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Preface

This is the memory document of a Final Degree project for the Bachelor Degree in Mathematics at Universitat
Politécnica de Catalunya-BarcelonaTech. The project itself has been developed during a stay abroad in
Consiglio Nazionale delle Ricerche - Istituto di Analisi dei Sistemi ed Informatica ”A. Ruberti” (CNR-IASI)
in Rome, Italy. Furthermore, the research collaboration in IASI will still continue until mid March as agreed
before the beginning of the project. Thus, this document reports the work done until the 7th of January
2016. Despite this, by now, I have already achieved several results, both theoretical and practical included
in this document. In general terms we could say that, currently, we have an interesting line of research based
on a new strategy proposed and described in this document.

The topic of the project is a clustering problem known as Microaggregation, and the main mathematical
branch involved is Operations Research, particularly in the field of Integer Programming.

The advisor of the project has been Dr. Claudio Gentile, a researcher in IASI with a deep experience in
Operations Research and especially in Integer Programming. The presenter of the project is professor Dr.
Jordi Castro in Universitat Politécnica de Catalunya-BarcelonaTech. Jordi Castro and Claudio Gentile are
usual collaborators and this way professor Castro could introduce me to Claudio in order to bring me the
opportunity to develop a project abroad on the field of Operations Research.

The topic of the project was agreed by both researchers since both shared the idea of collaborating in this
subject. This way I am taking part as a collaborator in a real research project for an open clustering problem.
My contribution might be expected to give a boost to the project that both professors share while at the
same time I develop my Final Degree thesis. Besides, it allows me to work on real research with all the
advantages and difficulties it might imply.

Having such an opportunity has been very beneficial for me and certainly it has been an instructive experience
absolutely worth doing. That is the reason why I would like to include a special section for acknowledgements
in this Preface.
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Abstract

Public use of Microdata files require preprocessing to protect privacy. Microaggregation consist of perturbing
the data in order to reach k-anonymity. This is done by aggregating the data of individuals into clusters
such that the spread is minimized. In case the problem deals with multivariate data, there is no procedure
achieving optimal microaggregation. Besides, this problem is known to be NP-Hard.

This project brings an insight on the main known techniques to achieve good microaggregations, including
the state of art on heuristic clustering algorithms as well as on Integer Programming. Besides, it also includes
a new strategy based on Integer Programming and Column Generation that at its current stage provides,
in any case, with a lower bound on the spread for optimal microaggregation. This strategy breaks the main
microaggregation problem into two separate problems: the Master Problem (LP) and the Pricing Problem
(BIP). The theory contributions are focused in developing a deep Polyhedral study of the Pricing Problem,
including new general families of facet-defining inequalities.

Finally, a CPLEX code has been developed to test the strategy including part of the facet-defining inequalities
obtained. The code has been tested on real data typically used in the state of the art and the results encourage
us to continue working in this line.

Key words: Microaggregation. Heuristic Algorithms. Integer Programming. Column Generation. CPLEX.



Notation

N Natural numbers.

Z Integer numbers.

Q Rational numbers.

R Real numbers.

C Complex numbers.

� Finish a proof.

� Finish an example, finish a Claim proof.

Vector Notation:

v ∈ Rm v2 = vT v.

u, b ∈ Rm u ≤ b ⇔ ui ≤ bi i = 1, . . . ,m.

u ∈ Rm u ≥ 0 ⇔ ui ≤ 0 i = 1, . . . ,m.

c, b ∈ Rm cb = cT b = bT c.

Graph Notation: Given G = (V,E) a graph. V the set of nodes, E the set of edges.

v ∈ V , w ∈ V , v 6= w (v, w), if exists, notes the edge in E between v and w.

W ⊆ V δ(W ) = {(v, w) ∈ E | w ∈W, v ∈ V \W}.
v ∈ V δ(v) = δ({v}).
W ⊆ V E(W ) = {(v, w) ∈ E | w ∈W, v ∈W , v 6= w}.
Wi ⊆ V , i = 1, . . . ,m E(W1, . . . ,Wm) =

⋃m
i=1E(Wi).

S ⊆ V , T ⊆ V , S ∩ T = ∅ [S : T ] = {(v, w) ∈ E | v ∈ S,w ∈ T}.
Kn = (Vn, En) Complete undirected graph of n nodes, n ≥ 1 integer.
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Introduction

1. Microdata & Privacy

Microdata consists of a file with individuals (people, companies, etc) and attributes for those individuals.
Formally a microdata V with s individuals and t attributes can be defined as:

Definition (Microdata): V : S ⊆ P → D(V1) × D(V2) × . . . × D(Vt); where P is a population, S is a
subset of the population and D(Vi) is the domain of the attribute i ∈ {1, . . . , t}.
In case |S| < |P | we call S a sample of the population. With this definition both categoric and numeric
attributes for the individuals are considered.

Microdata files contain statistical information and therefore are usually released for research studies or public
use. On account of that, in many cases a great deal of external users have access to this type of files. For
this reason, there exists a certain concern about protecting the privacy of the individuals that form the
microdata. In other words, microdata should be treated before publication in order to prevent external users
from identifying the actual individuals in the microdata file.
We can classify the different attributes based on the risk of external identification:

• Direct identifiers: Attributes that directly allow identification of the individual (e.g., ID numbers,
phone numbers, etc). They should all be deleted at a first stage.

• Almost identifiers: Groups of variables that can be used to identify an individual (e.g., sex, profession,
population, etc). For example, if it is known that in a certain village there is only one doctor, then by
checking combinations of ”profession” and ”village” attributes in the microdata, this doctor could be
identified.

• Confidential attributes: Attributes that contain sensitive information of the individual (e.g., salary,
health, etc). If an external user is capable of identifying an individual in the microdata file, then he
might have access to this sensitive information. Preventing external identification of the individual
becomes therefore a major task.

• Non-confidential attributes: Attributes with no sensitive information (e.g., civil state).

External users intending to identify individuals in the microdata are called attackers. There exist different
risk scenarios all them defined in relation to the information an attacker has. The point is that all risk
scenarios and measures of identification risks are based on analysing almost identifiers (combinations of
different attributes) values in the microdata and determining the probability that an attacker manages to
identify individuals using information on these almost identifiers. Several measures of this risk exist in the
literature based on contingency tables for almost identifiers values and statistics in general, see [5], [1] for
more information.

Methods to prevent identification

There exist several methods to treat microdata files prior to publication in order to avoid that possible
attackers could identify the individuals, i.e., to reduce identification risk. All of them are encompassed in the
so called Statistical Disclosure Control (SDC) topic. All SDC methods can be basically classified between
perturbing and non-perturbing methods:
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2 INTRODUCTION

• Perturbing methods modify the microdata values for the attributes of the individuals in order to
reduce the risk of identification. The idea is to modify the data in a way that protects the privacy
of the individuals and at the same time preserves the information value of the microdata as much
as possible (the resulting microdata file should allow researchers or general ”good” users to obtain
similar conclusions than those that would extract from the original file). Eventually microdata files are
published with those modifications. Between the different methods, there stand out the following:

– Microaggregation: The topic of the project. Described afterwards.
– Rank Swapping: Similar values for different attributes are swapped between individuals.
– Data shuffling: A more sophisticated Rank Swapping method. See [14].

• Non-perturbing methods do not modify the data. On the other hand, not all the data is published.
For example, Global Recoding technique intends to group possible values for categoric attributes into
general categories (e.g., group ”taxonomists” and ”ecologists” as ”specialised biologists”).

All techniques except for microaggregation are out of the topic of this project.

2. Microaggregation

Microaggregation is a perturbing technique mainly considered for numeric variables. Suppose we consider
an almost identifier consisting of one or more attributes (e.g. the group formed by the numeric variables
”employees”, ”profits” and ”sales” in case of a microdata for companies). Microaggregation technique arises
from the concept of k-anonymity [3].

Definition (k-anonymity): Given k ∈ N, k ≥ 1, let V be a microdata with s individuals s ≥ k and t
attributes V1, . . . , Vt. Let g = (Vj1 , . . . , Vjm) be an almost identifier for V , jq ∈ {1, . . . , t}, q = 1, . . . ,m.
Then we say V is k-anonymous if for every possible value in D(Vj1)× . . .×D(Vjm), there exist either 0 or
at least k individuals in V with this value for the attributes in g.

Microaggregation intends to modify the values for the attributes involved in a given almost identifier so
that eventually the microdata satisfies k-anonymity for this considered almost identifier. Therefore, it first
joins different individuals of the microdata file in sets of at least k individuals. Then, for every set of
individuals, it substitutes the values of the attributes of the given almost identifier by common values for all
the individuals in the set. This way k-anonymity for the given almost identifier is satisfied by construction in
the modified microdata. The resulting sets of individuals will be called clusters from now on. A partition
of the whole set of individuals into clusters is called a clustering. Generally the common values taken for a
cluster (after data perturbation) are the values of the centroid of the cluster. That is to reduce as much as
possible the information loss, or spread, after the aggregation. With this idea it is clear that the objective
of microaggregation technique is to minimize the total sum of distances of the data of the individuals to the
centroids of their respective clusters. In practical cases in general the value of k is relatively small (classical
microaggregation uses k around 3, see [6], [3])

Example 1. Let g = (Employees, Surface) be a numeric almost identifier for a microdata of industrial
factories. Suppose we want to achieve k-anonymity with k = 2 and that our microaggregation procedure
suggests us to join the 3 factories in Table 1. to form a cluster (size is greater than 2 so 2-anonymity would
be satisfied). The centroid of this group (average for the values of the attributes of the almost identifier)

Factory Employees Surface (m2)

f1 55 1410
f2 48 1205
f3 41 1120

Table 1. Values for the attributes in g for factories f1, f2 and f3 in the original microdata.

is 55+48+41
3 = 48 employees and 1410+1205+1120

3 = 1245 m2 of surface. Therefore in the eventual published

microdata the factories f1, f2 and f3 will all have 48 employees and 1245 m2 of surface �.
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3. Structure & Guide of the document

The document is structured in four main parts with separate chapters. The first two parts report a general
insight on the problem of microaggregation and the most remarkable state of the art about the use of Integer
Programming in it. Follows then the report of the contributions this project is doing in this topic.

In more concrete terms. The first part First Insight in Micro aggregation, Heuristic Clustering Algorithms
introduces the description of microaggregation as a clustering problem and defines important characteristics
as the information loss or SSE. Includes also a report on the most common heuristic algorithms to obtain
reasonably good solutions and the optimal solution in case of univariate data.

The second part Integer Programming on Microaggregation (I), State of the Art introduces the reader to the
use of Integer Programming in microaggregation. Reports general theory and includes a model of microaggre-
gation with binary variables as well as an approximation of its objective function to linearize the problem.
Finally, it includes a report on the state of art of the use of Integer Programming in microaggregation
problem, based on the approximate model.

The third part Integer Programming on Microaggregation (II), New contributions of the project reports our
contributions to the topic. It includes a description of a new strategy to be applied based on Column
Generation. The strategy intends to add iteratively useful clusters of data. To add them it introduces a
new Binary Integer Problem known as Pricing Problem. This part also includes a Polyhedral study of this
subproblem, bringing new valid and strong inequalities for it.

Finally, the fourth part titled Implementation of Column Generation & Future Research describes in general
terms the code that has been implemented during the project to test the new strategy proposed. Eventually,
a chapter of Future Research is included. There the document describes the lines the project will follow
after the submitting of this document. It includes specific ideas to be executed immediately, specially in the
code, as well as general ideas to perform.

This document has been written such that anybody with the knowledge of Operations Research from the
Bachelor Degree in Mathematics in Universitat Politécnica de Catalunya-BarcelonaTech could read and
easily understand it. In fact, someone with knowledge on linear optimization in basic terms (not necessarily
Integer Programming given that its basic theory is included in the document) and a basic sense on graphs
could follow it with no relevant difficulties.





Part 1

First Insight in Microaggregation,

Heuristic Clustering Algorithms





Chapter 1

Problem definition

This is a brief introduction chapter to the problem statement of microaggregation. Recall that given k ≥ 1
an anonymity, microaggregation intends to obtain a clustering of the data with clusters of size at least k, such
respecting k − anonymity in the eventual data aggregated. The objective is that, besides, such a clustering
minimizes the information loss, or spread, in the data perturbation. In this chapter we introduce a measure
of this information loss or spread and therefore define the problem in terms of the data to aggregate.

For simplicity, from now on we consider only the attributes related to an almost identifier. We will also use
an abuse of notation when referring to the square of a vector v as v2 = vT v, for v ∈ Rm, see Notation. On
account of all, that we can consider our problem in the following way.
Suppose we have n individuals data vectors ai, i ∈ {1, . . . , n}, with the attributes of the almost identifier.
Suppose k ≥ 1 the integer that fixes the anonymity. The target is to separate the individuals ai in clusters
with size at least k such that:

q∑
s=1

ns∑
j=1

d(asj , as)

is minimized, where d(a, b) is a distance between a and b data vectors, q is the number of clusters, asj is the
element j in cluster s and as is the centroid of cluster s, i.e.:

as =
1

ns

ns∑
j=1

asj

Where ns is the size of cluster s. Note ns ≥ k ∀s ∈ {1, . . . , q} to satisfy k − anonymity.

This function introduced above is a general measure of the information loss, or spread, in microaggregation.
In general the distance d(·, ·) considered is the euclidean distance. For practical reasons, in general we
minimize the sum of its square values. This sum is called SSE in [6]. We will use this expression as a
standard measure of the information loss, or spread, in microaggregation:

SSE =

q∑
s=1

ns∑
j=1

(asj − as)T (asj − as) =

q∑
s=1

ns∑
j=1

(asj − as)2

With the same notation of ai’s described above our clustering problem looks for a SSE as minimal as
possible (i.e., a minimal information loss) satisfying that the clusters have size at least k. From now on, we
will denote as feasible clustering a partition into clusters of size at least k for each of them.

Remark 1. Domingo-Ferrer and Mateo-Sanz in [6] proved that the eventual clusters of optimal microag-
gregation must have size less or equal than 2k − 1. The proof is very simple and it simply relies on the
following fact. Given a feasible clustering π containing a cluster with size greater or equal than 2k, we can
split this cluster into two of size greater or equal than k obtaining a partition π′. It is clear that we can split
it reducing the sum of square distances inside this cluster and therefore SSEπ′ ≤ SSEπ.
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Chapter 2

Clustering Algorithms

From now on, we distinguish the cases of univariate data and multivariate data. Univariate data occurs when
the vectors ai have one single attribute (i.e., the almost identifier has only one variable) and multivariate
data when there is more than one variable considered.

This chapter explores the most remarkable algorithms to obtain feasible clusterings in microaggregation with
low SSE.

1. Univariate data

For the particular case of univariate data, optimal microaggregation can be achieved with a polynomial
algorithm based on minimal paths in a weighted graph. The method was provided by Hansen and Mukherjee
in [12]. The method relies on two properties proved in [6]. The first one has already been stated: optimal
microaggregation has clusters of sizes between k and 2k − 1. The second one claims that in univariate data
clusters must be consecutive. This means that after ordering the data points by value ai (decreasing or
non-decreasing order), the eventual clusters cannot be interleaved. In other words: if C1 and C2 are two
separate clusters in an optimal univariate microaggregation, then for each x, y with x < y and both in C1,
there exists no z ∈ C2 with x ≤ z ≤ y. It turns out to be very intuitive as consecutive clusters are less
spread and therefore SSE is lower for clustering in consecutive groups.
The optimal algorithm looks for consecutive clusters with sizes between k and 2k−1 and is explained below.

Algorithm for optimal Univariate Microaggregation [12]

Let G = (V,E) be a weigthed graph with the nodes V = {0, 1, . . . , n} being the data in increasing order plus
an extra node 0 as an origin. The edges E are formed as follows:
Given two nodes i, j in V with i < j, we consider the edge e = (i, j) if and only if i+k ≤ j ≤ i+ 2k ≤ n (i.e.
if i + 1 and j can be in a feasible cluster of size between k and 2k − 1 in an optimal solution). The weight
for this edge e then would be the contribution to the SSE of a cluster formed by the nodes {i + 1, . . . , j}.
We would take the values in this set and compute the sum of square distances to the centroid of this set.
This would directly be the weight of e = (i, j).
The resulting weighted graph G would lead to a bijection between consecutive feasible clusterings with cluster
sizes between k and 2k − 1 and paths between node 0 and node n. This bijection is described as follows:
If we consider a path 0→ i1 → i2 → . . .→ im → n then the corresponding consecutive feasible clustering is
{{1, . . . , i1}, {i1 + 1, . . . , i2}, . . . , {im + 1, . . . , n}}. It is clear that it is a feasible clustering of {1, . . . , n} and
that it is consecutive, for construction. Clearly given a feasible consecutive clustering we could reverse this
correspondence and obtain its associated path.
Furthermore note that the sum of the weights of a path taken directly provides the SSE corresponding to the
clustering associated with this path. Consequently a minimal path from node 0 to n in this computed graph
would provide us with an optimal solution that minimizes total SSE by taking its associated consecutive
clustering as described above.
In order to determine the complexity of this algorithm we note that the graph construction requires sorting the

9



10 2. CLUSTERING ALGORITHMS

nodes (O(n log n)) and computing kn edges at most, k edges for each node. Every edge weight computation
requires O(k) operations. Therefore the cost for the graph construction is max{O(n log n),O(k2n)}. We
have to add then the cost of a minimal path algorithm. Dijkstra with a priority queue for example would
be O(kn log n) for this graph. The result is clearly that the algorithm has a polynomial cost and moreover
it is very efficient even for large data sets.

2. Multivariate data

In the case of multivariate data, there is no total order anymore and that means that the property of
consecutive clusters has sense no more. The only property from [6] we can still exploit is that cluster size in
an optimal solution must be between k and 2k− 1. Nevertheless at this stage we must recall the result from
[7] that claims that multivariate optimal microaggregation is an NP-Hard problem. That means optimal
multivariate microaggregation should not be expected to be solved in polynomial time. On account of that,
there exists a lot of literature about heuristic algorithms that obtain feasible clusterings with reasonable
SSE. Below we introduce the most remarkable ones, provided by [3] and [13]:

(1) Maximum Distance (MD): Let S = {a1, . . . , an} be the set of all the data, ai ∈ Rm, m ≥ 2.
(i) Find ai and aj the most distant values in S.

(ii) Find the k−1 closest points to ai in S and form a cluster of size k with them and ai. Same for aj .
Remove the two clusters from S.

(iii) If |S| > 2k return to (i).
(iv) If k ≤ |S| ≤ 2k − 1 form a cluster with those points in S and STOP.
(v) If |S| < k add every remaining value in S to the cluster with the closest centroid and STOP.

This provides a feasible clustering with a computational cost of O(n3) approximately (bn/2kc steps
and O(n2) to find the most distant values at every step, in major terms).

(2) Maximum Distance to Average Value (MDAV): This is a computational improvement of MD
algorithm. With the same notation as in MD, we begin with the set S = {a1, . . . , an}.
(i) Find r the centroid of S and ai the most distant value from r in S. Find aj the most distant value

from ai in S.
(ii) Find the k−1 closest values to ai in S and form a cluster of size k with them and ai. Same for aj .

Remove the two clusters from S.
(iii) If |S| > 2k return to (i).
(iv) If k ≤ |S| ≤ 2k − 1 form a cluster with those points in S and STOP.
(v) If |S| < k add every remaining value in S to the cluster with the closest centroid and STOP.

This provides a feasible clustering too. The difference with MD is that at every instance it does not
find the furthest values in S (quadratic cost). Instead, it computes a centroid with cost O(n) at most,
finds its furthest value (O(n)) and again the furthest value to this last one with cost O(n) at most too.
Eventually at every step it has a cost of O(n) at most and there are bn/2kc steps so the total cost is
O(n2) at most.

(3) Variable-Maximum Distance to Average Value (V-MDAV) [13]: This is a variation from
MDAV algorithm. In the previous introduced algorithms most of the clusters had fixed size k and only
in the final step the possibility of creating clusters with different size was considered. With V-MDAV
the philosophy changes. It is exactly the same procedure as in MDAV but in the stage where we look
for the k − 1 closest values to a certain point and we form a cluster we can consider the possibility of
amplifying this cluster. For this extension of a group of size k, we suppose we have such a cluster N of
size k with a certain ai and its closest values. Suppose we want to extend N .

(i) We find ain the closest point in S \N to any of the points in N and din its distance to its closest
point in N .

(ii) We find aout the closest point in S \ (N ∪ {ain}) to ain and dout its distance to ain.
(iii) If din < γdout then we add ain to N and we come back to (i) until N has size 2k− 1 or cannot be

extended.
The value of γ is a gain factor discussed in the literature about this method [13].
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Experimental results discussed in [3] show that V-MDAV outperforms the two previous ones in synthetic
grouped data and also that MDAV and MD have similar performance in general although MDAV has a lower
computational cost.
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Chapter 3

Integer Programming Theory

In this chapter we are introducing the most remarkable theory from [16] on Integer Programming. This
theory will be later applied to microaggregation. However, by now we are putting our problem aside to
introduce this basic theory.

Before moving to some general definitions we will give a first view of what is the idea in Integer Programming.
Briefly, it is solving optimization linear problems in discrete sets.
In general terms, a linear Integer Programming Problem is an optimization problem of the form:

min
x

cx

Ax ≤ b
x ∈ X

Where X ⊆ {0, 1}n × Zq × Rp. Let s = n + q + p. Then c, x and are vectors of size s, A is a matrix of
size m × s and b a vector of size m. The product cx denotes implicitly the euclidean scalar product, see
Notation. Vectors c, b and matrix A are given, whereas vector x corresponds to the variables. The relation
≤ for a vector here means that it is satisfied for every component, see Notation. In this particular form it is
a minimization problem. This form of presenting an optimization problem is called model.

We will start with some general definitions for Mathematical Programming and particularly oriented to
Integer Programming.

Definition (Polyhedron): A subset P ⊆ Rn described by a finite set of linear inequalities, P = {x ∈ Rn |
Ax ≤ b}, is a polyhedron.

From now on, to simplify the writing, we will make an abuse of notation by referring to a linear inequality
simply as an inequality.

Definition (Formulation): A polyhedron P ⊆ Rn+q+p is a formulation for a set X ⊆ {0, 1}n ×Zq ×Rp if
and only if X = P ∩ ({0, 1}n × Zq × Rp).

With this definition, we consider first the combinations when n = 0. In this case, if p > 0, q > 0 we obtain
a Mixed Integer Problem (MIP, integer and real variables). Else if p = 0, q > 0 we are talking about an
Integer Problem (IP, only integer variables). Otherwise, if q = 0, p > 0 it is a Linear Problem (LP, only real
variables).
Whenever n > 0, our problem includes binary variables. In particular, if n > 0 and q = p = 0 we are
considering a Binary Integer Problem (BIP). This will certainly be our case for microaggregation.

A formulation is therefore only the polyhedron described by the different inequalities which, combined with
the ”type condition” constraint for the variables (integer, binary, mixed, etc), give us the constraints of the
problem.
Note that solving the linear problem using its formulation as the polyhedron to explore is solving the so
called linear relaxation of the problem.

15



16 3. INTEGER PROGRAMMING THEORY

The main idea of Integer Programming is to obtain good formulations for our problems. At this point we
should emphasize on how a formulation is finer or better than another.

Definition: Given P1 and P2 two formulations for a same set X, we say P1 is finer than P2 if and only if
P1 ⊂ P2.

For example, for a BIP of dimension two, in Figure 1., three formulations P3, P2, P1 satisfying the chain
P3 ⊂ P2 ⊂ P1 are represented. The set of feasible points is X = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Fig. 1. X marked in black cercles, P1 is the polyhedron interior to the red line. P2 is interior
to the blue line and P3 is interior to the pink line.

Furthermore, in case of Figure 1., P3 is not only the finest formulation of the three introduced but is also
clearly finer than any other possible formulation for X.
This introduces us the concept of Convex Hull. The Convex Hull of a set X is the minimal polyhedron that
contains X, in this case P3. Note that it can be obtained by all the possible convex combinations of points
in X.

