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Abstract

Wireless Mesh Networks (WMNs) are currently attracting a lot of attention

due to their ability to provide cost-efficient broadband wireless connectivity. In

this paper, we present the interface of WMN-GA system, which is based on

Genetic Algorithms (GAs). We evaluate the performance of WMN-GA sim-

ulation system for Exponential and Weibull distributions considering different

transmission rates. We present the visualization of the simulation results for
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different generations. As evaluation parameters, we consider the Packet De-

livery Ratio (PDR), throughput and delay metrics. For simulations, we used

ns-3 simulator and Hybrid Wireless Mesh Protocol (HWMP). We evaluate the

performance of WMNs for different distributions by sending multiple Constant

Bit Rate (CBR) flows and different transmission rates in the network. From

simulation results, we found that for 10, 20 and 30 number of connections, the

PDR is less than 60% when the transmission rate is more than 1200 kbps for

Exponential distribution. The PDR for Weibull distribution is higher than Ex-

ponential distribution. For different number of connections, the throughput is

increased with the increase of transmission rate. The throughput of Exponential

distribution is higher than Weibull distribution. With increasing of number of

connections and transmission rate, the delay is increased. For 10 connections,

the delay is very small until the transmission rate is 800 kbps. The delay of

Exponential distribution is smaller than Weibull distribution.

Keywords: Interface; Visualization; Wireless Mesh Network; HWMP; GA;

ns-3; Simulation.

1. Introduction

The Wireless Mesh Networks (WMNs) are currently attracting a lot of at-

tention due to their importance for providing cost-efficient broadband wireless

connectivity. The WMNs can be seen as a special type of wireless ad-hoc net-

works.5

WMNs are based on mesh topology, in which every node (representing a

server) is connected through wireless links to one or more nodes, enabling thus

the information transmission in more than one path. The path redundancy is a

robust feature of mesh topology. Compared to other topologies, mesh topology

does not need a central node, allowing networks based on it to be self-healing.10

These characteristics of networks with mesh topology make them very reliable

and robust networks to potential server node failures.

There are a number of application scenarios for which the use of WMNs is
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a very good alternative to offer connectivity at a low cost. It should also men-

tioned that there are applications of WMNs which are not supported directly15

by other types of wireless networks such as cellular networks, ad hoc networks,

wireless sensor networks and standard IEEE 802.11 networks. There are many

applications of WMNs in Neighboring Community Networks, Corporative Net-

works, Metropolitan Area Networks, Transportation Systems, Automatic Con-

trol Buildings, Medical and Health Systems, Surveillance and so on.20

In WMNs, the mesh routers provide network connectivity services to mesh

client nodes. The good performance and operability of WMNs largely depends

on placement of mesh routers nodes in the geographical deployment area to

achieve network connectivity, stability and client coverage.

In this work, we present the interface of WMN-GA system, which is based25

on Genetic Algorithms (GAs). We evaluate the performance of WMN-GA sim-

ulation system for Exponential and Weibull distributions considering different

transmission rates. We present the visualization of the simulation results for

different generations. As evaluation parameters, we consider the Packet Deliv-

ery Ratio (PDR), throughput and delay metrics. For simulations, we use ns-330

simulator and Hybrid Wireless Mesh Protocol (HWMP).

The structure of the paper is as follows. In Section 2, we discuss the related

work. In Section 3, we make an overview of HWMP routing protocol. In Sec-

tion 4, we present the implemented WMN-GA simulation system. In Section 5,

we show the description od ns-3 and path loss model. In Section 6, we show the35

simulation results. Finally, conclusions and future work are given in Section 7.

2. Related Work

Until now, many researchers performed valuable research in the area of multi-

hop wireless networks by computer simulations and experiments [1]. Most of

them are focused on throughput improvement and they do not consider mobility40

[2].

Several heuristic approaches are found in the literature for node placement
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problems in WMNs [3, 4, 5].

In [3], the authors investigate the role of gateway placement on network

throughput for realistic configurations of WMNs. They show that the position45

of the gateway significantly bears on network throughput. It is hence important

to optimize its placement. The authors propose several heuristics to optimally

position a single gateway in WMN and compare their relative performance in

terms of network throughput with respect to the exact solution, which is ob-

tained through cumbersome computations.50

In [4], the author presents an algorithm for the gateway placement problem

in Backbone Wireless Mesh Networks (BWMNs). Different from existing al-

gorithms, the proposed algorithm incrementally identifies gateways and assigns

mesh routers to identified gateways. The algorithm can guarantee to find a

feasible gateway placement satisfying Quality-of-Service (QoS) constraints, in-55

cluding delay constraint, relay load constraint and gateway capacity constraint.

