

Final Master Thesis

Development of tools for the use of Android

cell-phones to recognize user activities

Course: Master of Siense in Information communication and

Technology

Student: Nooshin Abdollah

Director: Juan Luis Gorricho

Year: December 2015

2

Contents

Session 1 ... 7

Introduction .. 7

Session 2 ... 9

Android ... 9

Tools need to start ... 10

Integrated Development Environment ... 10

Android SDK .. 12

AVD Manager0 .. 14

Emulator .. 15

Summary ... 17

Android Structure .. 18

Source packages ... 19

Activities .. 19

Services .. 20

Content Providers .. 20

Broadcast Receivers ... 20

Additional Components ... 21

Fragments ... 21

Intents .. 21

Activities .. 22

Starting state ... 23

Running state .. 24

Stopped state ... 24

Fragment activity ... 25

Broadcast Receivers ... 27

Generated Source Packages ... 28

Resources: .. 28

Libraries .. 30

Google-Play-Services-lib ... 30

Google Play Services ... 31

Google-Support-v4 .. 32

Important files .. 32

3

Manifest File... 32

System Services .. 34

Location Services ... 34

 LocationManager .. 34

 LocationListener ... 34

 LocationProvider .. 35

 Criteria .. 35

 GeoCoder ... 35

Wi-Fi Services .. 35

 WifiManager ... 36

 WifiInfo ... 36

Connectivity Services ... 36

 ConnectivityManager .. 36

Google Map ... 37

Debugging ... 40

Adb .. 40

Device or Android Virtual Device .. 40

Session 3 ... 41

The Project definition .. 41

Part 1: Android User Interface.. 44

Two Ways to Create a User Interface ... 45

Views and Layouts ... 45

 LinearLayout .. 45

 RelativeLayout ... 45

Building Project’s Activities ... 46

Part 1: Main Activity ... 46

The Main Activity layout ... 47

Strings Resource .. 49

The MainActivity Java Class ... 49

ExpandableListAdapter Function .. 50

Part 2: c_wifiScanActivity ... 52

4

The c_wifiScanActivity layout ... 54

Part 2: The c_wifiScanActivity Java Class ... 56

Location Service ... 60

Location Manager .. 62

LocationListener .. 63

LocationProvider ... 64

Criteria ... 64

Geocoder ... 65

Finding Location Providers by implying Criteria .. 65

Update Location by LocationListener .. 67

UpdateWithNewLocation() method for Finding the Current Location and
Previous Location of device ... 68

Public double calculateDistance (double lat1, double lon1, double lat2, double
lon2) .. 71

Activity Recognition.. 72

myDrawLine() function ... 74

Updating the Manifest File for Internet Permission... 78

Summary: .. 81

Part 3: d_GsmScanActivity... 84

The d_ GSMScanActivity Java Class ... 86

show_phone_details () ... 89

MyPhoneStateListener() ... 91

Summary: .. 92

Part 4: Broadcast Receiver ... 96

About Broadcast Receivers .. 97

_connectivityReceiver .. 97

onReceive() callback Method .. 98

Log ... 100

Registering the _connec tivityReceiver in the Android Manifest File 100

Testing the connectivityReceiver .. 101

Summary ... 101

C_WifiScanReceiver Broadcast Receivers .. 102

The Database ... 104

About SQLite .. 104

MySQLiteHelper ... 104

The Database Schema and Its Creation ... 105

5

Four Major Operations .. 106

Cursors ... 106

MySQLiteHelper ... 106

Connection.Java .. 108

Update C_wifiScanActivity .. 110

Test the application ... 111

Session 4 .. 112

Test of Project ... 112

Session 5 .. 116

Conclusion .. 116

Bibliography .. 117

6

Table of Pictures

Figure 1. NetBeans IDE environment .. 14

Figure 2. Android SDK manager interface .. 15

Figure 3. AVD manger main screen .. 16

Figure 4. The Configure Hardware window when creating a custom device
configuration ... 17

Figure 5: Android Emulator ... 18

Figure 6: creating an android project ... 20

Figure 7: The activity lifecycle ¡Error! Marcador no definido.5

Figure 8. The lifecycle of Fragment ¡Error! Marcador no definido.8

Figure 9: lifecycle of broadcast receivers ¡Error! Marcador no definido.9

Figure 10. Process of Google Play Services.............. ¡Error! Marcador no definido.9

Figure 11: Console of Enable APIs for the application .. 40

Figure 12: Credentials page in the Google Developers Console 41

Figure 13: The main screen of application ... 44

Figure 14: the second activity ... 44

Figure 15: First snapshot of A_MainActivity .. 49

Figure 16: Second snapshot of a_ MainActivity .. 53

Figure 17. the c_wifiScanActivity screen .. 55

Figure 18: First and Second Snapshot of c_wifiScanActivity ... 84

Figure 19: Third and fourth Snapshot of c_wifiScanActivity .. 85

Figure 20: a screen shot of d_GSMScanActivity... 87

Figure 21: first snapshot of d_GsmScanActivity .. 95

Figure 22: First snapshot of d_GsmScanActivity after pressing Show Cell info
Button ... 96

Figure 23: Second snapshot of d_GsmScanActivity to show all the GSM connection
 .. 96

Figure 24: Forth snapshot of d_GsmScanActivity ... 97

 Figure 25 – The broadcast Toast message……………..………………………………………….98

Figure 26 : snapshot of database ... 113

7

Session 1

Introduction

In this fast pace technology driven world, access to the Internet anywhere and

anytime is playing a key role in human’s life, Moreover, most of the businesses

attempt to consider the value of internet and its mobility in their provided market.

The client architecture of Internet mobility devices includes of smartphones,

tablets and laptops. Based on a research in 2012 in EU, using Internet by movable

devices such as portable computer was 36% and by tablet 7% and the rest has

belonged to the smartphone users. As is mentioned, popularity of access to

Internet by smartphones and mobile phones has significant increase over recent

years. Meanwhile, based on the “Global Smartphone Market Share 2012” research,

66.6% of smartphone clients use Android operating system devices. [10]

The goal of this study is developing the fundamental techniques to define activity

of the users like walking, running, standing or cycling while the user is using one of

two different types of Network connectivity, GPRS or Wi-Fi. This method is knows

as Activity recognition that it is one the new researches and reachable by

embedded sensors of the smart phone devices such as GPS sensors, vision sensors,

direction sensors and acceleration sensors. Recently this subject of user activities

is taken into the consideration of some mobile applications which are used for

health care especially for daily lives of older people more than the alarm when the

person falls because of the heart attack.

“Therefore by analyzing data is possible to define the action or state of the user

with simple human activities such as walking, running, driving, bicycling and other

classification methods.” [6]

This study is not about using accelerometer sensor embedded in device, but

calculating the distance of the user in a period of time by the longitude and latitude

of the user´s location which has reached in the location recognizing. Therefore, the

8

main goal of the study to retrieve user’s activity is achieved by requesting location

of user for each period of time, from current and previous location of user.

In order to accomplish the project some steps have to be done. The first step would

be identifying if the device is connected to either Wi-Fi or GPRS connection. When

the network is Wireless it means the connection is indoor and when the user is

outdoor the type of connection would be GPS. The second step would be getting

the valid GPS location of the user. When it is outdoor, is needed to track the user

location along the time. Afterward, in the third step, the user activity is concluded

which is walking, running, driving or standing. When the user is outdoor, it must

save the sequences of GPS locations along the daytime, so it will discover the user´s

daily pathway.

9

Session 2

Abstract: In the session 2, I have explained Android programming language is used

for creating and developing this study. So after an introduction about Android

operating system, in the second part, I have sentenced the environment and its

necessary tools for creating and developing an android project. In the third part of

this session, I have described how to create an android project, then android project

content components and entailed of the project.

 Android

Android is a comprehensive and open source operating system framework for

intelligent smart phone devices which has been created by Andy Robin, the

manager of Android Company, then has been bought by Google Company in 2005.

The word of Android means “Humanoid Robot”. In 2007, some proposed groups of

producers in electronic equipment like cell phones and wireless equipment beside

of some software companies including Google made a consortium with the goal of

creation an Open Source Operating System of Cell phones in order to reduce

expenses and costs of Mobile’s Applications.

Therefore, this consortium with the name of Open Handset Alliance, has published

Software Development Kit (Acronym SDK) consists of required software tools of

developing Android Applications. The first cell-phone based on Android OS

introduced in October of 2008 with the name of T-Mobile G1 by HTC Company.

From that year onward, beside of cell-phones, these companies used the OS for

other electronic tools such as Tablet, watch, electronic reader and even television.

Android software has utilized the power of JAVA for constructing its applications

with the format of apk for a package of an application. The most famous

development environments of Android are Open Source programing environments

named as Android studio, NetBeans IDE and Eclipse beside of ADT and ADK.

This operating system has been optimized based on Virtual Machine Linux OS that

is embedded as Dalvik for cell-phones devices. This virtual machine has several

10

functions such as memory management, ease of use of Sandbox in application

producing, more compression of applications and compatibility with variety of

CPUs in different devices without the need if rewrite application for each specific

CPU.

Surfing on the is by Web-Kit Open Source web browsing engine, OpenGL ES is used

in order to process two-dimensional and three-dimensional images, and SQLite is

used as data storage database.

Tools need to start

Before developing an android application, we need to install all of its necessary

tools. This part is explaining all the important and required tools for obtaining

Android environment to develop an android project. This application is run by

Dalvik virtual machine, so each operating system that supports developer tools is

able to support android’s application. These operating systems could be one of the

followings:

 Microsoft Windows (XP or later)

 Mac OS X 10.4.8 or later (Intel chips only)

 Linux

On one of these operating systems, we need to download and install a language

programming environment and Java Development Kit(JDK). They are all explained

in following.

Integrated Development Environment

In following some different types of development environment are emphasized for

creating and handling an android project.

 Android Studio is the official IDE for Android application development,

based on IntelliJ IDEA

https://www.jetbrains.com/idea/

11

 Eclipse an open-source IDE (integrated development environment)

particularly popular for Java development

 NetBeans IDE is an open source java based environment.

NetBeans IDE is the environment that I have used for this study. This IDE is a java

based software development platform contains of modules as a software

component to develop an application. In addition, the open source integrated

development environment (IDE) is a platform in NetBeans for extending

application by third party developers like video game industries. Beside of Java-

Based platform, it can handle other programming languages such as C/C++, PHP

and HTML5. This platform is declared as a cross-platform that runs on Microsoft

Windows, Mac OS X, Linux, Solaris and other platforms supporting a compatible

JVM.

One of the important modules presented by NetBeans IDE is NBAndroid module

which is included of developing modules of Android. It can make a connection

between NetBeans IDE and Android SDK in order to create, edit and execute

android projects.

Properties provided by NBAndroid for android application are:

 Supporting core Android SDK

 Building, running and debugging of android projects that are supported by

Android SDK.

 Containing LogCat viewer to tracking what is going on while the code is

running.

 Containing Android XML files editors.

 GUI layout preview to design UI and interface of android application.

http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment

12

Figure 1. NetBeans IDE environment

Android SDK

The android software development kit (SDK) is developed by Google based on Java

language. This software contains extensive set of android development tools such

as debuggers, libraries and handset emulator, sample codes and tutorials. This is

also cross-platform software supported by Linux, MAC OS and Windows XP and

later.

This software is an important and necessary platform for developing android

applications that could be supported by NetBeans via setting plugins. In order to

set its plugins to NetBeans IDE, have to follow tools/android SDK manager.

Android SDK doesn’t include everything, so it needs to download each required

package of android SDK separately based on needs of the application by Android

SDK Manger. In following required packages for the project are named:

 The latest SDK tools those are necessary to be downloaded.

o Android SDK Tools

http://en.wikipedia.org/wiki/Software_development_kit

13

o Android SDK Platform-tools

 Android SDK Build-tools

 SDK Platform of Android API 22 or the latest version of API

 Support library for additional APIs

 Android Support Repository

 Android Support Library

 Google Play Services for APIs related to Google play services

 Google Play Services

 Google Repository

Figure 2. Android SDK manager interface

After installing these tools and APIs we are able to develop an Android Application.

14

AVD Manager0

This tool is used for graphical user interface to simulate the application on an

Android emulator. To access AVD manager by NetBeans need to go tools/AVD

manager from toolbar of software.

All the current installed virtual devices are shown in the main screen of AVD

manager as shows in figure 3. We can have as many AVDs as we would like to have

as Android Emulator. This emulator provided by AVD manager is used to test the

application and see the process of application on computer.

Figure 3. AVD manger main screen

The figure 4 illustrates the process of creation a new virtual device by custom by

hardware options exist in the window such as Device ram Size, Size of screen,

Defining the device name, supporting landscape or Portrait view or both,

accessible sensors and so on.

15

Figure 4. The Configure Hardware window when creating a custom device

configuration

Emulator

Two ways for testing an Android project are defined, one by Android Simulator

and the other using hardware device.

 Android Emulator

This virtual android device is supplied by Android SDK in order to test an android

application on the computer. So it possible to prototype, test and develop the

application without need of hardware device.

The Android emulator mimics all of the hardware and software features of a

typical mobile device, except that it cannot place actual phone calls. It provides a

variety of navigation and control keys, which you can "press" using your mouse

or keyboard to generate events for your application. It also provides a screen in

which your application is displayed, together with any other active Android

applications.

As is indicated, the android emulator is set by AVD manager configurations, so we

can have different emulators with different configuration to test Android

platform. Once your application is running on the emulator, it can use the

16

services of the Android platform to invoke other applications, access the

network, play audio and video, store and retrieve data, notify the user, and

render graphical transitions and themes.

Figure 5: Android Emulator

The emulator also includes a variety of debug capabilities, such as a console from

which you can log kernel output, simulate application interrupts (such as arriving

SMS messages or phone calls), and simulate latency effects and dropouts on the

data network.

When you run your app from Android Studio, it installs and launches the app on

your connected device or emulator (launching the emulator, if necessary). You

can specify emulator startup options in the Run/Debug dialog, in the Target tab.

When the emulator is running, you can issue console commands.

