink
to complete our agent. The typical sink to process streaming data is the Avro Sink, but
since we are using the second approach of Flume and Spark integration we will a use an
special one. In order to do that we need to give a name to the sink. In this case we gave
the name of spark to the sink.

Once we have named the sink we need to associate which type of sink are we using.
This correspond to line 8:

a1.sinks.spark.type = org.apache.spark.streaming.flume.sink.SparkSink

In the following lines (9, 10 and 11) we are giving more functionalities to the Spark
sink like setting the name of the host, the port used and the type of channel.

Lines from 14 to 18 and 21 to 24 treats with the configuration of the source and the
channel. And finally lines from 27 and 29 are the responsive of the binding of the source
and the sink with the channel.

The last step in order to work with Flume is how to launch it. The figure below
shows the line used in order to launch the configuration file used before as example.
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C.2 Spark and HBase integration guide

As with Flume, HBase was already installed on the cluster IRIDIA, so we had to do the
deployment on it. So we only had to focus on the integration of HBase with Spark.

At first we were surprised that there was not an implementation of the API Scala in
HBase whereas in Java it does. But then we realized about the property of interoperation
between Scala and Java so that the implementation finally was possible. So now we
proceed to detail the steps to follow in order to work with HBase and Spark together.

C.2.1 Procedure

The procedure of this integration is not very difficult, but it is still a main part of this
thesis. That is why we include it.

Include

First we need to include the libraries needed in order to work with HBase. The libraries
needed are:

1 import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor}

2 import org.apache.hadoop.hbase.client.HBaseAdmin

3 import org.apache.hadoop.hbase.mapreduce.TableInputFormat

4 import org.apache.hadoop.fs.Path;

5 import org.apache.hadoop.hbase.HColumnDescriptor

6 import org.apache.hadoop.hbase.util.Bytes

7 import org.apache.hadoop.hbase.client.Put;

8 import org.apache.hadoop.hbase.client.HTable;

9 import unicredit.spark.hbase._

After that we are able to use HBase tables inside our code. The steps to follow in
order to use one HBase table are:

1 // Add local HBase conf

2 val conf = HBaseConfiguration.create()

3

4 // Set configuration

5 conf.set(TableInputFormat.INPUT_TABLE, <table_name>)

6

7 //Opening Table

8 val table = new HTable(conf, <table_name>)

With the above code we are creating a new HBase table called table. In this case the
API search inside the tables available in HBase and takes the one with the name<table name
>.
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Relevant operations in HBase tables

Now that we have created a HBase table is time to play with it. The most used operations
in this thesis are: put and get. Let’s see how to use them and what are they doing.
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PUT:

1 //Create Put Object

2 val p = new Put(new String("Row Key").getBytes())

3

4 //Filling Put object

5 p.add("Column Family".getBytes(), "Colomn".getBytes(), new

6 String(Hello).getBytes())

7

8 //Putting data into the table: table

9 table.put(p)

GET:

1 // Instantiating Get class

2 val g = new Get(Bytes.toBytes("Row Key"))

3

4 // Reading the data

5 val result = table.get(g)

6

7 // Reading values from Result class object

8 val value = result.getValue(Bytes.toBytes("Column Family"),Bytes.toBytes("

Column"));

In both operations (Put and Get) we see that there are three steps to follow.

1. In one hand create an instance of their respective classes.

2. Once we instantiated the variable we can Put or Get a variable.

3. Finally we will be able to read or extract data from the HBase tables.
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Application code

1 import scala.collection.mutable.ArrayBuffer

2 import org.apache.spark.storage.StorageLevel

3 import org.apache.spark.streaming._

4 import org.apache.spark.streaming.flume._

5 import org.apache.spark.util.IntParam

6 import java.net.InetSocketAddress

7 import org.apache.spark.mllib.tree.RandomForest

8 import org.apache.spark.mllib.util.MLUtils

9 import org.apache.spark.{ SparkConf, SparkContext }

10 import org.apache.spark.mllib.tree.model.RandomForestModel

11 import org.apache.spark.mllib.regression.LabeledPoint

12 import org.apache.spark.mllib.linalg.{ SparseVector, DenseVector, Vector,

Vectors }

13 import org.apache.spark.rdd.NewHadoopRDD

14 import org.apache.hadoop.hbase.{ HBaseConfiguration, HTableDescriptor }

15 import org.apache.hadoop.hbase.client.HBaseAdmin

16 import org.apache.hadoop.hbase.mapreduce.TableInputFormat

17 import org.apache.hadoop.fs.Path;