Experimental results show that its performance is as good as that of the best

of existing algorithms for the gateway placement problem. But, the proposed

algorithm can be used for BWMNs that do not form one connected component,

and it is easy to implement and use.60

In [5], the authors deal with the deployment of Mesh Nodes (MNs) in WMNs.

They show that because it is difficult to place the MNs in a regular pattern in the

real deployment, finding the optimal locations in the deployment environment

is of much interest for the service providers. For a given possible locations

for the MNs and the user density in the deployment environment, they aim to65

find the locations of the MNs to be used that maximizes the coverage and the

connectivity of the network together. Due to high computational complexity

of the exhaustive searching algorithm, an efficient local searching algorithm is

proposed. Numerical results show that, the local search algorithm can give

close to optimal performance with much lower time complexity than exhaustive70

searching.

As node placement problems are known to be computationally hard to solve

for most of the formulations [6, 7], GAs have been recently investigated as
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effective resolution methods. However, GAs require the user to provide values

for a number of parameters and a set of genetic operators to achieve the best75

GA performance for the problem [8, 9, 10].

In our previous work [11, 12, 13], we considered the application of GAs for

scheduling and resource allocation in grid systems, and the mesh router nodes

placement in WMNs. In [11, 12], we considered the tuning struggle strategy

in genetic algorithms for scheduling in computational grids and carried out an80

experimental study on GAs for resource allocation on grid systems. In [13],

we proposed and evaluated the GAs for near-optimally solving problems. We

considered two-fold optimization: the maximization of the size of the giant

component in the network and the user coverage. Several GA operators have

been considered in implementing GAs in order to find the configuration that85

works best for the problem. We have experimentally evaluated the proposed

GAs using a benchmark of generated instances varying from small to large size.

The experimental results showed the efficiency of the GAs for computing high

quality solutions of mesh router nodes placement in WMNs.

3. Overview of HWMP Routing Protocol90

The IEEE 802.11s draft defines a default routing protocol called the Hybrid

Wireless Mesh Protocol (HWMP). Every IEEE 802.11s compliant device is re-

quired to implement HWMP and to be capable of using it. HWMP is located

on layer 2, this means, it uses MAC addresses.

The nodes of a WMN are called Mesh Points (MPs) in IEEE 802.11s. A MP95

is an IEEE 802.11 station that has mesh capabilities in addition to the basic

station functionality. This means that it can participate in the mesh routing

protocol and can forward data frames on behalf of other MPs according to the

IEEE 802.11s standard. The MPs can be end customer devices such as laptops

as well as infrastructure devices such as Access Points (APs).100

The MPs with additional AP functionality are called Mesh AP (MAPs).

Conventional WLAN clients, which are non-mesh IEEE 802.11 stations (STAs),
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can connect through the MAPs to the WMN. The MPs with additional portal

functionality are called Mesh Portals Points (MPPs). They can bridge data

frames to other IEEE 802 networks, especially to a wired network such as an105

Ethernet.

The IEEE 802.11s WMNs will be applicable to a large variety of usage

scenarios [14]. The four most important usage scenarios are:

• residential for wireless home networks;

• office for wireless networks in office environments;110

• campus/community/public access for wireless backhaul meshes for Inter-

net access;

• public safety for flexible and fast setup of wireless communications for

emergency staff.

The HWMP is a hybrid routing protocol. It has both reactive components115

and proactive components. The foundation of HWMP is an adaptation of

AODV [15] to radio-aware link metrics and MAC addresses. It is the basic,

reactive component of HWMP. The on-demand path setup is achieved by a

path discovery mechanism that is very similar to the one of AODV. If a MP

needs a path to a destination, it broadcasts a Path REQuest message (PREQ)120

into the WMN. The MPs will rebroadcast the updated PREQ whenever the

received PREQ corresponds to a newer or better path to the source. Similarly,

the requested destination MP will respond with a Path REPly message (PREP)

whenever a received PREQ corresponds to a newer or better path to the source.

Intermediate MPs that have already a valid path to the requested destination,125

can respond with a PREP, if the Destination Only flag (DO flag) is not set. De-

pending on the new Reply and Forward flag (RF flag), they can also rebroadcast

the updated PREQ. This will result in a current path metric in addition to the

fast path discovery.