 Android Hardware Device

Before releasing an application to users, it is important to test on a real device to

see its performance clearly. For running, debugging and testing an application any

17

device equipped by android Operating system is suitable. The tools included in the

SDK make it easy to install and run your application on the device each time you

compile. It is possible to install the application on device by command lines of

ADB or using USB drivers to run the application on the device.

Android-powered devices have a host of developer options that you can access

on the phone, which let you:

 Enable debugging over USB.

 Quickly capture bug reports onto the device by help of adb logcat.

 Show CPU usage on screen.

 Draw debugging information on screen such as layout bounds, updates on

GPU views and hardware layers, and other information.

 Plus many more options to simulate app stresses or enable debugging

options.

Summary

Setting up a development environment of android basically needs SDK and a java

IDE.

18

Android Structure

Once we have plugged the SDK in the plug-in and install NetBeans IDE, we are able

to start and create an android application, develop it and set it up, run and debug

configurations.

Now we can start to create a new android project from file/new project, then in the

appeared dialog, choose Android project and then click next button. In the new

window, it will ask about the project name as the specific name of our project,

project location and its folder. Package Name specifies its java package; the field of

Activity name is to clarify of our initial and main activity. At end in Target Platform

we can choose minimum SDK version that our application will be run on it.

Figure 6: creating an android project

In this part, a main structure of an android’s package is defined. There are five

folders in the left side of environment

 Source Packages

 Generated Source Packages

 Resources

 Libraries

19

 Important Files

Source packages

The source package of android project contains main Android components to build

an application that includes all java source codes of application. In this part we

have an overview on these components to understand how they are related to a

real-world application. These components embedded in source package are main

building blocks of an application. These perceptual components should be put and

interact together to make a bigger whole. First we should have a conceptual draw

of what we aim to create by lines and circles to have a general view of the idea and

how we desire to relate these components together to make sense.

Main building blocks of android are upstanding requirement of an application that

is broken into conceptual units to work independently on each of them and then by

putting they together reach to a complete package. These components are named

as activities, Intents, services, broadcast receivers and content providers. In

following we have a short overview on each of these components.

Activities

An activity as one of the distinguishing features of the Android framework is the

interface of application that provides a screen for user to see the application in

order to do something and interact with the application and user. So we can say

they are visible part of application. Usually applications have more than one

activity that one of them is the main activity which appears when we launch the

application, like the home page of a website, and then we can navigate among

other activities.

20

Services

Services work like activities with a difference of their interface that services

perform in background of device and are hidden from sights of users. They are

used in order to run an activity invisibly for a while like playing music while user is

working with another application. The point about services is that they have

simpler structure than activities because of its requirement methods. Another

point is its lifecycle which is handled by developer more than system. But we have

to be aware about its shared resource consuming such as CPU or battery.

Content Providers

Content providers are data stores that facilitate applications to use, share and

manage its stored sharable data. Because the nature of each application in android

is to be isolated and work separately from other applications, so it means their

data is not accessible by other application. In order to solve this, content providers

are developed to pass through an application. For example, Contact Data is

accessible by other application because of passing content providers through this

application. Therefore, this application lets application to use its content by

connecting to Contact Data application. The content providers use standard

database methods of insert (), update (), delete (), and query () to have relatively

simple interface.

Broadcast Receivers

The broadcast receivers are components of android that they are actively working

in memory and background, like services are without interfaces and visual

representation. They are mechanism of publish, subscribe, sending notifications in

the device like sending notification when a message is received, when a call comes

in or when the battery runs low.

21

Additional Components

There are some additional components of Android in source packages in the

construction of above mentioned components. These are listed below:

Fragments

They represent a behavior or a portion of user interface in an Activity. It means

that when we want to create a multi segment in the user interface of an activity, we

need to use fragments to encapsulate UI components and activity behaviors inside

of a module to swap into and out of the activity. So we can have a nested activity

that each activity has its lifecycle and own layout.

Intents

Intents are messages that are sent among the major building blocks. They trigger

an activity to start up, tell a service to start or stop, or are simply broadcasts.

Intents are asynchronous; meaning the code that sends them doesn’t have to wait

for them to be completed. Intent could be explicit or implicit. In an explicit intent,

the sender clearly spells out which specific component should be on the receiving

end. In an implicit intent, the sender specifies the type of receiver. For example,

your activity could send an intent saying it simply wants someone to open up a

web page. In that case, any application that is capable of opening a web page could

“compete” to complete this action. When you have competing applications, the

system will ask you which one you’d like to use to complete a given action. You can

also set an app as the default. This mechanism works very similarly to your

desktop environment, for example, when you downloaded Firefox or Chrome to

replace your default Internet Explorer or Safari web browsers. This type of

messaging allows the user to replace any app on the system with a custom one. For

example, you might want to download a different SMS application or another

browser to replace your existing ones.

22

In following of this part, I go through the components in details that I have used in

my project. Hitherto I have explained the important components of an android

project that they have to be put together for constructing an application and run

perfectly. In following, I want to explain more about building block components that

I’ve used in my project to have better cognition of these components, how they work

together and what they have inside.

Activities

Usually an application has more than one activity, the visible part of an application

that user can flip back and forward among them like websites. An activity could

contain one button to start another activity of application like choosing sending

message when you are in contacts list then a new activity of composing message

appears. The method that is using in activities in order to navigate between

activities of an application is “Back Stack” or in another word “last in, first out”,

that pushes an element to the collection of elements and pops to remove the last

element that was added. Therefore when an application is launched, main activity

of the application starts and then it interact with other bounded activities of the

application. By starting new activity of application, the previous activity stops but

maintains in the stack of the system. And when an activity starts it is pushed onto

the back stack. Therefore, when user uses Back button, it will be destroyed and

previous activity resumes.

An activity has callback methods to perform specific work appropriate to the

changed state such as resume, stop, create or destroy. These callback methods are

essential in developing a strong and flexible application and managing the lifecycle

of the application. For example when the resume method is called, all the

necessary resources that were interrupted should be resumed. By these callback

methods the lifecycle of application is provided.

An activity interface is a subclass of Activity with implemented callback methods

for different transitions in the application. The figure 7 lifecycle callbacks are

shown:

23

Figure 7: The activity lifecycle

Starting state

First we have starting state or activity launched when the activity of application

does not exist in the memory. When we launch the program, the activity goes

through all callback methods of application to run it. This is one of the most

expensive operations in terms of computing time and battery’s life. The application

leads to “running state” from “starting state” by three different kinds of callback

methods.

 onCreate(): In this method all the essential components of that interface of

application such as buttons, textboxes, and views are implemented and

called.

24

 onStart(): Called when the activity is becoming visible to the user.

Followed by onResume ().

 onResume(): refers to when application is running in foreground

lifetime of an activity that starts by this method to interact with user.

Running state

The state of application that is visible and intractable by user like typing, touching

screen or clicking buttons. When application is in this state it is using memory,

resources and has to run as quickly as possible. Application can goes to stop state

or paused state by onPause method.

 onPause(): This method is used when user is leaving the application, but it

doesn’t mean destroying the application, the application is still running this

activity is still visible and alive, partially transparent or doesn’t cover the

entire screen.

Stopped state

The application comes to this state by onPause method that the activity is not

visible but is in memory. And activity could be brought back to in front by calling

onResume() method or could be destroyed by onStop() callback method and be

removed from memory of device. Also Stopped activities can be removed from

memory at any point. We can use onResume, onCreate or onStart() methods for

backing to Running State or use onDestroy() method to finish the application and

go to Destroy State.

 Destroyed state: The activity could be destroyed by onDestroy() callback

method from stopped state then the activity is in background or destroyed

when the system needs its memory. A destroyed activity is no longer in

memory.

25

Fragment activity

This component is responsible to present a behavior or part of user interface like

maps in the interface of activity. It is kind of modular section of an activity with its

own lifecycle that receive s its input events. Fragments have to be embedded in an

activity and their lifecycle depended on the lifecycle of its host activity. This means

when activity starts, they can be started too, but when activity is stopped they will

be stopped too.

The reason that I used fragment activity in the project is for embedding the Google

map in an activity. The Google map activity has its own behavior and structure and

it needs to be implemented in own activity. Another point about this component is

that they have to be imported from extra libraries “google-play-services-lib”, I have

explained more about this library in following pages (page 27).

For managing the fragments, fragmentManager from the library of Android is

utilizing. This should be called from getFragmentManager() from the activity. To

define the location of fragment in the application, it uses findFragmentById(), to

put take the place of fragment in an activity. The following figure shows lifecycle of

fragment activities.

26

Figure 8. The lifecycle of Fragment

27

Broadcast Receivers

Broadcast receiver is a component of android with responsibility of responding to

system-wide broadcast announcements. This class receives intents sent by

sentBroadcast() and is implemented as a subclass of BroadcastReceiver. The object

include of Broadcast Receiver starts by calling onReciver(Context, Intent) method.

The lifecycle of the broadcast receiver considered as foreground process that

keeps running while the device is on until pressure of lack of memory prevents its

running. Most of broadcast receivers are generated by system like when the

battery of device is low. This component doesn’t have an interface to show user,

they work like a notification or alert when an event happens. They are kind of

“gateway” to other components of application.

Figure 9: lifecycle of broadcast receivers

Heretofore in this chapter, I have explained some of the most important

components, and what I have used in my application that they should put together

to make an application. In following I will demonstrate other packages of an

android application.

28

Generated Source Packages

 This package includes of dynamically generated R.java class that is created

during built of code and before complete compiling of code to define all

assets of the program. This class contains public contains of program to

define value of resources from string to android widgets and to layout. This

java class aids to find errors of code earlier than compiling time.

 In the other meaning, the automatically generated R.java connects the java

classes to resources of application and makes a relation between them. We

should never modify it, because it can be updated automatically due to any

changes in the resource directory.

Resources:

This directory is made of all User Interface components that user can see and

interact with, such as Drawable files, structured layouts objects, String values,

static content that is used in code, animation instructions, bitmaps and some

special modules like menus. These resources are always maintained separately in

various sub-directories under res/ directory of the project. The User Interface

allows us to build the graphical part of application by variety of pre-build UI

provided by Android. In order to use these elements we have to import View or

ViewGroup class in the application. Android provides a collection of both View and

ViewGroup subclasses that offer you common input controls (such as buttons and

text fields) and various layout models (such as a linear or relative layout). Also

each type of resource has its own specific subdirectory (res/ directory). For

example, here's the file hierarchy for a simple project:

MyProject/

 src/

 MyActivity.java

 res/

 drawable/

 icon.png

29

 layout/

 activity_main.xml

 info.xml

 values/

 strings.xml

As it is mentioned, the res/ directory contain all the resources in various

subdirectories. In Following I give you more detail about the resource directories

supported inside my project’s res/ directory.

 Drawable resources are using for graphical concepts of the Project like

bitmap files with format of JPEG, GIF, PNG or XML files that should be

drawn in the screen and they are accessible into code by R.drawable class.

 Layout files consist of XML files that define screen layouts of the

application. In fact these XML files are User Interface architecture of an

activity or a component. They saved in res/layout/filename.xml that they

are provided by a hierarchy of views. A layout defines and organizes

widgets like buttons, text filed, checkbox, image and other type of views to

use. This is a way to separate design of user interface from codes of

application. By passing the ID of layout in setContentView () of activity a

layout is set to an activity java code. They are accessed in the code by

R.layout class.

 Menu file defines XML files related to menus of the application store in

res/menu/filename.xml and are accessed by R.menu class, includes of

Option Menu, Context Menu or submenu that can be inflated with

MenuInflater. This xml file also contains of some elements and attributes.

<menu> is required element in the menu xml file as the root node. It

contains two elements itself <item> and/or <group>.

 Values include of other xml structure resources to define simple values

such as strings, integers and colors.

30

 Colors is defined in the tag of <resources> <color name :””> and in the tag

of color, the RGB value of color with # should be defined, like #FFFFFF.

 Styles is a resource to describe UI’s format and look. So it should be defined

in the <resources> element as the root node, and <style> element to define

a single style that contains <item> element. Style.xml can be made of two

attributes, name as a necessary attribute for the name of style and parent as

a style resource. Another way to describe <style> element is to use <item>

element for defining a special properties for a style also each item of style

has name as required attribute to define the name of each item in style

element.

Libraries

Each new project has accessibility to the default libraries of android such as

Activity, broadcast, Service, Intent, View, Application and others. But some

packages need extra libraries that are not defined in the default Android library. So

the un-default libraries have to be embedded to project manually.

Google-Play-Services-lib

This library is used to develop an app using the Google Play services APIs. To

develop an application using the Google-Play-Services-lib, first we need to set up

the project with the Google Play services by SDK manager. This library gives the

application more features that are not defined in default library of android for

attracting users on a wider range of devices.

I have used this library to take advantage of the latest Google-powered feature,

GoogleMap to download the map tiles on demand. In addition, this Google-Based

feature could be updated automatically through Google Play Services and will send

newest Google offers to programmer. In following I have explained about Google

play services that need this library.



31

Google Play Services

Google play service is a private background service that covers a large various

Google’s services such as Google Play Game Services, Location APIs, Maps, Ads,

Google+ and other APIs used by Android. The process of this service is to establish

communication between Google applications and third-party applications. The

advantage of Google Play Services is automatically updating its Google Powered

features and propagating the application experience.

Figure 10. Process of Google Play Services

Google Play Services are considered as a channel of background services for

Google, this means it updates its features without getting user’s permission or

manufactures. This indicated updates by Google Play Services don’t need to push

large updates to operating system.

Furthermore, a common Standard authorization is shared by Google Play Services

for all products and applications of a device.

32

Google-Support-v4

The Android Support Library package is a set of code libraries that provide

backward-compatible versions of Android framework APIs as well as features that

are only available through the library APIs. Each Support Library is backward-

compatible to a specific Android API level. This design means that your

applications can use the libraries' features and still be compatible with devices

running Android 1.6 (API level 4) and up.

Google map needs to be implemented through a separate activity, so the most

suitable component to use in an activity to have Google map beside of other

elements, is fragment activity. This component should be imported by Google-

Support-v4.