Definition: Given X ⊆ Rn, the Convex Hull of X, noted as conv(X), is defined as:

conv(X) = {x ∈ Rn | x =

t∑
i=1

λix
i,

t∑
i=1

λi = 1, λi ≥ 0 for i = 1, . . . , t; ∀ x1, . . . , xt ∈ X, t ≥ 1}

Remark 2. The Convex Hull of a set X ⊆ Rn is a polyhedron in Rn. It has the property that all its extreme
points lie in X.
This means that given a Convex Hull formulation for an Integer Programming problem we can obtain its
optimal solution simply by applying the Simplex Algorithm. That is the reason why we call conv(X) the
ideal formulation for X. Nevertheless, in many times it cannot be expected to obtain the Convex Hull
formulation. Simplex is polynomial time on average so if a problem is NP-Hard it might not be expected to
find the Convex Hull formulation of the problem, or at least not to obtain it in polynomial time. However it
can be useful to pursue finer formulations in order to make the problem approachable by a Branch & Bound
method for example. We include a brief insight on this method in the paragraph below.

Branch & Bound

Branch & Bound method is a divide and conquer procedure. It divides iteratively the polyhedron of the
problem until and at every stage it solves the corresponding linear relaxation. If the solution is feasible
(belongs to X) then it stops the exploration of this subset of the original polyhedron. After all the successive
divisions, it ends up constructing an exploration tree of subproblems. This procedure is optimized by using
incumbents that can cut exploration of subproblems.
For example, given a minimization BIP with variables xi, we start by taking its linear relaxation (adding
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the bound constraints 0 ≤ xi ≤ 1). Then suppose we find x∗ a fractional optimal solution. Then, there exist
at least one variable 0 < x∗j < 1 fractional. The problem is then divided into two subproblems, one after
adding the constraint xj = 0 and the other after adding xj = 1. This procedure is done recursively for every
subproblem, what leads to a tree of subproblems as mentioned before. If a given linear relaxation provides
with an integer solution, then the exploration of this subproblem finishes. Besides, its objective value is an
upper bound, denoted incumbent, for the problem solution (it comes from a feasible solution). Thus, every
subproblem exploration in the tree of subproblems with a greater linear relaxation solution can be directly
cut.
In case the problem is an IP, the procedure is based on the same idea of recursivity. Given a fractional
linear relaxation solution, there must be a variable x∗j fractional. Then, the problem can be split into two
by adding either xj ≥ dx∗je or xj ≤ bx∗jc.
Branch & Bound is usually combined with the search of inequalities that can bound the problem. These
combinations are in general known as Branch & Cut methods. See chapters 7, 8 and 9 in [16] for deeper
information.

1. Valid Inequalities and Cutting Plane Methods

Chapters 8 and 9 in [16] are the source for this section. As stated before a target in Integer Programming is
obtaining finer formulations to make the problem approachable by standard methods. Those formulations
are obtained by adding inequalities to the formulation. However when adding those inequalities the resulting
polyhedron must remain a formulation. In other words, the inequalities must be valid.

Definition: Given X ⊆ Rn, π ∈ Rn, πo ∈ R. Then, πx ≤ πo is a valid inequality for X if and only if
πx ≤ πo for all x ∈ X.

The idea of bounding an Integer Programming problem is then to obtain families of valid inequalities and add
them in order to obtain finer formulations. However, sometimes families of valid inequalities are exponential
in number and thus sometimes even unfeasible to generate. In this cases we might add iteratively some of
the inequalities in the family. That is what is known as a cutting plane method.
A cutting plane method follows this procedure. Suppose that F is a family of valid inequalities for a given
problem to be solved in X ⊆ Rn:

Cutting Plane Algorithm:

(i) Set P an initial formulation.
(ii) Solve the linear relaxation of the problem in P and let x∗ be the optimal solution.
(iii) If x∗ ∈ X stop with optimality.
(iv) If x∗ /∈ X, find a valid inequality πx ≤ πo in F such that πx∗ > πo. Add this inequality to the

formulation, i.e., set P = P ∩ {x | πx ≤ πo}. Return to (ii).

The proces of finding a valid inequality πx ≤ πo in F violated by x∗ in (iv) is called separation routine.
Note that the scheme of a cutting plane algorithm also includes the possibility to solve the problem with
optimality. However the main point in this scheme is that if the algorithm terminates without finding an
optimal solution the resulting polyhedron P is a finer formulation than the original.

Example 2. A widely known cutting plane scheme is the Gomory Cut method for integer problems. It
is applied in Integer Problems (IP). In this case the family of valid inequalities considered are the Chvátal-
Gomory inequalities. See chapter 8 in [16].

Given X ⊆ Zn and P = {x ∈ Rn | Ax ≤ b} a formulation, with A matrix of size m×n, b ∈ Rm. Let aj ∈ Rm
the columns of A, j = 1, . . . , n. Let u ∈ Rm+ . Then the inequality:

n∑
j=1

uajxj ≤ ub



18 3. INTEGER PROGRAMMING THEORY

is valid since u ≥ 0. Furthermore, as the solution x ∈ X must be integer the inequality
n∑
j=1

buajcxj ≤ bubc

must be valid too. This last is known as the Chávtal-Gomory inequality for a given u ≥ 0.

The Gomory Cut method considers B−1 the inverse of the submatrix B in A (extended with slack variables
if necessary for the standard form) corresponding to the basic variables xB of an optimal solution for a linear
relaxation. Note that B has size m ×m. If the solution is not feasible there exists a component ν in xB
such that x∗Bν is not integer. Let β be the row ν in B−1 and q = β − bβc ≥ 0. Then the cut added by
the method -written in terms of the original variables (before adding slack variables to obtain the standard
form)- is:

n∑
j=1

bqajcxj ≤ bqbc

which clearly corresponds to a Chávtal-Gomory inequality for q = β − bβc ≥ 0, considering the formulation
without the slack variables �.

2. Strong valid inequalities

In this section, we will consider valid inequalities for a given polyhedron, rather than a set. Note that if
we consider the case this polyhedron is a formulation for a given discrete set in an Integer Programming
problem, then the valid inequalities for this set are still valid for its formulation. Then, the definitions and
results below are also extendable to this case in Integer Programming. In fact, they are mainly conceived
for this case.

An important issue regarding new valid inequalities to be added is how strong these inequalities are. This
leads us to the concept of dominance between inequalities.

Definition: Given two valid inequalities πx ≤ πo and µx ≤ µo for P ⊆ Rn+, πx ≤ πo dominates µx ≤ µo if
there exists u ∈ R, u > 0, such that π ≥ uµ, πo ≤ uµo and (π, πo) 6= (uµ, uµo).

Note that if πx ≤ πo dominates µx ≤ µo, then {x ∈ Rn+ | πx ≤ πo} ⊆ {x ∈ Rn+ | µx ≤ µo}.
With this definition we can state that a given valid inequality µx ≤ µo is redundant for the description of a
polyhedron P = {x ∈ Rn+ | ajx ≤ bj , j = 1, . . . ,m} if linearly combining inequalities in the description of P
we can obtain an inequality that dominates µx ≤ µo.
With the idea of redundancy of a given valid inequality introduced we can start discussing about the concepts
of affine independence of points as well as full dimensionality, faces and facets of polyhedrons.

Definition: Given the points x1, . . . , xk ∈ Rn, we say they are affinely independent if the k − 1 vectors
x2 − x1, . . . , xk − x1 ∈ Rn are linearly independent.

Definition: Given P ⊆ Rn a polyhedron. The dimension of P , noted as dim(P ), is one less than the
maximum number of affinely independent points in P .

Remark 3. Given P ⊆ Rn a polyhedron, we can define the directions in P as the set of vectors xi−xj ∈ Rn
for pairs xi, xj ∈ P . Then, the dimension of P corresponds to the maximum number of linearly independent
directions in P .
Note that P is contained in P ⊆ Rn an affine subspace, such that dim(P) = dim(P ). Let us use all linearly
independent directions in P as a base to construct a vector space V. Clearly dim(V) = dim(P ) by definition.
If we take xi ∈ P arbitrary, then the affine subspace P = xi + V = {x ∈ Rn | x = xi + v, v ∈ V} contains P
and dim(P) = dim(V) = dim(P ). The difference between P and P is that P can be bounded.
Later in this writing, we will refer to the orthogonal of P as the orthogonal of V the vector space defined by
its directions. Note that this orthogonal has dimension n− dim(P ) if P ⊆ Rn.

Definition: A polyhedron P ⊆ Rn is full dimensional if and only if dim(P ) = n.
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Theorem 3.1. If P is a full dimensional polyhedron, it has a unique minimal description:

P = {x ∈ Rn | aix ≤ bi for i = 1, . . . ,m}
where each inequality is unique to within a positive multiple.

The sense of minimal means that every inequality is necessary and that by removing just one of them in the
description, the polyhedron is no longer P . It also implies that any other existing valid inequality which is
not a positive multiple of one of them, is redundant for this description of P .

Definition (face): Given P ⊆ Rn a polyhedron, then F ⊂ P defines a face of P if and only if F = {x ∈
P | πx = πo} for a valid inequality πx ≤ πo of P . In this case the inequality πx ≤ πo is said to define F
(face-defining inequality).

Note that a face is a polyhedron.

Definition (facet): Given P ⊆ Rn a polyhedron, then F ⊂ P is a facet of P if and only if F is a face of P
and dim(F ) = dim(P )− 1. In this case if πx ≤ πo defines F then this inequality is said to be facet-defining.

Proposition 3.2. Given P a polyhedron, let {x ∈ Rn | aix ≤ bi for i = 1, . . . ,m} be a description of P with
no redundancy. Then there is a one to one correspondence between inequalities aix ≤ bi and facets of P .

Remark 4. In case P is full dimensional, then its unique minimal description corresponds to the set of all
facet-defining inequalities. That is to say that a valid inequality πx ≤ πo for P is necessary in the description
of P if and only if πx ≤ πo is facet-defining.

Bearing all this in mind, facet-defining inequalities are for sure the strongest valid inequalities considerable
for a given polyhedron. Furthermore, if X is the set of all feasible points for an integer problem, an
ideal Integer Programming approach is to consider facet-inequalities for conv(X) and apply a cutting plane
method adding them iteratively. In case all facet-defining inequalities for conv(X) are known, considering
them directly would provide with a no redundant description of conv(X). In case of full dimensionality, this
not only would provide the ideal formulation for the problem but also the unique minimal description of
this formulation. In any case the most common approach for an Integer Programming problem is to look for
valid inequalities, especially if they are facet-defining, and considering a cutting plane method to iteratively
add these inequalities. If the cutting plane method does not provide with an optimal solution in any case it
provides with a finer formulation that can possibly be the initialization for a Branching method.





Chapter 4

Models for Microaggregation in Integer Pro-
gramming

In this chapter we are going to model microaggregation with binary variables. In section 1. General Model,
we will formulate the problem in general, without considering any approximation. It results unfortunately
in a non-linear problem so it will follow an approximation linearising it in section 2. Approximate Model.

1. General Model

The original microaggregation problem can be modelled with binary variables if the contribution of a cluster
to the total SSE of microaggregation is expressed in a different way. First of all, recall the problem statement
notation in Chapter 1.

Proposition 4.1. Given a cluster S containing ns elements denoted by {asj | j ∈ {1, . . . , ns}} following the
notation of Part 1. Let as be its centroid. Then,

ns

ns∑
j=1

(asj − as)2 =
1

2

ns∑
i=1

ns∑
j=1

(asi − asj)2

Proof. Developing the square product and substituting as the left hand side equals to:

ns

ns∑
j=1

a2
sj + ns

ns∑
j=1

1

n2
s

(

ns∑
i=1

asi)
2 − 2ns

ns∑
j=1

(asj
1

ns

ns∑
i=1

asi)

In particular, the term

ns

ns∑
j=1

1

n2
s

(

ns∑
i=1

asi)
2 =

1

ns

ns∑
j=1

(

ns∑
i=1

asi)
2 = (

ns∑
i=1

asi)
2

as (
ns∑
i=1

asi)
2 does not depend on j as is added ns times. Finally substituting (

ns∑
i=1

asi)
2 =

ns∑
j=1

ns∑
i=1

asjasi we

obtain that the left hand side is equal to:

ns

ns∑
j=1

a2
sj −

ns∑
j=1

ns∑
i=1

asjasi

For the right hand side simply substituting the square product and using the same argument

1

2

ns∑
i=1

ns∑
j=1

a2
si =

ns
2

ns∑
i=1

a2
si and

1

2

ns∑
i=1

ns∑
j=1

a2
sj =

ns
2

ns∑
j=1

a2
sj ,

the global result is exactly the one computed for the left hand side. ut
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This result immediately means that the contribution of cluster S to the total SSE is,

(1)

ns∑
j=1

(asj − as)2 =
1

2ns

ns∑
i=1

ns∑
j=1

(asi − asj)2

Now let us denote N = {1, . . . , n} the set of indexes of the Microdata individuals. Let us define the following
binary variables xij for all i, j ∈ N such that:

xij = 1⇔ ai, aj belong to the same cluster after microaggregation

xij = 0 otherwise

With this definition it is assumed that xii = 1, ∀ i ∈ N and that xij is symmetric, i.e. xij = xji.
To simplify the writing we will denote as node i the corresponding individual ai.
Now let r be a node corresponding to individual ar, r ∈ N . Let nr be the number of elements of the cluster
where r is. Let SQr be the contribution to the total SSE of the cluster where r is. Following the idea of
equation (1) we can obtain SQr by summing all square distances between the nodes in the cluster where r
is (i.e., the nodes i, j with xir = 1 and xjr = 1) and then divide it by twice nr the number of nodes in the
cluster.

(2) SQr =
1

2nr

n∑
i=1

n∑
j=1

(aj − ai)2xirxjr

Now we can face the SSE computation. SSE is the total sum of the contributions of the different final
clusters, one contribution for each cluster. If we consider every r ∈ N and we add its corresponding SQr
eventually we will be adding nr times this SQr, one for each element in the cluster where r is. Therefore, if
we divide by nr this SQr contribution for every r, we will be obtaining the total SSE:

SSE =

n∑
r=1

SQr
nr

=

n∑
r=1

1

2nr

n∑
i=1

n∑
j=1

(aj − ai)2xirxjr

nr
=

n∑
r=1

1

2n2
r

n∑
i=1

n∑
j=1

(aj − ai)2xirxjr

The previous expression only requires applying equation (2) for SQr. Now, we reorder the sums as they are
finite

SSE =
1

2

n∑
i=1

n∑
j=1

(aj − ai)2
n∑
r=1

xirxjr
n2
r

Focusing on the term on the right xirxjr, we notice it can only be different from 0 when i and j are in the
same cluster as r. Moreover, in this case i and j must be in the same cluster so xij must be 1. Besides, in
this case it is also true that nr = ni = nj because we are talking of the same cluster. If we sum it for all r
we are repeating nr (or equivalently ni, nj) times the value xirxjr = 1. Therefore it is easy to see that

n∑
r=1

xirxjr
n2
r

=
xij
ni

Substituting this in the expression of SSE above, we eventually obtain

SSE =
1

2

n∑
i=1

n∑
j=1

(ai − aj)2xij

ni

In order to simplify the problem we notice that for the case xii the contribution to the SSE is 0 because
(ai − ai)2 = 0. Therefore, we can omit the existence of variables xii and define initially the variables such
that i 6= j (this deletes n variables for the problem). Now we consider ni the number of elements of the
cluster where i is in terms of the variables xij :

nr =

n∑
j=1
j 6=r

xjr + 1
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And finally substituting the term in the expression of SSE omitting variables xii we obtain an expression
of the total SSE in terms only of the variables xij , i 6= j:

(3) SSE =
1

2

n∑
i=1

n∑
j=1, j 6=i

(ai − aj)2xij

n∑
j=1,j 6=i

xij + 1

Our initial objective was to construct the clusters such that SSE was minimized. Consequently we should
obtain the values of the variables xij such that they define a feasible clustering and they minimize the
expression for SSE in equation (3). Forcing them to define a feasible clustering will give us the constraints.
Equation (3) will bring us our objective function to minimize.

To force the variables to describe clusters, they must be coherent with their definition. First, they must
be symmetric (xij = xji). Second, they must be complete in the sense that every node in the cluster is
related to every other node in the same cluster. For example if i and r are in the same cluster (i.e., xir = 1)
and j and r are on the same cluster too (i.e., xjr = 1) then it must be that i and j are in the same cluster
(xij = 1). It can be described by the following set of inequalities, named triangle inequalities from now
on:

xir + xjr − xij ≤ 1 for all i, j, r ∈ N, i 6= j, r 6= j, i 6= r

From now on we will denote as cliques the description of clusters in terms of variables xij . Sometimes we
may refer to them as complete clusters, what at some sense may sound like an abuse of notation. Mainly
they are simply combinations of variables xij satisfying the triangle inequalities. We will refer to the size of
a clique as the size of the cluster it corresponds to.

To force the variables to originate feasible clusters, we must force the clusters (or cliques) to have size at
least k. This means ni ≥ k ∀ i ∈ N . We will call it the size inequality and it can be easily expressed as:

n∑
j=1, j 6=i

xij ≥ k − 1

Putting all pieces together, our clustering problem can be described as an optimization problem with the
binary symmetric variables xij , i, j ∈ N , i 6= j:

(4)

minimize
xij , i, j∈N , i6=j

1

2

n∑
i=1

n∑
j=1, j 6=i

(ai − aj)2xij

n∑
j=1, j 6=i

xij + 1

subject to:

xij = xji, for all i, j ∈ N, i 6= j

n∑
j=1,j 6=i

xij ≥ k − 1, for all i ∈ N

xir + xrj − xij ≤ 1, for all i, j, r ∈ N, i 6= j, i 6= r, r 6= j

xij ∈ {0, 1}, for all i, j ∈ N, i 6= j

By looking at the objective function, we first notice that the factor 1/2 can be omitted if we suppress the
symmetries. This means that for every pair i 6= j we only consider one variable xij instead of the two
symmetric variables xij and xji. Without loss of generality, from now on we consider only variables xij
with i < j. This means there only survives the half of the total SSE sum and therefore we can neglect the
1/2 factor and the symmetry constraint. Therefore, at this point we redefine the variables xij neglecting
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symmetric pairs and pairs with the same node.

xij = 1⇔ ai, aj belong to the same cluster

xij = 0 otherwise

i, j ∈ N, i < j

This eventually redefines the minimization problem as follows after neglecting unnecessary variables:

(5)

minimize
xij , i, j∈N , i<j

n∑
i=1

n∑
j=i+1

(ai − aj)2xij∑
j∈N , j<i

xji +
∑

j∈N , j>i

xij + 1

subject to:∑
j∈N , j<i

xji +
∑

j∈N , j>i

xij ≥ k − 1, for all i ∈ N

xir + xrj − xij ≤ 1, for all i, j, r ∈ N, i < r, r < j

xij ∈ {0, 1}, for all i, j ∈ N, i < j

In any case, the most remarkable issues are that:

(1) The function is non-linear because of the dividing term in the fraction (size of a cluster).
(2) The function is non-convex. For example for the case n = 2 there is only one variable x12. We note it

by simply x and we note also c = (a1 − a2)2 > 0. The objective function is:

f(x) =
cx

1 + x
⇒ f ′′(x) =

−2c

(1 + x)3

The second derivative is clearly non positive for x > −1 and therefore also for x ≥ 0 (note that x12 is
non-negative).

This means that, using model (5), the problem has serious difficulties to be solved by schemes of Binary
Integer Problems. The idea currently used in the state of the art is simplifying it with an approximation,
obtaining a new model (6).

2. Approximate Model

We approximate our objective function by assuming the cliques have similar size, exactly as in the heuristics
in Chapter 2, where the size of the clusters was fixed for most of them. With this approximation we can
minimize neglecting the dividing term for the objective function:

(6)

minimize
xij , i, j∈N , i<j

n∑
i=1

n∑
j=i+1

(ai − aj)2xij

subject to:∑
j∈N , j<i

xji +
∑

j∈N , j>i

xij ≥ k − 1, for all i ∈ N

xir + xrj − xij ≤ 1, for all i, j, r ∈ N, i < r, r < j

xij ∈ {0, 1}, for all i, j ∈ N, i < j

With model (6) the problem is linear and, particularly, it is a Binary Integer Problem (BIP).



Chapter 5

State of the Art in the Approximate Model of
Microaggregation

In this chapter we are going to explore the nature of the polyhedron formulation in our approximate model
of microaggregation problem. This study is mainly reporting the literature in [8], [9] and [10]. First, we
recall our approximate model (6) for microaggregation:

(6)

minimize
xij , i, j∈N , i<j

n∑
i=1

n∑
j=i+1

(ai − aj)2xij

subject to:∑
j∈N , j<i

xji +
∑

j∈N , j>i

xij ≥ k − 1, for all i ∈ N

xir + xrj − xij ≤ 1, for all i, j, r ∈ N, i < r, r < j

xij ∈ {0, 1}, for all i, j ∈ N, i < j

At this stage, it can be useful to switch to a graph notation to simplify the writing.
Let Kn = (Vn, En) be a complete undirected weighted graph with n nodes. Then, we can clearly correspond
every individual i ∈ N to a single node in Vn. Furthermore we can correspond every variable xij , i < j, to a
single undirected edge e ∈ En such that e = (i, j) ∈ En. We can also define the parameters ce, e ∈ En such
that ce = (ai − aj)2 the weight for every edge e = (i, j) in En. With this new notation the model of our
approximate problem becomes (7):

(7)

minimize
xe, e∈En

∑
e∈En

cexe

subject to:∑
e∈δ(v)

xe ≥ k − 1, for all v ∈ Vn

xa + xb − xc ≤ 1, for all a, b, c triangle in En

xe ∈ {0, 1}, for all e ∈ En

Our formulation of the approximate problem is the intersection of the triangle inequalities and size inequal-
ities. Every one of this two sets of inequalities by separate define two polyhedrons and its intersection is the
final formulation. In Integer Programming when the formulation includes the intersection of two polyhedrons
sometimes it is useful to study them separately. In our case we will start by considering the polyhedrons
provided by triangle inequalities and then we will consider what happens when adding size constraints. All
results and statements below in this chapter are extracted from papers [8], [9] and [10].
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1. Clique Partitioning Problem

Let us consider the approximate microaggregation problem with only triangle inequalities. Recall that the
triangle inequalities forced the eventual clusters in the solutions to be cliques, i.e., to be complete in edges.
That means that our approximate problem considering only triangle inequalities is solved by obtaining a
clique partitioning of Kn such that the total weight of the eventual cliques is minimized. This problem
statement is commonly known as the Clique Partitioning Problem (CPP) and can be modelled as follows:

(8)

minimize
xe, e∈En

∑
e∈En

cexe

subject to:

xa + xb − xc ≤ 1, for all a, b, c triangle in En

xe ∈ {0, 1}, for all e ∈ En

In our particular approximate case it is obvious that given the fact that the coefficients ce > 0 for our
problem, the solution to CPP would be taking xe = 0 for all e ∈ En and therefore take every node in Vn as
a single clique. Nevertheless, studying the polyhedron of this problem also provides inequalities which are
valid for our approximate problem.
In the general case, CPP considers negative edge weights too. On account of that, a clique partitioning with
cliques different than the single nodes can have a total negative weight and therefore lower than the null
solution.

CPP in the State of the Art

CPP is efficiently solved for low data cases by Grötschel & Wakabayashi in [9], [8] by defining strong valid
inequalities and using a cutting plane method that searches for violated inequalities of this type at every step.
In [8], the facial structure of CPP is studied and families of facet-defining valid inequalities are provided.
The first observation is that the Convex Hull of the clique partitionings is full dimensional, i.e. has dimension
|En|.