The proactive component of HWMP is the extension with a proactive routing130

tree to specially designated MPs. Any MP that is configured to be a root MP,
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will periodically broadcast proactive PREQ messages or Root ANNouncement

messages (RANNs) into the WMN, which will create and maintain a tree of

paths to the root MP. There are three different, configurable mechanisms for

the proactive tree-building available in HWMP.135

4. Implemented WMN-GA Simulation System

The proposed and implemented WMN-GA system is based on GA. In this

Section, we present briefly GA and then the proposed WMN-GA simulation

system.

4.1. Genetic Algorithm140

GAs have shown their usefulness for the resolution of many computationally

hard combinatorial optimization problems. They are, of course, a strong can-

didate for efficiently solving mesh router nodes placement problem in WMNs.

For the purpose of this work we have used the template given in Algorithm 1.

As can be seen from the template, several parameters intervene in the145

GAs: population size, intermediate population size, number of evolution steps,

crossover probability, mutation probability and parameters for replacement strate-

gies. On the other hand, there are the (families of) genetic operators: crossover

operators, mutation operators, selection operators and replacement operators.

As there are potentially large range values for parameters and different versions150

of operators, their tuning becomes crucial to the GA’s performance.

4.1.1. Selection Operators

In the evolutionary computing literature we can find a variety of selection

operators, which are in charge of selecting individuals for the pool mate. The op-

erators considered in this work are those based on Implicit Fitness Re-mapping155

technique. It should be noted that selection operators are generic ones and do

not depend on the encoding of individuals.

• Random Selection: This operator chooses the individuals uniformly at

random. The problem is that a simple strategy does not consider even the
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Algorithm 1 GA Template

Generate the initial population P 0 of size µ; t = 0.

Evaluate P 0;

while not termination-condition do

Select the parental pool T t of size λ;

T t := Select(P t);

Perform crossover procedure on pairs of individuals in T t with probability

pc; P
t
c := Cross(T t);

Perform mutation procedure on individuals in P t
c with probability pm;

P t
m := Mutate(P t

c );

Evaluate P t
m ;

Create a new population P t+1 of size µ from individuals in P t and/or P t
m ;

P t+1 := Replace(P t;P t
m)

t := t+ 1;

end while

return Best found individual as solution;

fitness value of individuals and this may lead to a slow convergence of the160

algorithm.

• Best Selection: This operator selects the individuals in the population

having higher fitness value. The main drawback of this operator is that

by always choosing the best fitted individuals of the population, the GA

converges prematurely.165

• Linear Ranking Selection: This operator follows the strategy of selecting

the individuals in the population with a probability directly proportional

to its fitness value. This operator clearly benefits the selection of best

endowed individuals, which have larger chances of being selected.

• Exponential Ranking Selection: This operator is similar to Linear Ranking170

but now probabilities of ranked individuals are weighted according to an

exponential distribution.

8



• Tournament Selection: This operator selects the individuals based on

the result of a tournament among individuals. Usually winning solutions

are the ones of better fitness value but individuals of worse fitness value175

could be chosen as well, contributing thus to avoiding premature conver-

gence. Particular cases of this operator are the Binary Tournament and

N−Tournament Selection, for different values of N .

4.1.2. Crossover Operators

The crossover operators are the most important ingredient of GAs. Indeed,180

by selecting individuals from the parental generation and interchanging their

genes, new individuals (descendants) are obtained. The aim is to obtain de-

scendants of better quality that will feed the next generation and enable the

search to explore new regions of solution space not explored yet.

There exist many types of crossover operators explored in the evolutionary185

computing literature. It is very important to stress that crossover operators

depend on the chromosome representation. This observation is especially im-

portant for the mesh router nodes problem, since in our case, instead of having

strings we have a grid of nodes located in a certain positions. The crossover op-

erator should thus take into account the specifics of mesh router nodes encoding.190

We have considered the following crossover operators, called intersection opera-

tors (denoted CrossRegion, hereafter), which take in input two individuals and

produce in output two new individuals (see Algorithm 2).

4.1.3. Mutation Operators

The mutation operator is crucial for preventing the search from getting stuck195

in local optima by doing small local perturbations to the individuals of the pop-

ulation. Again, the definition of the mutation operators is specific to encoding

of the individuals of the concrete problem under study. We defined thus several

specific mutation operators as follows.