Important files

In this directory one of the most important components of android is placed to

configure files of the application.

Manifest File

Android has dedicated specific permissions for certain dangerous operation; so by

this way has possibility of managing security of application installed on device. In

addition, the application asks user for grant or ignore all these permissions as soon

as application is installed on device.

Accessing to system of device needs to define AndroidManifest.xml in the root

directory file to declare the activity of the application. This file prepares important

information of application like the number of activities of program. Its

responsibilities are:

 Specifying the name of application.

33

 Specifying components that are used in application like activity, broadcast

and which component is a host of application.

 The important role is specifying permissions of application. The permission

has ability of accessing to protected parts of API and interacting with other

applications of the device and the application's components.

 The system will understand each application is launched under which

conditions.

 Also it can specify the minimum level of API that application requires.

The manifest.xml has its unique structure and legal elements. So we are not able to

add new attributes or elements in its structure. The manifest file starts with a tag

<manifest> and all elements are defined inside of this tag and then <application>

tag. They are unique required elements that should be called but the other

elements can be used more than one time or not be used.

The other elements could be used more than one time or not be used are

<activity>, <provider> and <service>. Therefore, inside attributes of each element

are defined. Attributes are used to assign properties of an element like defining a

theme for an activity. Although attributes are optional, some of them are used for

specifying purpose of an element such as android: name to introduce the class

name of the activity.

One of the important elements of manifest is Permission elements to define

limiting access of a part of code to data on the device. They are used for protecting

critical data and code of application. Each label of permission demonstrates the

restricted feature action. The element to declare a permission is <uses-

permission> in the manifest. So when the application installed on the device, the

installer will check the authorities of the application that if they are signed by the

application certificate or not.

34

System Services

In this part I go through explaining services and important classes that I needed to

use for developing the project. Android has a number of system services that are

always on, always running and readily available for developers to tap into. Some

notable services are Location service, Sensor service, Wi-Fi service, Alarm service,

Telephony service, Bluetooth service, and so on. System services are started at

boot time and are guaranteed to be running by the time your application launches.

In this part, I’ll explain some of the system services that I used in my project. First,

I’ll take a look at the Location service to demonstrate some of the concepts that are

applied to most of the location services. Then, I’ll explain Wi-Fi services

information to our status updates via the Wi-Fi service.

To use Android system services we need to access to their own manager. These

managers of each service use getSystemService method for passing in Context of

service name.

Location Services

In order to construct a location-aware application, Google play Services of a

standard Android platform provides us to access location data from available

location providers by implying classes of location services in Android. Some classes

to retrieve information of location are described in following:

 LocationManager

This class provides accessing to other system location services to retrieve periodic

updates of geographical locations. This class retrieves data from all local GPS and

network location providers of the device’s area.

 LocationListener

It can receive notifications of the updates and changes of the location, which is

used in the method of LocationManager, requstLocationUpdatses (String, long,

35

float, LocationListener). So it provides callback methods which call when location

is changed.

 LocationProvider

It is an abstract superclass for location providers for periodic reports of

geographical position of the devices.

 Criteria

This is the class help to choose the best and suitable Location Provider, and it

prepares a set of required properties of the LocationProvider. It can provide

accuracy, power stage, ability to report altitude, speed, bearing and monetary cost.

 GeoCoder

It is a class to retrieve geocoding and reverse geocoding to transform the longitude

and latitude coordinates to the street address, postal code, city and other

information of the location by reverse geocoding. This amount could be different

for different location, that means for one location maybe it could show all

information and for another just the name of city. In the GeoCoder a

java.lang.object class, locale is called to specify language/country/variant

combination of the location. And by the getDefault () method, have an

appropriate and preferred locale of the user.

Wi-Fi Services

The service has some classes that provide us information about Wi-Fi connections,

monitoring Wi-Fi connectivity and provides the primary API for managing all

aspects of Wi-Fi connectivity. The manager element that Wi-Fi services pass

through is Wi-Fi Manager.

36

 WifiManager

WifiManager is a class manger that monitors Wi-Fi connectivity and manages

them. Also does broadcast Intents whenever the connectivity status of the Wi-Fi

network changes, using an action. For example when an active Wi-Fi connection

has been established, we can use the getConnectionInfo method on the Wi-Fi

Manager to find information on the connection’s status.

Also we can get a list of current network configurations such as ID, SSID and other

details.

 WifiInfo

WifiInfo is another sub-class of Wi-Fi Services to provide us all information about

device’s active or in process Wi-Fi connection. The features such as Wi-Fi

Frequency, return the BSSID and so on.

Connectivity Services

This service provides us the internet connection of device and its status. This

service is used to monitor the states and configure failover settings, and control the

network radios and set our preferred network connection. Like other services, this

service needs to be implemented by its own manager and pass it in

Context.CONNECTIVITY_SERVICE.

 ConnectivityManager

The ConnectivityManager represents the Network Connectivity Service to answer

queries about the state of network connectivity. At the other hand, it notifies

applications when network connectivity changes. The duties of this manager is

monitoring network connections, Send broadcast intents when network

connectivity changes, attempt to "fail over" to another network when connectivity

to a network is lost, Provide an API that allows applications to query the coarse-

37

grained or fine-grained state of the available networks and Provide an API that

allows applications to request and select networks for their data traffic.

Google Map

The Google map object prepares an object in application to show the Google map in

the application with the same appearance of the Google map application and some

of its features. But there are some differences between the main application of

Google map and its object in an application.

One of them is this API is not included personalized contents and icons of places.

Another, if it shows, all of them are not clickable.

The object of “com.google.android.gms.maps.GoogleMap” implements a main

class of Google Map Android API that includes all methods of the map. So it

provides automatically access to Google Maps servers, data downloading, map

display, and response to map gestures. In order to implement the Google map

object, MapFragment or MapView are required to be added in the main threat

application. MapView or MapFragment can display the map by the provided

objects in location based services of Android. [13]

The important is for developing a Google map in the application needs to get a

certificate from android and Google map API key and add this key to the

application. The point is this key is free and can support an unlimited number of

users to use the Map API in their application. Therefore, we have to prepare a

Maps API key from the console of Google developers by following link

https://console.developers.google.com and then add the key to the

AndroidManifest.xml. This key is considered as a specific certificate/package

pairs. The application with same certificate can use the same API too.

<meta-data android:name="com.google.android.maps.v2.API_KEY"

 android:value="AIzaSyDiNg51xYmg_330JV5aSYxIAJ4rGK4CLb8"/>

https://console.developers.google.com/

38

The Google map API key is a SHA-1 fingerprint key which is a cryptographic hash

function to create a key based on the short form of the application digital

certificate because of its uniqueness.

Therefore, we have to create AN API object in the Google Developer Console. To

do that at first needs https://console.developers.google.com/ link to go to which

is the Google Developers Console and then after choosing the API project, create

the project in this console. To see the list of our enabled APIs, we have to follow

APIs & auth/APIs/Enabled APIs that we need Google Map API.

Figure 11: Console of Enable APIs for the application

https://console.developers.google.com/

39

Figure 12: Credentials page in the Google Developers Console

Then in the Credentials in the left side, we can see the API key of android

application that as has been mentioned is a SHA-1 fingerprint code. Thus, the API

key of application has to be added in manifest of the application. So, when the

application runs, from manifest, Google Maps Android API v2 will read the key of

application, and sends it to the servers of the Google Maps to receive

confirmation of Google Maps data. This key should be added in the <application>

element of manifest, that I have more specified it in the chapter 3.

Now that the permission and confirmation of using Google Map API is ready, the

developing of a way to draw a line is needed. In this class package are some simple

ways to draw a shape in the application’s basic map.

The three shape types provided by this class are

 A Polyline shape draws paths and routs on the Google map by a series of

connected lines between points.

 A Polygon shape is created to have an enclosed shape on the Google map.

 A Circle is show of a circle on the Earth’s surface.

40

A Polyline provides our need of drawing route on the Google map of the

application when the user is outdoor and it is using internet connection of mobile.

Debugging

The Android SDK provides most of the tools that you need to debug your

applications. You need a JDWP-compliant debugger if you want to be able to do

things such as step through code, view variable values, and pause execution of an

application. If you are using Android Studio, a JDWP-compliant debugger is already

included and there is no setup required. If you are using another IDE, you can use

the debugger that comes with it and attach the debugger to a special port so it can

communicate with the application VMs on your devices. The main components that

comprise a typical Android debugging environment are:

Adb

Adb acts as a middleman between a device and your development system. It

provides various device management capabilities, including moving and syncing

files to the emulator, running a UNIX shell on the device or emulator, and

providing a general means to communicate with connected emulators and

devices.

Device or Android Virtual Device

Your application must run on a device or in an AVD so that it can be debugged. An

adb device daemon runs on the device or emulator and provides a means for the

adb host daemon to communicate with the device or emulator.

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/device.html
http://developer.android.com/tools/devices/index.html

41

Session 3

Abstract: In this chapter, I am going to explain how I have created and developed my

project by using android components, tools, methods, classes, libraries and so on. The

idea is to define an android tool which recognizes the user’s activities such as

running, walking, bicycling and driving while the user is connected to Internet. This is

done by a simple body position independent algorithm and doesn’t need to use

embedded Android sensors. In order to fulfill the goal of the algorithm, we need to

collect data of device’s location regularly. It is mentionable that “location based

services” is one the most important services has been imported and applied in my

project. This service provides me many benefits for retrieving the information about

current location of the device, processes of gathering data and useful information

about location nearby. So I have proposed a development for location based of

Android services which gives us required information based on device’s location.

The Project definition

An android project is an appearance collocation of activities, services and

broadcast receivers to work together and their incorporation. The project covers of

two main building blocks of android, Activity and Broadcast Receiver, and other

additional components Fragment activity and Intent. As it has been mentioned in

previous chapter, each component works individually and works together by

fitting them properly.

The figures, 13 to 14 show what looks like the project at end to achieve the goal.

42

Figure 13: The main screen of application

Figure 14: the second activity

43

My project is consist of eight java classes, six xml files of the layout and one

manifest to organize all the activities of the program. From 8 java classes 4 of them

are activities as interface of the project to interact with the user, one of them is

Broadcast receiver to work in background. And two other java classes are

developed in order to have database.

From xml files of layout, 4 of them are the layout of the project related to each

activity and other two xml files are embedded in the main activity of the program.

As this program is working as background and foreground, is included both

activity intents and broadcast intent. When the android device is on, its

connectivity to internet is checking by the broadcast intent to retrieve if the user is

connected or not and if is connected, which type of internet connection is.

The List of activities in the source package is listed below:

 a_MainActivity.java

 c_WifiScanActivity.java

 d_GsmScanActivity.java

 f_ConnectionList.java

Other .java classes of the source package are:

 Connection.java

 HttpConnection.java

 MySQLiteHelper.java

 _connectivityReceiver.java

In addition in the resources/layout route of the application, four xml layout with

the name of:

 main.xml

 c_wifiscan.xml

 d_gsmscan.xml

44

 f_connectionlist.xml

They are embedded in a_MainActivity.java activity for representing the list of Wi-Fi

and GPS.

So, by running the application, a_MainActivity.java as the main activity of the

program appears which includes of a list by the names of Wi-Fi and Telephony that

by clicking on each one goes to their related activity.

Both activities have same structure included of the five textboxes. That they show

the requested information of connection, a textbox to show the Location of the

user, another to show the activity of the user and at least a textbox which declares

distance of user from its previous location that was connected to internet and the

velocity.

After these textboxes is a button linked to the f_ConnectionList.java that is a page

to show all the connections saved in the database. And at the end a Google Map

fragment is added to draw a line between points that user is connected.

_connectivityReceiver.java is a BroadcastReceiver that it doesn’t need the user’s

interaction with application. While the cell phone is running, it works to retrieve

the requested data.

In this chapter, that all the progress of the program is included, at first all the

algorithm, classes, libraries and activities are presented. Afterward, the use of

these in each activity and java class is defined.

Part 1: Android User Interface

In the first part I am going to introduce the UI module of my project that has

focused on developing the first component of application for user to interact with

and the unique feature that it is dual approach to UI via both Java and XML. Here I

explained how this user interface works when it is launched by user. Through this

activity, we need to use Java and XML together and we have to know how to

connect them to each other.

45

Beside these two most important elements of building activity, I have explained

about layouts, views, menus, intents, Google map, how to handle Java events such

as button clicks, and other widgets.

Two Ways to Create a User Interface

There are two ways to create user interface of project. One is declarative, and the

other one is programmatic. They are quite different but often are used together to

get the job done. The best way is to use declarative approach which means

applying XML to declare all the static interface elements such as layout of screen,

and all widgets like a button that we declare how looks like. Then for interaction of

various widgets we use programmatic way by Java to say what a defined button

does.

Views and Layouts

Layouts as the screen of an activity includes of views, everything that we can see in

a layout like button, label, textbox. They are organized by layout for grouping

together or group some elements together to make a complex user interface

structure. It means a layout can contain other children and allocate them space

that each child is a layout itself. The layouts that I have used in my project are

LinearLayout and RelativeLayout.

 LinearLayout

It is simplest and common layout that its children are set next to each other

horizontally or vertically. In the LinearLayout the order of setting element are

important that allocates required space that that they need and allocates desired

space to each child based on their adding order.

 RelativeLayout

46

RelativeLayout lays out its children relative to each other. As such, it is very

powerful because it doesn’t require you to nest unnecessary layouts to achieve a

certain look. At the same time, using RelativeLayout can minimize the total number

of widgets that need to be drawn, thus improving the overall performance of your

application. Having it said that, RelativeLayout requires each of its child views to

have an ID set so that we can position it relative to other children.

Building Project’s Activities

Firstly, for building the project we should define a Name for the project that the

entire project will be organized under it. Then we should define the Android

system will to run the application on that could be any platform, either standard or

proprietary.

Then have to indicate the package name of project that designates a java package.

Then we are able to create an activity that is one of the principle parts of this

project. So the project is started by building the first activity name as MainActivity

and developing it.

Part 1: Main Activity

My goal of this activity is to define the below figure 15 that runs when we lunch the

application.