18 import org.apache.hadoop.hbase.HColumnDescriptor

19 import org.apache.hadoop.hbase.util.Bytes

20 import org.apache.hadoop.hbase.client.Put;

21 import org.apache.hadoop.hbase.client.HTable;

22 import org.apache.spark.AccumulatorParam

23 import org.apache.spark.rdd.RDD

24 import org.apache.log4j.Logger

25 import org.apache.log4j.Level

26

27 //

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

28 //

29 // Application that determines in real time if a transaction is fraud or not.

30 //

31 // This should be used in conjunction with the Spark Sink running in a Flume

agent. See

32 // the Spark Streaming programming guide for more details.

33 //

70
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34 // Usage: SparkTxFraudDetector <host> <port>

35 // ‘host‘ is the host on which the Spark Sink is running.

36 // ‘port‘ is the port at which the Spark Sink is listening.

37 //

38 // To run this App:

39 // ‘$ ./bin/spark-submit --class SparkTxFraudDetector --driver-class-path

spark-streaming-flume_2.10-1.3.0.jar:/home/smhernan/apache-flume-1.5.2-bin/

spark-streaming-flume-sink_2.10-1.3.0.jar:/home/smhernan/apache-flume

-1.5.2-bin/lib/*:/opt/cloudera/parcels/CDH-5.1.3-1.cdh5.1.3.p0.12/lib/hbase

/hbase-server.jar:/opt/cloudera/parcels/CDH-5.1.3-1.cdh5.1.3.p0.12/lib/

hbase/hbase-protocol.jar:/opt/cloudera/parcels/CDH-5.1.3-1.cdh5.1.3.p0.12/

lib/hbase/hbase-hadoop2-compat.jar:/opt/cloudera/parcels/CDH-5.1.3-1.cdh5

.1.3.p0.12/lib/hbase/hbase-client.jar:/opt/cloudera/parcels/CDH-5.1.3-1.

cdh5.1.3.p0.12/lib/hbase/hbase-common.jar:/opt/cloudera/parcels/CDH

-5.1.3-1.cdh5.1.3.p0.12/lib/hbase/lib/htrace-core.jar:/opt/cloudera/parcels

/CDH-5.1.3-1.cdh5.1.3.p0.12/lib/hbase/lib/guava-12.0.1.jar --master local

[*] /home/smhernan/spark-1.3.0-bin-hadoop2.3/Project/flumePollingEventCount

/target/scala-2.10/flumepollingeventcount_2.10-1.0.jar [host] [port] ‘

40 //

41 //

42 //

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

43

44 object SparkTxFraudDetector extends Serializable {

45

46 def main(args: Array[String]) {

47

48 //Setting variables that will be shown in terminal

49 Logger.getLogger("org.apache.spark").setLevel(Level.WARN)

50 Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

51

52 //Can not use more than 4 input variables

53 if (args.length < 4) {

54 System.err.println("Usage: SparkFraudDetector <host> <port> <batch

interval> <Random Forest model path>")

55 System.exit(1)

56 }

57

58 //Dictionary used to know if a feature is used and if it is categorical or

not

59 val featuresDic = Map(

60

61 0 -> ("dateTime", "Not Used"),

62 1 -> ("MIN_AMT_HIS", "Integer"),

63 2 -> ("SUM_AMT_HIS", "Integer"),

64 3 -> ("NB_REFUSED_HIS", "Integer"),

65 4 -> ("LAST_COUNTRY_HIS", "Categorical"),

66 5 -> ("NB_TRX_SAME_SHOP_HIS", "Integer"),

67 6 -> ("NB_TRX_HIS", "Integer"),

68 7 -> ("TERM_MCC", "Integer"),

69 8 -> ("TERM_COUNTRY", "Categorical"),

70 9 -> ("amount", "Integer"),
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71 10 -> ("TX_ACCEPTED", "Categorical"),