• SingleMutate: Select a mesh router node in the grid area and move it to200

another cell of the grid area. After the move is done, network connections
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Algorithm 2 Crossover Operator

1: Input: Two parent individuals P1 and P2; values Hg and Wg for height

and width of a small grid area;

2: Output: Two offsprings O1 and O2;

3: Select at random a Hg ×Wg rectangle RP1 in parent P1. Let RP2 be the

same rectangle in parent P2;

4: Select at random a Hg×Wg rectangle RO1 in offspring O1. Let RO2 be the

same rectangle in offspring O2;

5: Interchange the mesh router nodes: Move the mesh router nodes of RP1 to

RO2 and those of RP2 to RO1;

6: Re-establish mesh nodes network connections in O1 and O2 (links between

mesh router nodes and links between client mesh nodes and mesh router

nodes are computed again);

7: return O1 and O2;

are computed again.

• RectangleMutate: This operator selects two “small” rectangles at random

in the grid area, and swaps the mesh routers nodes in them. Certainly,

in this case the modification of the individual is larger than in the case of205

SingleMutate.

• SmallMutate: This operator chooses randomly a router and moves it a

small (a priori fixed) numbers of cells in one of the four directions: up,

down, left or right in the grid.

• SmallRectangleMutate: This operator is similar to SmallMutate but now210

we select first at random a rectangle and then all routers inside the rect-

angle are moved with a small (apriori fixed) numbers of cells in one of the

four directions: up, down, left or right in the grid.

Again, after the mutation is done, network connections (the links between

routers and links between routers and users) are re-computed.215
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Figure 1: GUI of WMN-GA simulation system.
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Figure 2: System structure for Web interface.

4.2. GUI of WMN-GA Simulation System and Web Interface

We have implemented the GUI of WMN-GA simulation system, which can

generate instances of the problem using different distributions of clients and

mesh routers. The GUI of WMN-GA is shown in Fig. 1. The left site of the in-

terface shows the GA parameters configuration and on the right side are shown220

the network configuration parameters. For the network configuration, we use:

distribution, number of clients, number of mesh routers, grid size, radius of
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Figure 3: Web interface of WMN-GA simulation system.

transmission distance and the size of sub-grid. For the GA parameter config-

uration, we use: number of independent runs, GA evolution steps, population

size, population intermediate size, crossover probability, mutation probability,225

initial methods, select method.

We also have implemented the Web interface. The Web application [16]

follows a standard Client-Server architecture and is implemented using LAMP

(Linux + Apache + MySQL + PHP) technology (see Fig. 2). Remote users
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(clients) submit their requests by completing first the parameter setting. The230

parameter values to be provided by the user are classified into three groups, as

follows.

• Parameters related to the problem instance: These include parameter val-

ues that determine a problem instance to be solved and consist of number

of router nodes, number of mesh client nodes, client mesh distribution,235

radio coverage interval and size of the deployment area.

• Parameters of the resolution method: Each method has its own parame-

ters. In Fig. 3 are shown the the GUI of Web Interfaces for the parameter

setting of GA.

• Execution parameters: These parameters are used for stopping condition240

of the resolution methods and include number of iterations and number of

independent runs. The former is provided as a total number of iterations

and depending on the method is also divided per phase (e.g., number of

iterations in a exploration). The later is used to run the same configura-

tion for the same problem instance and parameter configuration a certain245

number of times.

5. ns-3 and Path Loss Model

5.1. ns-3

The ns-3 simulator is developed and distributed completely in the C++

programming language, because it better facilitated the inclusion of C-based250

implementation code. The ns-3 architecture is similar to Linux computers, with

internal interface and application interfaces such as network interfaces, device

drivers and sockets. The goals of ns-3 are set very high: to create a new network

simulator aligned with modern research needs and develop it in an open source

community. Users of ns-3 are free to write their simulation scripts as either255

C++ main() programs or Python programs. The ns-3’s low-level API is oriented
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towards the power-user but more accessible “helper” APIs are overlaid on top

of the low-level API.

In order to achieve scalability of a very large number of simulated network

elements, the ns-3 simulation tools also support distributed simulation. The ns-260

3 support standardized output formats for trace data, such as the pcap format

used by network packet analyzing tools such as tcpdump, and a standardized

input format such as importing mobility trace files from ns-2.