47

Figure 15: First snapshot of A_MainActivity

The Main Activity layout

I have started my project by designing its main screen layout with the name of

a_main.xml in the res/layout folder. This layout consists of a menu and its

submenus and it launches as main screen when the application is run.

The first screen of project shows a list that it is included of a TextView and an

ExpandableListView widgets. The TextViews shows the title of menu and the

ExpandableListView widget is used for having a vertical expandable list, Wi-Fi and

Telephony and their submenus. These widgets are defined inside of a LinearLayout

that it is a View Group tag and then it is connected to its related java code by

referring to R class in its related java code.

Each widget has some properties that the important widget properties have to be

specified in this xml file. Two properties that I have used are layout_width and

layout_height to determine how much space belongs to each widget by asking from

its parent layout. Although I could define a specific amount for width and height,

because the application will be run on different devices with different screen sizes,

is better to choose fill_parent or wrap_parent to have a relative size for each

component. Fill_perent means that the widget will allocate all the available screen

48

size for itself. I gave this fill_parent property to RelativeLayout screen that it covers

all the screen of device with any kind of screen size. In the other hand, in some

widgets like TextView, ExpandableListView, Button, I have used wrap_content for

their width and height that means it requests for as much as possible space to

display its own content.

One of the important and necessary properties is ID that should be identified for

each widget. It is the unique identifier for a widget in a layout for calling the widget

in the java code. It has to be defined in the in this way "@+id/menuexpandable”.

The other property is text property which it is used for some kind of widgets such

as Button or TextView and they can specify a text inside a widget.

<?xml version="1.0" encoding="UTF-8"?>

<RelativeLayout xmlns:android="http://schemas.and roid.com/apk/res/android"

 android:id="@+id/menuexpandable"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:background="@drawable/fons_blur">

 <TextView

 android:id="@+id/menuexpandableTextView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="20dip"

 android:layout_marginBottom="10dip"

 android:layout_marginLeft="10dip"

 android:textSize="24sp"

 android:textColor="@color/black"

 android:text="Select Option:"/>

 <ExpandableListView

 android:id="@id/android:list"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:layout_below="@id/menuexpandableTextView"

 android:layout_marginLeft="10dip"/>

</RelativeLayout>

49

Strings Resource

In order to applying any changes in resources of a project, that applies on whole

the package, Android has a policy to keep data in separate files. A separate file to

save all the layouts of project, or defines another file name as string.xml to save

values to hold text values such as button text or title text. Later in this chapter has

been explained more about this file that includes of name/value.

The MainActivity Java Class

The layout of the main activity is ready, now I can define its java codes. Its java

class, a_mainActivity.java is already created in com.wireless.edu java package.

An activity needs to start needs to start by defined sub-classes in the Android's

framwork. So we should override the defined inherited methods of used sub-class.

So firsly, we should use onCreate() necessary method to override all the widgets,

describe the screen and starts its state machine. In this screen, onCreate() method

has responsibility of set up the expandable list menu that response to clicks and

connect us to other activities.

When we use public void onCreate (Bundle savedInstanceState), we need to pass a

small amount of data by Bundle through onCreate() method which this bundle is

prepared by super.onCreate(savedInstanceState). Also, this method provides the

original small amount of parents into the activity by the intent that started it.

The first thing after calling the super method is to load the UI xml file in the activity

and inflate it into the java memory space that for this activity it is called “inflating

from XM”. This is done by setContentView (R.layout.main) method. So java will be

able to open its related XML layout, parses it and prepares a space for each element

that is defined in the XML.

As I have mentioned in session 2, R class is an automatically generated class that

connects Java and XML and all the other resources together to communicate. As

you can see in the figure, there are two elements, one TextView filled by Select

50

Option and an Adapter List with sub-list of Wi-Fi and Telephony. In order to

preview the list I have used ExpandableListAdapter.

ExpandableListAdapter Function

In the main activity we need to create a list group with its children. In order to

create a list, adapter is the class to be used, it can map static data defined in xml to

group and child view for initiating a list. In the separate xml file the views to

display in a group are defined, then they map from keys of each element. This

Process is same for a child too with one-level deeper. The first List corresponds to

the group of the child, the second List corresponds to the position of the child

within the group, and finally the Map holds the data for that particular child.

After defining an object of adapter, we fill it with SimpleExpandableListAdapter

(Context context, List<? extends list <? extends Map < String, ? >>> childData, int

childLayout, String[] childFrom, int[] childTo).

mAdapter = new SimpleExpandableListAdapter(

 this,

 createGroupList(),

 R.layout.a_group_row,

 new String[] { NAME },

 new int[] { R.id.menuexpandibleGroupTextView },

 createChildList(),

 R.layout.a_child_row,

 new String[] { NAME },

 new int[] { R.id.menuexpandibleChildTextView }

);

 setListAdapter(mAdapter);

 }

The CreateGroupList() function, contains of an object of List<Map<String, String>>

and a menuItem object of CharSequenc[] array filled with its correspond defined

51

elements in xml view. The CharSequence is an interface that represents an ordered

set of characters and defines the methods to probe them.

private List createGroupList() {

List<Map<String, String>> groupList = new ArrayList<Map<String, String>>();

CharSequence[] menuItems = getResources().getTextArray(R.array.menuItems);

 for(CharSequence item : menuItems){

Map<String, String> groupMap = new HashMap<String, String>();

 groupMap.put(NAME, item.toString());

 groupList.add(groupMap);

 }

 return groupList;

 }

At least I had to mention that because of using Expandable List, we need to extend

the main activity class to ExpandableListActivity as follow.

public class a_MainActivity extends ExpandableListActivity {}

The createGroupList() is defined by a list of grouplist that gets items for menuItem

from /res/values/array.xml to returns the group list. The code snip of array.xml is

placed here.

 <string-array name="menuItems">

 <item>WiFi</item>

 <item>Telephony</item>

 </string-array>

By applying these codes we will have the following screen shot. In addition, I have

defined a Sub-List for both of options to achieve the figure 16.

52

Figure 16: Second snapshot of a_ MainActivity

Part 2: c_wifiScanActivity

After doing click on Wi-Fi we will be navigated to this activity. In this part I explain

the layout of this activity, and then its java class and other necessary components

to implement this activity. The figure 17 presents whole the layout of

c_wifiScanActivity.

53

Figure 17. the c_wifiScanActivity screen

I am going to create a new activity and build it based on below steps to develop all

the elements that are shown in the figure 17.

 First defining its layout

 Importing services that we need to use

 Defining Wi-Fi information and ….

54

 Location detection

 Updating location

 Defining the user activity

 Refer to a database that reserve our desired data

 Importing Google map

The c_wifiScanActivity layout

As you can see in the figure 17 this activity is consist of five TextViews and a

Google map and one Button that all the elements are embedded in a RelativeLayout

view group with fill_parent property to covers all the screen of device with any

kind of screen size. In this activity I have a quite bit of data which has to be shown

in TextViews and Button and all of these widgets have to be fit in a half of the

screen, so I needed to use ScrollView to wrap them in a part of screen and provide

us a scroll bar to up and down. This view works like the window that by scrolling

we will be able to have a larger screen more than space which device allows us to

use.

Inside of ScrollView, a LinearLayout is solicited again to ask fill_parent properties

for layout_height and layout_width and fill all the space that ScrollView can provide

us.

To refer the Google map instance as a fragment class in the activity, I had to use

fragment to set the inside of it in XML layout.

One notable property that is used in this layout is layout_weight equals to 1. This

property is defined in ScrollView and fragment tags to imply weight for layout

requirements and we are requesting half of the screen for ScrollView and half of

the screen for the Google Map.

Another widget that is utilized in this layout is button. For button we have to use

wrap_content for its layout_height and layout_width because it won’t need more

space to take. In following you can find the layout of this activity.

55

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical">

 <ScrollView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/ wifiscan"

 android:layout_width="fill_parent"

 android:layout_height="0dip"

 android:layout_weight="1"

 android:background="@drawable/fons_blur">

 <LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical">

 <TextView

 android:id="@+id/GsmScanTextView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginLeft="10dip"

 android:layout_marginTop="10dip"

 android:layout_marginBottom="10dip"

 android:textSize="12sp"

 android:textColor="@color/black"

 android:background="@color/white"

 android:text="To show Cell Info press button"/>

56

 <Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="SHOW CONNECTIONS"

 />

 </LinearLayout>

 </ScrollView>

 <fragment xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/mapview"

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 class = "com.google.android.gms.maps.SupportMapFra gment"/>

</LinearLayout>

Part 2: The c_wifiScanActivity Java Class

The layout of this activity is ready, so we can define its related java class,

c_wifiScanActivity. This activity is a main building class like the previous activity

so firstly it is needed to define its provided subclasses of android framework. So it

starts with overriding onCreate() method to define elements which should be

implemented. This activity extends FragmentActivity to support the

android.support.v4.app library and provide some useful features and ensure us

about compatibility of application with older versions of Android.

public class c_WifiScanActivity extends FragmentActivity {….. }

57

In this activity, I need to use Wi-Fi service to give me information about the Wi-Fi

connection of device. So I should import its java class WifiManager by

getSystemService () method, and import all the Wi-Fi services in a WifiManager

object.

wifiManager = (WifiManager) getSystemService(Context.WIFI_SERVICE);

The forth step of this part is device’s location detection while it is using Wi-Fi. In

order to achieve this idea we need to apply location services of android and import

them in a location manager that is able to manage all the information that is

provided by location services. I will explain about it in following of this part.

Afterward as I have mentioned, the seventh step of this activity is to save all

information that we requested in the database that we defined. In onCreate()

method we have to pass the database through the onCreate(). This would be

discussed in following parts completely. After passing the database, we have a

button that should be defined in onCreate() method that is related to our database.

So we need to set up the button to respond to clicks and connect us to the

application’s database activity that shows a table of data. This is a user interface

object which has its own defined methods to do an action. The method that help us

to execute certain code when the button is pushed is onClick() method has to pass

it through the setOnClickListener method on the Button.

myButton = (Button)findViewById(R.id.button1);

 myButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 Intent i=new Intent(c_WifiScanActivity.this, f_Conne ctionList.class);

 startActivity(i);} });}

58

The second snip is onResume() method that runs while application in this activity

is running, and this method is calling every time while the activity is brought up

front. It retrieves information about the Wi-Fi states. It used a Wi-Fi timer to

update searching about states of Wi-Fi.

In onResume() overriding method, I have defined a WifiInfo object that is an

Android class that is able to retrieve the state of any active Wi-Fi or being set up

connections by getConnectionInfo() method of WifiManager.

WifiManager of Wi-Fi Services can provide us some information as follow:

 isWifiEnabled(), a Boolean method to return if the Wi-Fi is enabled or not.

 setWifiEnabled(), to enable or disable Wi-Fi.

WifiInfo has following methods

 wifiinfo.getBSSID(),

 wifiinfo.getSSID(),

 wifiinfo.getIpAddress(), To obtain IP address.

 wifiinfo.getMacAddress(), To obtain MAC address.

 wifiinfo.getNetworkId(), Access network ID.

 wifiinfo.getRssi(), Access to RSSI, RSSI to receive signal strength indicator.

 Wifiinfo.getSupplicantState(), to return the detailed state of the

supplicant negotiation with an access point in the form of a SupplicantState

object.

public void onResume(){

 super. OnResume();

 WifiInfo wifiInfo = wifiManager.getConnectionInfo();

 stateTextView.setText("WiFi STATE\n------------\nWiFi is enabled?
"+wifiManager.isWifiEnabled()+"\nwifiInfo.supplicantState:"+wifiInfo.getSupp
licantState());

59

In the figure 17, is showing that we set in the TextView to show if the Wi-Fi is

enabled? By calling isWifiEnabled() method of WifiManager and shows

SupplicantState that is completely accessed to access point or has another enum

values of SupplicantState such as ASSOCIATED, DISCONNECTED, SCANNING and so

on.

In following I want the application to scan its Wi-Fi connectivity status and to get

all of its information regularly in each 20 seconds. So as you can see in the snip

code, I have registered a receiver in onResume() method that means, whenever the

c_wifiScanActivity is running, recall the wifiScanReciever function that this

function is defined separately as a private class that extends BroadcastReceiver. I

will explain this function in the page 94 after introducing BroadcastReceiver. This

BroadcastReceiver function needs to be registered in the Activity to affect the UI

while it is updating. So the wifiScanReciever function should be registered in the

onResume() handler and be unregistered in onPause() by IntentFilter class.

Broadcast Receivers are used to listen for Broadcast Intents. Now I need to explain

about Filter and an instance of IntentFilter which it is used when we registered the

wifiScanReciever by registerReceiver() method. This IntentFilter simply indicates

which intent actions we want to be notified about. In this case, we want to run the

wifiScanReciever through an IntentFilter when we have completed access to

Access Point of Wi-Fi and we can have a result from supplier. So we add

SCAN_RESULTS_AVAILABLE_ACTION method of WifiManager as an action to

IntentFilter. We should keep this in mind that Receivers need to be registered in

code or in the manifest file.

 IntentFilter intentFilter = new IntentFilter();

 intentFilter.addAction(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION);

 registerReceiver(wifiScanReceiver, intentFilter);

 wifiTimer = new Timer();

 wifiTimer.schedule(new wifiTask(), 0, TIME_BETWEEN_SCANS); }

In following snip code is showing onPause() handler that activates when the

application is paused. In this part if the wifiTimer is not null, it stops listening and

unregisters the wifiScanReceiver function and cancels the wifiTimer. Also if the

60

Boolean object of wifiWasNotEnabled be equals to false, the WifiManager service

will be disabled.

public void onPause(){

 super.onPause();

 if(wifiTimer !=null){

 wifiTimer.cancel();

 unregisterReceiver(wifiScanReceiver);

 }

 if(wifiWasNotEnabled){

 wifiManager.setWifiEnabled(false);

 wifiWasNotEnabled = false;

 }

 }

Location Service

Before explaining about the code I’m going to explain about two methodologies of

implementing location based services, first is a device-based application that user

directly requests for finding the location for example using Google Map, and

second is processing the location of user as a service in the application and deliver

information to the user. The second methodology has been considered for the

project.