72 11 -> ("TX_3D_SECURE", "Categorical"),

73 12 -> ("AGE", "Integer"),

74 13 -> ("TX_HOUR", "Integer"),

75 14 -> ("IS_NIGHT", "Categorical"),

76 15 -> ("HAD_TEST", "Categorical"),

77 16 -> ("HAD_REFUSED", "Categorical"),

78 17 -> ("HAD_TRX_SAME_SHOP", "Categorical"),

79 18 -> ("D_AGE", "Categorical"),

80 19 -> ("D_AMT", "Categorical"),

81 20 -> ("D_SUM_AMT", "Categorical"),

82 21 -> ("HAD_LOT_NB_TX", "Categorical"),

83 22 -> ("TX_INTL", "Categorical"),

84 23 -> ("TX_ATM", "Categorical"),

85 24 -> ("TERM_REGION", "Categorical"),

86 25 -> ("TERM_CONTINENT", "Categorical"),

87 26 -> ("TERM_MCCG", "Categorical"),

88 27 -> ("TERM_MCC_GROUP", "Not Used"),

89 28 -> ("subject", "Not Used"),

90 29 -> ("LAST_MIDUID_HIS", "Not Used"),

91 30 -> ("TERM_MIDUID", "Not Used"),

92 31 -> ("LANGUAGE", "Categorical"),

93 32 -> ("GENDER", "Categorical"),

94 33 -> ("BROKER", "Categorical"),

95 34 -> ("CARD_BRAND", "Categorical"),

96 35 -> ("RISK_LAST_COUNTRY_HIS", "Integer"),

97 36 -> ("RISK_TERM_MCC", "Integer"),

98 37 -> ("RISK_TERM_COUNTRY", "Integer"),

99 38 -> ("RISK_D_AGE", "Integer"),

100 39 -> ("RISK_D_AMT", "Integer"),

101 40 -> ("RISK_D_SUM_AMT", "Integer"),

102 41 -> ("RISK_TERM_REGION", "Integer"),

103 42 -> ("RISK_TERM_CONTINENT", "Integer"),

104 43 -> ("RISK_TERM_MCCG", "Integer"),

105 44 -> ("RISK_TERM_MCC_GROUP", "Integer"),

106 45 -> ("RISK_LAST_MIDUID_HIS", "Integer"),

107 46 -> ("RISK_TERM_MIDUID", "Integer"),

108 47 -> ("RISK_LANGUAGE", "Integer"),

109 48 -> ("RISK_GENDER", "Integer"),

110 49 -> ("RISK_BROKER", "Integer"),

111 50 -> ("RISK_CARD_BRAND", "Integer"))

112

113 //Set the node and the port into array

114 val host = args(0)

115 val port = args(1).toInt

116

117 //Set batch interval (RDD streaming duration)

118 val batchTime = args(2).toInt

119

120 //Get timestamp model

121 val modelPath = args(3)

122 val modelPathSplited = modelPath.split("-")

123 val timestampModel = modelPathSplited(2).toLong
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124 val batchInterval = Milliseconds(batchTime)

125

126 //Dictionary Path

127 val dictionaryPath = "hdfs://node001/user/smhernan/DStreams/

categories_table/categories_table.csv"

128

129 //HBase table name

130 val tableName = "smhernan_features_full"

131

132 // Create the context and set the batch size

133 val sparkConf = new SparkConf().setAppName("SparkTxFraudDetector")

134 val sc = new SparkContext(sparkConf)

135 val ssc = new StreamingContext(sc, batchInterval)

136

137 // Create a flume stream that polls the Spark Sink running in a Flume agent

138 val addresses = Seq(new InetSocketAddress(host, port))

139 val storageLevel = StorageLevel.MEMORY_AND_DISK_SER_2

140 val maxBatchSize = 5

141 val parallelism = 5

142

143 // Create DStream

144 val stream = FlumeUtils.createPollingStream(ssc, addresses, storageLevel,

maxBatchSize, parallelism)

145 val lines = stream.map(record => new String(record.event.getBody().array(),

"UTF-8"))

146

147 //Split transaction by ";"

148 val transactions = lines.map(line => line.split(";")).map(entry => Array(

entry(0), entry(1), entry(2), entry(3), entry(4), entry(5), entry(6),

entry(7), entry(8), entry(9), entry(10), entry(11), entry(12), entry(13)