The ns-3 simulator is equipped with Pyviz visualizer, which has been inte-

grated into mainline ns-3, starting with version 3.10. It can be most useful for265

debugging purposes, i.e. to figure out if mobility models are what you expect,

where packets are being dropped. It is mostly written in Python and it works

both with Python and pure C++ simulations. The function of ns-3 visualizer

is more powerful than network animator (nam) of ns-2 simulator.

The ns-3 simulator has models for all network elements that comprise a270

computer network. For example, network devices represent the physical device

that connects a node to the communication channel. This might be a simple

Ethernet network interface card or a more complex wireless IEEE 802.11 device.

The ns-3 is intended as an eventual replacement for popular ns-2 simulator. The

ns-3’s wifi models the wireless network interface controller based on the IEEE275

802.11 standard [17].

5.2. Log-distance Path Loss Model

The log-distance path loss model is a radio propagation model that predicts

the path loss a signal encounters inside a building or densely populated areas

over distance. This propagation model is applicable for indoor propagation

modelling. Log-distance propagation loss model is formally expressed as:

L = L0 + 10nlog10(
d

d0
),

where:

• n: the path loss distance exponent,
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• d0: reference distance [m],280

• L0: path loss at reference distance [dB],

• d: distance [m],

• L: path loss [dB].

When the path loss is requested at a distance smaller than the reference distance,

the value of Tx power is returned.285

6. Simulation Results

In this section, we present the simulation results. We use WMN-GA system

for node placement problem in WMNs. A bi-objective optimization is used

to solve this problem by first maximizing the number of connected routers in

the network and then the client coverage. The input parameters of WMN-GA290

system are shown in Table 1. The area size is considered 640m × 640m (or

32 units × 32 units). The the number of mesh routers is 16 and the number

of mesh clients 48. We used HWMP routing protocol and sent multiple CBR

flows over UDP. The pairs source-destination are the same for all simulation

scenarios. We made simulations for different number of connections (10, 20 and295

30 connections). Log-distance path loss model and constant speed delay model

are used for the simulation and other parameters are shown in Table 2. We

consider the connectivity between mesh routers and conduct simulations using

ns-3 simulator. The simulations in ns-3 are done for 5 and 200 generations.

In Fig. 4, we show the simulation results for Size of Giant Component300

(SGC), which indicates the number of connected mesh routers, and the Number

of Covered Mesh Clients (NCMC) for Exponential and Weibull distributions,

respectively. First, we optimize the SGC. We can see that after few generations,

all 16 routers are connected with each other. Then, we optimize the position of

routers in order to cover as many mesh clients as possible. Here, we consider305

Exponential and Weibull distributions of mesh clients, because these distribu-

tions are similar with mesh clients concentrated in hot-spot environments. We
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Table 1: Input parameters of WMN-GA.

Parameters Values

Number of clients 48

Number of routers 16

Grid width 32 units

Grid height 32 units

Independent runs 10

Number of Generations 200

Population size 4096

Selection Method Linear Ranking

Crossover rate 80 %

Mutate Method Single

Mutate rate 20 %

Distribution of Clients Exponential and Weibull

can see that by increasing the number of generations, the number of covered

clients is increased. After 200 generations, 47 mesh clients are covered.

In Fig. 5 and 6, we show the visualization of data generated by WMN-GA310

simulation system for Exponential and Weibull distributions, respectively. In

Fig. 5(a) and Fig. 6(a), we show the visualized data for 5 generations. While,

in Fig. 5(b) and Fig. 6(b), we have shown the optimized position of visualized

data for 200 generations. The simulation results show that all 16 routers are

connected and 47 mesh clients are covered. In, Fig. 7(a) and Fig. 7(b), we show315

the visualization of data generated by WMN-GA Web interface for Exponential

and Weibull distributions, when the radius of communication distances is 2 ×

2 : 8 × 8 (min : max).

We used PDR, throughput and delay metrics for performance evaluation. In

Fig. 8, we show the simulation results of PDR vs. transmission rate for 200320

generations and number of connections 10, 20 and 30. From the results, we can
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Table 2: Simulation parameters.

Parameters Values

Area Size 640m×640m

MAC IEEE 802.11s

Propagation Loss Model Log-distance Path Loss Model

Propagation Delay Model Constant Speed Model

Number of Mesh routers 16

Number of Mesh clients 48

Number of Connections 10, 20, 30

Transport Protocol UDP

Application Type CBR

Packet Size 1024 bytes

Source Node ID Random

Destination Node ID Random

Simulation Time 650 sec

see that when the number of connections is 10 the PDR is higher than other

cases. With the increasing of the transmission rate, the PDR is decreased.