Location Based Services of Android are accessible information services as long as

the device is connected to the Internet. They can be used in different areas and

conditions such as work, routine life and lots of other cases [13]. This is a real time

service to find out the geographical position in spatial terms or text description. A

spatial term means longitude, latitude and altitude of the user on the coordinate

system.

The latitude (φ) is x-axis of user angle of device base on north or south from

equatorial plane. With connection of all same width points together, a parallel line

to the equator will be obtained and also all lines are parallel to each other. It varies

between 0-90 degrees. The 0o parallel line is considered the equator.

61

The Longitude (λ) is the west or east angle of the device based on meridian which

is zero degree. And it varies from 0o – 180o to east or west. The zero point is located

in the Gulf of Guinea and the antipodal meridian of Greenwich is both 180oW and

180oE. The composition of these longitude and latitude deduce the exact location of

anything on the earth without considering its altitude that can present the height

in meters above the sea. The text description represents string of data about

address, street location, postal code, city and country.

To catch the current location is possible to use:

i) Mobile Phone Service Provider Network

By this service retrieve information about the current Base Transceiver Station

(BTS) that the user is located in its area and is interacting with, which uses the

radio base station of the connected station? The radios of a GSM cell could be from

2 – 20 kilometers. This service is cheap and doesn’t add costs to the handset.

 ii) Satellites (write and find better and more about, this is copy and paste)

The Global Positioning System (GPS) uses a constellation of 24 satellites orbiting

the earth. GPS finds the user position by calculating differences in the times the

signals, from different satellites, take to reach the receiver. GPS signals are

decoded, so the smart phone must have in-built GPS receiver. This service provides

us more accuracy of 5 – 10 meters. [8]

The Network Location Provider Service of Android defines the location of user by

Wi-Fi Signals or cell tower information to determine that cell phone is indoor or

outdoor.

As has been mentioned Location based services are important keys to find the

user’s current location and be updated periodically and retrieve their longitude,

latitude and radius.

Now I can continue the project and explain how to imply location based services of

Android. In the previous step application lets us to know about Wi-Fi connection,

its status and all information that we willing to know. In this step I want to use

62

location service the system service of Android. The location API of android is

supported by the location manager.

After accessing to location services we need to register a location listener with

location manager that location service would be able to call back when device’s

location has been changed. The Location Manager uses location providers, such as

GPS or Network, to figure out our current location. In addition, to retrieve the most

appropriate information about of accuracy, cost, and other requirements of

providers, I have used Criteria.

I am going to give a short explanation about these four elements of location based

services, Location manager, Location Listener, Location Provider and Criteria.

Location Manager

Location Based services of Android are services to be used for location detection.

In order to establish a Location based Services system in a project, Location

manager is the main class to utilize for communicating with other services and

manage all the other components of LBS [13]. So we need to pass location services

through a location manager by calling getSystemService () and register for location

updates to use the location information. The major responsibility of this class is to

implicate location-based services and retrieve periodic updates of geographical

locations.

Location services should be passed through a location manager and implemented

through onCreate() handler. So in following of the onCreate() in the previous part,

we will add it for accessing to Location Services.

The other responsibilities of this class are:

 Obtain your current location

 Follow movement

 Set proximity alerts for detecting movement into and out of a specified area

63

 Find available Location Providers

 Monitor the status of the GPS receiver

The most useful method of Location manager are:

 getAllProviders : That provides a list of all known location providers

around the cell phone.

 getBestProvider: It used Criteria class, to define the best provider between

all providers.

 getLastKnownLocation: Retrieve data of the last known location from the

given provider.

 getProvider: It presents information of the indicated location provider.

 requstLocationUpdatses: It updates the location, by using the provider in

a specific time distance and a pending intent.

LocationListener

Also I am going to implement the LocationListener interface, which means adding a

number of new callback methods to this activity. When the location changes,

updates the location object, and next time around when we update our status

online, we’ll have the proper location information. It can receive notifications of

the updates and changes of the location, which is used in the method of

LocationManager, requstLocationUpdatses (String, long, float, LocationListener).

This class includes of four methods to call by changes of location as below:

 onLocationChanged

 onProviderDisabled

 onProviderEnabled

 onStatusChanged

64

LocationProvider

It is an abstract superclass for location providers for periodic reports of

geographical position of the devices. This class helps the application to get a list of

available location providers on the device.

The methods used in the project related to LocationProvider are:

 getAccuracy() to retrieve horizontal accuracy of the provider.

 getName() for receive name of provider.

Criteria

This is the class help to choose the best and suitable Location Provider, and it

prepares a set of required properties of the LocationProvider. It can provide

accuracy, power stage, ability to report altitude, speed, bearing and monetary cost.

 setAccuracy() :It represents the amount of accuracy of longitude and

latitude that could be ACCURACY_FINE that desired location is fine, or

ACCURACY_COARSE that has more accuracy with constant value of 2

(0x00000002) that is two times more than ACCURACY_FINE.

 setAltitudeRequired(): It is a Boolean method that indicated if Altitude is

needed or not by demanding setAltitudeRequired(false) or

setAltitudeRequired(true).

 setBearingRequired() : A Boolean method to indicate that if the bear

information is needed or no.

 setCostAllowed(): This is also another Boolean method to say if is allowed

to incur monetary cost.

 setPowerRequirement(): The desired level of power, that could be defined

in three ways, ACCURACY_LOW, ACCURACY_HIGH or NO_REQUIERMENT. In

the project POWER_LOW is used because of reducing the consumption of

power and taking time.

65

Geocoder

A class to transform longitude and latitude coordinates of the location to return

street address, postal code, city and country of the location. Is possible that for a

location it be able to return all information about the location but for another

location couldn’t retrieve all information.

A Geocoder class is called in this order Geocoder (Context context, Locale locale).

The locale is user to present language, country, and variant combination. It is used

to notice about existence of information such as numbers, dates of a region.

 After defining the Geocoder object, we try to prepare a list by getFromLocation

(double latitude, double longitude, int maxResults) for obtaining an array of known

addresses and getting the accurate or best guess information of location based on

longitude and latitude. After filling the address list object with

gc.getFromLocation(), we can retrieve address line, locality, postal code and the

country name of location.

Finding Location Providers by implying Criteria

I have used Criteria class of Android to provide the best provider of the user based

on our defining, setting requirements and choosing Contexts for using each one of

its methods for a location provider in terms of accuracy, power and abilities of

returning altitude, and speed. In the following snip code you can see what values

are set for the provider.

Here I have a short definition for methods and the context that I have used to get

the best location provider.

 setAccuracy() that can be set by one of following accuracy contexts.

- ACCURACY_FINE

- ACCURACY_COARSE

 setAltitudeRequired() a Boolean method for defining if we need altitude

or not.

66

 setBearingRequired()

 setCostAllowed()

 setPowerRequirement() that can be set by one of three below contexts to

set the power amount which is received by provider.

 ACCURACY_LOW

 ACCURACY_HIGH

 NO_REQUIERMENT

 POWER_LOW

public void onCreate(Bundle icicle) {

locationManager=
(LocationManager)getSystemService(Context.LOCATION_SERVICE);

 criteria = new Criteria();

 criteria.setAccuracy(Criteria.ACCURACY_FINE);

 criteria.setAltitudeRequired(false);

 criteria.setBearingRequired(false);

 criteria.setCostAllowed(true);

 criteria.setPowerRequirement(Criteria.POWER_LOW);

 String provider = locationManager.getBestProvider(criteria, true);

 location = locationManager.getLastKnownLocation(provider);

 locationManager.requestLocationUpdates(provider, 2000, 10,
locationListener);

}

As you can see in the snip code, the criteria are called by getBestProvider of

LocationManager service to give us a name of criteria.

After finding the location of device and getting to know about the location provide

based on our setting, we need to request from application to do this regularly. So

we have to use requstLocationUpdates() method of location manager to register

for location updates by getting, provider, minimum time interval between location

67

updates, in milliseconds, minimum distance between location updates in meter

and a pending intent of location listener.

Update Location by LocationListener

A LocationListener class is a callback method called by the location manager to

return or do an action due to any changes or updates of location.

As I have mentioned, the location Listener is an important service for listening to

the changes and sends or receives notifications when the location is changed, the

provider is enabled or disabled and when the status is changes. These methods are

named as onLocationChanged(), onProviderDisabled(), onProviderEnabled() and

onStatusChanged().

private final LocationListener locationListener = new LocationListener() {

 public void onLocationChanged(Location location) {

 updateWithNewLocation(location);

 }

 public void onProviderDisabled(String provider){

 updateWithNewLocation(null);

 }

 public void onProviderEnabled(String provider) {}

 public void onStatusChanged(String provider, int status, Bundle extras){} };

The important method that is used by location listener in onLocationChanged()

callback method, is updateWithNewLocation(location) method. That I can say that

it is a milestone of my project, and by this method I have lots of progress. This

method besides registering updates by location manager provides me current and

previous location of device and so on, I was able to find distance of previous and

68

current location and then Activity Recognition that all of them are explained in

following.

UpdateWithNewLocation() method for Finding the Current Location

and Previous Location of device

In the onCreate() override method we defined an object of location that gets the

last known location by calling getLastKnownLocation method of location manager

for retrieving the last location that device could distinguish and we should pass it

through updateWithNewLocation(location). So the method gets the location object

that is filled with all solicited information.

First of all function updateWithNewLocation(Location location) provides us the of

longitude and latitude double amounts of the current location by two location

methods of getLatitude() and getLongitude(). Then these values are set to show on

a TextView on the screen.

public static double nlat;

public static double nlng;

nlat = location.getLatitude();

nlng = location.getLongitude();

latLongString = "Lat:" + nlat + "\nLong:" + nlng;

myLocationText.setText("Your Current Position is: \n" + latLongString);

Now we can continue the updateWithNewLocation method after extracting the

latitude and longitude of the current location and having location’s string address

to show it on myLocationText TextView element of the screen.

Then we have utilized GeoCoder class of location based services to show the street

address, city and postal code of the current location of device because longitude

and latitude are geographical values of location and user has no idea about them.

69

This class can transform longitude and latitude coordinates to real-world

addresses.

Geocoder has two responsibilities, one is “Forward Coding” which detects the

longitude and latitude of a partial address, and the other is reverse coding which

acquires us the street address of device. If we don’t specify a locale1, it assumes the

device’s default, by the way I have indicated to return the default locale of user.

Geocoder gc = new Geocoder(this, Locale.getDefault());

Both geocoding functions return a list of Address objects. Each list can contain

several possible results up to what is specified. To define a string street address,

we have to use Reverse Geocoding and pass its getFromLocation method through a

List<Address> with this format (double latitude, double longitude, int

maxResults). This method will return a list of possible address matches to the

specified properties. If the GeoCoder could not resolve any addresses for the

specified coordinate, it returns null. For the result of this method we have an array

of addresses that describes the area. Then we modified the

updateWithNewLocation method to instantiate a list of addresses and passed in it

the newly received location and limiting the results to a single address.

In an address object all the required information are defined by the following

methods:

 getMaxAddressLineIndex(): To return the largest index currently used to

show a address line.

 getAddressLine(): This method can specify a line of the address numbered

by given index i.

 getLocality(): Defines locality of the address or null if is not defined.

1 - Locale represents a language/country/variant combination. Locales are used to alter the presentation of information

such as numbers or dates to suit the conventions in the region they describe.

70

 getPostalCode

 getCountryName

After all of these processes we will have the exact location of the user in terms of

geographical and real-world values. I have added the following snip code to the

updateWithNewLocation() method.

private String updateWithNewLocation(Location location) {

 try {

 List<Address> addresses = gc.getFromLocation(nlat, nlng, 1);

 StringBuilder sb = new StringBuilder();

 if (addresses.size() > 0) {

 Address address = addresses.get(0);

 for (int i = 0; i < address.getMaxAddressLineIndex(); i++)

 sb.append(address.getAddressLine(i)).append(" \n");

 sb.append(address.getLocality()).append("\n");

 sb.append(address.getPostalCode()).append("\n");

 sb.append(address.getCountryName());

 }

 addressString = sb.toString();

 } catch (IOException e) {}

 } else {

 latLongString = "No location found";

 }

 myLocationText.setText("Your Current Position is: \n" + latLongString + "\n"
+ addressString);

 return addressString;}

71

Before it is discussed about calculating the distance of user by retrieving longitude

and latitude from its previous location and current location while is using internet.

Although updateWithNewLocation() method provide us longitude and latitude of

current location, it won’t keep in its memory the previous location of user. So the

solution for having both current and previous locations and their geographical

values is to define two double values with name of plat and plng and at first define

them with zero value.

While the activity is running and getting current user’s location information, these

two values are filled too. When the first location has value of location.getLatitude()

for current location latitude as defined nlat and nlng is also equal to

location.getLongitude(), plng and plat are amounted to zero. But when the location

changes, we contextualize nlat and lng to nlat and nlng that are previous values of

location before getting new location latitude and longitude to nlat and nlng. So we

need to add them our updateWithNewLocation method.

In next part, I have explained about how the distance between two point is

calculated.

Public double calculateDistance (double lat1, double lon1, double lat2,

double lon2)

Before explaining the algorithm, I should explain about how the amounts of

longitude and latitude that are based on degree, are converted to radians for these

calculations. In following I explain about mathematical way of converting Degree

to Radian and then the calculateDistance() method of the project.

The formula is used which calculates the distance between two points in a great

circle, Earth is Heversine formula. It calculates the shortest distance of two points

over the earth’s surface. Is just about the distance based on sea surface and didn’t

consider the altitude.

Heversine formula:

72

 a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)

 c = 2 ⋅ atan2(√a , √1 - a)

 d = R ⋅ c - Distance of two points on the earth

 Δφ – subtraction of latitude degrees in Radian

 Δλ – subtraction of longitude degrees in Radian

 R – Radius of the Earth

The following snip code is illustrating how the Heversine formula is implied in the

project.

double dLat = Math.toRadians(lat2 - lat1);

 double dLon = Math.toRadians(lon2 - lon1);

 double angle = Math.sin(dLat / 2) * Math.sin(dLat / 2) +
Math.cos(Math.toRadians(lat1)) * Math.cos(Math.toRadians(lat2)) *
Math.sin(dLon / 2) * Math.sin(dLon / 2);

 double c = 2 * Math.atan2(Math.sqrt(angle), Math.sqrt(1 - angle));

 double raio = 6378100;

 double distance = raio * c;

When we have distance of previous and current location of device, we can define

the activity of user by its velocity. This is demonstrated in following part.