, entry(14), entry(15), entry(16), entry(17), entry(18), entry(19),

entry(20), entry(21), entry(22), entry(23), entry(24), entry(25), entry

(26), entry(27), entry(28), entry(29), entry(30), entry(31), entry(32),

entry(33), entry(34), entry(35), entry(36), entry(37), entry(38), entry

(39), entry(40), entry(41), entry(42), entry(43), entry(44), entry(45),

entry(46), entry(47), entry(48), entry(49), entry(50)))

149

150 //Create the dictionary through categories table. We will have 4 columns:

Feature name, key, value and timestamp

151 var dictionary = sc.textFile(dictionaryPath).map(line => line.split(";")).

map(entry => Array(entry(0), entry(1), entry(2), entry(3))).map(elem =>

(elem(0), elem(1), elem(2), elem(3)))

152 //Dictionary as a array in order to use it inside Map function (otherwise

we have an error of nested RDD)

153 val dictionaryArray = dictionary.collect

154 val dictionaryQuotes = sc.textFile(dictionaryPath)

155

156 //Load Random Forest model

157 val model = RandomForestModel.load(sc,modelPath)

158

159 //Variables used to plot the results of our thesis

160 //Lines sent by our script

161 val linesSend = new ArrayBuffer[Int]()
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162 //Count the lines in HBase

163 val countHbase = new ArrayBuffer[Int]()

164 //Timestamp used to calculate the time axis

165 val linesTimestamp = new ArrayBuffer[Long]()

166

167 val out1 = new ArrayBuffer[Array[String]]()

168 val new_dictionary = Array("0", ("0", "0", "0", "0"))

169

170 //Transactions is a DSTREAM which contains a RDD with transactions per line

171 transactions.foreachRDD { rdd =>

172 //Using foreachRDD implies that what are we going to process will be done

in each RDD

173 //We count the amount of lines sent in one batch

174 linesSend += rdd.count().toInt

175 //foreach2

176 //Here we are accessing inside each RDD (we are reading each transaction

inside the rdd)

177 val new_dictionary = rdd.map { line =>

178 //Lines is something like: [(feature1, feature2, ..., feature N),(

feature1, feature2, ..., feature N),...,(feature1, feature2, ...,

feature N)]

179 //In this map function we are going to apply all this operations on

each line

180

181 //HBASE configuration

182 implicit val conf = HBaseConfiguration.create()

183 conf.addResource(new Path("/opt/cloudera/parcels/CDH-5.1.3-1.cdh5.1.3.

p0.12/etc/hbase/conf.dist/hbase-site.xml"))

184 conf.addResource(new Path("/etc/hbase/conf.cloudera.hbase/core-site.xml

"))

185

186 // Add local HBase conf

187 conf.set(TableInputFormat.INPUT_TABLE, tableName)

188

189 // Create table instance

190 val myTable = new HTable(conf, tableName)

191

192 //Getting transaction and associate it to the dictionary

193 val lineWithIndex = line.zipWithIndex //Add index to each feature [((

feature0,0) , (feature1,1), ..., (feature N,N)),((feature0,0) , (

feature1,1), ..., (feature N,N)),...]

194 val lineID = lineWithIndex.map(value => (value._1 -> featuresDic(value.

_2))) // [(feature0,("dateTime","Not used")),(feature1,("AMS_MIN_INT

","Integer")),...]

195 val timestamp: Long = System.currentTimeMillis / 1000

196 val row = timestamp.toString + "|" + line(28) //The row key is the

timestamp + subject

197

198 //Save the timestamp to hbase for each transaction

199 val p = new Put(new String("stream " + row).getBytes())

200 p.add("timestamp".getBytes, "Not used".getBytes, timestamp.toString.

getBytes()) // (column family, column, value)

201 myTable.put(p)
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202

203 //Finally we will perform the map function to every feature

204 val new_dictionary = lineID.map { feature =>

205 //Decomposing features

206 val value = feature._1.trim //Getting first field of (feature0,("

dateTime","Not used")) => feature0 and delete whitespaces

207 val columnFamily = feature._2._1 //Getting first field of second field

of (feature0,("dateTime","Not used")) => "dateTime"