Let X be the set of all clique partitionings of Kn. Let Pn be its Convex Hull. With this description we can
define Pn as:

Pn = conv({x ∈ {0, 1}|En| | xa + xb − xc ≤ 1 ∀a, b, c triangle in Kn})
Clearly the points xe = 0 ∀e ∈ En; xa = 1, a ∈ En and xe = 0 ∀e ∈ En \ {a}; are |En| + 1 different points
and they are affinely independent too. Note that taking the differences to the null point xe = 0 ∀e ∈ En,
the result is the set of vectors in the canonical base of R|En|. On account of that, Pn is full dimensional.
With a similar argument we can state that inequalities of the type xb ≥ 0 for a given b ∈ En, are facet-
defining. If we take the face {x ∈ Pn | xb = 0, b ∈ En} corresponding to one of this inequalities we observe
that in this face there are |En| affinely independent points (the null one and those with xa = 1 for a given
a ∈ En \ {b} and xe = 0 ∀e ∈ En \ {a}) so the face has dimension |En| − 1 and therefore is a facet.
Another preliminary result shows that the inequalities xb ≤ 1 for a given b ∈ En, are not facet-defining. If
we sum the valid triangle inequalities xa + xb− xc ≤ 1 and xb + xc− xa ≤ 1 for a, c ∈ En two edges forming
a triangle with b, we obtain xb ≤ 1 and therefore this inequality is redundant.
With this preliminaries stated we can move on to the main results extracted from [8]. We will only proof
the triangle inequalities are facet-defining as well as the validity for some of the inequalities proposed, the
rest of the proofs are all in [8]. All the following results are stated for X and Pn in CPP, with n ≥ 3:

(1) xe ≥ 0 defines a facet for Pn.
(2) xa + xb − xc ≤ 1 is facet-defining for Pn for every triangle a, b, c in En.

Proof. Let a = (u, v), b = (v, w), c = (u,w) the triangle for 3 nodes u, v, w in Vn. Let us denote, in
this case, a given point in X as only the set of edges which are activated, i.e., equal to 1. The following
|En| solutions are affinely independent and all satisfy xa + xb − xc = 1:
{a}, {b}, {a, b, c}
{a, e} ∀e ∈ En \ {δ(u) ∪ δ(v)}



1. CLIQUE PARTITIONING PROBLEM 27

{b, e} ∀e ∈ δ(u) \ {a, c}
En({u, v, w, z}) ∀z ∈ Vn \ {u, v, w} ut

(3) For every two nonempty disjoint sets S, T of Vn∑
e∈[S:T ]

xe −
∑

e∈En(S)

xe −
∑

e∈En(T )

xe ≤ min{|S|, |T |}

is valid for X. It is facet-defining for Pn iif |S| 6= |T |. It is called 2-partition inequality.

Proof. We only proof validity. See [8] for the facet-defining proof.
We assume without loss of generality that |S| ≤ |T |. Let s = |S|, t = |T |. We apply induction over
s+ t.
First we suppose s = 1. If t = 1 is trivial. If t = 2 it is a triangle inequality. Then for t ≥ 3 the
induction hypothesis imposes that given v ∈ T ,∑

e∈[S:T\{v}]

xe −
∑

e∈En(T\{v})

xe ≤ 1

is valid for Pn. We add them for all v ∈ T .

(t− 1)
∑

e∈[S:T ]

xe − (t− 2)
∑

e∈En(T )

xe ≤ t

We add the valid inequality −
∑
e∈En(T )

xe ≤ 0 and therefore,∑
e∈[S:T ]

xe −
∑

e∈En(T )

xe ≤
t

t− 1

and taking integer parts given that the solutions are integer,∑
e∈[S:T ]

xe −
∑

e∈En(T )

xe ≤ b
t

t− 1
c = 1 = s = min{s, t}

Now let s ≥ 2, t ≥ 2. The case s = 2, t = 2 is the sum of two triangle inequalities and therefore is
valid. For induction we know that for every v ∈ S,∑

e∈[(S\{v}):T ]

xe −
∑

e∈En(S\{v})

xe −
∑

e∈En(T )

xe ≤ s− 1

Similarly, for every v ∈ T∑
e∈[S:(T\{v})]

xe −
∑

e∈En(S)

xe −
∑

e∈En(T\{v})

xe ≤ min{s, t− 1}

We add them for every v ∈ T , v ∈ S and then,

(s+ t− 2)[
∑

e∈[S:T ]

xe −
∑

e∈En(S)

xe −
∑

e∈En(T )

xe] ≤ s(s− 1) + t ·min{s, t− 1} (∗)

If s < t then, ∑
e∈[S:T ]

xe −
∑

e∈En(S)

xe −
∑

e∈En(T )

xe ≤ b
s(s+ t− 1)

s+ t− 2
c = s

If s = t we rewrite (*) as

(2s− 2)[
∑

e∈[S:T ]

xe −
∑

e∈En(S)

xe −
∑

e∈En(T )

xe] ≤ 2s(s− 1) = s(2s− 2)

and hence, ∑
e∈[S:T ]

xe −
∑

e∈En(S)

xe −
∑

e∈En(T )

xe ≤ s = min{s, t}

On account of everything, it is clear that in any case the 2-partition inequality is valid for Pn. It also
shows that if s = t the inequality is obtained by only adding other valid inequalities and therefore it
defines no facet. There only lacks to prove it is facet defining if s 6= t, see [8]. ut
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(4) Let C be a cycle of length q ≥ 5. C = {(vi, vi+1) | i = 1, . . . , q − 1} ∪ {(v1, vq)}.
We define C̄ = {(vi, vi+2) | i = 1, . . . , q − 2} ∪ {(v1, vq−1), (v2, vq)} its 2-chords. Figure 1. includes a
graphic representation.

Fig. 1. Cycle C between nodes 1 and 7 in continuous line and C̄ in dashed line.

With this definition, ∑
e∈C

xe −
∑
e∈C̄

xe ≤ b
1

2
|C|c

is valid for X. It is facet-defining for Pn if and only if |C| is odd. We call it 2-chorded cycle inequality
induced by cycle C.

Proof. We only prove validity. See [8] for further proofs.
For each edge c ∈ C̄ we take c1 and c2 in C that together with c form a triangle {c, c1, c2} in En, see
Figure 1. Then the triangle inequality imposes xc1 +xc2−xc ≤ 1. We add all those triangle inequalities
for each c ∈ C̄ and eventually we obtain,

2
∑
e∈C

xe −
∑
e∈C̄

xe ≤ |C̄| = |C|

We add then the valid inequality −
∑
e∈C̄ xe ≤ 0 and take integer parts. It results that,∑

e∈C
xe −

∑
e∈C̄

xe ≤ b
1

2
|C|c

is valid for X. If |C| is even it can be obtained adding valid triangle inequalities and therefore the
2-chorded cycle inequality is not facet-defining for even cycles. Lacks only to prove it is facet-defining
for |C| odd. See [8]. ut

(5) Let P be a path P = {(vi, vi+1) | i = 1, . . . , k − 2}. We define P̄ = {(vi, vi+2) | i = 1, . . . , k − 3}
its 2-chord. Given z ∈ Vn not in P let R = {(vi, z) | i = 1, . . . , k − 1; i even} and R̄ = {(vi, z) | i =
1, . . . , k − 1; i odd}. Then, ∑

e∈P∪R
xe −

∑
e∈P̄∪R̄

xe ≤ b
1

2
(|P |+ 1)c

is valid for X. It is facet-defining for Pn if and only if |P | is even. We call it 2-chorded path inequality
induced by P .
Figure 2. represents the sets of edges P ∪R and P̄ ∪ R̄ with an example.

Fig. 2. P ∪R in continuous line and P̄ ∪ R̄ in dashed line.
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(6) Let C be an even cycle (even number of nodes and edges), C̄ its 2-chord and {V, V̄ } a bipartition of the
nodes in C. Let z be an outside node of C. Let R = {(v, z) | v ∈ V } and R̄ = {(v, z) | v ∈ V̄ }. Then,∑

e∈C∪R
xe −

∑
e∈C̄∪R̄

xe ≤
1

2
|C|

is valid and facet-defining for Pn. We call it 2-chorded even wheel inequality.
Figure 3. represents the sets of edges C ∪R and C̄ ∪ R̄ with an example of 8 nodes.

Fig. 3. C ∪R in continuous line and C̄ ∪ R̄ in dashed line. p nodes of the bipartition sets.

On the other hand, Grötschel & Wakabayashi in [9] obtained good experimental results for CPP only
considering inequalities 1, 2 and 3 from the list in the following cutting plane method:

Cutting plane method for CPP:

(i) Let F be a set of inequalities. Set F = {0 ≤ xe ≤ 1, e ∈ En}. Set MAXCUT an integer parameter
such that MAXCUT ∈ {400, 500} (empirically performs well with these values).

(ii) Solve the linear relaxation of CPP with the formulation from F and obtain an optimal solution x∗.
(iii) If x∗ satisfies all triangle inequalities and is integer, stop.

Else, check all 3
(
n
3

)
triangle inequalities and order the violated ones by gap of violation. The gap

of violation is the difference x∗a + x∗b − x∗c − 1, i.e., the degree of violation in x∗ for a given violated
triangle inequality. Choose the MAXCUT more violated ones and add them to F . If there are less than
MAXCUT violated inequalities add them all to F . Apply row elimination (see the paragraph below
the algorithm) to F and return to (ii).
If x∗ satisfies all triangle inequalities but is not integer run this heuristic to find 2-partition inequalities:
(a) Consider |S| = 1. For every node v ∈ Vn we set W = {w ∈ Vn \ {v} | 0 < x∗e < 1; e = (v, w)}.

Then we take and order in W (increasing order on the nodes in W for example) and pick the first
w ∈W and set T = {w}. For every i ∈W \ {w} we set T = T ∪ {i} if x∗ij = 0 for all j ∈ T .
We check whether the resulting set T satisfies

∑
e∈[{v}:T ] x

∗
e > 1 and in this case we add∑

e∈[{v}:T ]

xe ≤ 1

to F . Then, we repeat this process conversing the order in W . In case we find violated inequalities,
apply row elimination to F and return to (ii).
In case we have not found new inequalities, we repeat the process considering T = T ∪ {i} if
x∗iv −

∑
j∈T x

∗
ij > 0.

(b) If we could not find valid inequalities with |S| = 1, there is another routine not described in [9]
but it is not necessary in the practical cases reported.

Note that row elimination consists on: everytime we have an optimal x∗ we erase all inequalities αx ≤ β in
F which are strictly satisfied, i.e., we eliminate all αx ≤ β that satisfy αx∗ < β.

In conclusion, we can state that if we split our approximate problem formulation and consider the clique
condition, the problem remaining (CPP) is deeply developed in the state of the art. Plenty of families of
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inequalities are known. Besides, many of them are proved to be facet-defining. The polyhedron is full-
dimensional too. On top of that, well performing (for low data cases) cutting plane implementations exist
using part of these inequalities. Now we are interested on how is the scenario modified when adding size
constraints. In particular we require the cliques to have a minimum size. With this requirement we clearly
are targeting our microaggregation approximate problem model directly.

2. Clique Partitioning Problem with Minimum Cluster Size

Let us recall the approximate model of microaggregation. With the graph notation in Kn we can rewrite it:

(9)

minimize
xe, e∈En

∑
e∈En

cexe

subject to:∑
e∈δ(v)

xe ≥ k − 1, for all v ∈ Vn

xa + xb − xc ≤ 1, for all a, b, c triangle in Kn

xe ∈ {0, 1} for all e ∈ En

The objective is then to obtain a clique partitioning of Kn such that the total weight of the cliques is min-
imized and requiring the cliques to have size at least k ≥ 1. This problem is known as Clique Partitioning
Problem with Minimum Size Requirement or simply CPPMIN. Therefore CPPMIN is exactly the optimiza-
tion problem of our approximate model for microaggregation. In [10] valid inequalities and other results are
found for this problem as well as a Branch & Cut method that works well for low data cases.

Let Pn,k be the Convex Hull of the clique partitionings with minimum size k for the cliques, i.e.,

Pn,k = conv({x ∈ {0, 1}|En| |
∑
e∈δ(v)

xe ≥ k − 1, for all v ∈ Vn,

xa + xb − xc ≤ 1 for all a, b, c triangle in En})

Note that all inequalities in CPP are still valid on CPPMIN as it only consists on adding the constraint
of the minimum size for the cliques. In [10] the dimensionality of Pn,k is explored based on results for
the equipartition problem. The equipartition problem consists on dividing the nodes into two clusters of
equal size or with a difference of 1 node at most when the number of nodes is odd. The polyhedron for the
equipartition problem has dimension |En| − n, see [10]. The results for dimensionality in [10] imply that:

(a) If n > 2k, Pn,k is full dimensional, see [10].
(b) If n = 2k, the only feasible solutions are the equipartitions of the graph and the one with only one total

cluster including all nodes. Clearly all other solutions would imply clusters with less than k elements.
Therefore, dim(Pn,k) = |En| − n for the equipartition problem.

(c) If n < 2k then k > n/2 and the only feasible solution is to include all nodes in Vn in one cluster. For
this reason clearly the dimension of Pn,k = 0 in this case.

Now, assume we are in the case n > 2k. Otherwise we would either consider the total cluster solution or the
equipartition problem. In [10] new valid inequalities for CPPMIN are found, some of them facet-defining
for Pn,k:

(1) U , W ⊆ Vn with |U | > |W | and n > k|U |+ 2k + 1.
Then, the 2-partition constraint,∑

e∈[U :W ]

xe −
∑

e∈En(U)

xe −
∑

e∈En(W )

xe ≤ min{|U |, |W |}

is facet-defining for Pn,k. Recall we already know from CPP that this inequality is valid.
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(2) Let m = bn/kc, r ≡ n mod k, i.e., n = mk+r, m > 1 given that k < n/2. Let P ⊆ Vn of size p = tm+q
with t ≥ 1 and 1 ≤ q < m.
Then, the pigeon constraint, ∑

e∈En(P )

xe ≥
1

2
t(t− 1)(m− q) +

1

2
t(t+ 1)q

(a) If r = 0 is valid but not facet-defining.
(b) If r = 1 is facet-defining only if P = Vn.
(c) If r > 1 is facet-defining always.

(3) Let W ⊆ Vn of size w = k + q, q < k. Then the flower inequality∑
e∈En(W )

xe +
∑

e∈δ(W )

xe ≥
(
k

2

)
+

(
q

2

)
+ q(k − q)

is valid for CPPMIN.
(4) Under the same circumstances as in 3.

(k − q)
∑

e∈En(W )

xe + k
∑

e∈δ(W )

xe ≥ (k − q)
(
k + q

2

)
is valid for CPPMIN.

In [10] there is also a description of a Branch & Cut scheme that looks first for violated triangle inequalities,
2-partition inequalities, pigeon inequalities of size n−1, pigeon inequalities of size m+1 and flower constraints
in this order of preference. It uses MD algorithm (see Chapter 2., Section 2.) to obtain a first feasible solution
as incumbent. It also uses a heuristic to obtain a small weight clique of size m+ 1 when looking for a clique
P that raises a violated pigeon constraint of size m + 1 (separation routine). Other pigeon constraints are
explored enumerating subsets. The computational results in [10] showed that flower and specially pigeon
constraints had to be added in order to achieve tighter solutions. The tightness of a solution is defined here
as the difference in relative value between the optimal linear relaxation and the integer solution obtained.
In general, this is known as the GAP of an integer solution. It directly relates to how fine is the formulation
with the cutting planes added.

At this stage, we can claim that the state of the art for our approximate microaggregation problem is highly
developed. The subsequent problems CPP and CPPMIN, which is directly our problem approximated,
provides us with several valid inequalities. The facial structure of the subsequent polyhedrons has been deeply
explored. Furthermore, cutting plane methods and other strategies are also available in the literature.
However, the problem is still very tough as we can conclude from the computational results from those
methods. In particular, Mitchell and Ji in [10] test their Branch & Cut scheme with data sets with up to
103 individuals with only two attributes. This information gives us a reference on the size of the data sets
we might expect to work with. In the case of [10] they are working on approximated microaggregation,
so in case non-approximate microaggregation is approached, one should be aware of those computational
limitations. Just to give an idea, in [10] it is also noted that CPLEX can spend a day to solve CPPMIN
with instances of only 25 nodes in case there are no added new cutting planes. We absolutely cannot expect
to work on big instances of data, by now.

As part of the state of the art in the approximate model of microaggregation, there still lacks the report of
an important paper by Mitchell and Ji in CPPMIN with a Branch & Price & Cut scheme [11]. This paper
actually inspires our contributions and therefore we leave it for the next part.

Our objective is now to face the non-linearity (and non-convexity) of our objective function in the original
microaggregation formulation. The idea is to open a research line on target.
One possible idea is to try to reformulate the problem using another distance. Distance L1 has been
considered for the weights of the edges. However, the problem modelling difficulty increases given that,
in this case, we cannot skip the difficulty of the centroid of the clusters in our objective function. Every
expression of our objective function includes the term of the centroid which is non linear as the number of
elements in a cluster (which eventually works as a variable) is a dividing term. All final objective functions
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using this idea failed at pursuing convexity and linearity, even increasing the number of variables to include
cluster variables and more. For this reason, this alternative was rapidly discarded.

One alternative approach is given by Sande in [15], where the weight of a given clique is computed as the
weight of the minimal spanning tree inside this clique, considering still the distances L2 between nodes as
edge weights. The idea for this new approach is that in univariate data the range of a cluster (distance
between the lowest and greatest element) is a good measure for the spread in a cluster. On account of that,
it uses the minimal spanning tree weight as an extension of the range of a cluster for higher dimensions,
where the sense of order between elements is lost. It also defends this particular clustering spread measure
on account of the fact that microaggregation data tends to be highly skewed, as usually consists on economic
data. In [15] Sande claims that the range of the data in one dimension is a better measure of the spread than
the variance, which corresponds to the total sum of square distances to the centroid we have been considering.
Besides, [15] proposes a heuristic greedy algorithm for multivariate data that consists on starting from the
minimal spanning tree of the whole data and erasing edges of high distance with the constraint that the
remaining clusters still have size at least k, i.e., are feasible yet.

At this point the document finishes the part dedicated to report the general knowledge and the state of the
art in microaggregation. Follows now the most remarkable block of this project, the contributions of it at a
current stage. Recall this project has continuity and that this document only reports its contributions until
the 7th of January 2016.

As a brief introduction, we simply state that a new approach to microaggregation is considered for the
original model without approximating for similar clique sizes. It is based on another technique for Operations
Research in general known as Column Generation. Its application to microaggregation problem is inspired
by the same authors John E. Mitchell and Xiaoyun Ji in [10], who developed a Branch&Price method to
solve CPPMIN using Column Generation, see [11].
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Chapter 6

Column Generation Theory

In major terms, by now, two main techniques for Integer Programming problems have been mentioned. On
the one hand, Branching intends to iteratively divide the problem in subproblems and solve the subsequent
linear relaxations for them until it reaches feasible solutions. On the other hand, cutting plane methods intend
to tighten the formulation adding strong valid inequalities. Both techniques can be combined in Branch &
Cut schemes where cutting plane methods provide with finer formulations which can be afterwards treatable
by Branching. See chapters 7, 8 and 9 for deeper information in [16]. However there is an alternative
and sophisticate technique to deal with linear problems in general and also practical for certain Integer
Programming problems. This technique is explored in chapter 11 in [16], and applied in [11] for CPPMIN.
It is called Column Generation and it is especially useful for problems with a large number of variables.

The idea in this case is to deal with linear problems that include plenty of variables, taking into account
the fact that many of them might be zero eventually. Let us consider by now the general case of a standard
linear problem. Recall that, if there exists an optimal solution, then there must be a basic feasible solution
which is optimal. In this case, at least all non basic variables must be zero for the optimal solution. Column
Generation intends to exploit this condition in order not to consider all variables thus reducing the size of
the problem.

Firstly, we state that the following explanation is in the sense of a minimization problem like ours. Note
that maximization problems are just a little variation with no substantial change in the idea however.
The objective in Column Generation is only taking into account variables whose consideration might improve
the value for the objective function. In minimization terms these are simply variables with negative reduced
cost. To do so, the problem is divided into two separate problems: the Master Problem and the Pricing
Problem.

The Master Problem is itself the minimization problem but considering a subset of the variables, whereas
the Pricing Problem is a separate problem whose solution provides with a new variable to be considered in
the Master Problem. This new variable must be worth adding, i.e., must improve the value of the objective
function when considered. This is equivalent to say that this new variable must have a negative reduced
cost for the Master Problem. In every stage the Master Problem is solved and used to formulate the Pricing
Problem. Then Pricing Problem is solved to provide a new variable for the Master Problem. This iteration
scheme is followed until the Pricing Problem establishes there are no new variables with negative reduced
cost.

Note that the two problems are absolutely separated. In the Master Problem the variables are just a subset
of the original variables. In the Pricing Problem the variables modelling must be developed such that the
final result indicates a new variable to consider for the Master Problem. The mindset is therefore totally
different in the two problems and the variables in both problems have nothing to do with each other.
The name of Column Generation for this technique comes from the fact that adding a new variable to the
Master Problem implies adding a new column to the matrix of constraints in the formulation of the Master
Problem. The issue of the new column coefficients to add is essential to see how does the Pricing Problem
works.

35
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The idea in the Pricing Problem is to consider the reduced cost of the new variable as the objective function
to minimize. It is clear that in order to obtain new variables for the Master Problem it is not necessary
to solve the Pricing Problem to optimality. If a given feasible solution is found with a negative objective
function value, it can be directly added. Nevertheless, if no new variables with negative reduced cost are
found in a first stage, it is necessary to solve the Pricing Problem to optimality to confirm there exist no
new variables with negative reduced cost to be added. In other words, a non negative optimal solution for
the Pricing Problem means that no new variables have to be added to the Master Problem.

There is no standard procedure to model the Pricing Problem. Nevertheless, in any case the Pricing Problem
must be constructed such that its objective function is the reduced cost of a variable to be added. This
involves using dual variables from the Master Problem.
That point arises a remarkable issue with respect to the Master Problem. Obtaining its dual variables forces
the Master Problem to be an LP (continuous variables). This means that in case that Column Generation
is considered for Integer Programming, at some point the integrality of the solution must be an issue to deal
with. Branching could be a strategy, or also adding cutting planes to the Master Problem, but in any case
this must be taken into account.

Follows the general idea for the use of dual variables in the reduced cost expression in the Pricing Problem.
Given a linear problem

min
x∈Rn+

{cx : Ax ≤ b}

in its extended/original form.

Recall the typical expression of the reduced cost of a non basic variable. Considering all variables xi,
i = 1, . . . , n. Let B be a subset of indexes corresponding to a basic feasible solution, i.e., a set of basic
variables. Let NB be the set of indexes for the remaining non basic variables and cB the coefficients of B in
the objective function. Let j ∈ NB and Aj its corresponding column in A the matrix of constraints. Let B
be the submatrix in A corresponding to the basic variables. Then, the reduced cost rj for variable xj is:

rj = cj − cBB−1Aj

From dual linear problems theory it is known the following:

Proposition 6.1. Given the linear problem

min
x∈Rs

qx

s.t.

Dx ≤ b

with D matrix of size m × s, b of size m and q of size s. Suppose it has an optimal solution that takes
variables corresponding to a submatrix B in D. Consider its dual problem with variables λ ∈ Rm. Then,
λ = cBB

−1 is a dual problem optimal solution.

We can exploit the idea in Proposition 6.1 in the expression of rj in the objective function of the Pricing
Problem. Suppose that, at a given stage, our Master Problem is considering only a set S of variables
with corresponding submatrix As and objective function coefficients cs. Take D = As and q = cs in the
proposition. Then the Master Problem solution might provide with a subset of basic variables B in As that
is itself a subset of basic variables in A the original problem. Let B be again its corresponding submatrix.
We can substitute the term cBB

−1 in the reduced cost expression of a new variable by the dual variables
provided by the Master Problem at this stage. This way we can forget about the basic variables term in the
objective function of the Pricing Problem.
Note also that, after adding a variable j to the Master Problem, in no case the Pricing Problem will add
it again. This is justified by the fact that every variable already in the Master Problem has a non-negative
reduced cost. Suppose j is a variable already in the Master Problem. Then in the Pricing Problem its value
for the objective function would be its reduced cost, i.e.,

rj = cj − cBB−1Aj = cj − λAj
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Nevertheless in the dual of the Master Problem the variable definition of xj ≥ 0 means a constraint λAj ≤ cj
and so rj = cj − λAj ≥ 0. The dual coefficients used in the Pricing Problem automatically force variable j
to have a positive reduced cost and therefore discard its addition.

Below, it is exposed an overview of the case of Column Generation applied to CPPMIN in [11]. It includes
an example of the use of dual variables to compute the reduced cost of a new variable. Furthermore it
includes the statement of the Pricing Problem although its modelling is avoided as it might be of non use in
our problem.

1. Column Generation for CPPMIN

In [11], CPPMIN is formulated with a new set of variables noted as xp. For every cluster P in Vn of feasible
size (|P | ≥ k), we define xp such that:

xp = 1⇔ Cluster P is used in the final CPPMIN solution

xp = 0 otherwise

With this new variables then we consider wp the total weight of a given cluster P , i.e.,

(10) wp =
1

2

∑
i∈P

∑
j∈P

(ai − aj)2

Therefore, CPPMIN can be modelled as follows (11), considering all feasible P , i.e., all P ⊆ Vn, |P | ≥ k:

(11)

minimize
xp, P⊆Vn

∑
P

wpxp

subject to:∑
P :v∈P

xp = 1, for all v ∈ Vn

xp ∈ {0, 1}, for all P ⊆ Vn, |P | ≥ k

The equality
∑
P :v∈P xp = 1 ∀v ∈ Vn forces the solution to be a partition of Vn. Every node v ∈ Vn must

be exactly in one cluster. We will call them partition constraints. Note that there is one single constraint
corresponding to each node.

The Master Problem is exactly the same but neglecting some variables and, more importantly, relaxing the
problem. Suppose P are the variables that the Master Problem is considering at a given stage. Then, the
Master Problem at this stage is:

(12)

minimize
xp,P∈P

∑
P∈P

wpxp

subject to:∑
P∈P:v∈P

xp = 1, for all v ∈ Vn

xp ≥ 0, for all P ∈ P

Note that is not necessary to consider the constraint xp ≤ 1 since
∑
P∈P:v∈P xp = 1, ∀v ∈ Vn and xp ≥ 0.

Given the model for the Master Problem, now it only lacks an statement of the Pricing Problem.

Before moving on it, we include a brief example of the use of the dual variables in the Master Problem to
express the reduced cost of a new variable, or feasible cluster.

Example 3. Suppose it is given the case n = 3, nodes {1, 2, 3} and k = 2. Assume that at a given stage
in our Master Problem we are considering the clusters P1 = {1, 2}, P2 = {2, 3} and P3 = {1, 3}. We want
to know if it is worth adding the cluster P4 = {1, 2, 3}. In this case the column A4 corresponding to the
variable x4 of this last cluster is a vector of ones because every node belongs to P4 (see Master Problem
formulation above). We solve the dual of the Master Problem and we obtain the variables λ = (λ1, λ2, λ3)
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corresponding to each constraint (corresponding to each node in Vn). Then we simply consider the reduced
cost of P4 the new variable as r4 = w4 − λA4 = w4 − λ1 − λ2 − λ3 �.

With this example it is shown the use of dual variables from the Master Problem. Every dual variable from
the Master Problem corresponds to a partition constraint in the Master Problem. Nevertheless, Master
Problem formulation above shows that every partition constraint is associated to a single node. This implies
that a pricing coefficient can be assigned to each node by taking its corresponding dual variable in the dual
solution of the Master Problem.
Then, considering the reduced cost rexpression with dual variables it is easy to see that every dual variable
is multiplying the coefficient of its corresponding node in the column to be added to the Master Problem,
which is always 1. In other words if we want to add a new cluster P , then its reduced cost will be:

rp = wp −
∑
i∈P

λi

In the example above the new cluster P included every node and the previous expression is clearly coherent.

On account of all that, in [11], the Pricing Problem is constructed as follows:

Construct a weighted undirected graph Kn = (Vn, En) with edge weights the square distances between the
nodes as in the previous chapter. Nevertheles, now there are node weights included in the graph. These
node weights correspond to the value of the dual variables in the solution of the Master Problem. We can
also call them pricing coefficients.
Then a new variable xp is generated by finding a cluster P with size at least k in this graph such that the
sum of its edge weights minus the sum of its node weights is negative. Finding this cluster P in the -edge
and node- weighted graph defined is directly the Pricing Problem statement in [11].

In [11], there is also a model included for this problem as a BIP. We do not report it because we reconsider
the variables to use for it. Instead, the statement as a clique problem is essential for our contribution and,
on account of that, we have included it above.



Chapter 7

Column Generation on Non-Approximate Mi-
croaggregation

In this chapter, we are going to introduce new contributions of this project on non approximate microag-
gregation. The idea of applying a Column Generation approach is inspired in [11]. However, in our case we
modify the weight of a cluster coefficient and more importantly the whole Pricing Problem scheme for new
cluster generation.

1. Master Problem & Column Generation Scheme

Following the notation of variables in [11], suppose P is a feasible cluster in Vn. Taking into account the
result in [6] for the maximum size in optimal microaggregation we can state that k ≤ |P | ≤ 2k − 1. Let xp
be the binary variable that indicates whether cluster P is or not in the solution for microaggregation. Let
wp be the weight of P . In [11], wp was taken as the sum of all inner square distances. In our case we are
considering the same sum but divided by the number of elements such that the result is the real contribution
to the SSE of cluster P in non-approximate microaggregation. From Chapter 4. Section 1. we already
know it can be computed as:

(13) wp =
1

2

∑
i∈P

∑
j∈P

(ai − aj)2

|P |

On account of this we can describe non-approximate microaggregation as follows (14) (same as in [11]
for CPPMIN but modifying the weights of the clusters). Considering all feasible clusters P in optimal
microaggregation, i.e., clusters with size k ≤ |P | ≤ 2k − 1,

(14)

minimize
xp, P⊆Vn

∑
P

wpxp

subject to:∑
P :v∈P

xp = 1, for all v ∈ Vn

xp ∈ {0, 1}, for all P ⊆ Vn, k ≤ |P | ≤ 2k − 1

Remark 5. With this new model we can easily skip the difficulty of the centroid by computing wp with
equation (5). This is the reason why we explore these new variables from [11].

Exactly as in [11], our Master Problem takes as reference the relaxed formulation of non-approximate
microaggregation. Suppose that P are the variables that the Master Problem is considering at a given stage.
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Then the Master Problem at this stage is again (12):

(12)

minimize
xp,P∈P

∑
P∈P

wpxp

subject to:∑
P∈P:v∈P

xp = 1, for all v ∈ Vn

xp ≥ 0, for all P ∈ P

This means that the Master Problem is the same as in [11] with only the modification in the weight of a
cluster provided by equation (13). When it comes to the Pricing Problem there raise important differences.

Recall Example 3. in Chapter 6. Section 1. extracted from [11]. The same use of dual variables from
the Master Problem to express the reduced cost of a new feasible cluster can be applied in our procedure.
This means that we also consider the problem of finding a feasible cluster in a complete undirected weighted
graph with weights in the edges and in the nodes. However, in [11], the Pricing Problem looks for a cluster
of size at least k that minimizes the sum of edge weights minus the sum of node weights in this cluster.
In our case, our Pricing Problem is solved by finding a cluster of fixed size η that minimizes the difference
between edge weights (divided by η) and node weights. Then, we solve this Pricing Problem k times, one
for each η ∈ {k, . . . , 2k − 1}. For every η we can add a new feasible cluster. This means we preserve the
”statement” of the Pricing Problem from [11] although our objective cluster has a fixed size. Moreover, the
column generation scheme changes on account of the fact that we solve k different Pricing Problems with
fixed size at every stage.

Fig. 1. Procedure to solve non-approximate microaggregation to optimality.



2. PRICING PROBLEM WITH FIXED CLUSTER SIZE 41

It is clear that, when none of these k Pricing Problems adds a cluster with negative reduced cost (i.e., when
the objective function value for every Pricing Problem is non-negative), then, there are no more feasible
clusters to consider in the Master Problem. At this point, the solution of the Master Problem must checked.
If the solution is integer (0 or 1 given our constraints) then, the scheme has provided with an optimal
microaggregation. Else if the solution is fractional, then some branching and/or cutting must be performed.
This Branching eventual procedure implies reinitializing the column generation scheme with a new constraint.
Nevertheless, at this point we must be aware that, in any case, the first column generation scheme provides
with a valid lower bound for the total SSE of optimal microaggregation, which corresponds to the objective
function of the Master Problem with this fractional solution obtained.
The Block Diagram in Figure 1. illustrates the scheme described above to obtain optimal non-approximate
microaggregation. By now we will focus on the upper block of Column Generation, starting from the Pricing
Problem which we will formulate as a BIP.

2. Pricing Problem with fixed cluster size

At this point, we have a statement for our Pricing Problem given η the size of a new cluster to generate.
Given Kn = (Vn, En) our complete undirected graph with edge weights ce, e ∈ En, and node weights, λv,
v ∈ Vn, we want to obtain a feasible cluster P , |P | = η, such that the difference between its edge weights
(divided by η) and its node weights is negative.

The objective now is to propose a BIP model for our Pricing Problem with fixed cluster size. Given that
we are looking for a negative reduced cost (computed as the difference mentioned above), we can simply
minimize it in the problem model.
In [11], there is given a BIP model for the Pricing Problem. However the model used in [11] includes
variables for every node and edge in Kn the weighted graph to be explored. In our case we will simply
include the edge variables because we have noticed that, with our formulation, there are fractional results
excluded which satisfy the formulation in [11]. Moreover, thus we can work with less variables. It means,
from now on we will note clusters as cliques given the edge variables description.

First of all, we suppose k > 1 because otherwise, clearly, optimal microaggregation would mean to take each
node as a single clique and final SSE would be 0. This means that in every case η ≥ 2. Suppose P is the
new cluster we want to generate with the Pricing Problem. As stated above, we define ze, e ∈ En, e = (i, j),
i, j ∈ Vn, i 6= j such that:

ze = 1⇔ i, j are in cluster P

ze = 0 otherwise

Note that with these variables the solution of the Pricing Problem will be a clique of size η if,∑
e∈En

ze =
η(η − 1)

2

The equation above will be our fixed size constraint in our formulation. Another group of constraints could
be the so called triangle inequalities, exactly as in Chapter 4. Using them we can ensure the problem solution
provides with a clique in edges.

za + zb − zc ≤ 1 for all a, b, c triangle in En

Differently to CPP however, it lacks to force the solution to represent a single clique. In CPP we looked for
a clique partitioning and adding the triangle inequalities was useful to enforce every component (set in the
partitioning) is a clique. In our case, we must also force that there is only one component, i.e., the solution
is connected.
For example if we consider the case n = 6, Vn = {1, 2, 3, 4, 5, 6}, η = 3, the solution provided by acti-
vating edges (1, 2), (3, 4) and (5, 6) satisfies the fixed size constraint and the triangle inequalities. It is
actually a clique partitioning in three separated subcliques. We must discard this type of solution by forcing
connectivity. To do that we introduce the Node-to-Node Inequalities.
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Definition: Let i, j ∈ Vn, i 6= j. We define the Node-to-Node Inequality for i, j as,∑
e∈δ(i)\(i,j)

ze − (η − 2)zij ≥ 0

This inequality is clearly valid. Let z ∈ Z be a feasible clique. The inequality contains negative terms in
the left hand side only when zij = 1. This is therefore the only case to explore. Nevertheless in this case
clearly nodes i and j are included in the clique. Then, the amount of activated edges connecting i except
zij is clearly η − 2 given that the clique must be feasible (size η). Consequently, the inequality is satisfied
(at equality).

Moreover, this inequality makes the solution connected. Any type of solution which is not connected consists
on different separated cliques. All those clusters must have size strictly less than η given the fixed size
equation and that we are supposing there is more than one clique component. Then, taking i, j two nodes
in one of those cliques (they must have size at least two to exist), trivially the Node-to-Node Inequality for
i, j is violated.

Note that given a pair of nodes i, j ∈ Vn, i 6= j, there exist two Node-to-Node Inequalities for i, j:∑
e∈δ(i)\(i,j)

ze − (η − 2)zij ≥ 0

∑
e∈δ(j)\(i,j)

ze − (η − 2)zij ≥ 0

Another important observation is that considering all existing Node-to-Node Inequalities and the fixed size
constraint, forces the solution to be complete, i.e., to describe a clique.

Proposition 7.1. Given η ≥ 2, the Node-to-Node Inequalities for i, j ∈ Vn, i 6= j, combined with the fixed
size equation, force the solution to be clique.

Proof. The case η = 2 is trivial. The fixed size equation itself forces the solution to be a clique.
For η ≥ 3, let us suppose the edge (v, w) is activated between nodes v, w ∈ Vn. Imposing the Node-to-Node
Inequality, ∑

e∈δ(v)\(v,w)

ze − (η − 2)zvw ≥ 0

means there are at least η−2 other nodes connected to v apart from w. Let us call K ⊂ Vn this set of nodes,
|K| ≥ η − 2. Then we impose the reverse Node-to-Node Inequality for v, w∑

e∈δ(w)\(v,w)

ze − (η − 2)zvw ≥ 0

which forces w to be connected to at least η − 2 nodes apart from v. To start we can suppose first those
nodes are K too. Then we take k1 a node in K and we impose the Node-to-Node Inequality for k1, v for
example (we can consider the one for k1, w too). Given we are supposing k1 is connected to both v, w, it
means k1 is connected to at least η − 3 other nodes. We can suppose those nodes are yet the other nodes
in K. We could do the same for the next kt nodes in K. At every stage we would be adding exactly |K| − t
new edges.
If |K| = η − 2, then the resulting amount of edges would be

1 + η − 2 + η − 2 +

η−2∑
t=1

η − 2− t =

= 2η − 3 + (η − 2)2 −
η−2∑
t=1

t =

= 2η − 3 + (η − 2)2 − (η − 2)(η − 3)

2
=

=
4η − 6 + η2 − 5η + 6

2
=
η(η − 1)

2
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and the fixed size constraint would be satisfied. Besides, the solution would be a clique.
Note that if |K| > η − 2, then, applying succesively the Node-to-Node Inequality as above, would lead us to
a greater amount of edges and this would violate the fixed size constraint. More than that, if at some point
our construction was not strictly satisfied, in the sense that at some stage t the nodes connected to kt where
not exactly the nodes in K plus v and w, then, there would be an external node z /∈ K∪{v, w} connected to
kt. If we took the Node-to-Node Inequality for z, kt this node z would be connected to at least η − 2 nodes
different than kt. This nodes could be in K or not but in any case this term η− 2 added in the sum of edges
described above would eventually end up violating the equality between the total amount of edges and the
right hand side of the fixed size equation. The same reasoning works for the instance previous to k1 when
we suppose that the other nodes connected to w apart from v are the ones in K.
In other words, the only possible edges construction that ends up satisfying the fixed size constraint is the one
described above. Otherwise the Node-to-Node Inequalities would force to introduce an excess of edges. ut

Corollary 7.1.1. The triangle inequalities are not necessary in our formulation of the Pricing Problem
with fixed size.

Carrying on with the model construction of the Pricing Problem with variables ze (recall those variables
describe a cluster P solution of the Pricing Problem).

Given e ∈ En, e = (i, j), if we consider ce = (ai − aj)2, it is clear that with these variables we can express
wp the weight of P in non-approximate microaggregation (see equation (13) in Chapter 7.) as:

wp =
∑
e∈En

ceze
η

This expression for wp is the edge weights positive contribution to the objective function in the Pricing
Problem with fixed cluster size. Now we look for the node weight negative contribution in terms of the
variables ze.

As in [11], let λv be the node weight of v ∈ Vn. Recall that this corresponds to the dual variable solution of
the dual of the Master Problem. Then note that if the node v is in the solution P of the Pricing Problem,
then v will be adjacent to η− 1 nodes. Otherwise, v will be adjacent to zero nodes. This means that clearly
the expression ∑

e∈δ(v)

ze

η − 1

is 1 when v ∈ P and 0 otherwise.
On account of that, we can simply compute the node weight contribution to the objective function as:

∑
v∈Vn

λv

∑
e∈δ(v)

ze

η − 1

In summary, the objective function in our Pricing Problem with fixed size is:

∑
e∈En

ceze
η
−
∑
v∈Vn

λv

∑
e∈δ(v)

ze

η − 1
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What leads us to a BIP model (15) of the Pricing Problem with fixed cluster size η ≥ 2:

(15)

minimize
ze, e∈En

∑
e∈En

ceze
η
−
∑
v∈Vn

λv

∑
e∈δ(v)

ze

η − 1

subject to:∑
e∈En

ze =
η(η − 1)

2∑
e∈δ(i)\(i,j)

ze − (η − 2)zij ≥ 0, for all i, j ∈ Vn, i 6= j

ze ∈ {0, 1}, for all e ∈ En



Chapter 8

Polyhedral study of the Pricing Problem with
fixed cluster size

To study our Pricing Problem first we impose two bound limits for η. The first one is already taken into
consideration in the problem definition when we impose η ≥ 2. There is also an upper bound limit that
imposes η ≤ n−2. Otherwise when η = n the only solution is the complete set of nodes and when η = n−1 we
simply take the complementary of every node in Vn as a solution. In total those are only n+1 solutions easy
to enumerate and therefore we discard those cases in our analysis. In summary, we consider 2 ≤ η ≤ n− 2.

Given an Integer Programming problem to be solved in Z an integer, binary or mixed set, a polyhedral study
of the problem consists generally on studying the following issues:

(i) Dimension of conv(Z).
(ii) Valid inequalities for Z.

(iii) Which inequalities in (ii) are also facet-defining inequalities for conv(Z).

This corresponds to the scheme previously seen in CPP and CPPMIN. We will follow this scheme in our
analysis. First of all, consider all the possible clusters of size η in Vn and describe them as cliques in terms
of the variables of our Pricing Problem. From now on, let Z ⊆ {0, 1}|En| be this set of feasible clusters
described as cliques in edges.

Z = {z ∈ {0, 1}|En| |
∑

e∈En
ze =

η(η − 1)

2∑
e∈δ(i)\(i,j)

ze − (η − 2)zij ≥ 0, for all i, j ∈ Vn, i 6= j}

Every z ∈ Z corresponds to a clique in Kn of size η. Let Pn,η correspond to the Convex Hull of solutions of
the Pricing Problem with fixed size, in other words, Pn,η = conv(Z).

Before moving on to results of the polyhedral analysis we might first introduce a lemma that might be very
useful for working on dimensionality of polyhedrons and its faces.

Lemma 8.1. Given P ⊆ Rm a polyhedron, the dimension of P is m minus the number of linearly independent
linear equations satisfied in P .

Proof. Recall Remark 3. in Chapter 3. Section 2. In this remark we have noted that given P ⊆ Rm a
polyhedron, its orthogonal has dimensionm−dim(P ). Recall that by orthogonal of P we mean the orthogonal
of the vector space defined by the directions of P . To prove the lemma, we can find a correspondence between
linear equations satisfied in P and vectors in the orthogonal of P .
This correspondence is trivial since it is the same one used in affine geometry to describe affine subspaces
as intersection of hyperplanes. Recalling Remark 3., let V be the vector space given by the directions in P .
It is constructed from differences zi − zj ∈ Rm for pairs zi, zj ∈ P and its orthogonal vector space is the
orthogonal of P .
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Now, let π ∈ Rm be a vector in the orthogonal of P . Clearly π(zi − zj) = 0 for every pair zi, zj ∈ P . This
means the product πz takes one single value, denoted by πo, for every z ∈ P and therefore equation πz = πo
is satisfied for all z ∈ P .
On the other hand, let πz = πo be a linear equation satisfied for all z ∈ P , then clearly π(zi − zj) = 0 for
every zi−zj direction in P . This immediately means, for construction of V, that π belongs to the orthogonal
of P . This proves that every linear equation in P corresponds to a direction in the orthogonal of P and
viceversa. Therefore, it is immediate that the number of linearly independent linear equations in P is exactly
the number of linearly independent directions in the orthogonal of P . ut

From now on, we will make an abuse of notation when referring to linear equations simply as equations.
This way the writing will be simplified. Bearing Lemma 8.1 in mind, we can proceed with a relevant result
on the dimension of Pn,η.

Theorem 8.2. dim(Pn,η) = |En| − 1

Proof. First we note the following:

Claim 1: Proving the theorem is equivalent to proving that the only equation (except for multiplicity)
satisfied by all points in Pn,η is the fixed size equation,∑

e∈En

ze =
η(η − 1)

2

Proof of Claim 1: Immediate using Lemma 8.1 and the definition of Pn,η = conv(Z) �.

We denote π ∈ R|En| as the vector with all ones. We also denote πo = η(η − 1)/2. In other words, let
πz = πo be the fixed size equation. Let az = ao be an equation satisfied by all z ∈ Pn,η. We must prove it

is a multiple of πz = πo to prove the theorem. We must prove, then, that all coefficients in a ∈ R|En| are
equal. It is clear that in this case, if ac ≡ ae : ct for all e ∈ En, then ao necessarily would be ao = acπo,
otherwise the equation az = ao, would not be coherent with the fixed size equation.

Claim 2: Let W , H ⊂ Vn with |W | = |H| = η. Then,∑
e∈En(W )

ae =
∑

e∈En(H)

ae

Proof of Claim 2: Immediate noting that W , H correspond to two different cliques in Z ⊆ Pn,η �.

Claim 3: Given i, j ∈ Vn, i 6= j. Let T = Vn \ {i, j} and let K ⊂ T , |K| = η − 1. Note that K exists given
that |T | = n− 2 ≥ η. Then, ∑

ks∈K

aiks =
∑
ks∈K

ajks

Proof of Claim 3: Let W = K∪{i}, H = K∪{j}. Then |W | = |H| = η and we apply Claim 2 to W and H.
Then, ∑

e∈En(W )

ae =
∑

e∈En(H)

ae

If we remove the common terms ae with e ∈ En(K) from both sides, there only remain the terms aiks , ajks
in the respective right and left hand sides, with ks ∈ K �.

Claim 4: Given i, j ∈ Vn, i 6= j. Let T = Vn \ {i, j} and let m ∈ T . Then

aim = ajm

Proof of Claim 4: Let g, l ∈ T , g 6= l. Note they do exist given that |T | = n− 2 ≥ η ≥ 2 what means n ≥ 4
and |T | ≥ 2.
Let K1, K2 ⊂ T of size η−1 such that {g, l} = (K1∪K2)\ (K1∩K2). This means K1, K2 have η−2 common
elements and then one of them contains g and the other contains l. Note those sets exist given that to
construct them we only lack to have at least η−2 elements in T \{g, l}. Nevertheless, |T \{g, l}| = n−4 ≥ η−2.
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We suppose without loss of generality that g ∈ K1 and l ∈ K2.
We apply Claim 3 to both sets K1 and K2. This implies∑

ks∈K1

aiks =
∑
ks∈K1

ajks

∑
ks∈K2

aiks =
∑
ks∈K2

ajks

Given that {g, l} = (K1 ∪K2) \ (K1 ∩K2) if we take the difference between the two equations above it leads
to

aig − ail = ajg − ajl (i)

Equation (i) above is valid for every pair g, l ∈ T given g 6= l. Now consider m ∈ T from the statement of
Claim 4. Let L ⊂ T \ {m} be and arbitrary set of size η − 2. Note that L exists given that |T \ {m}| =
n − 3 > η − 2. Let us denote the terms in L as L = {l1, . . . , lη−2}. For each pair {m, lr}, r = 1, . . . , η − 2
consider its corresponding equation (i):

aim − ail1 = ajm − ajl1

...

aim − ailη−2
= ajm − ajlη−2

Summing up all the equations above leads to

(η − 2)aim − ail1 − . . .− ailη−2 = (η − 2)ajm − ajl1 − . . .− ajlη−2 (ii)

Finally we consider K = {m, l1, . . . lη−2} = L∪{m} ⊂ T . Note that K has size η−1 and we can apply Claim
3 to K

aim + ail1 + . . .+ ailη−2
= ajm + ajl1 + . . .+ ajlη−2

Adding this equation to (ii) leads to the equality

(η − 1)aim = (η − 1)ajm

and given that η ≥ 2 it is equivalent to the statement of Claim 4 �.

It only lacks to prove ait = ajp for all t, p, i, j, i < t, j < p. Note that, if there is an index coincidence
between {i, t}, {j, p}, then the equality directly corresponds to Claim 4 with m the repeated index. Therefore
we only lack to consider the case when all indexes differ, i.e., {i, t} ∩ {j, p} = ∅.
Applying Claim 4 for the pair {i, j} and m = t, p it is valid that

ait = ajt

aip = ajp

Now if we consider the pair {t, p} and apply Claim 4 with m = i then

ait = aip

In conclusion, combining the equations above it is immediate that

ait = ajp

ut
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1. Introduction to Inequalities on the fixed size Pricing Problem

Recall this chapter studies the already existent valid inequalities, provides with new families of valid inequal-
ities and also studies under which circumstances they are facet-defining. This section in particular introduces
useful theory applied and also the methodology followed to obtain these results.

Theorem 8.2 is stating that the only equation satisfied by all the points in Pn,η is the size constraint. This
is essential to prove if an inequality is facet-defining.
Recall Z is the set of all feasible clusters of size η described as cliques with the variables of our Pricing Problem
model. Recall that Pn,η = conv(Z), Pn,η ⊆ R|En|, with dimension |En| − 1. Given a valid inequality αz ≤ β
for Z, there are two approaches to prove if it is facet-defining or not for Pn,η = conv(Z).

(1) Take the constraint as an equation αz = β and find |En|− 1 affinely independent points in Z satisfying
it. This is simply applying the definition since it would mean dim({z ∈ Pn,η | αz = β}) = |En|−2. This
strategy in general is not very practical and in particular in our problem will not be used. Nevertheless,
if we cannot find such a set of points in Z, it is clear that it is not facet-defining. This is justified by
the fact that the number of independent directions generated by differences of points in Z is the same
as the number of independent directions in conv(Z). The proof of this is trivial simply by writing the
shape of an element in conv(Z).

(2) The second approach is based on the following lemma.

Lemma 8.3. Let αz ≤ β be a valid inequality for Z. Then,

conv({z ∈ Z | αz = β}) = conv(Z) ∩ {z ∈ R|En| | αz = β}

Proof. Recall Z is finite (its elements are the cliques of size η in Vn, i.e., subsets with size η in Vn).
Let us write Z = {z1, . . . , zm}. Let r be the number of elements zi ∈ Z satisfying αzi = β. If r = 0,
clearly the left hand side is the empty set. Nevertheless, it is easy to see that the right hand side set is
empty too. Suppose there exists z ∈ conv(Z) ∩ {z ∈ R|En| | αz = β}. Imposing αz = β and writing z
as a convex combination of z1, . . . , zm directly implies,

αz = λ1αz
1 + . . .+ λmαz

m = β, λi ≥ 0,

m∑
i=1

λi = 1 (∗)

However, since αz ≤ β is valid and we have supposed r = 0, clearly αzi < β. It leads then to
contradiction in (*) and then, conv(Z) ∩ {z ∈ R|En| | αz = β} must be also empty and the lemma is
satisfied.
Now let r ≥ 1. We prove by inclusion. The inclusion in the ⊆ sense is trivial.
To prove the inclusion in the ⊇ sense we start taking a given z ∈ conv(Z) ∩ {z ∈ R|En| | αz = β}.
Again we write z as a convex combination of z1, . . . , zm,

z = λ1z
1 + . . .+ λmz

m, λi ≥ 0,

m∑
i=1

λi = 1

We can suppose without loss of generality that the first r points in Z are the ones satisfying αzi = β.
Imposing this and also imposing αz = β, it directly implies,

λr+1αz
r+1 + . . . λmαz

m = λr+1β + . . . λmβ

Similarly as in the case r = 0, we can note that the points zr+j all satisfy αzr+j < β given the inequality
is valid and that we have excluded all zi with αzr+j = β. Therefore the only possibility is that λr+j = 0
j = 1, . . . ,m− r. This immediately implies ⊇. ut
Now suppose there exists an equation µz = µo satisfied by all {z ∈ Z | αz = β}. Clearly the
Convex Hull of this set will still satisfy µz = µo. This together with Lemma 8.3 above results in
{z ∈ conv(Z) | αz = β} ⊆ {z ∈ conv(Z) | µz = µo}. Then proving that µz = µo is linearly dependent
with αz = β and

∑
e∈En ze = η(η − 1)/2 is equivalent to prove that {z ∈ conv(Z) | αz = β}, the

face defined by αz ≤ β, has dimension |En| − 2 and therefore αz ≤ β is facet-defining. To see that
simply, recall that the dimension of a facet is |En| − 2 for Theorem 8.2 and note also that Lemma 8.1
establishes a correspondence between linearly independent equations and dimensions lost in a given
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polyhedron. From a dimensions point of view, the face {z ∈ conv(Z) | αz = β} ⊆ R|En| has dimension
|En| − 2 (note that a face is a polyhedron) if and only if there are at most two linearly independent
equations satisfied in {z ∈ conv(Z) | αz = β}, see Lemma 8.1. Clearly, those two equations must be
the fixed size equation and the equation αz = β defining the face.
In summary, αz ≤ β is facet-defining if and only if we can write any equation µz = µo satisfied by all
{z ∈ Z | αz = β} as a linear combination of αz = β and

∑
e∈En ze = η(η − 1)/2.

In our study, for general cases we will use only approach 2 to prove when a valid inequality is facet-defining.
Moreover, to prove a valid inequality is not facet-defining under a given circumstance we will usually look for
a linearly independent equation containing the face defined by the given valid inequality. However, it does
not mean that approach 1 has not been used to prove the facet-defining condition with computer assistance
in certain cases, see the paragraph below.

In fact, to obtain the following results computer assistance has been used since the beginning. There is an
open software tool used to obtain a non redundant inequalities description of the Convex Hull of a given set
of integer points. This software is called Porta, see [4] a reference webpage for this software.

The procedure was the following. With a simple program in C++ the 0-1 solutions for the Pricing Problem
for lower node cases (n = 4 , n = 5, n = 6 and n = 7) and sizes η = 2, . . . , n − 2, were generated. That
was simply generating subsets of size η in Vn and writing them in terms of edges in the model variables
description, i.e., the corresponding set Z entirely. Those solutions where plugged into Porta and it provided
with the facet-defining inequalities of conv(Z) for those lower cases. Those inequalities, however, are written
in terms of the variables. The objective is then to interpret these inequalities, see to what idea of constraint
they respond and therefore generalise them for greater cases. Note that, nevertheless, with this procedure
a priori two inequalities of the same family might seem different because any inequality can be written as
a multiple of itself plus a multiple of the fixed clique size equality. It requires then a laborious work to
distinguish inequalities of the same type in Porta output. With this procedure anyway it is possible to
detect valid inequalities and lacks only to explore in which cases they are facet-defining.
To do so, the main strategy applied was to extract the solutions Z plugged into Porta that also satisfied
those inequalities at equality, i.e., the set {z ∈ Z | αz = β}. Then Matlab was used to check if this set
contained at least |En| − 1 affinely independent points. In case it was, the facet-defining condition would be
empirically proved for this case by approach 1.
With this strategy it was easy to empirically see under which circumstances those inequalities were facet-
defining. Afterwards it only lacked to extend the proof in the general case. This theoretical extended proof
in any case applied approach 2 explained above.
In the case we empirically detected a given valid inequality was not facet-defining in a given case, Matlab was
also used to prove it in general. Suppose αz ≤ β is a valid inequality which we detected that was no facet-
defining for a certain case (the set Z∩{αz = β} did not contain at least |En|−1 affinely independent points).
Simply we take again the set {z ∈ Z | αz = β} and use commands in Matlab to obtain the orthogonal of the
affine space those points generate. This orthogonal directly corresponds to equations satisfied at equality
by all these points. The idea is then to study these equations and generalise them. This way it is relatively
easy to obtain linearly independent equations of the type πz = πo containing {z ∈ Z | αz = β}.

After this introduction intending to explain the methodology applied, follows the main theoretical results
obtained on the facial structure of our Pricing Problem. Those are divided into two main sections: Original
Inequalities for the Pricing Problem with fixed size and New Inequalities for the Pricing Problem with fixed
size.

2. Original Inequalities for the Pricing Problem with fixed size

In this section we study the original inequalities for the Pricing Problem with fixed size. With the term
”original” we mean the inequalities appearing in our initial formulation for the Pricing Problem with fixed
size. This includes the variable bounds 0 ≤ zij ≤ 1 and the so called Node-to-Node Inequalities.
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First of all, recall that our analysis establishes that η ≥ 2 and η ≤ n − 2. This immediately means we
consider n at least 4.

Another preliminary observation is noting that the valid inequalities ze ≤ 1 are never facet-defining. The
same argument as in CPP taking two triangle inequalities and adding them works here, see CPP in Chapter
5. Moreover, given that we are not using the triangle inequalities in our formulation (they are not necessary
to make the solution a clique, see Proposition 7.1 ), we can also note that the face defined by ze = 1 is
precisely contained in the face defined by a Node-to-Node inequality.
Given e ∈ En and ze ≤ 1 its upper bound inequality, e = (i, j) for some i, j ∈ Vn. Then, given z ∈ Z
such that ze = 1, it means the clique corresponding to z contains nodes i and j. It is clear, then, that z
satisfies

∑
e∈En ze − (η − 2)zij ≥ 0 given that z corresponds to a feasible clique containing i and j. Then

using Lemma 8.3 it is immediate that the face defined by ze = 1 in Pn,η = conv(Z) is contained in the one
defined by

∑
e∈En ze − (η − 2)zij = 0.

This is a simple preliminary observation. The section is concluded with Propositions 8.4, 8.5 below.

Proposition 8.4. The inequalities zij ≥ 0, (i, j) ∈ En, are valid for Z. For η = 2 they are always
facet-defining for Pn,η. For η > 2 they are facet-defining if and only if n ≥ η + 3.

Proof. Validity is clear, they are simply lower bounds on the variables.

Now let us consider the case η = 2 and the inequality zij ≥ 0 for i, j different in Vn. Given that 2 ≤ η ≤ n−2
it is clear that n ≥ 4. Let us suppose there exists an equation µz = µo satisfied by all {z ∈ Z | zij = 0}.
Clearly any z ∈ Z satisfying zij = 0 corresponds to a clique containing i, j or none of them, but in no
case can contain both. Let us consider r, q, two different nodes in Vn appart from i and j (they exist given
that n ≥ 4). Now consider the cliques {i, r}, {i, q}, {j, q}, {j, r}, {q, r}, all with size η = 2 and therefore
correspond to elements z in Z. All them also satisfy zij = 0 and therefore satisfy µz = µo by hypothesis on
µ, µo. Imposing this on those five cliques it is immediate that µir = µiq = µjq = µjr = µqr = µo. Given
that q, r are arbitrary, it is clear that µ must satisfy that µe = µo constant ∀ e ∈ En, e 6= (i, j). In other
words µz = µo

∑
e 6=(i,j) ze + µijzij . This in fact means µz = µo is directly a linear combination of zij = 0

and
∑
e∈En ze = η(η − 1)/2 = 1, for η = 2, with multiplying coefficients µij − µo and µo respectively. This

proves the proposition for η = 2.

Now let η ≥ 3. To proof they are facet defining iif n ≥ η + 3 we start by discarding the only possible
remaining case n = η + 2 (recall that 2 ≤ η ≤ n− 2).
We can simply notice that the number of cliques z ∈ Z satisfying zij = 0 in this case are strictly less than
|En| − 1 and so there can not be enough affinely independent points to consider a facet. Recall that the
cliques satisfying zij = 0 contain i, j or none of them. The total number of cliques containing nor i nor j is
clearly th subsets of size η in the remaining n− 2 nodes. Similarly, the cliques containing i but not j is the
binomial between n− 2 and η − 1 (choose η − 1 more nodes appart from i) and same for the cliques with j
and not i. In total we have, (

n− 2

η

)
+ 2

(
n− 2

η − 1

)
=

n=η+2
1 + 2η

Which clearly is always strictly less than |En| − 1 =
(
n
2

)
− 1 =

n=η+2

η2 + 3η

2
∀η ≥ 3.

Now it only lacks to prove that for n ≥ η + 3 and η ≥ 3, zij ≥ 0 is always facet-defining. Let us denote
L = Vn \ {i, j}. When we use a term ls we implicitly mean it belongs to L. Not just in this proof but in
everyone from now on, when we refer to nodes lr, lq, ls, lt,... with different subindex, we implicitly mean
they are different. Note that |L| ≥ η + 1 given that n ≥ η + 3. The feasible cliques satisfying the inequality
at equality contain i and η − 1 nodes in L, j and η − 1 nodes in L or simply η nodes in L.

Let us suppose again there exists an equation µz = µo satisfied by all those cliques. Given two cliques
A, B satisfying zij = 0 both, we will note A : B as imposing this equation on them and thus imposing
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µzA = µo = µzB. Remark that this notation will be used in further proofs.

{i, l1, . . . , lη−1} :{j, l1, . . . , lη−1}
⇒ µil1 + . . .+ µilη−1

= µjl1 + . . .+ µjlη−1

{i, l1, . . . , lη−2, lη} :{j, l1, . . . , lη−2, lη}
⇒ µil1 + . . .+ µilη−2

+ µilη = µjl1 + . . .+ µjlη−2
+ µjlη

Substracting those those equations and considering ls arbitrary nodes in L we can state:

µilη−1
− µilη = µjlη−1

− µjlη

⇒
lη−1 , lη
arbitrary

µilr − µilq = µjlr − µjlq ∀ lr, lq ∈ L (i)

Now we consider (i) fixing lr = lη−1 and moving lq = l1, . . . , lη−2.

µilη−1
− µil1 = µjlη−1

− µjl1

...

µilη−1
− µilη−2

= µjlη−1
− µjlη−2

Summing up all these equations we obtain,

(η − 2)µilη−1
− µil1 − . . .− µilη−2

= (η − 2)µjlη−1
− µjl1 − . . .− µjlη−2

Adding the equality provided by,

{i, l1, . . . , lη−1} : {j, l1, . . . , lη−1} → µil1 + . . .+ µilη−1
= µjl1 + . . .+ µjlη−1

It eventually results that,

(η − 1)µilη−1
= (η − 1)µjlη−1

⇒
η≥3

µilη−1
= µjlη−1

⇒
lη−1

arbitrary

µilr = µjlr ∀ lr ∈ L

We can simply denote now µlr ≡ µilr = µjlr . Now consider,

{i, l1, . . . , lη−1} :{i, l1, . . . , lη−2, lη}
⇒ µlη−1

+ µl1lη−1
+ . . .+ µlη−2lη−1

= µlη + µl1lη + . . .+ µlη−2lη

{l1, . . . , lη−1, lη+1} :{l1, . . . , lη−2, lη, lη+1}
→ µl1lη−1

+ . . .+ µlη−2lη−1
+ µlη−1lη+1

= µl1lη + . . .+ µlη−2lη + µlηlη+1

Subtracting both equations and moving the terms in the equation we obtain,

µlη−1
− µlη = µlη−1lη+1

− µlηlη+1

⇒
lη−1 , lη , lη+1

arbitrary

µlr − µlq = µlrlt − µlqlt ∀ lr, lq, lt ∈ L (ii)

Similarly as in (i) now we pick (ii) fixing lr = lη−1 and lt = lη+1, while we move lq = l1, . . . , lη−2.

µlη−1
− µl1 = µlη−1lη+1

− µl1lη+1

...

µlη−1
− µlη−2

= µlη−1lη+1
− µlη−2lη+1

Summing up all these equations we obtain,

(η − 2)µlη−1
− µl1 − . . .− µlη−2

= (η − 2)µlη−1lη+1
− µl1lη+1

− . . .− µlη−2lη+1

Adding then the equality provided by,

{i, l1, . . . , lη−1} : {l1, . . . , lη−1, lη+1} → µl1 + . . .+ µlη−1
= µl1lη+1

+ . . .+ µlη−1lη+1

It results that,

(η − 1)µlη−1
= (η − 1)µlη−1lη+1
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Given again the arbitrarity on lη−1, lη+1 taken and given that η ≥ 3, we can state:

µlr = µlrlq ∀ lr, lq ∈ L (iii)

It is immediate to see then,

{i, l1, . . . , lη−1} : {i, l2, . . . , lη} → µl1 + µl1l2 + . . .+ µl1lη−1
= µlη + µl2lη + . . .+ µlη−1lη

⇒
(iii)

(η − 1)µl1 = (η − 1)µlη

⇒
l1 , lη

arbitrary

µilr = µjlr ≡ µlr = µlq ≡ µilq = µjlq ∀ lr, lq ∈ L (iv)

Combining (iii) and (iv) it is immediate that µe : ct, ∀e ∈ En \ (i, j). The rest of the proof is trivial since
we can denote as µc ≡ µe, for all e 6= (i, j) this constant. Clearly µo = µcη(η− 1)/2 considering µz = µo for
any clique with zij = 0. Then,

µz = µc
∑

e 6=(i,j)

ze + µijzij = µo = µcη(η − 1)/2

is a linear combination of zij = 0 and
∑
e∈En ze = η(η − 1)/2. ut

All the other demonstrations involving facets use a similar approach. Given two cliques A, B satisfying a
given valid inequality at equality, we will always note A : B as imposing µzA = µo = µzB just as done in the
proof above.

Proposition 8.5. Given i, j ∈ Vn, i 6= j, the Node-to-Node Inequality for i, j is valid for Z. Furthermore,
it is facet-defining if and only if η ≥ 3 and n ≥ η + 3.

Proof. Validity was proven in the section Pricing Problem in Chapter 7. Moreover, those are inequalities
from the original formulation. Recalling the inequality,∑

e∈δ(i)\(i,j)

ze − (η − 2)zij ≥ 0

To check when it is facet-defining we begin by distinguishing the cliques z ∈ Z satisfying the inequality at
equality. There are clearly two cases: cliques not containing i (a) and cliques containing i and j (b).
We start discarding the case η = 2 and n = η + 2 which are the only cases the theorem statement excludes
from defining facets.

Let η = 2. In this case the Node-to-Node Inequality for i, j, is written simply like∑
e∈δ(i)\(i,j)

ze ≥ 0

which trivially can be generated by summing the valid inequalities ze ≥ 0 ∀ e ∈ δ(i) \ (i, j) so it is trivially
not facet-defining.

Let n = η + 2 ⇒ η = n − 2, we prove it is not facet defining by enumerating solutions with equality. The
idea, already used previously, is to notice that between those there are less than |En| − 1. This immediately
means that the dimension of {z ∈ Pn,η |

∑
e∈δ(i)\(i,j) ze − (η − 2)zij = 0} is less than |En| − 2 and therefore

the inequality is not facet-defining.
On the one hand, we enumerate the cliques of type (a). Feasible cliques not containg i are simply subsets
of size η = n− 2 in Vn \ {i} which has size n− 1. There are clearly n− 1 cliques of this type. On the other
hand, cliques of type (b) are cliques containing i, j. They can be constructed by taking i, j and a subset of
size η−2 in the remaining nodes in Vn \{i, j}. There are exactly

(
n−2
η−2

)
=
(
n−2
n−4

)
=
(
n−2

2

)
cliques of this type.

In total there are n− 1 +
(
n−2

2

)
feasible cliques in {z ∈ Z |

∑
e∈δ(i)\(i,j) ze − (η − 2)zij = 0}. However,

n− 1 +

(
n− 2

2

)
=
n2 − 3n+ 4

2
<
n2 − n− 2

2
=

(
n

2

)
− 1 = |En| − 1 ∀ n ≥ 4

Lacks only to prove that for η ≥ 3, n ≥ η + 3 the Node-to-Node Inequality for i, j is facet-defining.
Let µz = µo be an equation containing {z ∈ Z |

∑
e∈δ(i)\(i,j) ze − (η − 2)zij = 0}, exactly as in previous
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demonstrations. Now we can explore the characteristics on µ and µo. We can use cliques of type (a) and
(b) and impose this equation on them as done in the previous demonstration.

Let us denote again L = Vn \ {i, j}, |L| = n − 2 ≥ η + 1. Besides, let us denote ls as an arbitrary node in
L, s = 1, . . . , η + 1, . . .. Again given lr, lq written with different subindexes, we implicitly mean they are
different. We proceed with the notation A : B meaning we are imposing µzA = µzB = µo for A, B cliques
of type (a), (b).

{j, l1 . . . , lη−1} : {j, l2, . . . , lη}
⇒ µjl1 + µl1l2 + . . .+ µl1lη−1

= µjlη + µl2lη + . . .+ µlη−1lη

{l1 . . . , lη−1, lη+1} : {l2, . . . , lη+1}
⇒ µl1l2 + . . .+ µl1lη−1

+ µl1lη+1
= µl2lη + . . .+ µlη−1lη + µlηlη+1

By subtracting and reordering, the result is

µjl1 − µjlη = µl1lη+1
− µlηlη+1

⇒
l1, lη , lη+1

arbitrary

µjlr − µjlq = µlrlt − µlqlt ∀ lr, lq, lt ∈ L (i)

Now we consider (i) fixing lr = l1 and lt = lη and moving lq = l2, . . . , lη−1.

µjl1 − µjl2 = µl1lη − µl2lη

...

µjl1 − µjlη−1
= µl1lη − µlη−1lη

Summing those η−2 equations, adding equation {j, l1, . . . , lη−1} : {l1, . . . , lη} and finally dividing by η−1 ≥ 2
results in,

µjl1 = µl1lη

⇒
l1, lη

arbitrary

µjlr = µlrlq ∀ lr, lq ∈ L (ii)

Applying directly (ii) µjlr = µlrlq = µjlq = µlqlt it is trivial to notice that µe : ct ∀ e ∈ En(L) t [{j} : L],
i.e., ∀ e /∈ δ(i). Note that En = δ(i) t En(L) t [{j} : L]. Let us call this constant µ2 ≡ µe, e /∈ δ(i).

Now let us use two cliques of type (b),

{i, j, l1 . . . , lη−2} : {i, j, l2, . . . , lη−1}
⇒ µil1 + µjl1 + µl1l2 + . . .+ µl1lη−2

= µilη−1
+ µjlη−1

+ µl2lη−1
+ . . .+ µlη−2lη−1

⇒
µe=µ2

e/∈δ(i)

µil1 + (η − 2)µ2 = µilη−1
+ (η − 2)µ2

⇒
l1, lη−1

arbitrary

µilr = µilq ∀ lr, lq ∈ L

What directly means µe : ct ∀ e ∈ [{i} : L] = δ(i) \ (i, j). Let us call this constant µ1. Now follows finding
a relation between µij and µ1, µ2.

{i, j, l1 . . . , lη−2} : {j, l1, . . . , lη−1}
⇒ µij + µil1 + . . .+ µilη−2

= µjlη−1
+ µl1lη−1

+ . . .+ µlη−2lη−1

⇒ µij = (η − 1)µ2 − (η − 2)µ1

We can also compute µo in terms of µ1, µ2. Computing µz for the clique {l1, . . . , lη} of type (a) for example
results in µo = µ2 · η(η − 1)/2. In summary the equation µz = µo can be written as,

µ1

∑
e∈δ(i)\(i,j)

ze +µ2

∑
e/∈δ(i)

ze +µijzij = µ1

∑
e∈δ(i)\(i,j)

ze +µ2

∑
e/∈δ(i)

ze + [(η− 1)µ2− (η− 2)µ1]zij = µ2
η(η − 1)

2
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Finally note that we can generate this equation above with a linear combination of the Node-to-Node In-
equality for i, j at equality and the fixed size equation.

(µ1 − µ2)[
∑

e∈δ(i)\(i,j)

ze − (η − 2)zij ] = 0

⊕

µ2

∑
e∈En

ze = µ2
η(η − 1)

2

ut

3. New Inequalities for the Pricing Problem with fixed size

Definition: Let n ≥ 5. Given (i, j) ∈ En, we define the Upper bound pair inequality for i, j ∈ Vn as,∑
e∈δ(i,j)

ze − (η − 3)zij ≤ η − 1

Note that in case n = 4, the only possible η is 2. Let us note r, q the two other nodes in Vn appart from i
and j. For η = 2 and n = 4 the fixed size equality expression is zir + ziq + zjr + zjq + zij + zrq = 1. On the
other hand the Upper bound pair inequality, if considered, would look like zir + ziq + zjr + zjq + zij ≤ 1.
Consider now the valid inequality zrq ≥ 0. Then simply note that,

zir + ziq + zjr + zjq + zij + zrq = 1
−zrq ≤ 0

zir + ziq + zjr + zjq + zij ≤ 1

What directly means that for n = 4 and the only possible η = 2, the Upper bounded pair inequality for i,
j is in fact the inequality zrq ≥ 0. For this reason we assume n ≥ 5 when defining the Upper bound pair
inequality.

Theorem 8.6. Let n ≥ 5. The Upper bound pair inequalities are valid for Z. They are also facet-defining
for Pn,η if and only if η ≥ 3.

Proof. First we prove the validity by cases. Given z ∈ Z we must prove z satsifies the inequality. There
are three different cases for the fixed size clique corresponding to z:

(a) Contains nor i nor j. Then clearly the left hand side of the inequality is 0 ≤ η − 1.
(b) Contains either i or j, but not both. Then the sum on the left hand side takes values η − 1 (i or j the

one in the clique must be connected to η − 1 other nodes) and zij is 0. The inequality is satisfied at
equality.

(c) Contains both i and j. Then the sum in the left hand side is 2(η − 2) and zij = 1. The inequality is
therefore satisfied at equality.

The inequality is therefore valid ∀ z ∈ Z. Note that cases (b), and (c) are the only ones satisfying the
inequality at equality.

Now let n ≥ 5. We want to prove that the Upper bound pair inequality is facet-defining iif η ≥ 3. Again we
discard first of all the case η = 2. Similarly as in the proof of Proposition 8.5 we discard it by proving there
are strictly less than |En| − 1 different z ∈ Z satisfying the inequality at equality.
For η = 2 the inequality is written like, ∑

e∈δ(i,j)

ze + zij ≤ 1

The only solutions with equality are of type (b) and (c) as stated previously. Solutions of type (b) are cliques
of size two with i or j. We can construct them by choosing one node appart from i and j. There are 2(n−2)
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solutions considering both cases with i or j. Solutions of type (c) are cliques with both i and j. There is
only one single option obviously. In total we have 2(n− 2) + 1 solutions. However,

2(n− 2) + 1 < |En| − 1 =

(
n

2

)
− 1 =

n2 − n− 2

2
∀ n ≥ 5

Now it only lacks to prove that the Upper bound pair inequality is facet-defining for the general case when
n ≥ 5, η ≥ 3. Let us denote L = Vn \ {i, j}. When we use a term ls we implicitly mean it belongs to L again
and when referring to terms lr, lq,... we implicitly mean they are different by writing a different subindex.
Note that |L| ≥ η given that n ≥ η + 2. Let us suppose there exists an equation µz = µo satisfied by all
z ∈ Z with

∑
e∈δ(i,j) ze − (η − 3)zij = η − 1. We can consider cliques of type (b) and (c) again to explore

conditions on µ and µo.

{i, l1, . . . , lη−1} :{j, l1, . . . , lη−1}
⇒ µil1 + . . .+ µilη−1

= µjl1 + . . .+ µjlη−1

{i, l1, . . . , lη−2, lη} :{j, l1, . . . , lη−2, lη}
⇒ µil1 + . . .+ µilη−2

+ µilη = µjl1 + . . .+ µjlη−2
+ µjlη

Subtracting those two equations and noting lη, lη−1 are arbitrary nodes in L we can state:

µilr − µilq = µjlr − µjlq ∀ lr, lq ∈ L (i)

Now we apply (i) fixing lr = lη−1 and moving lq = l1, . . . , lη−2.

µilη−1
− µil1 = µjlη−1

− µjl1

...

µilη−1
− µilη−2

= µjlη−1
− µjlη−2

Summing up all these equations we obtain,

(η − 2)µilη−1
− µil1 − . . .− µilη−2

= (η − 2)µjlη−1
− µjl1 − . . .− µjlη−2

Adding the equality given by {i, l1, . . . , lη−1} : {j, l1, . . . , lη−1} it directly results that,

(η − 1)µilη−1
= (η − 1)µjlη−1

⇒
η≥3

µilr = µjlr ∀ lr ∈ L

We can denote therefore µlr ≡ µilr = µjlr .
Now let us consider,

{i, l1, . . . , lη−1} :{i, l2, . . . , lη}
⇒ µl1 + µl1l2 + . . .+ µl1lη−1

= µlη + µl2lη + . . .+ µlη−1lη

{i, j, l1, l3, . . . , lη−1} :{i, j, l3, . . . , lη}
⇒ 2µl1 + µl1l3 + . . .+ µl1lη−1

= 2µlη + µl3lη + . . .+ µlη−1lη

Subtracting, we obtain that,

µl1 − µl1l2 = µlη − µl2lη

⇒
l1 , l2 , lη
arbitrary

µlr − µlrlq = µlt − µlqlt ∀ lr, lq, lt ∈ L (ii)

Again we consider then the following η − 2 equations (ii) as done before:

µl1 − µl1l2 = µlη − µl2lη

...

µl1 − µl1lη−1
= µlη − µlη−1lη

Adding all them results in

(η − 2)µl1 − µl1l2 − . . .− µl1lη−1
= (η − 2)µlη − µl2lη − . . .− µlη−1lη
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Adding then the equation provided by {i, l1, . . . , lη−1} : {i, l2, . . . , lη} described above, it results

(η − 1)µl1 = (η − 1)µlη

⇒
l1 , lη

arbitrary

µlr = µlq ∀ lr, lq ∈ L

⇒ µe : ct ∀ e ∈ δ(i, j)
We can denote this constant by µ1 ≡ µe, e ∈ δ(i, j). By imposing this in (ii) we immediately see that
µlrlq = µlqlt ∀ lr, lq, lt ∈ L. In case L has size 3 it immediately means µe : ct ∀ e ∈ En(L). If L has size at
least 4 we can consider also lp and µlrlq = µlqlt = µlplt and therefore µe : ct ∀ e ∈ En(L) too. We denote as
µ2 this constant.

In addition, we can write µij in terms of constants µ1, µ2. Simply imposing {i, j, l1, . . . , lη−2}:{j, l1, . . . , lη−1}
and substituting the corresponding terms by the constants µ1, µ2, it results that:

µij + (η − 2)µ1 = µ1 + (η − 2)µ2

This allows us to construct µz = µo as a linear combination of the Upper bound pair inequality at equality
and the fixed size equation.
Note first we can express µz in terms of µ1 and µ2 like,

µz = µ1

∑
e∈δ(i,j)

ze + µ2

∑
e∈En(L)

ze + µijzij = µ1

∑
e∈δ(i,j)

ze + µ2

∑
e∈En(L)

ze + [(η − 2)µ2 − (η − 3)µ1]zij (∗)

Note that En = δ(i, j) t En(L) t (i, j).
Note that µo can be computed in terms of µ1, µ2 too. Simply consider µz for the clique {i, l1, . . . , lη−1} for
example. In this clique there are η − 1 nodes in L and node i so µz = (η − 1)µ1 + µ2(η − 1)(η − 2)/2 = µo.
Then consider the following multiples of the Upper bound pair inequality at equality and the fixed clique size
equation in terms of µ1, µ2:

(µ1 − µ2)[
∑

e∈δ(i,j)

ze − (η − 3)zij ] = (µ1 − µ2)(η − 1)

µ2

∑
e∈En

ze = µ2
η(η − 1)

2

It is trivial to see that adding both results in µz = µo written in terms of µ1, µ2 (*). ut

Definition: Given W ⊂ Vn with |W | ≤ bn/2c. Let w be the size of W . Discarding the case w = 2 and
η = 3, we define the δ-Set inequality for W as,

(i)
∑

e∈δ(W )

ze ≤ w(η − w) if w ≤ bη/2c

(ii)
∑

e∈δ(W )

ze ≤ bη/2cdη/2e if w > bη/2c

Note that the definition includes fixing |W | ≤ bn/2c. In case we considered a set W with |W | > bn/2c, note
that its δ-Set inequality would be the same provided by the set W c = Vn \W . The set W c clearly satisfies
|W c| ≤ bn/2c. On account of that, we only have to consider the cases |W | ≤ bn/2c.
Note, moreover, that the case w = 2 and η = 3 corresponds to the Upper bound pair inequality with i, j
the two nodes in W . We already know it is valid and facet-defining but we can discard it as an example of
another valid inequality.

Proposition 8.7. Given W ⊂ Vn, |W | ≤ bn/2c, the δ - Set inequality for W is valid for Z.

Proof. Given z ∈ Z corresponding to a feasible clique in Vn with size η. Let γ be the number of nodes in
this clique belonging to W , γ ≤ w, γ ≤ η . On account of that, clearly,∑

e∈δ(W )

ze = γ(η − γ)
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We would like to find an upper bound on γ(η− γ). Let us consider f(x) = x(η− x) its extended continuous
function. It is a quadratic polynomial with vertex in its maximum at x = η/2. Considering only x ∈ [0, η]
the function is simply a non negative bell symmetric with respect to x = η/2, where it takes its maximum
value. In fact, for x ∈ [0, η/2] it is strictly increasing and for x ∈ [η/2, η] its strictly decreasing given the
symmetry.
Coming back to the original expression γ(η − γ) it corresponds to taking the integer values in this bell for
x ∈ [0, η].

When w ≤ bη/2c all possible γ belong to [0, bη/2c] ⊆ [0, η/2] and so γ(η − γ) is strictly increasing in γ. Its
maximum is then clearly taking γ = w. This proves the case (i) in the definition of the δ-Set inequality.

When w > bη/2c we can solve by distinguishing the case η even an odd. When η is even the right hand side
of is clearly the maximum on f(x) and therefore on γ(η − γ). It is therefore immediately valid for η even.
When η is odd we only have to notice that the maximum value for f(γ) in the integer values γ ∈ [0, η] are
the ones for γ = bη/2c and its symmetric γ = dη/2e. In any of those two cases the value of γ(η − γ) is the
right hand side of the inequality. Consequently, (ii) is valid for η odd two. ut

Theorem 8.8. Given W ⊂ Vn, w = |W | ≤ bn/2c, the δ - Set inequality for W , if defined, is facet-defining
if and only if w ≥ 3, η ∈ {3, . . . , 2w − 3}, η odd.

Proof. We will proof the theorem by proving 5 claims in the following order:

(1) It is never facet-defining for w = 1.
(2) For w = 2, it is facet-defining only for η = 3, and this corresponds in fact to the Upper bound pair

inequality so the δ-Set inequality is not defined.
(3) For w ≥ 3, it is never facet-defining for η = 2 nor η ≥ 2(w − 1).
(4) For w ≥ 3, it is never facet-defining for η even.
(5) For w ≥ 3, it is facet-defining for η ∈ {3, . . . , 2w − 3}, η odd.

When looking for facet-defining conditions, Claims (1)-(2) force considering only cases with w ≥ 3. Claims
(3)-(4) force considering only η ∈ {3, . . . , 2w − 3} with η even. Claim (5) finishes the proof.

Proof of Claim 1: Let w = 1, W = {v} a node in Vn. Given that 2 ≤ η ≤ n− 2 then w ≤ bη/2c so we can
always consider the δ-Set inequality as ∑

e∈δ(v)

ze ≤ η − 1

If we consider the feasible cliques satisfying the inequality at equality, {z ∈ Z |
∑
e∈δ(v) ze = η − 1}, we

clearly note they are simply feasible cliques containing v. Given that n ≥ 4 we can consider another arbitrary
node q 6= v. Let us consider the equation

−(η − 2)zvq +
∑

e∈δ(q)\(v,q)

ze = 0

This equality clearly contains all cliques with size η and containing v, i.e., contains {z ∈ Z |
∑
e∈δ(v) ze =

η − 1}.
Moreover the new equation above is linearly independent from the δ-Set inequality at equality and the fixed
size equation. To see that simply we can find a feasible z ∈ Z tight for −(η − 2)zvq +

∑
e∈δ(q)\(v,q) ze = 0

but not for
∑
e∈δ(v) ze = η− 1. Simply let L = Vn \ {v, q}. Given that n ≥ η+ 2 then clearly |L| ≥ η and we

can pick η nodes in L forming a clique with them. Clearly this clique is not tight for
∑
e∈δ(v) ze = η − 1 as

it does not contain v, although it is tight for −(η − 2)zvq +
∑
e∈δ(q)\(v,q) ze = 0 as contains nor v nor q. �

Proof of Claim 2: Let w = 2, W = {i, j}. For η = 3 we already know this is the Upper bound pair inequality
and we already know it is facet-defining. Lacks only to discard it is facet-defining for 2 ≤ η ≤ n− 2, η 6= 3.
We proceed by cases.
For η = 2 the δ-Set inequality for W is written like

∑
e∈δ(i,j) ze ≤ 1. Trivially it is not facet-defining given

that we can generate it considering the fixed size equation
∑
e∈En ze = 1 for η = 2 and add it the valid
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inequalities −ze ≤ 0 ∀ e /∈ δ(i, j).
For η ≥ 4 clearly w = 2 ≤ bη/2c and therefore the δ-Set inequality is always written like∑

e∈δ(i,j)

ze ≤ 2(η − 2)

To satisfy it at equality the clique solutions must contain both i and j. This means all {z ∈ Z |
∑
e∈δ(i,j) ze =

2(η − 2)} also satisfies zij = 1. It directly constructs then an equation containing {z ∈ Z |
∑
e∈δ(i,j) ze =

2(η − 2)}. To see this equation is linearly independent to the δ-Set inequality at equality and the fixed size
equation we simply construct a general linear combination of these two last equations with coefficients λ, γ
respectively.

(λ+ γ)
∑

e∈δ(i,j)

ze + γ
∑

e∈En(W )tEn(Vn\W )

ze = λ2(η − 2) + γ
η(η − 1)

2

Imposing it to be equal to zij = 1 leaves no solution for λ, γ. Note that En = δ(W )tEn(W )tEn(Vn \W ).
�

Proof of Claim 3: We prove by cases demonstrating that it is not facet-defining.

For η = 2, proceed as in Claim 2 given that the inequality is yet written as
∑
e∈δ(W ) ze ≤ 1.

For η ≥ 2w ⇒ w ≤ bη/2c ⇒
∑
e∈δ(W ) ze ≤ w(η − w).

The equality takes place only for cliques z ∈ Z containing all W so clearly they do also satisfy∑
e∈En(W )

ze =
w(w − 1)

2

This is a new equation containing all {z ∈ Z |
∑
e∈δ(W ) ze = w(η − w)}. To see the independence recall the

procedure in Claim 2 to write any linear combination of the δ-Set inequality at equality and the fixed size
equation,

(λ+ γ)
∑

e∈δ(W )

ze + γ
∑

e∈En(W )tEn(Vn\W )

ze = λw(η − w) + γ
η(η − 1)

2

Clearly there is no solution λ, γ when imposing it to be equal to
∑
e∈En(W ) ze = w(w − 1)/2.

For η = 2w − 1⇒ η odd, w = dη/2e ⇒
∑
e∈δ(W ) ze ≤ bη/2cdη/2e = (η − w)w.

In this case the equality is achieved by cliques containg all w nodes from W (a) or containing w − 1 nodes
from W (b). Let s = w, s ≥ 3, and let W = {w1, . . . , ws}. Consider then the equation

−(s− 2)zw1w2
− (s− 2)zw1w3

+

s∑
j=4

zw1wj +
∑
r/∈W

zw1r + (s− 1)zw2w3
= s− 1 (∗)

Note that the term
∑s
j=4 zw1wj only exists when s ≥ 4.

See that (*) is independent exactly as in Claims 2, 3. Lacks only to demonstrate that (*) is tight for cliques
(a) and (b) defined above. We proceed by cases:

(a) Consider taking all W in the clique solution. Then the left hand side in (*) is −(s− 2)− (s− 2) + (s−
3) + (η − s) + (s− 1) = s− 1 and then equation (*) is tight. Recall that η = 2s− 1.

(b) Consider taking w − 1 nodes from W in the solution.
(I) Suppose w1 is not between those nodes. Then the left hand side in (*) is −0−0+0+0+s−1 = s−1

and equation and (*) is tight.
(II) Suppose w1 is between those nodes. Given that there are w − 1 nodes in the clique from W , at

least w2 or w3 one of them must be included.
(i) We include w2 or w3 but not both. The left hand side in (*) is −(s−2)+(s−3)+(η−(s−1)) =

s− 1 given that η = 2s− 1. Equation (*) is tight.
(ii) Both w2 and w3 are included. It means necessarily that s ≥ 4 because there are w−1 nodes

fromW in the clique solution and in this case we know we include at least w1, w2 and w3. The
left hand side in equation (*) again is −(s−2)−(s−2)+(s−4)+(η−(s−1))+(s−1) = s−1
and therefore equation (*) is tight too.
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In summary, all {z ∈ Z |
∑
e∈δ(W ) ze = bη/2cdη/2e = (η − w)w} for η = 2w − 1 are tight for equation (*).

For η = 2w − 2⇒ η pair, w = 1 + η/2⇒
∑
e∈δ(W ) ze ≤ bη/2cdη/2e = (w − 1)2.

In this case the equality takes place only for feasible cliques containing exactly w − 1 nodes from W . This
means all those cliques satisfy necessarily∑

e∈En(W )

ze =
(w − 1)(w − 2)

2

and the rest is analogous to the case η ≥ 2w. �

Proof of Claim 4: Let η ∈ {3, . . . , 2w − 3}, η = 2p, p ≥ 2, w ≥ 3. Given that η ≤ 2w − 3 it is clear that
w > bη/2c and therefore the inequality is written as∑

e∈δ(W )

ze ≤ bη/2cdη/2e = p2

Considering the inequality at equality it is clear that the feasible cliques satisfying this equation contain
exactly p elements from W . This means they do satisfy

∑
e∈En(W ) ze = p(p− 1)/2 and the rest is analogous

to Claim 3, the case η ≥ 2w. �

Proof of Claim 5: Let η ∈ {3, . . . , 2w − 3}, η = 2p+ 1 odd, p ≥ 1. In this case w > bη/2c and so the δ-Set
inequality for W is always written like,∑

e∈δ(W )

ze ≤ bη/2cdη/2e = p(p+ 1)

Note also that η ≤ 2w−3⇒ w ≥ (η+3)/2 = p+2. Let us denote L = Vn\W . Note that |L| = n−w and recall
that n ≥ 2w. Immediately |L| ≥ w ≥ p+2. Let us denoteW = {w1, . . . , wp+2, . . .} and L = {l1, . . . , lp+2, . . .}.
Note that the feasible cliques z ∈ Z satsifying the inequality at equality

∑
e∈δ(W ) ze = p(p + 1) are cliques

containing p elements from W and p + 1 elements from L or p + 1 elements from W and p from L. As
usual, we suppose there exists an equation µz = µo satisfied by all those cliques and look for properties on
µ, µo. We follow the notation A : B to impose µzA = µo = µzB for two cliques A, B of size η satisfying∑
e∈δ(W ) ze = p(p+ 1), i.e., containing p or p+ 1 elements of type ws and the rest of type ls. With all this

taken into consideration we proceed.

{w1, . . . , wp, l1, . . . , lp+1} : {w2, . . . , wp, wp+2, l1, . . . , lp+1}
⇒ µw1w2

+ . . .+ µw1wp + µw1l1 + . . .+ µw1lp+1
= µw2wp+2

+ . . .+ µwpwp+2
+ µwp+2l1 + . . .+ µwp+2lp+1

{w1, . . . , wp+1, l1, . . . , lp} : {w2, . . . , wp+2, l1, . . . , lp}
⇒ µw1w2

+ . . .+ µw1wp+1
+ µw1l1 + . . .+ µw1lp = µw2wp+2

+ . . .+ µwp+1wp+2
+ µwp+2l1 + . . .+ µwp+2lp

Subtracting both equations we obtain,

µw1lp+1
− µw1wp+1

= µwp+2lp+1
− µwp+1wp+2

⇒
w1, wp+1, wp+2, lp+1

arbitrary

µwrls − µwrwq = µwtls − µwqwt ∀ wr, wq, wt ∈W , ls ∈ L (i)

On the other hand and in parallel,

{w1, . . . , wp, l1, . . . , lp+1} : {w1, . . . , wp, l2, . . . , lp+2}
⇒ µw1l1 + . . .+ µwpl1 + µl1l2 + . . .+ µl1lp+1

= µw1lp+2
+ . . .+ µwplp+2

+ µl2lp+2
+ . . .+ µlp+1lp+2

{w1, . . . , wp+1, l1, . . . , lp} : {w1, . . . , wp+1, l2, . . . , lp, lp+2}
⇒ µw1l1 + . . .+ µwp+1l1 + µl1l2 + . . .+ µl1lp = µw1lp+2

+ . . .+ µwp+1lp+2
+ µl2lp+2

+ . . .+ µlplp+2

Subtracting again both equations,

µl1lp+1
− µwp+1l1 = µlp+1lp+2

− µwp+1lp+2

⇒
l1, lp+1, lp+2, wp+1

arbitrary

µlrlq − µwslr = µlqlt − µwslt ∀ lr, lq, lt ∈ L, ws ∈W (ii)
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Taking (ii) we fix lr = l1, lt = lp+2 and move lq = l2, . . . , lp+1 and ws = w1, . . . , wp simultaneously,

µl1l2 − µw1l1 = µl2lp+2
− µw1lp+2

...

µl1lp+1
− µwpl1 = µlp+1lp+2

− µwplp+2

We sum all these equations and finally add the equation provided by {w1, . . . , wp, l1, . . . , lp+1} : {w1, . . . , wp, l2, . . . , lp+2}
described above. The result after dividing all by 2 is

µl1l2 + . . .+ µl1lp+1
= µl2lp+2

+ . . .+ µlp+1lp+2
(∗)

Besides now consider (i) fixing wr = w1 and wt = wp+2 and moving wq = w2, . . . , wp+1 and ls = l1, . . . , lp
simultaneously. Adding those equations and also adding the equality provided by {w1, . . . , wp+1, l1, . . . , lp} :
{w2, . . . , wp+2, l1, . . . , lp} above and dividing by 2 (analogously as done to get (*)) the result is,

µw1l1 + . . .+ µw1lp = µwp+2l1 + . . .+ µwp+2lp (∗∗)
Note that we consider (**) with different sets of nodes l1, . . . , lp ∈ L and two main nodes w1, wp+2 ∈ W .
Thus we can consider those two equations of type (**) fixing w1, wp+2 but changing the nodes in L.

µw1l1 + . . .+ µw1lp = µwp+2l1 + . . .+ µwp+2lp

µw1l2 + . . .+ µw1lp+1
= µwp+2l2 + . . .+ µwp+2lp+1

Taking the difference results in,

µw1l1 − µw1lp+1
= µwp+2l1 − µwp+2lp+1

⇒
w1, wp+2, l1, lp+1

arbitrary

µwrlq − µwrls = µwtlq − µwtls ∀ wr, wt ∈W , lq, ls ∈ L (iii)

Now considering (iii) above fixing lq = l1, wr = w1, wt = wp+2 and moving ls = l2, . . . , lp and adding all
those equations results in,

(p− 1)µw1l1 − µw1l2 − . . .− µw1lp = (p− 1)µwp+2l1 − µwp+2l2 − . . .− µwp+2lp

If add directly (**), divide by p ≥ 1 and consider the arbitrarity on w1, wp+2 ∈W and l1 ∈ L we note that,

µwrls = µwqls ∀ wr, wq ∈W , ls ∈ L (iv)

Now consider the equations,

µw1lp+1
− µw1wp+1

= µwp+2lp+1
− µwp+1wp+2

(i)

µw1lp+1
= µwp+2lp+1

(iv)

By taking its difference and the arbitrarity on the nodes the result is the statement

µwrwq = µwqws ∀ wr, wq, ws ∈W (v)

Using (v) it is trivial to see that µe : ct ∀ e ∈ En(W ). Let us denote it as µw.
Now take the equation provided by {w1, . . . , wp, l1, . . . , lp+1} : {w1, . . . , wp, l2, . . . , lp+2} defined above and
subtract (*) to it directly. The result is,

µw1l1 + . . .+ µwpl1 = µw1lp+2
+ . . .+ µwplp+2

⇒
(iv)

p · µw1l1 = p · µwplp+2

Dividing by p ≥ 1 and noting again that w1, wp ∈ W and l1, lp+2 ∈ L are arbitrary as well as considering
(iv), it is trivial to see that µe : ct ∀ e ∈ δ(W ). Let us denote it as µδ(w).

Now let us consider the equation provided by {w1, . . . , wp, l1, . . . , lp+1}:{w1, . . . , wp+1, l1, . . . , lp},
µw1lp+1

+ . . .+ µwplp+1
+ µl1lp+1

+ . . .+ µlplp+1
= µw1wp+1

+ . . .+ µwpwp+1
+ µwp+1l1 + . . .+ µwp+1lp

Introducing the terms µw, µδ(w) it results in,

µl1lp+1
+ . . .+ µlplp+1

= p · µw
Analogously, we can change the role of l1, . . . , lp by l2, . . . , lp, lp+2 and obtain,

µl2lp+1
+ . . .+ µlplp+1

+ µlp+1lp+2
= p · µw
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By subtracting both and using the arbitrariness again, we note that µlrlq = µlqls ∀ lr, lq, ls ∈ L. It is trivial
to see with it that µe : ct ∀ e ∈ En(L). Let us denote this constant as µEn(L). Moreover the equation above
can be rewritten as p · µEn(L) = p · µw so that immediately µEn(L) = µw.

In summary we have eventually noticed that µe = µδ(w) constant ∀ e ∈ δ(W ) and that µe = µw constant for
all e ∈ En(W ) t En(L), i.e., e /∈ δ(W ). Note that En = En(W ) t En(L) t δ(W ).

With this, we can compute µo in terms of µw, µδ(w) simply considering the solution {w1, . . . , wp, l1, . . . , lp+1}.
The result after simple computations is µo = p(p+ 1)µδ(w) +p2µw. Consequently and taking everything into
account we can write the equation µz = µo like,

µδ(w)

∑
e∈δ(W )

ze + µw
∑

e∈En(W )∪En(L)

ze = p(p+ 1)µδ(w) + p2µw

Now we consider the linear combination of the δ-Set inequality for W at equality and the fixed size equation
for Z, with coefficients λ, γ respectively,

(λ+ γ)
∑

e∈δ(W )

ze + γ
∑

e∈En(W )∪En(L)

ze = λp(p+ 1) + γ
η(η − 1)

2
= λp(p+ 1) + γp(2p+ 1)

If we set λ = µδ(w) − µw and γ = µw we obtain the expression of µz = µo in terms of µw and µδ(w).
Consequently the equation µz = µo is a linear combination of the δ-Set inequality for W at equality and the
fixed size equation. This means the δ-Set inequality for W is facet-defining. � ut

Finally, we have also noticed an extension of the Node-to-Node Inequalities considering sets of nodes A with
size at least 2. We naturally call them Node-to-Set Inequalities to emphasize they are an extension of the
Node-to-Node Inequalities.

Definition: Given i ∈ Vn and A ⊆ Vn \ {i}, |A| ≥ 2, we define the Node-to-Set Inequality for i, A as,∑
j∈V \A

zij + (η − 1)
∑

e∈En(A)

ze − (η − 2)
∑
j∈A

zij ≥ 0

Note that if we considered a subset A ⊂ Vn \ {i} of size 1 it would be the Node-to-Node Inequality for i and
j the unique node in A.
We can rewrite the Node-to-Set Inequality for i and A in another way that might be more useful afterwards.
Let L = Vn \ (A ∪ {i}). Then the Node-to-Set Inequality for i and A becomes∑

e∈[{i}:L]

ze + (η − 1)
∑

e∈En(A)

ze − (η − 2)
∑

e∈[{i}:A]

ze ≥ 0

Proposition 8.9. Given i ∈ Vn and A ⊆ Vn \ {i}, |A| ≥ 2, the Node-to-Set Inequality for i, A is valid for
Z.

Proof. Let z ∈ Z be a feasible clique. This clique has size η and might or might not contain node i. In case
i is not in the clique clearly the left hand side of the inequality only contains terms of positive coefficient so
the inequality is immediately satisfied.
Suppose now that i is contained in this clique. Let q be an integer corresponding to the number of nodes in
this clique belonging to A. We can compute the left hand side of the inequality for z as a polynomial in q
like,

(η − 1− q) + (η − 1)
q(q − 1)

2
− (η − 2)q
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Lacks to see that this polynomial takes non-negative values for q ≥ 0, q ≤ |A|, q ≤ η− 1. In fact, we will see
after few computations that it takes non-negative values for all q integer.

(η − 1− q) + (η − 1)
q(q − 1)

2
− (η − 2)q =

=
2η − 2− 2q + ηq2 − ηq − q2 + q − 2ηq + 4q

2
=

=
q2(η − 1) + q(3− 3η) + 2η − 2

2
=

=
(q2 − 3q + 2)(η − 1)

2

Given that η− 1 ≥ 1 then (η− 1)/2 > 0 and remains only the term q2− 3q+ 2 which is clearly non-negative.
Simply plotting it it is seen that it takes only negative values in the range q ∈ (1, 2) where non integers are
considered. Consequently, the left hand side of the inequality is greater or equal than 0 and the inequality
is satisfied by z for any clique containing node i too. ut

Proposition 8.10. Given i ∈ Vn and A ⊆ Vn\{i}, the Node-to-Set Inequality for i, A is never facet-defining
for n ≤ η + |A|.

Proof. Recall 2 ≤ η ≤ n− 2. Let L = Vn \ (A∪ {i}). We begin by proving that the Node-to-Set Inequality
for i, A is never facet-defining if η = 2. In this case the Node-to-Set Inequality is written like∑

e∈[{i}:L]

ze +
∑

e∈En(A)

ze ≥ 0

which can be trivially generated adding the valid inequalities ze ≥ 0 for all e ∈ [{i} : L] ∪ En(A).

Now let η ≥ 3, n ≤ η + |A|. Then |L| = n− |A| − 1 ≤ η − 1. The Node-to-Set Inequality for i, A at equality
can be written as ∑

e∈[{i}:L]

ze + (η − 1)
∑

e∈En(A)

ze − (η − 2)
∑

e∈[{i}:A]

ze = 0

Now we distinguish which feasible cliques satisfy this equality.
Suppose one of those cliques does not contain i. Then (η − 1)

∑
e∈En(A) ze must be 0 so it must contain at

most one node from A.

Now suppose node i is contained in the clique. Let q be the integer number of nodes in the clique belonging
to A. Recalling the proof of Proposition 8.9 we know that, to satisfy the inequality at equality, it must be
that,

(q2 − 3q + 2)(η − 1)

2
= 0

Given that in this case η − 1 ≥ 2 the only possible q are q = 1, q = 2. This allows us to characterise all the
feasible cliques satisfying the Node-to-Set Inequality at equality.

(a) Not containing node i and
(i) Containing 0 nodes in A and η in L. (1)

(ii) Containing 1 node in A and η − 1 in L. (2)
(b) Containing node i and

(i) Containing 1 node in A and η − 2 in L. (3)
(ii) Containing 2 nodes in A and η − 3 in L. (4)

Note, nevertheless, that cliques of type (1) are not possible in this case given that |L| ≤ η−1. We must only
consider cliques of type (2), (3) and (4).
First of all we discard the case L = ∅. In this case given that η ≥ 3 there only remain solutions of type (4)
and only in the case η = 3 exactly. In this case clearly |A| = n− 1 and it is easy to see there are only

(
n−1

2

)
solutions of type (4). It is also easy to see that this number of solutions is strictly less than |En|−1 =

(
n
2

)
−1

for all n ≥ 4 and therefore there is no facet if L = ∅.
Now suppose L 6= ∅. Let us construct an equation (*) containing solutions (2), (3) and (4) as done in
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previous proofs. The independence of equation (*) with respect to the Node-to-Set Inequality at equality
and the fixed size equation will imply there is no facet. Let l be an arbitrary node in L. It exists because
L 6= ∅. Consider the equation ∑

e∈δ(i)\(i,l)

ze +
∑

e∈δ(l)\(i,l)

ze − (η − 3)zil = η − 1 (∗)

Now we check if equation (*) is tight for solutions of type (2), (3) and (4).

• Consider a solution of type (2). It does not contain i but contains η − 1 nodes in L. Given that
|L| ≤ η − 1 it must have its maximum size and be fully contained in the solution ⇒ l must be in the
solution. Consequently we have ∑

e∈δ(l)\(i,l)

ze = η − 1

and equation (*) is tight.
• Consider a solution of type (3). It contains i, one element in A and η − 2 in L.

Suppose l is not in the solution. Then in the left hand side of equation (*) only remains
∑
e∈δ(i)\(i,l) ze

which takes value η − 1 and equation (*) is tight.
Suppose l is in the solution. Then the left hand side of equation (*) is

(η − 2) + (η − 2)− (η − 3) = η − 1

so certainly equation (*) is tight too.
• Consider a solution of type (4). Analogous to the case on (3) distinguishing the case l is contained or

not in the solution.

To see the independence of equation (*) we can simply find a feasible clique tight for (*) but not for the
Node-to-Set inequality at equality. Let any clique of size η ≥ 3 containing l, not containing i and containing
at least two nodes in A. It exists because, η ≥ 3 and |A| ≥ 2. Clearly this clique is not tight for the
Node-to-Set inequality at equality given that it does not contain i and is not of type (1) or (2). However this
clique is tight for (*) given that in the left hand side of (*) there only remains

∑
e∈δ(l)\(i,l) ze which takes

value η − 1 exactly. ut

Before exploring in general the Node-to-Set inequality we will focus first in the particular case η = 3 given
that it has singularities with respect to the facial structure. Until now, we have discarded having facets for
n ≤ η+ |A| so for η = 3 we know there exist no facets for n ≤ 3 + |A|. Furthermore, in this case we can also
discard the case n = 4 + |A|.

Proposition 8.11. Let η = 3. Given i ∈ Vn, A ⊂ Vn \ {i}, |A| ≥ 2, the Node-to-Set inequality for i, A is
not facet-defining if n = 4 + |A|.

Proof. Let L = Vn \ A ∪ {i} ⇒ |L| = n − |A| − 1 = 3. Let L = {l1, l2, l3}. Let us recall the Node-to-Set
inequality for i, A written in terms of L at equality (for η = 3):∑

e∈[{i}:L]

ze + 2
∑

e∈En(A)

ze −
∑

e∈[{i}:A]

ze = 0

Let us recall from the proof of Proposition 8.10 the different types of feasible cliques satisfying the inequality
at equality (for η = 3):

(a) Cliques not containing node i and
(i) Containing 0 nodes in A and 3 in L. (1)

(ii) Containing 1 node in A and 2 in L. (2)
(b) Cliques containing node i and

(i) Containing 1 node in A and 1 in L. (3)
(ii) Containing 2 nodes in A and 0 in L. (4)
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Similarly to the proof of Proposition 8.10, we introduce an equation satisfied by all solutions of type (1), (2),
(3) and (4) and linearly independent to the Node-to-Set inequality at equality and the fixed size equation.
The new equation is denoted again as (*). Let l = l1, for example (works also for l2, l3).∑

e∈δ(i)\(i,l)

ze + 2
∑

e∈[{l}:A]

ze + 2zl2l3 − zil = 2 (∗)

Now we check that equation (*) is tight for solutions of type (1), (2), (3) and (1).

• Consider a clique of type (1). It simply contains all L and in the left hand side there only remains
2zl2l3 which is exactly 2 and equation (*) is therefore tight.

• Consider a clique of type (2). It might contain l or not. If it does not then it contains l2, l3 and its
analogous to case (1). If it contains l, let a ∈ A be the node in the clique belonging to A. In the left
hand side of equation (*) there only remains 2zal and equation (*) is tight too.

• Consider a clique of type (3). Let a ∈ A be the node in the clique belonging to A. Suppose l is in the
solution. Then the left hand side is zia + 2zal − zil = 2 and equation (*) is tight.
Suppose l is not in the solution. Let l′ be the other node in the clique belonging to L. Regardless on
whether l′ is l2 or l3 in the left hand side there only remains zia + zil′ so equation (*) is tight.

• Consider a clique of type (4). Let a1, a2 ∈ A be the two nodes in the clique belonging to A. Then we
have zia1

+ zia2
and equation (*) is tight once more.

To check the independence if we write a general linear combination of the Node-to-Set inequality at equality
and the fixed size equation with coefficients λ, γ respectively (for η = 3),

(λ+ γ)
∑

e∈[{i}:L]

ze + [2λ+ γ]
∑

e∈En(A)

ze − [λ− γ]
∑

e∈[{i}:A]

ze + γ
∑

e∈[A:L]∪En(L)

ze = 3γ

Note that En = En(A)tEn(L)t [A : L]t [{i} : A]t [{i} : L]. Imposing this linear combination to be equal
to (*) leaves no solution for λ, γ. To see that simply note that in any linear combination zil2 and zil have
the same multiplying coefficient (λ+ γ) whereas in (*) they have coefficients 1 and -1 respectively. ut

Proposition 8.12. Let η = 3. Given i ∈ Vn, A ⊂ Vn \ {i}, |A| ≥ 2, the Node-to-Set inequality for i, A is
facet-defining if and only if n ≥ 5 + |A|.

Proof. We already know that for η = 3 it is not facet-defining for n ≤ 4 + |A| by Propositions 8.10, 8.11.
Lacks only to prove that it is facet-defining for n ≥ 5 + |A|. We will use again the notation for the feasible
cliques satisfying the inequality at equality used in the proof of Proposition 8.11 (cliques of size of type (1),
(2), (3) and (4)). Let us denote as ls an arbitrary node in L = Vn \ (A ∪ {i}), |L| = n− |A| − 1 ≥ 4. Let us
also note as as an arbitrary node in A, |A| ≥ 2. Again different subindexes r, q, s, t, ... mean implicitly the
elements are different, as usual.

Suppose there exists an equation µz = µo satisfied by all cliques of type (1), (2), (3) and (4). Let us explore
the characteristics of µ, µo using cliques of these types.

{l1, l2, l3} : {l2, l3, l4}
⇒ µl1l2 + µl1l3 = µl2l4 + µl3l4

{l1, l2, l4} : {l2, l3, l4}
⇒ µl1l2 + µl1l4 = µl2l3 + µl3l4

{l1, l3, l4} : {l2, l3, l4}
⇒ µl1l3 + µl1l4 = µl2l3 + µl2l4

By summing the first two and subtracting the third one, the result is

2µl1l2 = 2µl3l4

⇒
l1, l2, l3, l4

arbitrary

µlrlq = µlslt ∀ lr, lq, ls, lt ∈ L (i)
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In parallel,

{a1, l1, l2} : {a1, l3, l4}
⇒ µa1l1 + µa1l2 + µl1l2 = µa1l3 + µa1l4 + µl3l4

⇒
(i)
µa1l1 + µa1l2 = µa1l3 + µa1l4

Analogously exchanging the roles of l2 and l4.

⇒ µa1l1 + µa1l4 = µa1l2 + µa1l3

Given a1 ∈ A and l1, l2, l3, l4 ∈ L are arbitrary, this immediately implies that given a ∈ A, µalr : ct for all
lr ∈ L. We can denote as µa this constant for every a ∈ A. Furthermore,

{a1, l1, l2} : {a1, l1, l3}
⇒ µa1

+ µl1l2 = µa1
+ µl1l3

⇒ µl1l2 = µl1l3

⇒
l1, l2, l3, l4

arbitrary
(i)µlrlq=µlslt

µe : ct ∀ e ∈ En(L)

We denote this constant as µEn(L).
Now we note that,

{a1, l1, l2} : {a2, l1, l2}
⇒ 2µa1

= 2µa2

⇒
a1, a2

arbitrary

µe : ct ∀ e ∈ [A : L]

By considering the equation provided by {a1, l1, l2}:{l1, l2, l3} we can easily see that in fact this constant is
the same as µEn(L). In summary µe : ct ∀ e ∈ [A : L] ∪ En(L). We denote this constant as µ2 = µEn(L) to
be more inclusive. Continuing,

{i, a1, l1} : {i, a1, l2}
⇒ µil1 + µ2 = µil2 + µ2

⇒
l1, l2

arbitrary

µe : ct ∀ e ∈ [{i} : L]

We denote this constant as µ1. More than that,

{i, a1, l1} : {i, a2, l1}
⇒ µia1

+ µ2 = µia2
+ µ2

⇒
a1, a2

arbitrary

µe : ct ∀ e ∈ [{i} : A]

We denote this constant as µ3. We can obtain a relation between µ3 and the constants µ1, µ2.

{i, a1, l1} : {a1, l1, l2}
⇒ µia1

+ µil1 = µa1l2 + µl1l2

⇒ µ3 = 2µ2 − µ1

Finally,

{i, a1, a2} : {i, a1, l1}
⇒ µa1a2

+ µ3 = µ1 + µ2

⇒ µa1a2
= µ1 + µ2 − µ3 = 2µ1 − µ2

⇒
a1, a2

arbitrary

µe : ct ∀ e ∈ En(A)
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In summary,

µe = µ1 ∀ e ∈ [{i} : L]

µe = µ2 ∀ e ∈ [A : L] ∪ En(L)

µe = 2µ2 − µ1 ∀ e ∈ [{i} : A]

µe = 2µ1 − µ2 ∀ e ∈ En(A)

We can compute now µo in terms of µ1 and µ2. Considering the cliques of type (1) {l1, l2, l3} it is clear that
µz = µo = µ2η(η − 1)/2 = 3µ2 given that all edges are in En(L). As usual, we write the equation µz = µo
in terms of µ1, µ2.

µ1

∑
e∈[{i}:L]

ze + (2µ1 − µ2)
∑

e∈En(A)

ze + (2µ2 − µ1)
∑

e∈[{i}:A]

ze + µ2

∑
e∈[A:L]∪En(L)

ze = 3µ2

Let us recall the expression for a general linear combination of the Node-to-Set Inequality for i, A, at equality,
and the fixed size equation, with η = 3.

(λ+ γ)
∑

e∈[{i}:L]

ze + [2λ+ γ]
∑

e∈En(A)

ze − [λ− γ]
∑

e∈[{i}:A]

ze + γ
∑

e∈[A:L]∪En(L)

ze = 3γ

It is easy to see that taking λ = µ1 − µ2 and γ = µ2 generates the equation µz = µo. Consequently the
Node-to-Set Inequality for i, A is facet-defining if η = 3, n ≥ 5 + |A|. ut

In conclusion for the case η = 3 we have demonstrated that the Node-to-Set Inequalities are facet-defining if
and only n ≥ 5 + |A|. Now we can study the general case for η ≥ 4. Recall Proposition 8.10 stating there is
no facet for n ≤ η + |A|. In the proof of Proposition 8.10 we also noticed there is no facet if η = 2. Follows
a theorem proving that in the remaining cases, the Node-to-Set Inequalities define facets.

Theorem 8.13. Let η ≥ 4. Given i ∈ Vn, A ⊂ Vn \ {i}, |A| ≥ 2, the Node-to-Set Inequality for i, A is
facet-defining if and only if n ≥ η + 1 + |A|.

Proof. We already know, for Proposition 8.10, that it is not facet-defining for n ≤ η + |A| so lacks only
to prove it is facet-defining for n ≥ η + 1 + |A|. Let us denote as usual L = Vn \ (A ∪ {i}). Note that
|L| = n− |A| − 1 ≥ η. Let us denote as ls an arbitrary node in L, as an arbitrary node in A, |A| ≥ 2. Again
different subindexes r, q, s, t,... mean implicitly that the elements are different. Recall the Node-to-Set
Inequality for i, A at equality written in terms of L.∑

e∈[{i}:L]

ze + (η − 1)
∑

e∈En(A)

ze − (η − 2)
∑

e∈[{i}:A]

ze = 0

Let us recall the feasible cliques satisfying this equation:

(a) Not containing node i and
(i) Containing 0 nodes in A and η in L. (1)

(ii) Containing 1 node in A and η − 1 in L. (2)
(b) Containing node i and

(i) Containing 1 node in A and η − 2 in L. (3)
(ii) Containing 2 nodes in A and η − 3 in L. (4)

As always we are going to suppose there exists an equation µz = µo satisfied for all those cliques and
demonstrate it can be generated with a linear combination of the Node-to-Set Inequality at equality and the
fixed size equation. We will use the typical notation A : B to impose µzA = µzB for A, B two different
cliques from the families (1), (2), (3) and (4) defined above.

{a1, l1 . . . , lη−1} : {a2, l1, . . . , lη−1}
⇒ µa1l1 + . . .+ µa1lη−1

= µa2l1 + . . .+ µa2lη−1

{a1, l1, . . . , lη−2, lη} : {a2, l1, . . . , lη−2, lη}
⇒ µa1l1 + . . .+ µa1lη−2

+ µa1lη = µa2l1 + . . .+ µa2lη−2
+ µa2lη
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By subtracting, the result is

µa1lη−1
− µa1lη = µa2lη−1

− µa2lη

⇒
a1, a2, lη−1, lη

arbitrary

µarls − µarlt = µaqls − µaqlt ∀ ar, aq ∈ A ls, lt ∈ L (i)

If we consider (i) fixing ar = a1, aq = a2, ls = lη−1 and moving lt = l1, . . . , lη−2 and sum all those η − 2
equations to {a1, l1 . . . , lη−1} : {a2, l1, . . . , lη−1} we obtain,

µa1lη−1
= µa2lη−1

and given the arbitrariness it means µarls = µaqls ∀ ar, aq ∈ A, ls ∈ L. We can denote as µls this constant
for each node ls ∈ L. Moreover,

{i, a1, l1, . . . , lη−2} : {i, a2, l1, . . . , lη−2}
⇒ µia1

+ µa1l1 + . . .+ µa1lη−2
= µia2

+ µa2l1 + . . .+ µa2lη−2

⇒ µia1
+ µl1 + . . .+ µlη−2

= µia2
+ µl1 + . . .+ µlη−2

⇒ µia1
= µia2

⇒
a1, a2

arbitrary

µiar = µ1aq ∀ ar, aq ∈ A

⇒ µe : ct ∀ e ∈ [{i} : A]

On the other hand, subtracting {i, a1, l1 . . . , lη−3, lη} : {i, a1, l2, . . . , lη−3, lη−1, lη} and {i, a1, a2, l1 . . . , lη−3} :
{i, a1, a2, l2, . . . , lη−3, lη−1} the result is

µl1lη − µa2l1 = µlη−1lη − µa2lη−1

which added to {a2, l1 . . . , lη−2, lη} : {a2, l2, . . . , lη} results in

2µl1lη + µl1l2 + . . .+ µl1lη−2
= 2µlη−1lη + µl2lη−1

+ . . .+ µlη−2lη−1
(∗)

In parallel,

{i, a1,l1 . . . , lη−3, lη} : {i, a1, l2, . . . , lη−3, lη−1, lη}
⇒ µil1 + µa1l1 + µl1l2 + . . .+ µl1lη−3

+ µl1lη = µilη−1
+ µa1lη−1

+ µl2lη−1
+ . . .+ µlη−3lη−1

+ µlη−1lη

{i, a1,l1 . . . , lη−2} : {i, a1, l2, . . . , lη−1}
⇒ µil1 + µa1l1 + µl1l2 + . . .+ µl1lη−2

= µilη−1
+ µa1lη−1

+ µl2lη−1
+ . . .+ µlη−2lη−1

By subtracting, the result is

µl1lη − µl1lη−2
= µlη−1lη − µlη−2lη−1

⇒
l1, lη−2, lη−1, lη

arbitrary

µlrlt − µlrlq = µlslt − µlqls ∀ lr, lq, ls, lt ∈ L (ii)

Now we add η − 3 equations (ii) fixing lr = l1, ls = lη−1, lt = lη and moving lq = l2, . . . , lη−2. The result is,

(η − 3)µl1lη − µl1l2 − . . .− µl1lη−2
= (η − 3)µlη−1lη − µl2lη−1

− . . .− µlη−2lη−1

which added directly to (*) brings

(η − 1)µl1lη = (η − 1)µlη−1lη

⇒
l1, lη−1, lη
arbitrary

µlrlq = µlslq ∀ lr, lq, ls ∈ L

what eventually means µe : ct ∀ e ∈ En(L). The rest is a generalisation of the proof of Proposition 3.11 so
we will avoid the details on computation.
Considering the equation {a1, l1, . . . , lη−1} : {a1, l2, . . . , lη} and taking into account µe : ct ∀ e ∈ En(L) it is
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immediate to notice that

µa1l1 = µa1lη

⇒
a1, l1, lη
arbitrary

µarlq = µarls ∀ ar ∈ A, lq, ls ∈ L

⇒ µe : ct ∀ e ∈ [A : L]

Considering equation {l1, . . . , lη} : {a1, l1, . . . , lη−1} it is immediate to see that the constants µe ∀e ∈ [A : L]
and µe ∀e ∈ En(L) are equal. We can denote as µ2 this constant just as in the proof of Proposition 8.12. In
conclusion, µ2 ≡ µe ∀e ∈ En(L)∪ [A : L], i.e., ∀e /∈ δ(i)∪En(A). Note again that En = En(A)tEn(L)t [A :
L] t [{i} : A] t [{i} : L] = En(A) t En(L) t δ(i) t [A : L].

Imposing this in {i, a1, l1, . . . , lη−2} : {i, a1, l2, . . . , lη−1} it is immediate that

µil1 = µilη−1

⇒
l1, lη−1

arbitrary

µilr = µilq ∀ lr, lq ∈ L

⇒ µe : ct ∀ e ∈ [{i} : L]

At this point, we can denote the constants we already know,

µe = µ1 ∀ e ∈ [{i} : L]

µe = µ2 ∀ e ∈ [A : L] ∪ En(L)

µe = µ3 ∀ e ∈ [{i} : A]

Now we use them considering,

{i, a1, a2, l1 . . . , lη−3} : {i, a1, l1, . . . , lη−2}
⇒ µia2

+ µa1a2
+ µa2l1 + . . .+ µa2lη−3

= µilη−2
+ µa1lη−2

+ µl1lη−2
+ . . .+ µlη−3lη−2

⇒ µ3 + µa1a2
+ (η − 3)µ2 = µ1 + (η − 2)µ2

⇒ µe : ct ∀ e ∈ En(A)

⇒ µe = µ1 + µ2 − µ3 ∀ e ∈ En(A)

Similarly to the proof of Proposition 8.12 we can express µ3 in terms of µ1, µ2.

{i, a1, l1 . . . , lη−2} : {a1, l1, . . . , lη−1}
⇒ µia1

+ µil1 + . . .+ µilη−2
= µa1lη−1

+ µl1lη−1
+ . . .+ µlη−2lη−1

⇒ µ3 + (η − 2)µ1 = (η − 1)µ2

⇒ µ3 = (η − 1)µ2 − (η − 2)µ1

Eventually, we have noticed that every edge coefficient in µ depends on µ1, µ2 only two independent coeffi-
cients. Putting all together similarly as in the proof of Proposition 8.12

µe = µ1 ∀ e ∈ [{i} : L]

µe = µ2 ∀ e ∈ [A : L] ∪ En(L)

µe = (η − 1)µ2 − (η − 2)µ1 ∀ e ∈ [{i} : A]

µe = (η − 1)µ1 − (η − 2)µ2 ∀ e ∈ En(A)

We can compute µo considering the clique of type (1) {l1, . . . , lη} such that µo = µ2 ·η(η−1)/2. Analogously
to the proof Proposition 8.12, taking the equality for the Node-to-Set Inequality multiplied by µ1 − µ2 and
the fixed size equation multiplied by µ2 and adding both, results in the equation µz = µo. Therefore,
the equation µz = µo is linearly dependant with the Node-to-Set Inequality at equality and the fixed size
equation. Consequently the Node-to-Set Inequality at equality defines a facet. ut
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4. Conclusions on the Pricing Problem with fixed size

In summary we can state briefly the different theoretical results of our polyhedral analysis on the Pricing
Problem with fixed size.
Let G = (Vn, En) be the complete graph with n nodes, η an integer with the fixed size the clique solution
must have. Let Z be the set of all feasible (size η) cliques described with the variables for the edges. Recall
that Pn,η = conv(Z) is the Convex Hull polyhedron for our Pricing Problem.

We state below the different results obtained in relation to Z the set of feasible cliques as well as the
polyhedral structure for Pn,η.

(1) dim(Pn,η) = |En| − 1
The polyhedron is not full dimensional but there is one single equation satisfied by all points, the fixed
size equation actually.

(2) The upper bound original inequalities ze ≤ 1 are never facet-defining. Moreover, the faces they define
are contained in faces of Node-to-Node inequalities.

(3) The lower bound original inequalities ze ≥ 0, e ∈ En, are always facet-defining for Pn,η if η = 2. For
η > 2 they are facet-defining if and only if n ≥ η + 3.

(4) Let n ≥ 5. Given e ∈ En, e = (i, j) for i, j ∈ Vn. The Upper bound pair inequality for i and j,∑
e∈δ(i,j)

ze − (η − 3)zij ≤ η − 1

is valid for Z. It is also facet-defining for Pn,η if and only if η ≥ 3.
(5) Given W ⊂ Vn with |W | ≤ bn/2c. Let w be the size of W . Let us discard the case w = 2 and η = 3,

which corresponds to an Upper bound pair inequality. Then, the δ-Set inequality for W ,

(i)
∑

e∈δ(W )

ze ≤ w(η − w) if w ≤ bη/2c

(ii)
∑

e∈δ(W )

ze ≤ bη/2cdη/2e if w > bη/2c

is valid for Z and facet-defining if and only if w ≥ 3, η ∈ {3, . . . , 2w − 3}, η odd.
(6) Let i, j ∈ Vn, i 6= j. The Node-to-Node Inequality for i, j,∑

e∈δ(i)\(i,j)

ze − (η − 2)zij ≥ 0

is valid for Z and facet-defining if and only if η ≥ 3 and n ≥ η + 3.
(7) Given i ∈ Vn and A ⊆ Vn \ {i}, |A| ≥ 2, the Node-to-Set Inequality for i, A,∑

j∈V \A

zij + (η − 1)
∑

e∈En(A)

ze − (η − 2)
∑
j∈A

zij ≥ 0

is valid for Z. Furthermore, for η = 3 it is facet-defining if and only if n ≥ 5 + |A|. For η ≥ 4 it is
facet-defining if and only if n ≥ η + 1 + |A|.

At this point, the theory block of the document finishes. This does not mean this block is absolutely closed
in the project. This means, in fact, that all the results with theoretical proofs for the Pricing Problem
achieved are included in the previous pages and summarised above.

With the results already achieved the project has carried on more on practical aspects. The idea is to obtain
a first implementation of the Column Generation strategy on CPLEX to test whether the procedure performs
well and also test how the facet-defining inequalities obtained might improve CPLEX performance on the
Pricing Problem.
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Chapter 9

Code

Additionally to the strategy proposed to face microaggregation with a Column Generation scheme and the
different theoretical results obtained in relation to the facial structure of our Pricing Problem, a preliminary
code has been implemented and tested. This code mainly performs the Column Generation scheme. It uses
CPLEX to perform all the optimizations for both the Master and the Pricing problems. All the code is
done in C++, and the library used for CPLEX is the Callable Library for C. Our code also implements the
Heuristic solution with the Maximum Distance to Average Vector (MDAV) described in Part 1. This solution
has been used to initialize the Master Problem with the first feasible clusters and also provides a SSE value
for the heuristic solution. With our code the idea is to perform the Column Generation. It terminates when
there are no more feasible clusters with negative reduced cost to be added. The code implements the scheme
found on the section Chapter 7. Section 1.

The main goals of this code are to test the performance of this scheme in terms of speed, test whether the
eventual solutions are too fractional or not and provide with an actual accurate lower bound on the SSE for
non approximate Microaggregation. With this lower bound we can for example compute an accurate GAP
on the heuristic solution provided by the MDAV on real data. This is one of the main contributions of this
project apart from the theory results for the Pricing Problem and the Column Generation scheme itself.

The code is mainly based on classes, inheritance, polimorphism and CPLEX. In fact those are the main
issues I have been able to learn and apply in matter of programming. Follows a brief description of the
structure:

• MAClass: A main general class that contains the problem itself. It loads the data, the parameters
(minimal size of the clusters or anonymity desired, number of attributes) and allocates memory for
the solution. Also includes a member to solve the problem. This member is however virtual and non
defined in this class. It will be defined in the inherited classes and used in the main depending on the
inherited class (polimorphism).

• H MAClass: A directly inherited class of MAClass. It defines the member for solving the problem
implementing the heuristical solution based on the MDAV algorithm.

• MAMasterProblemClass: A class that constructs a Master Problem in CPLEX environment. It
constructs the environment of CPLEX for this problem and also the object. The problem is initialized
with a function to load the clusters from the heuristic and thus populating the partition constraints of
the Master Problem for every node.
Its most relevant members are the procedure of solving and the procedure to add a column. The
procedure of solving simply solves the problem at its stage as an LP and provides with both the primal
and dual variables solution. Those dual variables will be loaded to the Pricing Problems. The procedure
to add a column simply adds a column to the constraints for every node. It is simply adding a new
variable in the rows corresponding to the nodes of the cluster added.

• MAPricingProblemClass: A class that constructs a Pricing Problem in CPLEX environment. It
constructs the environment of CPLEX and also the object. An important feature on the code is that
the environment for all the Pricing Problems declared is the same, thus minimizing the number of
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environments called by CPLEX in the execution. This is done by using an static environment and
certain tricks for the destructor of this class. When constructing the Pricing Problem it only does it in
cases when enumerating is not a useful solution (5 ≤ η ≤ n− 5). In this cases when the CPLEX object
is constructed we initially add the fixed size constraint, Upper bound pair inequalities, Node-to-Node
inequalities and Node-to-Set inequalities for sets of size two. As stated previously this is a preliminary
testing code and a separation routine is yet to be done.
The solving member of this class solves the problem with CPLEX as a BIP when the problem is
constructed as a CPLEX object (5 ≤ η ≤ n − 5). In the remaining cases it solves the problem by
enumeration.
Given that this is a general description some technical details on the loading of the dual pricing coeffi-
cients, the construction of the objective function... are avoided.

• CG MAClass: A directly inherited class of MAClass. It defines the member for solving the problem
implementing the Column Generation scheme. In fact, this is not an actual solution because at the
current stage our code terminates after the Column Generation without performing Branching once the
solution is fractional.
This class includes objects of the classes H MAClass, MAMasterProblemClass, MAPricingProblem-
Class. The heuristic solution from H MAClass is used to load the first clusters to the Master Prob-
lem. The classes MAMasterProblemClass, MAPricingProblemClass allows us to consider the different
problems as elements in our Column Generation Code. The code in the solve of CG MAClass only
implements the scheme of the Column Generation but does not use CPLEX at all given that all CPLEX
tools are executed internally in the classes for the problems. This makes the code very understandable.
It basically consists on executing a heuristic solution, creating a Master Problem as an element of the
corresponding class included and similarly creating k Pricing Problems (recall k is the minimal cluster
size). Then it runs the Column Generation simply as a loop adding columns to the Master Problem
every time a Pricing Problem gives an optimal solution with a negative objective value. Eventually
once this loop is over it solves the Master Problem, provides with this solution (fractional or not),
the lower bound on the SSE (objective value for the Master Problem) and computes the GAP of the
original heuristic solution finally. The GAP is computed as percentage in the following way:

GAP (%) = 100 · SSEH − SSEMP

SSEH
where SSEH is the SSE for the MDAV algorithm and SSEMP is the objective value for the Master
Problem after the Column Generation.

Follows and scheme representing the dependance relations of the classes implemented to perform our code,
see Figure 1.

Fig. 1. Diagram describing the class dependance in our code.



Chapter 10

Computational Results

The code has been tested with data sets extracted from actual data widely used in the field of Statistical
Disclosure Control methods. In particular the data is extracted from the CASC project [2]. In particular
two microdata sets from this project were considered, the ”Tarragona” data set and the ”Census” data set,
which are widely used in the literature. The ”Census” data set was obtained on July 27, 2000 using the
Data Extraction System of the U. S. Bureau of the Census. Includes 1080 records with 13 attributes each.
The ”Tarragona” data set comprises figures of 834 companies in the Tarragona area. It was collected during
the year 1995 and includes 13 attributes for company too. Details about both data sets can be found in [2].

Given that our code is preliminary and at this stage intends to test the Column Generation performance
with CPLEX as well as the GAP for the MDAV heuristic algorithm, we consider using subsets of individuals
in both microdata sets. In particular we extract the 30, 40 and 50 individuals with less norm from our
microdata sets. This is just to make a choice of individuals to test the code.

Recall that in the state of art for CPPMIN the approximate model, Mitchell and Ji in [10], [11], work with
data sets with only two attributes and 103 individuals at most. It seems reasonable for us, then, to work
with such a low amount of data given.

Thus we are considering testing our code for subsets of 30, 40 and 50 individuals from both real data sets
”Tarragona” and ”Census”. For each of those subsets of individuals we also test our code considering three
different minimal cluster sizes k. The sizes chosen are amongst the typical k-anonymity parameters used in
the state of art for microaggregation, those are k = 3, 4 and 5.

In Table 1. the results of our several testings are summarised. Follows a brief description of the table
variables:

• Dat. Set: Indicates the original microdata set from where the data tested was extracted.
• Ind.: Indicates the number of individuals extracted. Recall that those are the ones with less norm

from the original microdata.
• Att.: Indicates the number of attributes of the data. In any case they are 13 all the attributes for the

individuals considered from both original microdata sets.
• Min. Size: Indicates k the minimal cluster size for our microaggregation, or anonymity desired.
• Cl. H.: Indicates the number of clusters generated by the heuristic solution with MDAV algorithm.

Recall that those are the clusters that initialize our Master Problem.
• Cl. Add.: Indicates the number of clusters added throughout all our Column Generation scheme.

Every time a Pricing Problem with fixed size η = k, . . . , 2k− 1 solved optimally gave a cluster solution
with negative objective function it was added to the Master Problem.

• Cl. Tot.: Indicates the total number of clusters eventually. This is actually the number of variables
of the Master Problem after the Column Generation, when there are no more clusters with negative
reduced cost to be added. In fact it is simply the sum of Cl. H. and Cl. Add..

• GAPH (%): Indicates the GAP of the heuristic solution in percentage. Recall that after the Column
Generation, when there exist no more clusters with negative reduced cost to be added, the Master
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Problem is solved and it provides a solution (fractional or not) and a SSEMP its objective value. This
objective value SSEMP must be less or equal to the SSE provided by the heuristic solution (SSEH)
given that the Master Problem at the end includes the cluster variables for the heuristically generated
clusters at the beginning. Actually this objective value SSEMP is a lower bound on the SSE for
non-approximate microaggregation like we stated in previous chapters.
Recall again that this GAP is computed like

GAPH (%) = 100 · SSEH − SSEMP

SSEH
• Int. Sol.: Indicates with a ”YES” or a ”NO” if the eventual solution of the Master Problem is

integer or not. In case it is integer then the solution corresponds to an actual clustering and optimal
microaggregation has been achieved simply by Column Generation. If it is not then some Branching
must be performed considering the objective value obtained for this Master Problem solution as a lower
bound on the SSE.

Table 1

Dat. Set Ind. Att. Min. Size Cl. H. Cl. Add. Cl. Tot. GAPH (%) Int. Sol.
Tarragona 30 13 3 10 132 142 14.25 NO
Tarragona 30 13 4 7 286 293 22.96 NO
Tarragona 30 13 5 6 411 417 23.94 YES
Tarragona 40 13 3 13 161 174 8.49 NO
Tarragona 40 13 4 10 341 351 18.38 NO
Tarragona 40 13 5 8 588 596 16.75 NO
Tarragona 50 13 3 16 206 222 12.35 NO
Tarragona 50 13 4 12 465 477 15.55 NO
Tarragona 50 13 5 10 756 766 12.77 YES

Census 30 13 3 10 132 142 28.54 NO
Census 30 13 4 7 226 233 26.73 NO
Census 30 13 5 6 258 264 7.34 YES
Census 40 13 3 13 175 188 15.97 NO
Census 40 13 4 10 302 312 16.22 YES
Census 40 13 5 8 432 440 8.66 YES
Census 50 13 3 16 214 230 16.61 NO
Census 50 13 4 12 393 405 24.7 NO
Census 50 13 5 10 609 619 26.13 NO

An issue not detailed in Table 1. however is the time performance. It has not been included given that the
code is preliminary and it must be deeply optimised in future work. However, we would like to outstand
the quality of the code in the sense of simplicity and structure, as it allows us to develop features in
parallel through the different classes involved. For example we outstand the polimorphism use that allows
to consider the Heuristic and the Column Generation procedures by separate as solution algorithms for the
same microaggregation problem. We also remark the implementation of the Master Problem and the Pricing
Problem as classes itself, each of them with a static environment for CPLEX what optimizes CPLEX use
and calls (for each environment in future coding we could develop a callback procedure with new inequalities
to be added, branching, etc). Also CPLEX is only executed inside these classes so the code in the Column
Generation is simplified as much as possible. In both classes for both problems we can also include heuristic
procedures to obtain cliques with negative reduced cost but not optimal in the Pricing Problem or feasible
solutions with low SSE in case of the Master Problem. In summary, our code structure allows us to
comfortably develop future implementations.

In relation to our computational results we face them with optimism. Although for practical limitations we
can not perform yet in greater cases (n and η greater) we have observed that the Column Generation scheme
does not generate too many clusters. This probably means our line of research might have future. Besides
the GAPs obtained for the heuristic solution of MDAV in our cases are themselves a result which is certainly
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new, given that it corresponds to non-approximate microaggregation. This gives content and substance to
the project at this stage. Finally we have observed that at some cases (concretely 5 out of 18) the eventual
Master Problem solution after the Column Generation is certainly integer. This means that for those cases
including real data we have achieved the optimal microaggregation.

This had never been achieved before: it is the first ever developed procedure that can be optimally solve
-certificating the optimality- some nontrivial instances of the microaggregation problem.

In the following chapter we include some of the lines our research could follow from now on. Recall that
this document is a report of the process, experience and results obtained during the research collaboration
until the date of release on early January. In fact, I am carrying on the research collaboration during the
following months until March 2016. There is more to be done yet, of course, and probably it follows the
lines stated in the following chapter for future research, both on theoretical and implementation aspects.





Chapter 11

Future Research

We can clearly distinguish between work done in paper or theoretical, and work done in implementation. In
fact, this two lines of work have split the stay into two in matter of time dedication to the project.

Theoretical aspects

Considering all the results obtained until now, in our opinion the theoretical aspects related to the polyhedral
structure of the Pricing Problem are pretty developed. Considering all our results and specially the ones for
the families of the δ-Set inequalities and the Node-to-Set inequalities, we think that there is a strong basis of
material in terms of facet-defining inequalities. This does not mean there are no more important inequalities
to be explored. Using Porta software for low cases the inequalities stated only cover totally the inequalities
observed for n up to six. For the case n = 7 some other inequalities have been observed. Some of them
have a complex structure and depend on cycles for example. Finding proofs for their validity and facets they
could define could be left for future research on the polyhedral and facial structure of the Pricing Problem.

In relation to both the implementation of the Column Generation and the theoretical aspects there also
lacks to construct a cutting plane method with an efficient separation routine to add smartly the facet-
defining inequalities already known and the ones to introduce yet if necessary. Currently in our preliminary
implementation we are adding directly to the Pricing Problem the fixed size equation, the Upper bound pair
inequalities, the Node-to-Node inequalities and the Node-to-Set inequalities for sets of size two. Obviously
it must be improved a lot even to make our code consider smartly the theoretical results on the polyhedral
structure of the Pricing Problem that we already have now.

Implementation aspects

There are plenty of features to modify in our preliminary code. We have noticed the Column Generation
scheme performs well given that is does not generate too many clusters. We have also seen that, in case
the solution of the Master Problem is eventually fractional (which does not always occur in our tests), the
solution includes plenty of zeros. This encourages us to use this solution to work on possible heuristics to
solve microaggregation with lower SSE than MDAV. This actually is a line of future work on implementation
explained afterwards.
Another immediate line of work is to improve the time efficiency of the current code. This does not necessarily
imply to implement immediately a separation routine for the Pricing Problem. Instead we can work on
heuristics not to solve the Pricing Problem to optimality but to obtain cliques with simply negative objective
function, i.e., negative reduced cost for the non-approximate microaggregation. Especially at the begining
of the execution there are plenty of existent clusters with a negative reduced cost and it is not absolutely
necessary to obtain every time the minimal one. This type of heuristics could be very useful specially to
reduce the time expense at this initial stage of the execution. In fact we might possibly call the BIP solution
of the Pricing Problem only in case the heuristics fail to obtain clusters with negative objective value.

Another issue to be tested is whether the enumeration solution of the Pricing Problem for lower η is useful
or not in comparison with CPLEX optimization. This might only involve some execution testing.
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Finally, we must recall that after all the Column Generation our Master Problem eventually provides with
a solution that might be non integer. Also provides with a lower bound on the SSE for microaggregation.
Considering this lower bound and the fractional solution the Master Problem provides there are two possible
strategies left for future work on the Master Problem.

(1) Think of a branching procedure to pursue the optimal solution. This might involve some difficulties.
In any case this Branching for the Master Problem might include inequalities which can be simply
inequalities for a typical Branch & Bound or useful inequalities that we could come up with for the
Master Problem. In any case adding an inequality in the Master Problem and then solving again the
whole Column Generation scheme adds a relevant difficulty. A new inequality in the Master Problem
means a new dual variable or pricing coefficient for the Pricing Problem and this should introduced
in the Pricing Problem objective function. The objective function in the Pricing Problem might be
able to include the coefficients of the new cluster to be added in all the different inequalities added by
the Branching in the Master Problem, all this with respect to the variables modelling for the Pricing
Problem. It should be studied how to treat this computationally which is not trivial a priori.

(2) Think on a heuristic strategy that using the fractional result on the Master Problem after the Column
Generation scheme obtains a non optimal but useful solution. A preliminary idea could be treating the
coefficients in the fractional solution for the clusters considered in the Master Problem as a probability
that the nodes inside this cluster are aggregated together in the eventual solution. Conflicts occur
however when two different clusters contain the same pair of nodes.
The main idea is however to use the fractional coefficients as weights to consider the clusters in the
eventual solution. For example we could consider the Master Problem with the clusters that have a
certain minimal weight on this solution. We could solve the Master Problem as a BIP using those
clusters and check the SSE of this solution. In fact, we could solve the Master Problem as a BIP using
all the clusters in the final stage. At the end the Master Problem includes also the clusters from the
MDAV solution (the Master Problem is initialised with them) so this BIP solution would have a SSE
lower or equal to the heuristic SSE from MDAV. Actually during the whole Column Generation scheme
it might occur that at some point an integer solution is found. For the same reason this integer solution
is a microaggregation solution with less or equal SSE than the heuristic one, despite it might not be
optimal neither. Those are just ideas to be tested in the near future.
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