Activity Recognition

Now we can get to the aim that is activity recognition based on applying location

based services. As is explained, the first step is to collect data from smartphone

user by carrying and storing its locations in the memory of mobile device. Second

step is to transfer data and use Heversine formula. Third step is the classification

process where unknown activity template will be compared in a loop with every

activity template from predefined training set. After calculating distances between

each type of activity and target activity, algorithm will display as result that activity

73

which will have minimal distance from the unknown one. Thus, the accuracy of

results mostly depends on the templates that were chosen for selected activities.

[7]

Based on what we have done to now, we have longitude and latitude of two

different that maybe it doesn’t change while user is standing. Then we calculate

distance of user from its previous point, so by retrieving the distance of two points, it

is possible to calculate the velocity of the user if we request it for periodic of 20

seconds. Afterward velocity of the user is can conclude the activity of user such as

walking, running and driving which is the goal.

int timer = 20;

if (velocity < 5 && velocity >= 1){

 myMotion.setText("the user is WALKING");

 myAction = "walking";

 }

 else if (velocity < 10 && velocity >= 5){

 myMotion.setText("the user is RUNNING");

 myAction = "running";

 }

 else if (velocity < 15 && velocity >= 10){

 myMotion.setText("the user is CYCLING");

 myAction = "riding";

 }

 else if (velocity >= 15){

 myMotion.setText("the user is DRIVING");

 myAction = "driving";}

 else if (velocity < 1){

 myMotion.setText("the user is STANDDING");

 myAction = "standing";

 }

And then the function calculateDistance(double lat2,double lon2,double lat1,double

lon1) which need to get four entries is called in the updateWithNewLocation()

function that already provides us the current and previous location’s longitude and

74

latitude. The following snip code shows how we have called it in the

updateWithNewLocation().

calculateDistance(nlat,nlng,(plat==0?nlat:plat),(plng==0?nlng:plng));

In addition, the amount of velocity and distance are set in the myMotion and

myDistanceAndVelocity TextViews of the layout.

myDrawLine() function

In following we had in mind to draw a line on a map to track the user’s mobility. In

order to draw a line on the map of application while user is using Internet specially

when is using GPRS of its device, myDrawLine() is designated. It is a map based

method that needs four double entries of previous and current longitude and

latitude. So before implementing myDrawLine() method, we have to use external

Maps library included as part of the Google API package, and create a map-based

Activity using Google Maps as a user interface element. So as it is explained in the

session 2, the map helps controlling display settings and use functions related to

map to do an activity on the map.

Map views can be represented and set in the fragments inside of an activity to

include Google map for application. The other reason of extending Activity to

FragmentActivity is to include the map view element in the project. So we added

this code where activity has is created.

public class c_WifiScanActivity extends FragmentActivity{ …}

To run the Google map in the application, we developed a private function named

setUpMapIfNeeded() for implementing the Google map inside of Map Fragment. So,

first we have to check if the Google Play Services are available in the device or not.

The GooglePlayServicesUtil is a package of classes that prepares us this

information. This utility class declares the availability or being up-to-date of APK in

the device.

75

The considered method of this class for our application is

isGooglePlayServicesAvailable (Context context). The result of this method would

equal to one the constants of ConnectionResult form

com.google.android.gms.common.ConnectionResult class.

This class includes of all notifications about failing or connecting of device to

Google play services. It uses GoogleApiClient.OnConnectionFailedListener to

distinguish the errors or success in connection.

Contents of this class that we used to clarify are listed below:

 SUCCESS when the connection is achieved and breaks from code to counties

setting of Google map.

 SERVICE_MISSING notification when device cannot find Google paly

services.

 SERVICE_VERSION_UPDATE_REQUIRED notifies that we need to update

the Google play services.

 SERVICE_DISABLED is notifying that we missed the Google Play services on

the device.

And in case of three last notifications, the program will send a toast message for

informing the user about Google play services connection fails. The below snip

code shows how the application checks if the Google Play services is accessible or

not.

private void setUpMapIfNeeded() {

 int resultCode = GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);

 switch (resultCode) {

 case ConnectionResult.SUCCESS:

 break;

 case ConnectionResult.SERVICE_MISSING:

 case ConnectionResult.SERVICE_VERSION_UPDATE_REQUIRED:

 case ConnectionResult.SERVICE_DISABLED:

 Toast.makeText(getBaseContext(), "error with GooglePlayServices",
Toast.LENGTH_SHORT).show();

76

 }

In the case of success the function goes to next part and tries to obtain the map

from the Support Map fragment. At first we check if the object of Google map is null

which if do a null check, it means we don’t have instantiated map, and then we fill

it with a SupportMapFragment. The getMap () is the method to use for providing

GoogleMap instance in the map view.

 GoogleMap mMap;

 if (mMap == null) {

 mMap = ((SupportMapFragment)
getSupportFragmentManager(). findFragmentById(R.id.mapview)) .getMap();

 }

 }

After initiating the Google map inside of view, we can define myDrawLine()

function to draw a line between previous and current points of the device each 20

second and retrieve a path while user is using Internet.

The tiles of the Google map object should be set by setMapType(int type) void

method in order to determine which type of map should be initiated. There are

three different types of map tile.

 MAP_TYPE_NORMAL that is a basic map with roads.

 MAP_TYPE_SATELLITE to display satellite view of the earth.

 MAP_TYPE_TERRAIN with Terrain view without roads.

Our desire type of Google map is the basic map with road so we used

MAP_TYPE_NORMAL.

mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

77

For making the map more user friendly, we used UiStting from

com.google.android.gms.maps.UiSettings class to set the user interface of

GoogleMap by calling getUiSetting() method. It includes of some public methods

to use in order to define the map. In following indicated methods that are used in

the project:

 setZoomControlsEnabled, a Boolean value for enabling or disabling the

zoom controls.

 setMyLocationButtonEnabled to enable or disable the my location button.

 CameraUpdateFactory class includes of some methods for setting camera,

zoom updating in the map and modify the map’s camera. It has some

methods for updating camera like animateCamera(CameraUpdate),

animateCamera(CameraUpdate, GoogleMap.CancelableCallback)or

moveCamera(CameraUpdate).

 MoveCamera(CameraUpdate) based on the CancelCallback instructions

repositions the camera’s position and its zoom. So when we use

newLatLngZoom(LatLng latLng, float zoom) method of

CameraUpdateFactory, we are defining the zoom level and the center of

the screen that is based on the current longitude and latitude.

public String myDrawLine(double lat1, double lng1, double lat2, double lng2){

 setUpMapIfNeeded();

 mMap.setMapType(GoogleMap.MAP_TYPE_NORMAL);

 UiSettings uiSettings = mMap.getUiSettings();

 uiSettings.setZoomControlsEnabled(true);

 uiSettings.setMyLocationButtonEnabled(true);

 mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(new LatLng(lat1,
lng1), 13.0f));

In following, we have used Polyline class to draw a line between two points of the

map. By the PolylineOptions method, the new polyline is drawn by the following

properties:

http://developer.android.com/reference/com/google/android/gms/maps/GoogleMap.html#animateCamera(com.google.android.gms.maps.CameraUpdate)
http://developer.android.com/reference/com/google/android/gms/maps/GoogleMap.html#animateCamera(com.google.android.gms.maps.CameraUpdate, com.google.android.gms.maps.GoogleMap.CancelableCallback)
http://developer.android.com/reference/com/google/android/gms/maps/GoogleMap.html#moveCamera(com.google.android.gms.maps.CameraUpdate)
http://developer.android.com/reference/com/google/android/gms/maps/GoogleMap.html#moveCamera(com.google.android.gms.maps.CameraUpdate)
http://developer.android.com/reference/com/google/android/gms/maps/model/LatLng.html

78

 Draw the line between previous point and current point.

 Width of 4 pixels.

 Color of blue.

 Geodesic and Visibility are true.

 PolylineOptions po = new PolylineOptions()

 .add(new LatLng(lat1, lng1), new LatLng(lat2, lng2))

 .width(4)

 .color(Color.BLUE)

 .geodesic(true)

 .visible(true);

 po.add(new LatLng(lat2, lng2));

 Polyline polyline = mMap.addPolyline(po);

 return null;

}

Updating the Manifest File for Internet Permission

Before running the application, we should ask the user to grant us the right of

using some elements and update our manifest file and request permission.

For this activity, we want to request some different grants in the manifest file. We

need Internet access for connecting to online services, Google Play Services and

Google map. So we update the Android Manifest.xml by adding following

permission code:

<uses-permission android:name="android.permission.INTERNET" />

79

Then because of using location based services of android, it needs its own

permission. The methods to allow the application having access to location

derived from network location sources such as Internet providers, cell and Wi-Fi

and provide us accurate information are added in following term.

<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission
android:name="android.permission.ACCESS_FINE_LOCA TION"/>

Whereof we need permission for location services in manifest.xml to access for

reading and writing the network and detect the internet connection and type of

connection. As is mentioned in following:

<uses-permission
android:name=”android.permission.ACCESS_NETWORK_STATE”/>

This permission allows the API to check the connection status in order to

determine whether or not data can be downloaded.

<uses-permission
android:name=”android.permission.CHANGE_NETWORK_STATE”/>

This permission allows the API to cache the map tile data in the device's external

storage area.

For Google Map Android API V2 Permission, when the application runs, from

manifest, Google Maps Android API v2 will read the key of application, and sends it

to the servers of the Google Maps to receive confirmation of Google Maps data. This

key should be added in the <application> element of manifest.

Allows the API to check the connection status in order to determine whether data

can be downloaded that is added before for accessing to network.

<uses-permission android:name =

80

”android.permission.ACCESS_NETWORK_STATE ”>

After permissions we have to declare building blocks that we are developing them

in them project in a <application> tag. Here we have ready an activity element that

should be declare in a tag of <activity> and label it as we want, but for name we

should write its .java name.

<application android:label="@string/app_name" >

 <meta-data android:name="com.google.android.gms.version"

 android:value="@integer/google_play_services_version"

 />

<activity android:name=".c_WifiScanActivity" android:label="WiFi Scan"

 android:screenOrientation="portrait"
android:windowSoftInputMode="stateHidden">

 <intent-filter>

 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.DEFAULT "/>

 </intent-filter>

 </activity>

</application>

And at the end, for the Google Map we have to use a <meta-data> tag that is a

name-value tag for additional data that we want to supply it to the parent

component. For Google map we assign a value and name as unique name for this

item. Name of this meta data for Google map is the package of API_KEY and for

value we have to use the certificate key which Google provided us to use in the

application.

<meta-data android:name="com.google.android.maps.v2.API_KEY"

https://developer.android.com/reference/android/Manifest.permission.html#ACCESS_NETWORK_STATE

81

android:value="AIzaSyDiNg51xYmg_330JV5aSYxIAJ4rGK4CLb8"/>

Summary:

By the end of this part, when this layout of application is run, it looks like Figures

18 - 19. That as you can see it successfully can show the state of Wi-Fi which device

is connected and shows the IPaddress, MACAddress and RSSI in first TextView and

in second TextView it declares name of router which device is connected and its

signal power of the Basic Service Set Identifier(BSSID) of recent Basic Service Sets.

82

Figure 18: First and Second Snapshot of c_wifiScanActivity

83

Figure 19: Third and fourth Snapshot of c_wifiScanActivity

In the third TextView illustrates our Current Position in terms of Human readable

and Geographical information latitude and longitude. Then in fourth TextView

shows the User’s Activity and at least TextView at the end Distance and velocity are

displayed.

Show button is related to our database that I have explained about it in following

and at the end, in the second part of activity we have Google map that shows our

location and the movement of device which is showing by black color.

84

Part 3: d_GsmScanActivity

This activity starts to work by clicking on the Telephony and GSM scan of the list,

we will be navigated to this activity. In this part I am going to skip explaining its

layout because is similar to c_wifiScanActivity’s layout. Also its java classes are

similar to c_wifiScanActivity activity with some differences, so I will explain about

the utilized additional methods and differences in the activity.

 This activity also has similar steps as the previous one, and uses some extra

libraries of android. In following I have mentioned the additional methods and

libraries that are used in this activity.

 Importing additional services

 Show phone details() method

 MyPhoneStateListener() method

This activity has the whole layout as is presented in the figure 20.

85

Figure 20: a screen shot of d_GSMScanActivity

86

The d_ GSMScanActivity Java Class

This activity is started by onCreate() callback method to create all the widget, and

Google map of the screen as you can see in the figure 20. In this activity also we

will to find information about the cell that device is connected to network. So here

one of the differences among these two activities has been appeared, because we

don’t need to imply Wi-Fi services to get information of location.

 The service that we are going to use is TELEPHONY_SERVICE that has been

mentioned in previous session. In this activity, we will to retrieve information

about the cell that device is currently using its services, so in order to access to the

telephony APIs we have to request TELEPHONY_SERVICE context of android and

pass it through a Telephony Manager for enabling us to use elements and methods

of this service and handling management features of the device. We have used

telephony manager to provide us many properties of telephone, the device

information, network information and data state details. The applied methods of

telephony manager are listed below:

 getNetworkOperatorName(): returns the alphabetic name of current

registered operator.

 getNetworkOperator: returns the numeric alphabetic name of current

registered operator.

 getCellLocation(): Returns the current location of the device.

 getNeighboringCellInfo(): Returns the neighboring cell information of the

device.

 getPhoneType():Returns a constant indicating the device phone type. This

indicates the type of radio used to transmit voice calls. The phone types that

are predictable by this method are GSM, CDMA, SIP and none if it doesn’t

know the type.

 getDataActivity(): Returns a constant indicating the type of activity on a

data connection (cellular). The constants that can represent are activity in,

activity out, activity in-out and dormant.

87

 getDataSet():returns a constant indicating the current data connection

state.

So after passing TELEPHONY SERVICES through a telephony manager instance, we

are able to have above information. This should be created in onCreate() callback

method of this activity. So we have updated in the activity by following snip code:

TelephonyManager telephonyManager =
(TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);

Now we need to instantiate an instance for recognition of device connectivity to

network. In order to retrieve this information, we need to use one of the Android’s

Services with the name of CONNECTIVITY_SERVICE.

In session 2, CONNECTIVITY_SERVICE is also mentioned that this Context is the

service of handling management of network connections. Like the other services,

also we need to utilize a manager in order to keep all information of the service

inside of itself. So an object to keep values of network has to be defined like

following:

(ConnectivityManager) getSystemService(Context.CONNECTIVITY_SERVICE)

onResume()

The active lifetime of application starts with onResume() callback method to

receive events. We want to keep the application responsive when the foreground is

moving in and out. This method should be light weight and can be used for

registering a broadcast receiver or a process that need to be stopped in onPause().

In this override method, I want the activity listens to any changes of the telephony

states and receive notifications. For this reason, we need to register a listener

object and pass a PhoneStateListener through it and define which contexts of

PhoneStateListener are in mind to receive its events. So we have used listen ()

method of telephony manager and beside of passing myPhoneStateListener as an

88

object of MyPhoneStateListener() through it, we requested to for monitoring the

following events.

 LISTEN_SIGNAL_STRENGTH

 LISTEN_CELL_LOCATION

 LISTEN_CALL_STATE

The following snip code shows the way of applying this method.

protected void onResume() {

 super.onResume();

 telephonyManager.listen(myPhoneStateListener,

 PhoneStateListener.LISTEN_SIGNAL_STRENGTH |

 PhoneStateListener.LISTEN_CELL_LOCATION |

 PhoneStateListener.LISTEN_CALL_STATE);

 }

While the application is listening to events and receiving notifications, it updates

information of the cell and shows them in the second TextView.

onPause()

Now we have to end the listening to events which we called in onResume() by

onPause () method and unregister it. So the telephony manager should stop

listening updates and notifications by unregistering listener and LISTEN_NONE

event pass through listen() method.

 protected void onPause() {

 super.onPause();

 telephonyManager.listen(myPhoneStateListener,
PhoneStateListener.LISTEN_NONE);

 }

89

In this activity, I have defined two additional methods to work with telephony

manager. They named as show_phone_details() and MyPhoneStateListener() that

in following of this part, I am going to briefly outline them.

show_phone_details ()

This method focused on demonstrating information about the cell by utilizing

telephony manager as soon as this activity is run, so this method should be called

in onCreate() overriding method to show us basic information of cell in the first

TextView of screen as you can see in the first figure of figure xxxx. It uses

getPhoneType() method of telephony manager to retrieve type of phone such as

SIP, CDMA and GSM.

And then it shows the device ID by getDeviceId() method and get number of cart

by getLine1Number() method of telephony manager. And at least getDataSet()

method to returns a constant indicating the current data connection state.

private void show_phone_details(){

 int phoneType = telephonyManager.getPhoneType();

 switch (phoneType) {

 case (TelephonyManager.PHONE_TYPE_CDMA):

 TextView1.append("\nPHONE_TYPE_CDMA");

 …

 }

 String deviceId = telephonyManager.getDeviceId();

 String phoneNumber = telephonyManager.getLine1Number();

 int dataActivity = telephonyManager.getDataActivity();

 int dataState = telephonyManager.getDataState();

 switch (dataActivity) {

 case TelephonyManager.DATA_ACTIVITY_IN:

90

 …..

 }

 switch (dataState) {

 case TelephonyManager.DATA_CONNECTED:

 TextView1.append("\nDATA_CONNECTED");

…

 } }

At the bottom of this TextView, we have a button that if user clicks on this button,

content of TextView will be changed and show us other requested information of

cell as you can see in the second shape of figure 21. Then again, the TextView will

be filled by new contents, such as name of network operator that is the result of

using getNetworkOperatorName() method of telephonyManager, and then some

additional information such as ID of network operator.

In addition by retrieving location of user, it calculates GSM the signal strength. To

calculate the signal strength, it needs to retrieves received signal strength indicator

(RSSI) of a cell by getRssi() method of NeighboringCellInfo.

Received Signal Strength Indicator (RSSI) is a definition in telecommunication for

power measurement based on received Radio Signals of IEEE 802.11 systems. The

signal strength provided by getRssi() method is “asu” that it is undefined for GSM,

so we need standard calculation of dBm = -113 + 2*asu in order to have a signal

strength based on dBm for GSM.

public void onClick(View arg0) {

if(arg0==cellInfoButton){

 TextView1.setText("NetworkOperator:
"+telephonyManager.getNetworkOperatorName()+

 "\nOperator code: "+telephonyManager.getNetworkOperator());

 GsmCellLocation location = (GsmCellLocation)
telephonyManager.getCellLocation();

 if(location!=null)

91

 TextView1.append("\npresent Cid: "+location.getCid()+" Lac:
"+location.getLac());

 TextView1.append("\n\nNeighboringCellInfo:");

 List<NeighboringCellInfo> llista =
telephonyManager.getNeighboringCellInfo();

 for(NeighboringCellInfo cellInfo : llista){

 int power = -113 + 2 * cellInfo.getRssi();

 TextView1.append("\nCid: "+cellInfo.getCid()+" Power: "+power+"
dBm");

 } }}

MyPhoneStateListener()

The private class of MyPhoneStateListener is extended from PhoneStateListener

for monitoring and listening to changes of telephony states such as service state,

signal strength, message waiting indicator and others. Listening to the telephony

information needs a permission that should to be requested by manifest file of

application. By the flags defined in this listener we can retrieve our desired

information about any cell.

The considered method to use by this listener is onSignalStrengthChanged(int asu)

that callbacks when the strength of the signal changes. So after retrieving gsm

location of device it is able to provide us the cell ID, and calculate the power in

dBm for GSM connections.

private class MyPhoneStateListener extends PhoneStateListener {

 private ServiceState latestServiceState;

 private boolean stop;

public void onSignalStrengthChanged(int asu){

 int power = -113 + 2 * asu;

 GsmCellLocation location = (GsmCellLocation)

92

telephonyManager.getCellLocation();

 Calendar calendar = Calendar.getInstance();

 if (location!=null)

 TextView2.append("\nCid:"+location.getCid()+" "+power+" dBm
"+calendar.getTime().toLocaleString());

 else

 TextView2.append("\nCid:"+" unknown"+" "+power+" dBm
"+calendar.getTime().toLocaleString());

 }

 public void stopMeasuring() {

stop = true;

}

In following, onCellLocationChanged (CellLocation location) is developed in the

listener in order to get the new Cell ID when the location of cell is changed and

appends on TextView of application Cell ID and GSM Location Area code by

getLac() method.

@Override

public void onCellLocationChanged(CellLocation location){

GsmCellLocation gsmCell = (GsmCellLocation) location;

Calendar calendar = Calendar.getInstance();

 if(gsmCell.getCid()==-1)

 return;

TextView2.append("\nCid:"+gsmCell.getCid()+" Lac:"+gsmCell.getLac()+"
"+calendar.getTime().toLocaleString());

 }

Summary:

The result of this activity looks like Figure 21 - 24. That as you can see it

successfully can show the basic information of device such as type of phone, device

ID and telephone number and its connection to GSM in first TextView, then by

pressing the Show Cell Info button, its information changes to show information of

93

network connection such as name, code and ID of network operator and signal

strength of its neighbor cells.

Then when you scroll down, in second TextView it declares the location signal

power and date.

In the third TextView illustrates our Current Position in terms of Human readable

and Geographical information latitude and longitude. Then in fourth TextView

shows the User’s Activity and at least TextView at the end Distance and velocity are

displayed.

Show button is related to our database that I have explained about it in following

and at the end, in the second part of activity we have Google map that shows our

location and the movement of device which is showing by black color.

Figure 21: first snapshot of d_GsmScanActivity

94

Figure 22: First snapshot of d_GsmScanActivity after pressing Show Cell info Button

Figure 23: Second snapshot of d_GsmScanActivity to show all the GSM connections

95

Figure 24: Forth snapshot of d_GsmScanActivity

96

Part 4: Broadcast Receiver

In this part, I want to develop broadcast receivers to alert application the

connection type of device. The first scenario of this Broadcast receiver is when the

device is powered up and working, it starts to detect and monitor the Network

connection and send a toast message. And the second scenario is to save all types

of connection after checking, by a method that is defined in this Broadcast

Receiver. First we have an overview on how broadcast receivers work.

Figure 25 – The broadcast Toast message

97

About Broadcast Receivers

As I have explained in session 2, Broadcast receivers are one of the building blocks of

Android for implementation of the Publish/Subscribe messaging pattern, or more

precisely, the Observer pattern. We are using this element for working in background

without taking in account that if anyone will get them to send events. So

BroadcastReceiver is an element of application in order to get notified and send

notifications when an action happens. This action is a type of intent broadcast that

when it happens the receiver wakes up and does something. The onReciver () is its

callback method that do something when application receives an event.

_connectivityReceiver

In the application the broadcast receiver is responsible for monitoring network

connectivity and announce about the internet connection of mobile based on any

modification in the Internet connection, and alert with four different sentences by

any changes.

This broadcast receiver is divided into main two parts

 OnReciver callback Method

 Log method

As we want the broadcast starts to monitor the system automatically while the

device is working, we create _connectivityReceiver. So we Create

connectivityReceiver by extending it from its base class BroadcastReceiver.

public class _connectivityReceiver extends BroadcastReceiver {

 public void onReceive(Context context, Intent intent) {}

 public void log(Context context, String sentence){}

}

98

onReceive() callback Method

As you can see it has two methods inside of the BroadcastReceiver. So we start

with overriding onReceive (Context context, Intent intent) callback method. This

method gets calls when intent matches this receiver. For my application, first it

tries to figure out if we are connected to Wi-Fi or disconnected from Wi-Fi, also if

we are connected to mobile/GPRS or disconnected. By any changes it the

connection it will send a toast message to inform user about connections.

To define the type of connection, first should recognize if the device is connected to

Internet or not, so it is necessary to use two service managers of android with

name of WifiManager and ConnectivityManager. There are services for Wi-Fi or

GPRS connectivity, monitoring and modifying the network settings and accessing

to the point scans. [1]

In this case, Connectivity Service provides us a high level view on monitoring and

availability of network. By utilizing its manager, besides of providing queries about

the network connectivity states can send a notification in order to changes in the

connectivity type or state.

To notify us when any event happens, the broadcast receiver should pass through

Intent for listening to connectivity of device and any changes of connection

therefore does a predefined action. It is done by ConnectivityManager.

CONNECTIVITY_ACTION broadcast as is shown in the following manifest snip code.

The Intent contains extras to provide us additional information about changes in

connectivity.

<intent-filter>

 <action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>

 </intent-filter>

After that, in order to describe the status of network interface and see what kind of

connectivity event occurred, the NetworkInfo class is utilized.

The NetworkInfo class is used to find the connection status, network type, and

detail the state information of the returned network. We can define status of the

99

network by a NetworkInfo object that it has responsibility of describing the status

of a network interface. Its methods to use are as below:

 getTypeName(): Which will return a human-readable name which clears is

WIFI or MOBILE.

 getState(): to return the current coarse-grained state of the network.

 isAvailable()

 isConnected()

 getSubTypeName(): a human-readable name of subtype of network.

The following snip code shows the onReciver() method that is portioned into four

parts to check the connection and its type. Before that I have to mention that

getParcelableExtra() method extends data from intent and gives us extra

information such as reason of failing and other information of the mentioned

network.

NetworkInfo networkInfo =
intent.getParcelableExtra(ConnectivityManager.EXTRA_NETWORK_INFO);

if (networkInfo.getType() == ConnectivityManager.TYPE_WIFI

&& !networkInfo.isConnected()) { }

if (networkInfo.getType() == ConnectivityManager.TYPE_WIFI

 && networkInfo.isConnected()) {}

if (networkInfo.getType() == ConnectivityManager.TYPE_WIFI

 && networkInfo.isConnected()) {}

if (networkInfo.getType() == ConnectivityManager.TYPE_MOBILE

&& !networkInfo.isConnected()) {

…}

By distinguishing any kind of these conditions, The onReciver() method will toast a

message, then will retrieve date of changes and save them in history of device by

the method defined in the second part of this building block.

if (networkInfo.getType() == ConnectivityManager.TYPE_MOBILE

 && !networkInfo.isConnected()) {

 // TYPE_MOBILE is disconnected

 Toast.makeText(context, "TYPE_MOBILE is disconnected",
Toast.LENGTH_LONG).show();

100

 Date date = new Date();

 log(context, "TYPE_MOBILE is disconnected at: "+ date.toLocaleString()

 + "\n NetworkInfo:" + String.valueOf(networkInfo));

 }

Log

The log class is used in order to send an output of logs. The point of developing the

log class is, saving all information of connectivity in a file that can be executed from

device by referring to its direction. The logfile.txt texts is saved in …\Internal

Storage\Android\data\edu.upc.wireless\files directory of device. To return an

absolute directory path for an external file, getExternalFilesDir(String type)

method of Context class helps to find package’s directory. This method allocates

an own external path where the application is placed. Then for writing bytes on a

file that we already defined it as logfile.txt, FileOutputStream() method is applied.

File dir = context.getExternalFilesDir(null);

 File file = new File(dir, "logfile.txt");

 FileOutputStream fos = new FileOutputStream(file, true);

 PrintWriter pw = new PrintWriter(fos);

 pw.println(sentence);

 pw.close();

 fos.close();

Registering the _connec tivityReceiver in the Android Manifest File

The following snip code declares connectivityReceiver registration in the manifest

file. In addition, an intent filter is added to this file. This intent filter specifies which

broadcasts trigger the receiver to become activated.

<receiver android:name="._connectivityReceiver"

 android:enabled="true" android:label="ConnectivityReceiver">

 <intent-filter>

 <action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>

 </intent-filter>

http://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
http://developer.android.com/reference/java/lang/String.html

101

</receiver>

Testing the connectivityReceiver

At this point, we tested the application on the device. When it comes back up, it

monitors connections and notifies by a toast message that device is connected or

not. In addition, we can verify its performance by looking at LogCat of output or by

...\Internal Storage\Android\data\edu.upc.wireless\files route and see all the

connections are kept in this logfile.txt.

Summary

At this point, we tested the application on the device. When it comes back up, it

monitors connections and will notify by toast message that device is connected or

not. In addition, we can verify its performance by looking at LogCat of output or by

Computer\XPERIA sole\Internal Storage\Android\data\edu.upc.wireless\files

route and you can see all the connections are kept in this logfile.txt.

In following a part of WifiScanActivity which is related to broadcast receivers is

explained.

102

C_WifiScanReceiver Broadcast Receivers

The wifiScanReceiver is a broadcast receiver applied in C_wifiScanActivity.java for

listening to all the Wi-Fi connections of device and return the required information

about state, IP address Mac address RSSI and others.

private class WifiScanReceiver extends BroadcastReceiver{

 public void onReceive(Context c, Intent i){

 WifiInfo wifiInfo = wifiManager.getConnectionInfo();

increaseCounter();

stateTextView.setText(headline+ "\n\nscan #"+counter+", wifi is enabled?
"+wifiManager.isWifiEnabled()+

 "\nwifiInfo.supplicantState: "+wifiInfo.getSupplicantState()+

 "\nwifiInfo.IPaddress: "+wifiInfo.getIpAddress()+

 "\nwifiInfo.MACaddress: "+wifiInfo.getMacAddress()+

 "\nwifiInfo.Rssi: "+wifiInfo.getRssi());

 stateTextView.append(Show_configurations());

 if(!wifiManager.isWifiEnabled() ||
wifiManager.getScanResults().isEmpty()) return;

 StringBuilder sb = new StringBuilder("SCAN RESULT #"+counter+" \n--------
-------\n");

 for(ScanResult scanResult: wifiManager.getScanResults()){

 sb.append(scanResult.SSID+"\n");

 sb.append(scanResult.BSSID+" = "+scanResult.level+" dBm \n\n");

 }

 sb.delete(sb.length()-1, sb.length());

 scanShotTextView.setText(sb.toString());

 }

 private void increaseCounter(){

 counter++;

 if(counter%2==0){

 scanShotTextView.setTextColor(ORANGE);

 stateTextView.setTextColor(BLACK);

 }

 else{

103

 scanShotTextView.setTextColor(BLACK);

 stateTextView.setTextColor(ORANGE);

 }

 }

 }

Show_configurations() method prepares us a list of network configurations and

keep information such as SSID, status of the Wi-Fi and priority in a String Builder.

private String Show_configurations(){

 List<WifiConfiguration> configurations =
wifiManager.getConfiguredNetworks();

 StringBuilder sb = new StringBuilder();

 sb.append("\n");

 for(WifiConfiguration conf : configurations){

 sb.append("\n SSID: ").append(conf.SSID).append(", priority:
").append(conf.priority).append(", status: ").append(conf.status);

 }

 return sb.toString();

 }

104

The Database

The database of Android is used in order to store solicited and required information

of an application even if the user kills the application or shut it down. A database in a

mobile device is very useful as a supplement to the online world. We can have quick

access to the database of an application without need of Internet connectivity. So we

will use a database as a cache.

So in this part, we need to create a database and table then use it inside of

application to store our status, actions and locations and update them.

About SQLite

SQLite as an open source database is using for a long time for projects. In addition,

it is popular to apply for many small devices. There are some reasons to consider

about its merit to use for Android. First is its Zero-configuration database that

makes it simple to use. Second is its independency from server and its set of

libraries that provide database functionality. Third point is its open source

property and can be adopted with Android’s framework easily. And at least is

single-file database that provides us security straightforward.

MySQLiteHelper

Android provides an elegant interface for applications to interact with a SQLite

database. To access the database, we need a helper class that provides a

“connection” to the database, creating the connection if it doesn’t already exist.

This class, provided by the Android framework, is called SQLiteOpenHelper. The

database class it returns is an instance of SQLiteDatabase.

105

The Database Schema and Its Creation

First of all, the content’s database table is created to show the schema of the

database. For this project, database is building to store and retrieve types of

connection, locations of the user and his activities

 As it is shown in the following table.

Table name: Connection

Fields (columns) Data type Key

Id INTEGER Primary Key

Connection type TEXT

Location TEXT

Activity TEXT

Each row has a unique ID in the table, and it will contain data from connections. In

all database we need a primary key, so SQLite like most databases, allows us to

declare the ID as a primary key and even assigns a unique number automatically to

each query.

To build this table, an Object model of connection.java is created. That has two

methods of setting and getting for each cell of the table.

public Connection(String connection, String location, String action)

 {

 super();

 this.connection = connection;

 this.location = location;

 this.action = action;

 }

In the other hand, the schema of database has to be established when the

application starts, so should be created on onCreate() method of MySQLiteHelper.

After creating the schema we need onUpgrade() method for calling to alter the

schema.

106

The onCreate() and onUpgrade() are two method that I needed to use in SQL. I

have executed the connection list table in onCreate() method for creating the table.

Then asked to drop older connections table if existed in and create fresh

connections table by onUpgrade() method. The DROP TABLE that is defined in

onUpgrade(), destroys any data currently in the table.

Four Major Operations

The MySQLiteHelper class prepares us a high-level interface that is much simpler

than SQL. The MySQLiteHelper is used to do four major operation named in

following:

 insert(): Inserts one or more rows into the database

 query(): Requests rows matching the criteria you specify

 update(): Replaces ones or more rows that match the criteria you specify

 delete(): Deletes rows matching the criteria you specify

These statements are supported by Android framework that they should be passed

directly to MySQLiteHelper. That’s why we used execSQL() to run the code to

CREATE TABLE.

Cursors

Curser is a pointer for applying along with a set of query rows. We can retrieve

results one time from the cursor, and move the cursor around the result set. In

general, anything is done with SQL could lead to a SQL exception because it is

interacting with a system outside of our direct control.

MySQLiteHelper

Now I have created MySQLiteHelper java class to help me open the database of

application. It will create the database file if one doesn’t exist or will upgrade it.

107

The following snip code shows the overriding subclasses of class framework and

then implementing class’s constructor.

public class MySQLiteHelper extends SQLiteOpenHelper {

….

}

Therefore we should call name of database which is named connection, and make

its instance. Then we need to define the DATABASE VERSION. This is an important

element that is used in following code to provide users a way to upgrade the

database to the latest schema when is changed.

public MySQLiteHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

In previous code I have overridden SQLiteOpenHelper by passing the constants to

super and retaining the local reference to the context.

Now we have to override onCreate() callback method of database by using actual

SQL statements to create appropriate SQL schema of connection table. And then

with execSQL() method we have created the table by passing it through onCreate().

 public void onCreate(SQLiteDatabase db) {

 String CREATE_CONNECTION_TABLE = "CREATE TABLE connections (" +

 "id INTEGER PRIMARY KEY AUTOINCREMENT, " +

 "connection TEXT, "+

 "location TEXT ,"+

 "action TEXT)";

 db.execSQL(CREATE_CONNECTION_TABLE);

 }

Then the onUpgrade() method is overridden to call whenever the user’s database

version is different from the application database version. It will drop the older

connection table and creates a fresh connection table as following.

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 db.execSQL("DROP TABLE IF EXISTS CONNECTION");

108

 this.onCreate(db);

 }

Then we are going to use following five methods in application.

 getConnection(): this method is to build a query and return it

 getAllConnections(): this method also builds the query and show us all

queries by making a list of connections

 updateConnection(): this method creates Content/Values to add key

"column"/value and updates rows

 deletConnection(): is using for deleting a value

 addconnection(): is explained in following.

For example, the addConnection() method is applying to add new connection in

our database, so it starts with Log.d() method for logging and show us result later

on logCat when we run the application. Then after getting a reference to writable

database we created value instance of Content Values class to add key “column”

based on each value. Then we insert them to the TABLE_CONNECTION.

public void addConnection(Connection connection){

 Log.d("addConnection", connection.toString());

 SQLiteDatabase db = this.getWritableDatabase();

 ContentValues values = new ContentValues();

 values.put(KEY_CONNECTION, connection.getConnection());

 values.put(KEY_LOCATION, connection.getLocation());

 values.put(KEY_ACTION, connection.getAction());

 db.insert(TABLE_CONNECTIONS, values);

 db.close(); }

Connection.Java

The class of Connection.java is developed for creating desired table of database in

order to save connections, locations and activities of the user and returns

"Connection [id=" + id + ", type of connection is =" + connection + ", in the =" +

location+ "]" + "and the usual motion is" + action" string. In this class all the setting

109

values and getting them for each element of table has been defined. The following

code shows a part of this java class.

public class Connection {

 public Connection(){}

 public Connection(String connection, String location, String action) {

 super();

 this.connection = connection;

 this.location = location;

 this.action = action;

 }

 public void setId(int id) {

 this.id = id;

 }

 public long getId() {

 return this.id;

 }

 public String toString() {

 return "Connection [id=" + id + ", type of connection is =" + connection + ",
in the =" + location

 + "]" + "and the usual motion is" + action; } }

110

Update C_wifiScanActivity

Now it is time to perform the database in the activities. If you remember we had a

button in layouts which has responsibility of showing into the local database.

The following code illustrates the way of adding db and dbHelper objects globally

throughout the java class. It is include of an addressString for location and

myAction string for Action column of database.

Then need to create an instance of MySQLiteHelper and pass this as its context.

This works because the Android Service class is a subclass of Context.

MySQLiteHelper will figure out whether the database needs to be created or

upgraded.

 MySQLiteHelper db = new MySQLiteHelper(this);

 db.addConnection(new Connection("WIFI connection",addressString,
myAction));

And then by our button the f_ConnectionList.java will be loaded. The button has a

setOnClickListener() method that we have to pass our action through this method.

So as this is a listener element, it can apply by an OnClickListener in the activity or

allocate an attribute of android: onClick in its XML layout.

 myButton = (Button)findViewById(R.id.button1);

 myButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View v) {

 Intent i=new Intent(c_WifiScanActivity.this, f_ConnectionList.class);

 startActivity(i);

 }

 });

The getAllConnection() is function includes a list object with name to show all the

connections.

111

Test the application

The figure 26 is what we got from data base, as you can see with the specific ID it

shows type of connection and location address if is defined by provider and the

motion of user.

Figure 26: snapshot of database

112

Session 4

In this session, the project is run to see how it works. This test is done during a

walking and running from UPC to Collblanc station in 03/09/2015.

Test of Project

113

114

115

116

Session 5

Conclusion

This study attempts to develop an android tool to recognize the connection type of

the device, location of the user and specifically to identify the user’s activity.

Therefore, in this project, I have proposed an activity recognition tool of android

devices which could be used as a part for other android applications which are

based on location services and activity recognition. The hypothesis is to recognize

five user’s activities such as Standing, Walking, Running, Bicycling and Driving.

I based my project on the idea of using user’s location instead of using device’s

embedded sensors such as accelerator. In order to achieve this goal the movement

speed of user is in consideration. So the system diagnoses the device/user's

latitude and longitude location every 20 seconds, then by utilizing haversine

formula calculates the user’s distance difference in this period.

Analyzing the output data of application demonstrated that 3 major activities

including standing, walking and driving could be detect and distinguish

accurately because of the difference between their rates while recognition of

bicycling and running has less accuracy since they have similar rates.

Future work may consider implementing a service for users, to assure that

automatic downloads or updates start to work when the device is connected to Wi-

Fi. When it is connected to the GSM, any downloads and updates will be

interrupted temporarily and the new frequency alters the program or postpones it

based on the available bandwidth. The high prices of mobile data in comparison to

Wi-Fi connection could be a proper reason for the above, therefore for

downloading and upgrading substantial size of data, Wi-Fi connection is should

be required.

As a future work, we will also implement a user’s track saver to know the user’s

regular track of a day.

117

Bibliography

 1 - Professional Android 4 Application Development – Reto Meier - www.it-

ebooks.info

 2 - https://developer.android.com/training/index.html

 3 – Learning Android – Marko Gargenta – O’reilly

 4 – Android Programming Tutorials - Mark L. Murphy

 5 - TUTORIALS POINT Simply Easy Learning

 6 - Fall Detection based on movement and smart Phone Technology, Vo

Quang Viet, Gueesang Lee.

 7 - ACTIVITY RECOGNITION USING K-NEAREST NEIGHBOR ALGORITHM

ON SMARTPHONE WITH TRI-AXIAL ACCELEROMETER Sahak Kaghyan,

Hakob Sarukhanyan.

 8 - Implementation of Location based Services in Android using GPS and

Web Services - Manav Singhal1, Anupam Shukla - ABV-Indian Institute of

Information Technology and Management - Gwalior, India.

 9 - “Location Based Services on Mobile in India - For IAMAI - Version: 14

April 2008 http://www.iamai.in/Upload/policy/LBS_Draft_Indicus.pdf”

 10 - [THE MOBILE USE OF THE INTERNET BY INDIVIDUALS AND

ENTERPRISES]

 11- Implementation of Location based Services in Android using GPS and

Web Services - Manav Singhal1, Anupam Shukla2 - 1ABV-Indian Institute of

Information Technology and Management, Gwalior, India - 2ABV-Indian

Institute of Information Technology and Management Gwalior, India

12 – “Online Human Activity Recognition on Smart Phones” - Mustafa Kose, Ozlem

Durmaz Incel, Cem Ersoy - Bogazici University, Istanbul, Turkey

http://www.it-ebooks.info/
http://www.it-ebooks.info/
https://developer.android.com/training/index.html
http://www.iamai.in/Upload/policy/LBS_Draft_Indicus.pdf

118

13 – “Location Based Services using Android Mobile Operating System” - Amit

Kushwaha1, Vineet Kushwaha - Department of Electronics & Communication

Engineering - IIMT Engineering College, Meerut-250001, India