208 val column = feature._2._2 //Getting second field of second field of (

feature0,("dateTime","Not used")) => "Not used"

209

210 p.add(columnFamily.getBytes, column.getBytes, value.getBytes()) // (

column family, column, value)

211 myTable.put(p)

212

213 //We will return value to insert to the model,

214 var out = value

215 //We will use this variable in order to check if we have new entries

216 var new_dictionary_entry = ("0", "0", "0", "0")

217

218 //Check if categorical and is not a digit

219 if (column == "Categorical" && !value.matches("( )?\\d+(\\.\\d+)?(\\s$

)?")) {

220 //Array that contains the result of filter by the FeatureName and

its value. Keep in mind that is an array

221 val filtered_dic = dictionaryArray.filter(elem => (elem._1 ==

columnFamily && elem._3 == value))

222

223 //Case not empty head to get first element of the array

224 if (!filtered_dic.isEmpty) {

225 if (filtered_dic.map(i => i._4).head.toDouble > timestampModel.

toDouble) {

226 out = "0"

227 } else {

228 out = filtered_dic.map(i => i._2).head

229 }

230

231 //If does not exist

232 } else {

233 //First check if the label exist

234 out = "0" //If does not exist is not even necessary to check the

timestamp, we always will use 0

235 val filtered_dic_label = dictionaryArray.filter(elem => (elem._1 =

= columnFamily))

236 //If the label already exist, create a new entry to the dictionary

adding + 1

237 if (!filtered_dic_label.isEmpty) {

238 val new_value = filtered_dic_label.map(i => i._2.toInt).max + 1

239 //Actualize dictionary in memory

240 new_dictionary_entry = ((columnFamily.toString, new_value.

toString, value.toString, timestamp.toString))

241 val new_dictionary_entry_array = Array((columnFamily.toString,

new_value.toString, value.toString, timestamp.toString))
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242 dictionaryArray.union(new_dictionary_entry_array)

243

244 //If the label does not exist create new Category

245 } else {

246 val new_value = 1

247 //Actualize dictionary in memory

248 new_dictionary_entry = (columnFamily.toString, new_value.

toString, value.toString, timestamp.toString)

249 val new_dictionary_entry_array = Array((columnFamily.toString,

new_value.toString, value.toString, timestamp.toString))

250 dictionaryArray.union(new_dictionary_entry_array)

251

252 }

253 }

254

255 }

256

257 (out, new_dictionary_entry)

258

259 }

260

261 //Use model to get a prediction of our vector then add to HBase in

order to see the accuracy

262 val prediction = model.predict(new_dictionary._1)

263 p.add("P(fraud)", "Integer", prediction.getBytes())

264 myTable.put(p)

265

266 new_dictionary

267

268 }

269

270 //Getting variables from the map function

271 val output = new_dictionary.map(i => i.map(i => i._1))

272 val new_entries = new_dictionary.map(i => i.map(i => i._2))

273 val subset_new_dic = new_entries.flatMap(i => i.filter(i => i._1 != "0"))

274

275 //If is not empty means that we have a new entry. Thus, we must update

the dictionary in HDFS

276 if (!subset_new_dic.isEmpty) {

277 dictionary.union(subset_new_dic)

278 dictionary.saveAsTextFile("hdfs://node001/user/smhernan/DStreams/

categories_table/categories_table")

279 }

280

281 implicit val conf = HBaseConfiguration.create()

282

283 // Add local HBase conf

284 conf.set(TableInputFormat.INPUT_TABLE, tableName)

285

286 val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat],

287 classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable],

288 classOf[org.apache.hadoop.hbase.client.Result])

289
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290

291 countHbase += hBaseRDD.count().toInt

292 linesTimestamp += System.currentTimeMillis

293 //Display variables in order to plot results

294 println("Lines: " + linesSend.mkString(";"))

295 println("Counted: " + countHbase.mkString(";"))

296 println("Timestamp: " + linesTimestamp.mkString(";"))

297

298

299 } //foreachRDD

300 //streamSize.print()

301

302 //Straming context starts

303 ssc.start()

304 ssc.awaitTermination()

305

306 }

307 }