For number of connections 10, 20 and 30, the PDR is less than 60% when

the transmission rate is more than 1200 kbps for Exponential distribution. The325

PDR for Weibull distribution is higher than for Exponential distribution. When

transmission rate is higher, the PDR decreases because of packet collision and

congestion. In this case, the queue of each mesh router get full and many packets

are dropped, so the efficiency of the network is decreased.

In Fig. 9, we show the simulation results of throughput vs. transmission

rate for 200 generations and number of connections 10, 20 and 30. Based on the

number of connections, the total data rate transmitted in the network changes.

The theoretical throughput is calculated by the following equation:

Theoretical throughput = Transmission rate× numCon.

For different number of connections, the throughput is increased linearly with330
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the increasing of the transmission rate. The throughput of Exponential distri-

bution is higher than Weibull distribution.

The simulation results of delay vs. transmission rate for 200 generations are

shown in Fig. 10. With increasing of the number of connections and transmis-

sion rate, the delay is increased. For 10 connections, the delay is very small335

until the transmission rate is 800 kbps for Exponential distribution. The delay

of Exponential distribution is smaller than Weibull distribution.

7. Conclusions

In this paper, we presented the interface of WMN-GA system and evaluated

the performance of WMN-GA simulation system for Exponential and Weibull340

distributions considering different transmission rates. We present the visualiza-

tion of the simulation results for different generations. As evaluation parameters,

we considered the PDR, throughput and delay metrics. For simulations, we use

ns-3 simulator and Hybrid Wireless Mesh Protocol (HWMP). The topologies

of WMN are generated using WMN-GA system with area size 640m×640m, 16345

mesh routers and 48 mesh clients.

The clients are distributed in the grid area using Weibull and Exponential

distributions which are similar with a real hot-spot scenario.

We carried out the simulations using ns-3 simulator. We transmitted mul-

tiple CBR flows over UDP. For simulations, we considered different number of350

connections (10, 20 and 30), HWMP protocol, log-distance path loss model,

constant speed delay model and different transmission rates.

From simulation results, we concluded as follows.

1. For 10, 20 and 30 number of connections , the PDR is less than 60% when

the transmission rate is more than 1200 kbps for Exponential distribution.355

The PDR for Weibull distribution is higher than Exponential distribution.

2. For different number of connections, the throughput is increased linearly

with the increasing of the transmission rate. The throughput of Exponen-

tial distribution is higher than Weibull distribution.
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3. For 10 connections, the delay is very small until the transmission rate is 800360

kbps for Exponential distribution. The delay of Exponential distribution

is smaller than Weibull distribution.

In the future, we would like to make extensive simulations to evaluate other

network topologies, different density of nodes, different distribution of mesh

clients and different grid sizes.365
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(a) Exponential distribution
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(b) Weibull distribution

Figure 4: Number of covered mesh routers and number of covered clients vs. number of

generations.
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(a) Number of generations: 5 (12, 17)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

y-
A

xi
s

x-Axis

Mesh Routers
Mesh Clients

(b) Number of generations: 200 (16, 47)

Figure 5: Optimized location of mesh routers by WMN-GA, (m, n): m is number of connected

mesh routers, n is number of covered mesh clients (Exponential distribution).
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Figure 6: Optimized location of mesh routers by WMN-GA, (m, n): m is number of connected

mesh routers, n is number of covered mesh clients (Weibull distribution).
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(a) Exponential distribution.

(b) Weibull distribution.

Figure 7: Visualization of nodes using WMN-GA Web interface for 2×2:8×8.
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(a) Exponential distribution
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Figure 8: Results of average PDR for no. of generations 200.
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Figure 9: Results of average throughput for no. of generations 200.
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Figure 10: Results of average delay for no. of generations 200.

28


	caratula SpringerCSI.pdf
	UPCommons
	Portal del coneixement obert de la UPC
	http://upcommons.upc.edu/e-prints
	Aquesta és una còpia de la versió author’s final draft d'un article publicat a la revista Computer standards & interfaces.
	La publicació final està disponible a Springer a través de http://dx.doi.org/10.1016/j.csi.2015.04.003
	This is a copy of the author 's final draft version of an article published in the journal Computer standards & interfaces.
	The final publication is available at Springer via http://dx.doi.org/10.1016/j.csi.2015.04.003
	Article publicat / Published article:




