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Introduction

The objective of this thesis is to introduce the topics involved in the formulation
of the conjecture of Birch and Swinertonn-Dyer, one of the six unsolved problems
of the Millenium Problem list of the Clay Institute of Mathematics, together with
the Riemann hypothesis, the existence of solutions for the Navier-Stokes equation,
the P vs NP problem, the Hodge conjecture and the Yang-Mills equation (the
existence of a mass gap in the solution to the quantum version of this equation).
Roughly speaking, this conjecture relates the number of points of an elliptic curve
over finite fields with the rank of the elliptic curve over the rationals. This brief
statement needs some previous considerations: the first one is that for speaking
of rank we need a group structure, but we have it in any elliptic curve and
explained in geometric terms in any undergraduate course of algebraic geometry.
The second fact is that the rank of this group is finite (in fact, the rank of an
elliptic curve over a number field is finite). This is a non-trivial theorem proved
by Mordell and generalized by Weil around 1930. The relation with the number
of points over finite fields comes through the L-function associated to the curve,
in a natural generalization of the classical zeta functions for number fields, or
even in an easier way, the one that motivates the Riemann hypothesis. The first
remarkable results around Birch and Swinertonn-Dyer conjecture (BSD) were
done in 1977 by Coates and Wiles and in the last years there has been a great
progress, being an active topic in research in number theory nowadays. Some of
the ideas around the proof of Wiles and Taylor of the Last Fermat’s Theorem
(and then the Modularity theorem of Breuil, Conrad, Diamond and Taylor) will
also play a crucial role.
However, for a deep understanding of all these concepts it is necessary a wide
background, and this is what we try to do in this bachelor thesis, organized in
twelve chapters that try to explain the several topics we will need to understand
the statement and the most elementary ideas in the proofs of the main results
that have been made:

• The first chapter begins by stating the Hasse-Minkowski theorem for quadratic
forms. We have to bear in mind that BSD is an example of local-global prin-
ciple (from the behavior in local fields we infer the behavior in a global field),
so we begin by reviewing the most classical and simplest example of this.
The last section of this chapter explains why Hasse’s principle fails for cubic
polynomials, by giving an explicit example of an equation that has solution
both in the real field and in the p-adic fields but not over the rationals. For
a proper explanation of the proof, we need to introduce the main results in
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algebraic number theory, that are also needed in several parts of the work.
Of special importance are those concerning finiteness (of the class number
and Dirichlet’s unit theorem) and those about the behavior of primes in
extensions of Q (number fields).

• The second chapter is a quick review of some fundamental results in alge-
braic geometry and Riemann surfaces needed along the thesis. We do not
give proofs of most of them, since in several cases are long and technical.
At the end of the chapter, there should be a brief introduction to the theory
of schemes, an angular stone in further developments of algebraic geome-
try and consequently number theory (it is omitted due to a lack of time).
We try to point out the great importance geometry plays in arithmetic.
We explain Abel’s theorem and the role it plays to study maps between
jacobians.

• The third chapter is one of the cores (together with chapter seven) of the
thesis: it introduces the concept of elliptic curves, its basic properties, the
geometrical aspects that will be around us all over the time and its most
remarkable properties in both local and global fields. The last sections are
not so introductory and they deal with concepts like the Tate module, the
endomorphism ring or the Weil pairing.

• The forth chapter introduces ζ and L-functions of an elliptic curves, starting
with a proof of Hasse’s theorem that gives a bound for the number of points
that an elliptic curve has over a finite field. We explain why this is also
called the Riemann hypothesis for elliptic curves, and state the celebrated
Weil conjectures, one of the highlights in the mathematics of the twentieth
century (proved by Deligne).

• In the five chapter we just give a brief presentation of a topic that has
interest by its own, but that we use here in several moments and for different
purposes: group cohomology. It appears in the proof of Mordell’s theorem,
in the definition of homogeneous spaces and it is the natural framework to
develop class field theory. We try to give an explicit interpretation of the
meaning of H0 and H1 and state some basic results in algebraic topology
and category theory.

• The sixth chapter contains the proof of one of the most elementary and
important results in the theory of elliptic curves: Mordell-Weil theorem
about the finiteness of the rank of an elliptic curve over the rationals (and
more generally over a number field). It consists basically of two steps,
being the first one related with establishing the finiteness of the Selmer
group (that will be properly defined arrived that point), and that can be
generalized to number field, and then, defining a height over the elliptic
curve, use an appropriate descent procedure to conclude. The extension of
this part to number fields is complicated and we omit it.
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• Together with chapter three, this seventh chapter is one of the most impor-
tant in the thesis. It develops all the theory of modular forms, beginning by
the basic topological and analytic issues, and defining all the key concepts:
from the more geometrical ones to those more delicate, like Hecke operators
or eigenforms. The first sections are very elementary, and use concepts of
complex analysis and general topology, but when we go further we start to
see some similitudes with the theory of elliptic curves, about all when we
define the L-series attached to a modular form.

• Begin we move to more complicated topics, we include another one that can
still be considered introductory: in the eighth chapter we properly define
quaternion algebras, that had already appeared in chapter three as one
of the three possibilities for the endomorphism ring of an elliptic curve.
Furthermore, they will be necessary to generalize several concepts about
modular forms and to define Shimura curves, one of the main objects in
number theory.

• Chapter nine is about the theory of complex multiplication, that Hilbert
considered the most beautiful not only of mathematics, but of all science.
However, although the statements are simple, most of the proofs are compli-
cated and they require the introduction of a powerful tool: class field theory.
We use a few sections to explain the main results of this field, omitting most
of the proofs, and then we move to the main results in complex multiplica-
tion. Roughly speaking, it is just the study of elliptic curves (here over the
rational) whose endomorphism ring is an order in an imaginary quadratic
field.

• Chapter ten is extremely related with chapter nine, and in fact we begin
with the proof of a result that had been already stated: that there is a curve
defined over the rationals (i.e., a polynomial F (X, Y ) with coefficients in
Q) birationally equivalent to X0(N)). We continue by stating (and trying
to give an idea of the proof) important results like the Eichler-Shimura
correspondence, explaining the concept of Heegner points and quoting some
recent results of great importance.

• In chapter eleven we finally explain the conjecture of Birch and Swinertonn-
Dyer: we give several formulations of it, its generalizations and the conse-
quences it would have. Furthermore, we state the main results in that direc-
tion, trying to indicate the most relevant ideas in the proofs. In particular,
the results of Gross-Zagier are quite natural after the theory developed in
the previous chapter. In the last sections, we state of the last known results
about BSD due to Darmon and Rotger, that gives a positive answer beyond
the most frequent cases of order of vanishing zero or one.

• The last chapter is devoted to briefly comment some topics that did not
fit in the thesis but that are of great importance and have a deep relation
with BSD and at this level cannot be stated in a proper way. We introduce
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and give some first results about Galois representations, and state its im-
portance in the proof of Fermat’s last theorem. We also give a brief insight
of how can we adapt Mordell-Weil for the case of function fields, and try
to introduce in an extremely vague way the theory of Neron models, that
is useful for proving results like Mazur’s theorem about the torsion of an
elliptic curve. Finally, we reinterpret some results about modular forms
introducing Hilbert modular forms.

There are several books which play a prominent role in the writing of this disser-
tation. In a first walk through number theory, I highly believe that the books of
Milne are a very good choice to understand in a proper way the first non-trivial
facts about elliptic curves or modular forms; furthermore, his books in algebraic
number theory and algebraic geometry were also of great aid. The chapters de-
voted to elliptic curves are based (in most of its sections) in the two books of
Silverman, whose last chapters were not included here and would be a good start
for an improvement version of this thesis. To understand modular forms, I do
not conceive a better book than the one from Diamond and Shurman, focused
on the most relevant aspects which lead to the proof of the modularity theorem.
Last, but not least important, Darmon’s notes about rational points on modular
elliptic curves were the base for the writing of chapters ten and eleven, maybe
the most difficult ones in a first reading.

I apologize beforehand for the mistakes this thesis contain, most of them due
to a lack of time for a more exhaustive revision; I also request your benevolence
in which concerns some inconsistencies with the notation: depending on the con-
text, I use σ(P ) or P σ for the action of the Galois group, or the Frobenius is
sometimes referred as φ and others as Π. Anyway, all of these notations are
highly used and the meaning, from my point of view, is clear at any moment.

I would like to thank the support and guidance of Vı́ctor Rotger along these
months, and I hope that this experience were only the beginning of a fruitful
cooperation. His preclair vision of mathematics has helped me to learn many
new things and to understand all those concepts that seemed dark and unclear
in many books. I am also indebted with Jordi Quer, not only for introducing
me Vı́ctor but for being an excellent teacher that taught us along the subjects I
shared with him to love algebra and number theory. This first approach to math-
ematics would not have possible without the support and guidance of people from
both the CFIS and the School of Mathematics FME. I would like to express my
gratitude to all teachers, head-masters and personal stuff that helped me during
the last three years and a half. In particular to the chairmen of the institutions,
Miguel Ángel Barja and Jaume Franch, for always being ready to share a conver-
sation about any topic. Last, but not least, thanks to the people (both teachers
and mates) from the Mathematical Olympiad, which showed me to love mathe-
matics from an early age. And of course, thanks to my family and friends who
were always close to me; without them, life would be less interesting.



Chapter 1

Algebraic number theory

The aim of this chapter is to provide the necessary background from basic alge-
braic number theory to understand the proofs that we will be presenting along the
thesis. Most of these results are very classical (from the nineteenth century) but
provide a lot of information about number fields and their structure. We begin
with a motivation from the theory of classical quadratic forms, and then we move
to present all the machinery from algebraic number theory, starting from basic
definitions (with some easy propositions to show the type of proofs we usually
have) and then passing to state and prove some of the most relevant theorems
concerning finiteness and factorization in extension. We finish given an example
of how the local-global principle fails for the case of cubics.

1.1 Hasse-Minkowski theorem for quadratic forms

One of the key aspects so as to understand BSD conjecture is the local-global
principle, or the possibility of using properties of local fields (locally compact
topological fields with respect to a non-discrete topology, here the reals and the
p-adics) to say what will happen in global fields (here the rationals, or in general,
a number field). As we already pointed out, this is not always possible, but a
first naive example is the Hasse-Minkowski theorem for quadratic forms:

Theorem 1.1. Let f be a quadratic form and let V be the set of places of Q. In
order that f represents 0 in Q, it is necessary and sufficient that, for all v ∈ V ,
the form fv represents 0.
Alternatively, a quadratic form has solutions over the rationals if and only if it
has solutions both at the real numbers and at the p-adics (for all p).

To develop this theory (quite elementary and that does not require many technical
tools), we will need some lemmas that are not difficult to prove and that we will
state along the thesis. We will give proofs or not depending on the ideas they
provide and on its length. We start with the famous Chevalley’s theorem (or
Chevalley-Warning).

11



12 1.1. HASSE-MINKOWSKI THEOREM FOR QUADRATIC FORMS

Theorem 1.2. Let K be a finite field with q elements and characteristic p. Let
fα ∈ K[X1, · · · , Xn] be such that

∑
α deg fα < n and let V the set of their common

zeros in Kn. Then, the cardinal of V is a multiple of p.

Proof. Let P =
∏

α(1 − f q−1
α ) and let x ∈ Kn. By Fermat’s little theorem, P

is the characteristic function of V and if we define for a generic polynomial f ,
S(f) =

∑
x∈Kn f(x), we clearly have that the cardinal of V is equal to S(p)

modulo p. Recall now the following almost obvious lemma:

Lemma 1.1. Let u be a non negative integer; then, S(Xu) =
∑

x∈K x
u is −1

when u ≥ 1 and divisible by q − 1 and is 0 otherwise.

The proof of the lemma is an exercise where you only have to consider, for the
case of not divisible by q − 1, the fact that K∗ is cyclic; multiplying by y such
that yu 6= 1, S(Xu) = yuS(Xu), and we are done.
With the lemma in mind, we have that the degree of P is less than n(q − 1), so
P is a linear combination of monomials Xu = Xu1

1 · · ·Xun
n where at least one of

the exponents must be smaller than q − 1.

Another crucial result that will be used several times along this thesis is Hensel’s
lemma. It is a result that allows us to lift solutions from congruence groups to
p-adic solutions (in some way it is similar to Newton’s method).

Theorem 1.3. Let f ∈ Zp[X1, · · · , Xm], x = (xi) ∈ (Zp)m, n, k ∈ Z and let j
be an integer such that 0 ≤ j ≤ m. Suppose that 0 < 2k < n and that f(x) ≡ 0

mod pn and that vp

(
∂f
∂Xj

(x)
)

= k. Then, there exists a zero y of f in (Zp)m

congruent to x modulo pn−k

We continue by introducing the Hilbert symbol (a particular case of a more
general theory). In this section, k will denote either R or Qp. Let a, b ∈ k∗. We
define:

(a, b) =

{
1 if z2 − ax2 − by2 = 0 has a solution in k3

−1 otherwise

This number is called the Hilbert symbol of a and b relative to k and clearly
defines a map from k∗/k∗

2 × k∗/k∗2 to {+1,−1}. This will appear again when
we study quaternion algebras. We mention some properties that almost follow
directly from the definition:

a) (a, b) = (b, a) and (a, c2) = 1.

b) (a,−a) = 1 and (a, 1− a) = 1.

c) (a, b) = 1 =⇒ (aa′, b) = (a′, b).

d) (a, b) = (a,−ab) = (a, (1− a)b).

If k = R the computation of the Hilbert symbol is straightforward: (a, b) = −1
if and only if both a and b are strictly greather than 0. We now state one of the
main theorems of this section:
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Theorem 1.4. If k = Qp and we write a = pαu, b = pβv, where u, v are p-adic
units, we have:

(a, b) =

(−1)αβε(p)
(
u
p

)β(
v
p

)α
if p 6= 2

(a, b) = (−1)ε(u)ε(v)+αω(v)+βω(u) if p = 2

where as usual ε(p) = p−1
2

.

Proof. Since the Hilbert symbol is defined modulo squares (in k∗/k∗
2
), to prove

the result we only have to consider the different possibilities for α and β modulo
2. We start by the case in which p 6= 2:

• α = 0, β = 0. In this case we only have to prove that (a, b) = 1, i.e., that
the equation z2 − ux2 − vy2 has a nontrivial solution modulo p. By virtue
of Chevalley principle, we have a solution modulo p and by Hensel lemma
we can lift it to a p-adic solution.

• α = 1, β = 0; here we have to prove that (pu, v) =
(
v
p

)
; since (u, v) = 1,

using the third of the properties stated below, it will be enough to show

(p, v) =
(
v
p

)
. We mention now two lemmas that are required to finish:

Lemma 1.2. Let v be a p-adic unit. If the equation z2 − px2 − vy2 = 0
has a nontrivial solution in Qp it has a solution (z, x, y) such that z, y are
p-adic units and x ∈ Zp.

Lemma 1.3. Let p 6= 2 and let x = pnu an element of Q∗p such that n ∈ Z
and u is a p-adic unit. x is a square if and only if n is even and the
image of u in U/U1

∼= F∗p is a square. Here, we use the typical notation
Un = 1 + pnZp.

If v is a square, no explanation is required (just put x = 0); otherwise,(
v
p

)
= −1 and the equation z2 − px2 − vy2 does not have a nontrivial zero

(reduce for instance modulo p, and you get z2 = vy2 where v is not a square
so it is not possible).

• α = 1, β = 1; (pu, pv) = (pu,−p2uv) = (pu,−uv). We have now a situation

where we can use the previous case, i.e., (pu, pv) = (pu,−uv) =
(
−uv
p

)
=(

−1
p

)(
u
p

)(
v
p

)
= (−1)ε(p)

(
u
p

)(
v
p

)
.

The proof of the case 2 uses these same ideas and can be read in Serre’s book.

Corollary 1.1. The Hilbert symbol is multiplicative, i.e., (aa′, b) = (a, b)(a′, b)
and (a, bb′) = (a, b)(a, b′).
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We finish our digression of Hilbert symbol (it will maybe reappear in some place
of the thesis) with the following result:

Corollary 1.2. If a, b ∈ Q∗, then (a, b)v = 1 for almost all v ∈ V and∏
v∈V

(a, b)v = 1

We sketch now the way we can prove Hasse-Minkowski theorem, quoting along
the explanation several facts about quadratic forms that we do not prove.
The necessity of representing 0 in R and Qv (v a prime) is clear. To see the
converse, we write (using the fact that there exists an orthogonal basis)

f = a1x
2
1 + · · · anx2

n

where the ai are defined modulo squares and replacing f by a1 · f we can assume
a1 = 1. We have to distinguish now different cases depending on the value of n:

• Case n = 2. We consider x2 − ay2. Seeing the equation in f∞ we have

that a ≥ 0. Write the equation in the form x2 =
∏r

i=1 p
vpi (a)

i y2. Since this
equation has a solution modulo pi for each i, we conclude that all the vpi(a)
must be even, and therefore the equation has a non trivial solution in Q.

• Case n = 3. We have to deal with the equation x2−ay2−bz2, where we can
consider that a and b are defined modulo square and so the p-adic valuations
of a and b are 0 or 1. We assume that |a| ≤ |b| and use induction in the
value of m = |a|+ |b|. If m = 2 we have that in the case x2 + y2 + z2 there
are no solutions neither in R (f∞) neither in Q; for the case x2 − y2 − z2

just consider the solution (1, 1, 0) and for x2 + y2 − z2 take (1, 0, 1).
Consider now the general case, so |b| = ±p1 · · · pr ≥ 2 (all the primes are
distinct). Take any of the pi; then, we have that a is a square modulo pi.
To show that, take a primitive solution of the equation (it is easy to prove
that it must exist) and see the equation modulo p. In that case, if a is 0
modulo p we are done, and elsewhere, we have that x2 − ay2 ≡ 0 and from
here, we know, first, that neither x nor y are multiples of p (if one of them
is, so is the other, and we look the equation modulo p2 to conclude that y
is also multiple of p and this is a contradiction). From all this, we conclude
that a is a square (a is a quadratic residue modulo b if and only if it is a
quadratic residue modulo each prime factor of b). So a is a square modulo b
and we have integers m,n such that m2 = a+bn and in particular, since we
have two option for m that add up 0 (modulo b) we can take |m| ≤ |b|/2.
We can also write bn = m2− a, showing that bn is a norm in the quadratic
extension k(

√
a) where k = Q or k = Qv. From here, (a, bb′) = 1 (since

(a, b) = 1 if and only if a belongs to the group of norms of elements of
k∗b , note how lengthened is the shadow of class field theory). We now have
that f represents 0 if and only if is represented by f ′ = x2 − ay2 − b′z2

(multiplicativity of the Hilbert symbol) and the result follows from the
inductive hypothesis since |b′| < |b|.
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• Case n = 4. Write f = ax2 + by2− (cz2 +dt2). We will see that there exists
a unity in Qv that is represented both by ax2 + by2 and by cz2 + dt2, and
that the same occurs for R.

Lemma 1.4. Let g, h be two non-degenerate forms over k of rank ≥ 1 and
let f = g − h. Then, the following properties are equivalent:

a) f represents 0.

b) There exists a ∈ k∗ represented both by g and by h.

c) There exists a ∈ k∗ such that g − aZ2 and h− aZ2 represent 0.

We call xv that element represented both by ax2 + by2 and by cz2 + dt2.
This is the same as saying (xv,−ab)v = (a, b)v, (xv,−cd)v = (c, d)v for all
v. We need here another result, the approximation theorem:

Lemma 1.5. Let S be a finite subset of V . The image of Q in
∏

v∈S Qv is
dense in this product (when endowed with the product topology).

Combining the approximation theorem with the Chinese remainder, we get
the following:

Lemma 1.6. Let (ai)i∈I be a finite family of elements in Q∗, and let now
(εi,v)i∈I,v∈V be a family of numbers equal to ±1. In order that there exists
x ∈ Q∗ such that (ai, x)v = εi,v for all i ∈ I, v ∈ V , it is necessary and
sufficient that almost all the εi,v are 1, that

∏
v∈V εi,v = 1 and that for all

v ∈ V there exists xv ∈ Q∗v such that (ai, xv)v = εi,v for all i ∈ I.

Coming back to our problem and using the product formula,
∏

v∈V (a, b)v =∏
v∈V (c, d)v = 1, we conclude that there exists α ∈ Q such that (α,−ab)v =

(a, b)v and (α,−cd)v = (c, d)v for all v ∈ V . So the form ax2 + by2 − αr2

represents 0 in each of the Qv so in Q; therefore α is represented in Q both
by ax2 + by2 and by cz2 + dt2.

• For the case n ≥ 5 we should use induction, writing f = h − g, where
h = ax2 + by2 and g = −(c3z

2
3 + · · · cnz2

n). We take the subset of V , S, that
contains the place of infinity, 2 and the primes such that vp(ai) 6= 0 for some
i ≥ 3 (note that is finite). Take v ∈ S, and since fv represents 0, we have
αv ∈ Q∗v represented both by g and h. What we have said so is that there
exist xvi ∈ Qv such that h(xv1, x

v
2) = αv = g(xv3, · · · , xvn). But we know that

the squares of Q∗v form an open set, and using the approximation theorem
we can affirm the existence of x1, x2 ∈ Q such that if α = h(x1, x2), then
α/αv ∈ Q∗2v for all v ∈ S. Here we need a technical result:

Definition 1.1. Let f = a1X
2
1 + · · · + anX

2
n be a quadratic form in n

variables. Then, we define the following two invariants:

ε(f) =
∏
i<j

(ai, aj)

d(f) = a1 · · · an modulo squares
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Proposition 1.1. In Qv, v 6= 2, a quadratic form of rank 4 represents 0 if
and only either d 6= 1 or d = 1 and (−1,−1) = ε.

Define F = αz2 − g: if v ∈ S, then g represents αv in Q∗2v , and it also
represents α since α/αv ∈ Q∗2v . Hence F represents 0 in Qv. If v /∈ S, then
−c3, · · · ,−cn are v-adic units. The same occurs for dv(g) and since v 6= 2,
we have that εv(g) = 1. In any case F represents 0 in Qv so g represents a
in Q, and the proof is complete by induction (since F is of rank n − 1, it
represents 0, or alternatively g represents a; therefore h represents a and f
represents 0, as wanted).

1.2 Basic definitions in algebraic number theory

Our aim in this section (and the following ones of this chapter) is to introduce
some of the most basic facts in algebraic number theory, and some theorems
that appeared during the nineteenth century. Our main objectives will be: the
theorem of unique factorization in ideals in Dedekind domains, the finiteness of
the class number, the unit or Dirichlet theorem and then some results concerning
absolute values in Q and in number fields.
We start with some definitions and easy proposition basically to illustrate the
way things work, and as it can be seen most of the ideas are just introductory
ring theory. We introduce some names that will be appearing constantly along
the thesis:

Definition 1.2. A ring A is noetherian if it fulfills some of the following three
equivalent conditions:

a) Every ideal in A is finitely generated.

b) Every ascending chain of ideals eventually becomes constant.

c) Every nonempty set S of ideals in A has a maximal element (there exists an
ideal in S not properly contained in any other ideal in S)

Definition 1.3. A ring A is integrally closed if it is its own integral closure in
its field of fractions K.

In particular, a unique factorization domain is integrally closed.

Definition 1.4. A discrete valuation ring (DVR) is a principal ideal domain A
satisfying one of this three equivalent conditions:

a) A is local and is not a field.

b) A has exactly one nonzero prime ideal.

c) A has exactly one prime element (up to associates)

Proposition 1.2. An integral domain A is a DVR if and only if A is (at the
same time) noetherian, integrally closed and has exactly one nonzero prime ideal.
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Proof. The necessity of the three conditions is clear, so let as assume that all
three things hold and let us prove that it is a principal ideal domain. We begin
by showing that the nonzero prime ideal is principal (the third condition already
implies that A is a local ring).
Choose now an element c ∈ A such that c is neither 0 nor a unit, and define
M = A/(c). For a nonzero element m of M , Ann(m) = {a ∈ A | am = 0} is a
proper ideal in A. For the third equivalent condition of being noetherian, choose
m such that Ann(m) is maximal among these ideals, m = b+(c), p =Ann(b+(c)).
Since c ∈ p, we have that p is non empty and that can be characterized by
p = {a ∈ A | c divides ab}.
We prove that p is prime: suppose that x, y /∈ p such that xy ∈ p. Then yb+ (c)
is not zero in M , and Ann(yb + (c)) clearly contains p and x, contradicting the
maximality of p.
If b/c ∈ A, then b = (b/c) · c ∈ (c) and m = b+ (c) = 0 in M (that is not possible
for hypothesis). However, c/b ∈ A and furthermore p = (c/b); to see this, note
that pb ⊂ (c) so p · (b/c) ⊂ A and it is an ideal in A. If p · b/c ⊂ p, b/c is integral
over A since p is finitely generated (this is one of the typical characterizations of
integrality), and b/c ∈ A, that is not possible. Consequently, p · b/c = A (where
we have used that there is only one prime element) and so p = (c/b).
Let now π = c/b, so p = (π). If a is a proper ideal of A, consider a ⊂ aπ−1 ⊂
aπ−2 ⊂ · · · . If in some moment aπ−i = aπ−i−1, then π−1(aπ−i) = aπ−i, so π−1 is
integral over A and so it is in A (and again this was not possible since π is not a
unit). Therefore the sequence is strictly increasing, but the ring is noetherian. so
it cannot be contained in A, being an integer n such that aπ−n ⊂ A but aπ−n−1

is not contained in A. Then, aπ−m is not in p and aπ−m = A, concluding that
a = (πm).

Definition 1.5. An integral domain A is a Dedekind domain if these three con-
ditions simultaneously hold:

a) A is noetherian.

b) A is integrally closed.

c) A nonzero prime ideal is maximal.

A first remarkable fact about these type of rings is the following one:

Proposition 1.3. A noetherian integral domain A is Dedekind if and only if for
every nonzero prime ideal p in A, the localization Ap is a discrete valuation ring
(in this context, with Ap we mean the localization in the complement of the prime
ideal p, that is, Ap = S−1

p A, where Sp = A\p).

The main interest of Dedekind domains is that although we cannot factor an
element in general as a product of primes, we have a factorization in ideals that
in some sense it is very similar to working over a factorial ring.

Theorem 1.5. Let A be a Dedekind domain. Every proper nonzero ideal I of A
factors uniquely as a product of prime ideals.
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The proof will follow after we proof several lemmas which are rather intuitive and
in fact of easy verification.

Lemma 1.7. Let A be a noetherian ring, then every ideal I in A contains a
product of nonzero prime ideals.

Proof. We proceed by contradiction, by choosing a maximal counterexample I,
that obviously cannot be prime. The fact of not being prime means that we
have two elements a, b such that ab ∈ I but neither a nor b are in I. But take
now the ideal a + I, that properly contains I. The same occurs with b + I, and
furthermore the product of these two ideals is contained in I. But for hypothesis,
since I is maximal, a+I and b+I are a product of prime ideals, and consequently
I contains a product of prime ideals.

Lemma 1.8. Let A be a ring and I and J relatively prime ideals. Then, for
m,n ∈ N, Im and Jn are relatively prime.

Proof. If they were not relatively prime they are contained in some prime ideal,
but if a prime contains the m-th power on an element, it contains the element.
Therefore, if Im is in the ideal, so is I, and the same for J . We have therefore
that I, J are relatively prime ideals contained in a prime ideal, and that’s not
possible.

Lemma 1.9. Let p be a maximal ideal of an integral domain A, and let q be the
ideal it generates in Ap, q = pAp. Then the map

A/pm → Ap/q
m, a+ pm 7→ a+ qm

is an isomorphism.

The proof is just an easy verification, where the key fact for injectivity is that
qm ∩ A = pm.
We can now prove the theorem: according to the first lemma, a contains a product
of nonzero prime ideals, b = pr11 · · · prnn , where the pi are distinct. Then, using the
Chinese remainder theorem,

A/b '
∏

A/prii '
∏

Api/q
ri
i

where qi = piApi is the maximal ideal of Api . That way, a/b is
∏
qsii /q

ri
i , where

si ≤ ri (we are using that it is a DVR). We conclude that a =
∏
psii in A/b, and

since these ideals both contain b, we conclude that a = psii in A (for the usual
correspondence between ideals in A/b and ideals in A containing b).
We only have to check uniqueness. If

∏
psii = a =

∏
ptii , then qsii = aApi = qtii ,

where qi is the maximal ideal in Api . Therefore, si = ti.

Factorization in extensions

We consider a Dedekind domain A whose field of fractions is K, and we consider
the integral closure of A, B, in a finite separable extension L of K. A prime
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ideal p of A will factor in B as pB = P e1
1 . . . P

eg
g (here we will use capital letter

for primes of B instead of the most conventional notation of gothic characters),
where the ei are positive integers. If some of the ei is strictly greater than 1, p is
said to be ramified in B. ei will be called the ramification index. As it would be
expected, we say that P1 divides p if it appears in its factorization in B. e(Pi|p)
or simply ei will denote the ramification index and f(Pi|p) or fi will be the degree
of the field extension [B/Pi : A/p]. A prime p splits in L if ei = fi = 1 for all i
and is inert when pB is a prime ideal (e = g = 1).
This should be illustrated with an example for the sake of a better clarity: we
take A = Z, B = Z[i]. In Z[i] we know from any undergraduate course in algebra
that there are three kinds of primes:

• The prime 1 + i, associated to the rational prime 2, that is the only prime
of Z that ramifies, since 2 = (1 + i)2. Here, e = 2, g = 1 and f is also 1,
since Z[i]/(1 + i) ' F2.

• The primes a + bi and a − bi, where a, b are chosen in such a way that
a2 + b2 = p where p is any rational prime of the form 4k + 1. In this case
p = (a + bi)(a − bi), so g = 2, ei = 1 and fi = 1. This primes split in Z[i]
and so Z[i]/(a+ bi) = Fp

• The primes of Z of the form 4k+ 3 are inert. In this case, e = g = 1, f = 2,
since Z[i]/(p) ' Fp2 .

We present now an easy lemma and an important theorem.

Lemma 1.10. A prime ideal P of B divides p if and only if p = P ∩K.

Proof. Assume first that P divides p, from which we know that p ⊂ P ∩K ⊂ A.
But p is a maximal ideal of A different from the total, so either P ∩K = A, which
is not possible, or p = P ∩K.
For the other implication, from p ⊂ P , pB ⊂ P , and this implies that P appears
in the factorization of pB.

Theorem 1.6. Let m = [L : K], and let P1, · · · , Pg be the prime ideals appearing
in the factorization of p. Then

∑g
i=1 eifi = m and if L is Galois over K all the

ramification numbers and residue class degrees are equal, verifying efg = m.

Proof. We prove that both sides of the first equality are equal to [B/pB : A/p].
From the Chinese remainder theorem, B/pB =

∏
B/P ei

i , so we have to show
just that eifi = [B/peii : A/p]. But we know (from the definition of fi) that B/pi
is a field of degree fi over A/p. P r

i /P
r+1
i is a B/Pi module and since there are

no other ideals between P r
i and P r+1

i , its dimension as vector spaces is 1. From
here, it follows that the dimension of B/P ei

i is eifi.
For the other equality, [B/pB : A/p] = m, note the following: if B is a free A
module the result is almost immediate, since an isomorphism from An to B when
tensored with K gives an isomorphism from Kn to L, showing that m = n, and
when tensored with A/p gives an isomorphism (A/p)n → B/pB showing that
n = [B/pB : A/p].
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Consider now S = A\p. Consider B′ = S−1B,A′ = S−1A. It is not difficult
to show that B′ is the integral closure of A′ in L and that pB′ =

∏
(PiB

′)ei .
Consequently,

∑
eifi = [B′/pB′ : A′/pA′], and since A′ is principal the result

follows.
The second part of the statement follows directly form the fact that Gal(L/K)
acts transitively on the prime ideals of B dividing p

Theorem 1.7. With the same notations that before, if B is a free A-module, a
prime p ramifies in L if and only if it divides the discriminant of the extension.

The ideal class group

Definition 1.6. Let A be a Dedekind domain. A fractional ideal of A is a nonzero
A-submodule I of K such that dI = {di | i ∈ I} is contained in A for some
nonzero d.

Every nonzero element b of K defines a fractional ideal

(b) = bA = {ba | a ∈ A}

One such fractional ideal is called principal.
The following theorem affirms that the set of fractional ideals is a group:

Theorem 1.8. Let A be a Dedekind domain. The set Id(A) of fractional ideals
is a free abelian group on the set of nonzero prime ideals.

We finish the section with a definition that will be crucial in several moments, for
instance when explaining the theory of complex multiplication of elliptic curves:

Definition 1.7. The ideal class group CL(A) is the quotient Id(A)/P (A) where
P (A) are the principal fractional ideals. Its order is the class number of K.

1.3 The finiteness of the class number

In the following two sections we introduce some key theorems in algebraic number
theory related with finiteness. The first one is that the group of ideal classes of
a number field is finite. Related with this fact, we also have another remarkable
result due to Hermite that asserts that the set of number fields with a given
discriminant is finite. The third one is the unit theorem, that states that the set
of units of a finite field is a finitely generated group and furthermore provides an
effective way of knowing the rank.
For proving these results, the key observation is Minkowski’s theorem. Before
introducing it, we do a basic definition:

Definition 1.8. Let V be a vector space of dimension n over R. A lattice Λ
in V is a subgroup of the form Λ = Ze1 + · · · + Zer, where the ei are linearly
independent. When r = n the lattice is said to be full.
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When we have a full lattice Λ =
∑

Zei, we define for any λ0 ∈ Λ the fundamental
parallelopied as

D = {λ0 +
∑

aiei | 0 ≤ ai < 1}

It is not difficult to verify that its volume is given by the determinant of the ei

Minkowski’s theorem

Theorem 1.9. Let Λ be a lattice in Rn whose fundamental parallelepiped is D0.
Let A be a compact, convex and symmetric in the origin subset of Rn . If Vol(B) ≥
2n Vol(D0), then B has a nontrivial point of Λ.

We begin by showing an easy example of application:
Let M ∈ SL3(Z) being positive definite. Prove that there is a vector v ∈ Z3 such
that vTMv = 1.
The solution is in fact quite simple, taking as our lattice the points of integer
coordinates (so the fundamental parallelepied has volume 1) and considering B
the set of vectors in R3 such that 0 ≤ vTMv ≤ (2 − ε). Clearly, B is compact,
convex and symmetric, and we just have to prove that the volume is smaller or
equal than 8; but for the condition of being positive definite, it is an ellipsoid,

so the volume will be 4π(2−ε)3/2
3

> 8 (we are using that the determinant is 1 since
in the denominator it appears that factor) and we are done. We show another
application of Minkowski that will be useful in our work.

Lemma 1.11. Let q : V → R be a quadratic form on a real vector space (finite
dimensional). If there is a lattice Λ ∈ V such that for every constant k the set
{P ∈ Λ | q(P ) ≤ k} is finite and the only P ∈ Λ with q(P ) = 0 is P = 0, then q
is positive definite on V .

Proof. We begin by writing q in diagonal form as q = x2
1 + · · ·x2

r−x2
r+1−· · · x2

r+s.
We proceed by contradiction assuming that r is smaller than the dimension of
V . Take now the shortest vector of Λ, and call it λ (the smallest value of q(P )
where P runs over the nonzero points of Λ, and for our hypothesis λ > 0). Take
now the set

B(δ) = {(xi) ∈ Rn | x2
1 · · · x2

r ≤ λ/2, x2
r+1 + · · ·x2

r+s ≤ δ}

All the vectors of B(δ) have length smaller than λ/2 so there are no elements
of the lattice, but when increasing the value of δ we would violate Minkowski,
reaching that way a contradiction.

We give now a proof of Minkowski’s theorem (quite elementary in fact):

Proof. We will begin by showing that any measurable set of Rn whose volume is
greater than that of D0 has two points whose difference is in Λ; then we will apply
that result to S = 1/2B = {x/2 | x ∈ B}, whose volume is Vol(B)

2n
> Vol(D0), so

there exist two points in B,α, β such that α/2 − β/2 ∈ Λ. For the symmetry,

−β ∈ B and for the convexity α+(−β)
2
∈ B.

To prove the first claim let S be our set; we observe that Vol(S) =
∑

Vol(S∩D),
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where we are summing over all the translated of the fundamental parallelepiped.
Since Vol(S) > Vol(D0), at least two of the translated will overlap, so there exist
α, β ∈ S such that α− λ = β − λ′ (λ 6= λ′), and then α− β ∈ Λ\{0}.

We go now to the proof of the finiteness of the class number. There are some
quite technical proofs that we omit, and that can be found on Milne’s book on
Algebraic Number theory (chapter 4).

As usual, we will take A to be a Dedekind domain with field of fractions K,
L a finite separable extension of K and B the integral closure of A in L. We
will define a homomorphims N : Id(B)→ Id(A) compatible with taking norm of
elements. If P is a prime ideal in B, we define N(P ) = pf(P/p), where p = P ∩A
(we will sometimes write N for the norm of an ideal). We state some of the main
properties concerning norms (all of them are immediate):

Proposition 1.4. a) For any nonzero ideal a ⊂ A,NL/K(aB) = am.

b) If L is Galois and if P is a nonzero prime ideal of B, p = P ∩ A, we already
know that pB = (P1 · · ·Pg)e. Then N(pB) = (P1 · · ·Pg)ef =

∏
σ∈Gal(L/K) σP .

c) Let β ∈ B be a nonzero element. Then, Nm(β) · A = Nm(β ·B).

Let now a be a nonzero ideal in the ring of integers OK of a number field K; since
a is of finite index in OK , we can define the numerical norm of the ideal a, Na to
be that index.

Proposition 1.5. The numerical norm is multiplicative and if b ⊂ a are frac-
tional ideals of K, then (a : b) = N(a−1b).

The main result toward the proof of the finiteness of the class number is the
following:

Theorem 1.10. Let K be an extension of Q of degree n, ∆K its discriminant and
2s the number of complex embeddings. Then, there exists a set of representatives
for the ideal class group of K consisting of integral ideals a with

N(a) ≤ n!

nn

( 4

π

)s
|∆K |1/2

The quantity of the right is called the Minkowski bound.

From this, we have a theorem that, to be more precise, is a corollary of the
previous result:

Theorem 1.11. The class number of K is finite.

Proof. We will be done if we show that there are only finitely many integral ideals
a in OK with N(a) < M . If a =

∏
P ri
i , N(a) =

∏
prifii , where (pi) = Pi ∩ Z.

For the boundedness condition, we have only finitely many possibilities for the pi
(and so for the Pi) and obviously for the exponents ri.
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We will consider an example for the sake of clarity: we are going to compute the
class group of K = Q(

√
82). ∆K = 4 · 82, s = 0, so the Minkowski bound is

√
82.

We have to look at the primes of 2, 3, 5, 7. For that, we observe the factorization
of T 2 − 82 over the different Fp, since a well-known result is the following one:

Proposition 1.6. Let B = A[α], where A is a Dedekind domain and B its
integral closure in a finite separable extension L of its field of fractions K. Let
f(X) be the minimum polynomial of α over K, and let p be a prime ideal in A.
Write f(X) ≡

∏
gi(X)ei modulo p, where the gi are distinct and irreducible in

Fp. Then,

pB =
∏

(p, gi(α))ei

is the factorization of pB into a product of powers of distinct prime ideals.

For p = 5, 7, note that 3 is not a square, so the polynomial is irreducible and p is
inert. For p = 2 it factors as T 2, so (2) = P 2

2 and for p = 3 it is (T − 1)(T + 1) so
(3) = P3P

′
3. Thus, the class group is generated by [P2] (that has order 2) and by

[P3]. Since the norm of 10+
√

82 is 18 and that number is not divisible by 3, only
P3 or P ′3 is a divisor (assume for instance P3). Therefore, (10 +

√
82) = P2P

2
3 , so

p2 ≡ p−2
3 so the class group is generated by [P3] and has order dividing 4. If we

show that P2 is non-principal, we will be done and the class group will be Z/4Z.
If P2 = (a+ b

√
82), then (2) = P 2

2 = ((a+ b
√

82)2), so 2 = (a+ b
√

82)2u, where u
is a unit. Taking norms, N(u) = 1, but the unit group is ±(9 +

√
82)n, n ∈ Z (it

is non-immediate at all; the next section clarifies the unit structure of a number
field). Therefore, the units of norm 1 are the even power of 9 +

√
82, that are all

squares, so 2 is also a square, 2 = (a+ b
√

82)2 and that is not possible.

Recall that in V = Rr × Cs we have a norm defined by

||x|| =
r∑
i=1

|xi|+ 2
r+s∑
i=r+1

|zi|

and using the usual tools of calculus (changes of coordinates, manipulations of
the Gamma function) it is possible to prove

Lemma 1.12. Let t > 0 be a real number, and let

X(t) = {x ∈ V such that ||x|| ≤ t}

Then,
µ(X(t)) = 2r(π/2)stn/n!

The proof of the main theorem (the finiteness of the class number) relies now on
the following statement:

Proposition 1.7. Let K a number field of degree n and let a be a nonzero ideal
in OK. Then σ(a) is a full lattice in V and the volume of a fundamental paral-
lelepiped of σ(a) is 2−sN(a)|∆K |1/2.
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Proof. We take a basis for a as a Z-module: α1, · · · , αn. To prove this, we consider
the corresponding images under the following morphism (that will appear in this
section and in the following one):

σ : K → Rr × Cs : α 7→ (σ1α, · · · , σr+sα)

and prove that they are also linearly independent. Here, σi for i = 1, · · · , r
denotes the set of real embeddings, and σr+1, σ̄r+1, · · · the set of complex embed-
dings.
To prove the independence, consider two different matrices. First of all, matrix
A will be that whose i-th row is

(σ1(αi), · · · , σr(αi),<(σr+1(αi)),=(σr+1(αi)), · · · )

and let B that whose i-th row is

(σ1(αi), · · · , σr(αi), σr+1(αi), σ̄r+1(αi), · · · )

Clearly one can be obtained just by a linear combination of the other, so we will
show that the determinant of A is nonzero seeing that the determinant of B is
nonzero. But then

det(A) = (−2i)−s det(B)2 = ±(−2i)−sD(α1, · · · , αn)1/2 6= 0

where D is the discriminant of the αi. Then σ(a) is a lattice whose fundamental
parallelepiped has volume | det(A)|. Furthermore, from the identity

|D(α1, · · ·αn)| = (OK : a)2 · | disc(OK/Z)|

we get that the measure of D is what we wanted.

This proposition is the final step towards the proof of the theorem:

Proposition 1.8. Let a be a nonzero ideal in OK. Then a contains a nonzero
element α such that

|Nm(α)| ≤ BKNa =
( 4

π

)s n!

nn
Na|∆K |1/2

Proof. Let X(t) be the set of elements in V whose norm is smaller than t and
let D be a fundamental domain for the lattice σ(a). Then X(t) is compact, con-
vex and symmetric so choosing a sufficiently large t verifying the hypothesis of
Minkowski, we have that X(t) contains a point σ(α) 6= 0. For this α ∈ a, using
the mean inequalities, we have that is norm is smaller or equal than tn/n!.
In particular, if we want µ(X(t)) ≥ 2nµ(D), we need that 2r(π/2)stn/n! ≥
2n2−sNa|∆K |1/2 We can take now a t such that equality holds, and in that case

|Nm(α)| ≤ tn/n! =
n!22s

nnπs
Na|∆K |1/2

that is the desired formula.
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We can now finally prove the finiteness of the class number:

Proof. Let c be a fractional ideal in K, and let us prove that its class is rep-
resented by an integral ideal a whose norm is smaller than our bound BK =(

4
π

)s
n!
nn
|∆K |1/2. Take d ∈ K∗ such that dc−1 is an integral ideal, (d)c−1 = b, so

there is a β ∈ b such that its norm is smaller thanBk·Nb (previous result). We now
have that βOK ⊂ b, and from here βOK = ab, where a is integral and equivalent
to b−1 and to c in the class group. Furthermore, Na ·Nb = |NmK/Q β| ≤ BK ·Nb
and the theorem is proved.

1.4 Dirichlet’s unit theorem

In this section we prove one of the main theorems in algebraic number theory,
with several applications in which will follow. In a basic undergraduate course in
algebra, we easily prove that Z[i]∗ ' Z/4Z or that Z[

√
2]∗ ' Z× Z/2Z. In fact,

it is not difficult to prove that the set of units in an imaginary quadratic field is
finite (using the norm). Here we prove a stronger result:

Theorem 1.12. The group of units in a number field K is finitely generated with
rank equal to r+ s− 1, where r is the number of real embeddings of K and 2s the
number of non-real complex embeddings.

Lemma 1.13. An element α ∈ K is a unit if and only if α ∈ OK and NmK/Q α =
±1

Proof. If α is a unit, we have β ∈ OK such that αβ = 1; the norms of α, β are
integers, so 1 = Nm(αβ) = Nm(α) Nm(β). It is clear that is value is ±1.
The converse is also easy. Fix an embedding σ0 of K into C and recall that
Nm(α) = α

∏
σ 6=σ0 σα. If β =

∏
σ 6=σ0 σα, then it is an algebraic integer, since

each of the factors is (they are roots of the same monic polynomial) and so β is
an integer. If Nm(α) = ±1, then αβ = ±1 and so β ∈ OK . We conclude that
whenever α ∈ OK has norm ±1, it has an inverse ±β ∈ OK , so it is a unit.

Lemma 1.14. For any integers m,M , the set of algebraic integers α such that
the degree of α is ≤ m and |α′| < M for all conjugates α′ of α is finite.

Proof. We are looking for irreducible polynomials of degree m whose coefficients
are bounded, since they are symmetric polynomials evaluated at points whose
norm is also bounded: therefore, each coefficient is bounded (using the triangular
inequality) by a binomial coefficient (the number of summands of the symmetric
polynomials) multiplied by M raised to the degree of this homogeneous polyno-
mial.

An immediate consequence of this is that an algebraic integer, each of whose con-
jugates in C has norm 1, is a root of 1. This is due to the fact that {1, α, α2, · · · }
is finite (according to the proposition).
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Let’s now consider the same map than in the previous section:

σ : K → Rr × Cs : α 7→ (σ1α, · · · σrα, σr+1α, · · · σr+sα)

where the σi are the corresponding embeddings (the first ones are real, and the
second ones are supposed to be taken in such a way that for σr+i we also have
the corresponding conjugate).
In a similar way, we define

L : K∗ → Rr × Cs : α 7→ (log |σ1α1|, · · · log |σrα|, log |σr+1α|, · · · log |σr+sα|)

that is a homomorphism. When u is a unit in OK , its norm is ±1 and each of
the logarithms is 0, so the set of units is contained in the hyperplane

H : x1 + · · ·+ xr + 2xr+1 + · · ·+ 2xr+s = 0

Note that there is an isomorphism between H and Rr+s−1.

Lemma 1.15. The image of L : U → H is a lattice in H, whose kernel is a finite
group (here U denotes the group of units of OK).

Proof. Consider the bounded subset C of H formed by those elements of norm
smaller or equal than M . If L(u) ∈ C, we know that |σju| ≤ eM for each j, and
that only happens for finitely many u (by the previous lemma). Since L(U) ∩ C
is finite, L(U) is a lattice in H. For the kernel, the same reasoning applies, since
if an element is there, |σiα| = 1 for all i, and we use the same lemma. Because
the kernel is finite, rank(U) =rank(L(U)) ≤ dimH = r + s− 1.

We only need to prove now that the image L(U) in H is a full lattice and this
would complete the proof of the main theorem.

Proof. For that, consider again σ : K → Rr × Cs and for x = (x1, · · · , xr, · · · ) ∈
Rr × Cs define Nm(x) = x1 · · ·xrxr+1x̄r+1 · · ·xr+sx̄r+s. Clearly, Nm(σ(α)) =
Nm(α) and |Nm(x)| = |x1| · · · |xr||xr+1|2|xr+s|2. We have already seen that
σ(OK) is a full lattice and the volume of its fundamental parallelepiped is 2−s|∆|1/2.
We will take now an element x ∈ Rr×Cs with the norm between 1/2 and 1. De-
fine then xσ(OK) = {xσ(α) | α ∈ OK}. This is again a lattice whose fundamental
parallelepiped has volume the determinant of the matrix whose i-th row is

(x1σ1(αi), · · · ,<(xr+1σr+1(αi)),=(xr+1σr+1(αi)), · · · )

In the same way than before, manipulating the expression, its absolute value is
2−s times the absolute value of the determinant whose i-th row is

(x1σ1(αi), · · · , xr+1σr+1(αi)), x̄r+1σ̄r+1(αi)), · · · )

Therefore, xσ(OK) is a lattice of volume 2−s|∆|1/2|Nm(x)| (so when x varies this
quantity is bounded).
Let now T be a compact convex subset, symmetric in the origin and whose volume
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is so large that, for every x with the norm between 1/2 and 1, the hypothesis
of Minkowski’s theorem hold and there is a nonzero point γ ∈ OK such that
xσ(γ) ∈ T . The norm of the points of T is bounded, so there is an M such that
|Nm(γ)| ≤ 2M .
Consider now the set of ideals γOK , where γ runs through the γ′s in OK such that
xσ(γ) ∈ T for some x in our set. The norm of such an ideal is ≤ 2M , so there
are only finitely many ideals γ1OK , · · · , γtOK . Note that if γ ∈ OK is such that
xσ(γ) ∈ T , then γOK = γiOK for some i, and consequently γ = γiε. We have so
that xσ(ε) ∈ σ(γ−1

i )T . Since the set T ′ = σ(γ−1
1 )T ∪ · · · ∪ σ(γ−1

t )T is bounded,
we have shown that for each x there exists a unit ε such that the coordinates of
xσ(ε) are bounded uniformly in x, since the set T ′ does not depend on the choice
of x.

We can prove now that L(U) is a full lattice. When r + s − 1 = 0, it is trivial,
so assume is ≥ 1. For an i such that 1 ≤ i ≤ r + s take an x such that all the
coordinates of x but xi are very large, in such a way that |Nm(x)| = 1. Since
there exists εi such that xσ(εi) has bounded coordinates, |σjεi| < 1 for j 6= i
and so log |σjεi| < 0. We will be done by proving that L(ε1), · · · , L(εr+s−1) are
linearly independent in L(U), so take the matrix whose i-th row is

(l1(εi), · · · , 2lr(εi), 2lr+1(εi), · · · , 2lr+s−1(εi))

where li(ε) = log |σiε|. All the elements not lying in the diagonal are negative,
but the sum of each row is positive. In can be easily proved that any real matrix
with negatives entries in the diagonal and positive sum of each row is invertible,
and so we are done.

1.5 Absolute values and local fields

Definition 1.9. An absolute value or valuation on a field K is a function x 7→
|x| : K → R such that:

a) |x| ≥ 0 with equality if and only if x = 0.

b) |xy| = |x||y|.

c) |x+ y| ≤ |x|+ |y|.

A classical result in number theory is a theorem due to Ostrowski that says which
are all the absolute values on Q (up to equivalence). We will denote | · |∞ the
usual absolute value on R and say that is normalized.

Theorem 1.13. Let | · | be a nontrivial absolute value on Q. If it is archimedean,
then it is equivalent to | · |∞ and if it is not, it is equivalent to | · |p for exactly
one prime p.

Proof. We consider the expansion of a certain number m in base n (both m and
n greater than one): m = a0 + · · · + arn

r. We take N = max{1, |n|}, so by the
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triangle equality |m| ≤
∑
|ai||n|i ≤

∑
|ai||N |i ≤ N r

∑
|ai|.

It is clear that r ≤ logn(m) = log(m)/ log(n) and again the triangular inequality
(applied ai times) gives us |ai| ≤ n. Combining all these things in the previous
inequality (and recalling that the sum has r + 1 summands, we get

|m| ≤ N r(1 + r)n ≤ (1 + log(m)/ log(n))nN log(m)/ log(n)

Now we will substitute m by a power, mq, take roots and we will see what happens
when t goes to infinity:

|m| ≤ (1 + t log(m)/ log(n))1/tn1/tN log(m)/ log(n)

Note that n1/t goes to 1 and (1 + tk)1/t also goes to 1 for any constant k (for
l’Hopital, for instance). We conclude that |m| ≤ N log(m)/ log(n). We now have two
cases:

• |n| > 1 for all integers n > 1. Taking log(m)-roots in the previous inequality,
it yields that |m|1/ log(m) ≤ |n|1/ log(n) and for the symmetry we must have the
reverse inequality, so there is a constant c = |m|1/ log(m) > 1. Consequently,

|n| = clog(n) = nlog(c)

for all integers n > 1. We conclude so that |n| = |n|a∞, where | · | is the
usual absolute value. But clearly, | · | and | · |a∞ are homomorphisms from
Q∗ to R>0 that agree on a set of generators (the primes and −1), so they
agree on all of Q∗. The value of a does not affect the topology we obtain,
so they are all equivalent.

• For some n > 1, |n| ≤ 1. In this case, take N = 1 in the inequality

|m| ≤ N log(m)/ log(n)

and so |m| ≤ 1 for all integers m, so it is non-archimedean. In that case, it
makes sense to define A as the numbers with absolute value smaller than
or equal to 1 and m as those with absolute value strictly smaller than 1.
It is not difficult to see that m is maximal (and so it is prime) and that
here m ∩ Z is a prime ideal of Z (and nonzero). We conclude that |m| = 1
when m is not divisible by p, and so |npr| = |p|r, when n is a rational whose
numerator and denominator are not divisible by p. Therefore, any such
absolute value is equivalent to | · |p.

Corollary 1.3. Let a 6= 0, a ∈ Q. Then,
∏
|a|p = 1, where | · |p denotes the

normalized absolute value (|p|p = 1/p).

In a general number field K we have a similar picture. An equivalence class of
absolute values will be called a prime or a place of K. The number of different
places in an arbitrary number field is:

a) One for each prime ideal p.

b) One for each real embedding.

c) One for each pair of complex embeddings.

We will do a few remarks about this in next chapters.
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Completions

It is common that we want to work with complete fields, and so extend our
absolute value to have that every Cauchy sequence is convergent. In that sense,
we have the following result:

Proposition 1.9. Let K be a field with an absolute value | · |. Then, there exists
a complete valued field (K̂, | · |) and a homomorphism from K to K̂ preserving
the absolute value and universal in the following way: a homomorphims from K
into a complete valued field (L, | · |) preserving the absolute value extends uniquely
to a homomorphism K̂ → L.

We begin by discussing the non-archimedean case. Take | · | a discrete non-
archimedean absolute value on K and let π be an element whose valuation is
the greatest one among those that are smaller than 1 (π is a generator of the
maximal ideal m). π will be called a local uniformizing parameter, and the set
of values taken by the absolute value is {|π|m | m ∈ Z} ∪ {0}. When a ∈ K̂∗, we
can take a sequence an converging to a, and so |an| also converges to |a| (because
the valuation is a continuous map) and consequently |a| is a limit point for |K∗|,
that is closed (for being discrete) and so |a| ∈ |K∗|. We conclude that |K̂| = |K|,
so | · | is a discrete absolute value on K̂.
In K̂, we have analogous constructions to those in K (such as the maximal ideal),
and in particular if π is a generator of the maximal ideal of K also generates the
maximal ideal of K̂. In particular,

Lemma 1.16. For every n ∈ N, A/mn → Â/m̂n is an isomorphism (where m̂ is
the maximal ideal of K̂).

The main result in that sense is the following one, that can be proved using the
preceding lemma:

Proposition 1.10. Let S be a set of representatives of A/m, and let π a generator
of m. Then, the series

· · ·+ a−nπ
−n + · · ·+ a0 + a1π + · · ·+ amπ

m + · · ·

is a Cauchy series, and conversely every Cauchy series is equivalent to exactly
one of this form. That way, each element of K̂ has a unique representative of
this form.

An obvious example is Qp, the completion of the rational numbers with the p-adic
valuation.
We begin with a proposition about how to extend a absolute value to a larger
field (for instance, how to extend an absolute value of Q to a number field):

Proposition 1.11. Let K be complete with respect to a discrete absolute value
| · |K and let L be a finite separable extension of K of degree n. Then, | · | extends
uniquely to a discrete absolute value | · |L on L, and L is complete for the extended

absolute value. Furthermore, if β ∈ L, |β|L = |NmL/K β|1/nK .
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1.6 Global fields

A global field is an algebraic number field (finite extension of Q or a function
field in one variable over a finite field. Our main interest will be in the first case.
We already know that when K is a field with an absolute value (archimedean or
discrete non-archimedean), and L is a finite separable extension of K, then there
is a unique extension of | · | to L. We are interested now in the case when K is not
complete. We will state here the main results in that sense, and since they will
not be specially relevant in our work, we do not provide proofs (that are quite
technical):

Proposition 1.12. Let L = K(α) be a finite separable extension of K and let
f(X) be the minimum polynomial of α over K. Then, there is a natural one to
one correspondence between the extensions of | · | to L and the irreducible factors
of f(X) in K̂(X).

Consider so a finite Galois extension L of a number fieldK and letG = Gal(L/K).
If w is an absolute value of L, we write σw for the absolute value such that
|σα|σw = |α|w. For instance, if w is the valuation defined by a prime ideal P , σw
is the valuation defined by the prime ideal σP . An important remark is that G
acts on the set of primes of L lying over a prime v of K, so it is natural to define
the decomposition group (or splitting group) Gw of w to be the stabilizer of w
in G. A σ ∈ Gw extends uniquely to a continuous automorphism of Lw and also
Gτw = τGwτ

−1.

Proposition 1.13. The homomorphism Gw → Gal(Lw/Kv) is an isomorphism.

We are going to make a fictional drawing of our situation, fixing once for all Q as
the base field. For a maximal ideal P of L (L Galois extension) over a rational
prime p, we have that the decomposition group is

Dp = {σ ∈ Gal(L/Q) | σP = P}

This group has order ef so its index in the Galois group Gal(L/Q) is g. It clearly
acts on the residue field fP = OL/P by

(x+ P )σ = xσ + P

The inertia group of P is the kernel of the action, that has order e. Since Fp is a
subfield of fP , there is an injection

DP/IP → Gal(fp/Fp) = 〈σp〉

where σ is the Frobenius. But both groups have order f , and so the injection is an
isomorphism. Recall that when L/Q is Galois, the Galois group acts transitively
on the maximal ideals lying over p, so the decomposition and the inertia group
corresponding to different primes over p are conjugate.
The main object in this picture is the Frobenius element, of a crucial importance
in our future study of class field theory. In the same conditions than before,
consider an ideal P of L unramified in L/K. The Frobenius element σ = (P,L/K)
is the element of G(P ) that acts as the Frobenius automorphism on the residue
field, that is:
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a) σ ∈ G(P ), i.e., σP = P .

b) Let α ∈ OL; then, σα ≡ αq modulo P , where q is the number of elements in
the residue field OK/p, where p = P ∩K.

We state without proof an important theorem of which Dirichlet’s Theorem of
primes in arithmetic progression is a special case. This is due to Chebotarev:

Theorem 1.14. Let F be a Galois number field. Then, every element of Gal(F/Q)
takes the form FrobP for infinitely many maximal ideals P of OF .

1.7 Selmer example

Let’s now put an example of how this local-global principle does not work in
general, by using the same example shown by Selmer.

Theorem 1.15. 3x3 + 4y3 + 5y3 has solutions both in R and in Qp, p ≥ 2, but
not in Q.

The proof of the first fact is not complicated and it uses Hensel’s lemma several
times. First of all, the existence of a real solution is straightforward. Let’s
now distinguish several cases. First of all, to look for a 3-adic solution, we put
x = 0, z = 1, and we have the equation 4y3 + 5 = 0. In a first attempt, we see
that this has a solution mod 3 (a = 1), but that is not enough, since defining
f(y) = 4y3 + 5, we would have that vp(f(a)) = 2 and this is not strictly smaller
than vp(f

′(a))2 = 2. So we take the equation mod 27 and put a = 7, and in
that case vp(f(a)) = 4 and vp(f

′(a)) = 1, so by Hensel’s lemma we can lift the
solution to Z3.
We continue just by stating a trivial result in the theory of finite fields: in F∗q,
the map sending x to x3 is surjective if and only if q is of the form 3k + 2 and
elsewhere the image has index 3. In the first case, just putting x = 1, z = 0, we
will have to find a zero of the function f = 3 + 4y3, but that’s trivial by Hensel
again, since now we have that 3 does not divide p. If q has de form 3k + 1, we
can have that 3 is a cube (and in that case take y = 1, z = −1 and the equation
3x3 = 1 has a solution that we can lift with Hensel) or that 3 is not a cube.
In that case, the subgroup of cubes in F∗p has index 3 and {1, 3, 9} is a set of
representatives. We have then three possibilities:

• If 5 = 1, 5 is a cube and we can take x = 1, y = −1 just like above for
having 5z3 = 1 and since 5 is a cube so is its inverse.

• If 5 = 3, then 5/3 is a cube so we take y = 0, z = −1 and we are done.

• If 5 = 9, we have to proceed in a slightly different way; until now we were
taking the solutions mod p and then lifting them; now we work directly in
Zp, where 15 is a cube (since it is in F∗p for our assumption). We take a
such that a3 = 15 and put (3a/7, 5/7,−1) that works in Qp.
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We now proof the non-existence of solutions in Q proceeding by contradiction.
Multiplying by 2 and rearranging the variables, we can rewrite the equation like
x3 +6y3 = 10z3. For being the equation homogeneous, we can assume that we are
working in Z, and in particular, if one of them is zero so are the other two (since
neither 6 or 10 are cubes). Again for being homogeneous, we can assume that we
have a primitive solution and furthermore, if a prime p divides two of x, y, z, it
should divide the other; therefore, the three numbers are pairwise coprime. We
also have that x, z are not divisible by 3 and x, y are not divisible by 5. We factor
the LHS using α = 3

√
6 and we now have

(x+ αy)(x2 − αxy + α2y2) = 10z3

It is an easy-to-prove result that the discriminant of Z[ 3
√
d] is −27d2 (it is the

matrix where we have all the entries 0 but a11 = 3, a23 = a32 = −3d), so in this
case is −4 · 243.

Lemma 1.17. Let K = Q(α), being α the root of a p-Eisenstein polynomial with
degree n. Then

a) p does not divide [Ok : Z[α]].

b) p divides with multiplicity n− 1 the discriminant of K when p does not divide
n and when p|n, we can only say that the multiplicity is at least n.

The key for proving the lemma is the observation that if K/Q is a number field
of degree n of the form K = Q(α) (where α ∈ OK), and its minimal polynomial
over Q is p-Eisenstein, then for integer numbers ai such that

a0 + a1α + · · · an−1α
n−1 ≡ 0 mod pOK

then ai is a multiple of p for all i.
Since t3− 6 is both 2 and 3 Einsenstein the index of Z[ 3

√
6] in the ring of integers

of Q( 3
√

6) is 1 (the index should divide the discriminant and we have seen that
neither 2 nor 3 divides the index).

Our aim is to rewrite the previous equation as a product of principal ideals.
We pass to an equation of ideals in Z[α]:

(x+ αy)(x2 − αxy + α2y2) = (10)(Z)3

We will see how 10 factors. For that, consider again the polynomial T 3 − 6, that
in F2 factors as p3

2 and in F5 factors as p5 · p25, where p5 has degree 1 and p25 has
degree 2. Therefore (10) = p3

2p5p25.
Let now n be an integer. We know that Nm(n + α) = n3 + 6 (here Nm denotes
the norm), in such a way that Nm(−1 + α) = 5,Nm(−2 + α) − 2. That way, it
must be p5 = −1 + α, p2 = −2 + α.

Lemma 1.18. Z[α] has class number 1
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Proof. The Minkowski bound is between 8 and 9, so we have to look at the primes
smaller that 9. We have already detected which are the primes of norm 2 and 5,
that are p2 = (−2 + α), p5 = (−1 + α). From the factorization of T 3 − 6 we see
that (3) = p3

3; since Nm(α) = 6, (α) = p2p3, we conclude that p3 is principal. For
which concerns 7, T 3 − 6 = (T − 3)(T − 5)(T − 6), so (7) = p7q7r7. We observe
that Nm(1+α) = 7, so (α+1) = p7, Nm(2+α) = 14, (α+2) = p2q2,Nm(4+α) =
70, (α+4) = p2q5r7. From our knowledge that p2 and p5 are principal, we conclude
that the others too.

Lemma 1.19. The units of Z[α] modulo unit cubes are represented by

(1− 6α + 3α2)k

where k = 0, 1, 2.

Proof. We know that the unit group has rank 1, and trivially our units modulo
cubes is a cyclic group of order 3; we just have to find a unit that is not a cube.

Since (2) = (−α + 2)3, the ratio (2−α)3

2
= 1− 6α + 3α2 is therefore a unit; to see

that is not a cube look at the residue field Z[α]/p7; there 1− 6α+ 3α2 ≡ 3, that
is not a cube (the only cubes there are 0, 1,−1).

Note now that if a prime ideal p divides both x + αy and x2 − αxy + y2, then
3xyα ≡ 0 in the residue field of p, so p|(3)(x)(y)(α). If p divides (y), it also
divides (x), but we had assumed that x and y were relatively prime. Also, if
p|(x), then p|(y)(α), so p|(α). If p|(3), then Nm(p) is a power of 3 and since
p divides (z)3, this would force z to be divisible by 3 and that is not possible.
Therefore p divides (α) but not (3), so it is a factor of (2). We conclude that
p = p2. Consequently, (x+ yα) = p2c, (x

2 − αxy + α2y2) = p2c
′ (c, c′ are coprime

and p2 does not divide c). Putting this factorization in the equation, we have
p2

2cc
′ = p3

2p5p25(z)3, so p2 is a factor of c′.
Again, from x3 + 6y3 = 10z3, x ≡ −y modulo 5, so X + Y ≡ 0 modulo p5, what
forces p5|x + yα (since p5|(α − 1)). If p25 also divides it, then 5 would divide
x+ yα and x, y would be both divisible by 5 in Z and that is not true. Therefore
p25 is a factor of (x2 − αxy + α2y2). If c = p5m, c′ = p2p25m

′, then

(x+ αy) = p2p25m; (x2 − αxy + α2y2) = p2
2p25m

′

and in addition mm′ = (z)3 so they are both cubes. In conclusion, we have the
following equation

(x+ αy) = (α− 2)(α− 1)b3

Use now that the class number is one, so the ideal b is principal, and also the
previous lemma about units:

x+ αy = (α− 2)(α− 1)β3u

u = ((2− α)3/2)kv3 = ((2− α)kv)3/2k; v ∈ Z[α]∗; k ∈ {0, 1, 2}

2kx+ 2kyα = (α− 2)(α− 1)γ3
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Writing now γ = a + bα + cα2, where a, b, c are integers not all 0, and plugging
all these in the previous equation, we can equate the coefficients of α2 to get

0 = a3 + 6b3 + 36c3 + 36abc− 9(a2b+ 6ac2 + 6b2c) + 6(ab2 + a2c+ 6bc2)

Obviously 3|a, and from kindergarten arguments, then 3|b and again 3|c (a clas-
sical Fermat descent in a homogeneous equation that lead us to conclude that
all three are 0). We have consequently reached a contradiction and finished the
proof.



Chapter 2

Algebraic curves and their
jacobians

When we work with elliptic curves, we are frequently interested in arithmetic
properties, but we cannot forget that we are dealing with objects defined also
from a geometric point of view, so sometimes it is important to consider this
approximation. This chapter is a brief summary of some of the algebraic geometry
we need, and if this thesis would deal with deeper facts, it would be necessary
to enlarge this part, since the theory of schemes introduced by Grothendieck and
other developments along the last (say) seventy years are of great relevance in
number theory.

2.1 Algebraic curves

A curve will be a projective variety of dimension one. We will denote by K̄[C]P
the local ring of C at P , and by MP the maximal ideal of K̄[C]P . Let P be a
non-singular point; using that MP/M

2
P is a one dimensional vector space over

K̄ = K̄[C]P/MP , we have the following useful result:

Proposition 2.1. Let C be a curve and let P ∈ C be a smooth point. Then,
K̄[C]P is a discrete valuation ring.

Definition 2.1. Let C and P as in the previous proposition, and let f ∈ K̄(C).
The order of f at P is ordP (f). When it is greater than 0, f has a zero at P ,
and when it is smaller it has a pole. When it is ≥ 0, f is regular or defined at P
and we can evaluate f(P ).

A uniformizer for C at P is any function t ∈ K̄(C) with order 1 (a generator of
MP ). A first important result is the following:

Proposition 2.2. Let C/K be a curve and let t ∈ K(C) be a uniformizer at
some non-singular point P ∈ C(K). Then K(C) is a finite separable extension
of K(t).

We continue with a result that will appear for instance as our first step in the
proof of Mordell’s theorem:

35
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Proposition 2.3. Let φ : C1 → C2 be a morphism of curves (C2 connected).
Then φ is either constant or surjective.

Consider two curves over K, C1 and C2 and a non-constant rational map (over
K), φ : C1 → C2. Then composition with φ induces an injection of function fields
that fixes K

φ∗ : K(C2)→ K(C1); φ∗f = f ◦ φ

Proposition 2.4. Let C1/K and C2/K be two algebraic curves. With the previ-
ous notations,

a) K(C1) is a finite extension of φ∗(K(C2)).

b) Let ι : K(C2) → K(C1) an injection of function fields that fixes K. Then
there exists a unique non-constant map φ : C1 → C2 such that φ∗ = ι.

c) Let K ⊂ K(C1) be a subfield of finite index that contains K. Then, there
exists a smooth curve C ′/K and a non-constant map φ : C1 → C ′ such that
φ∗K(C ′) = K. Furthermore, C ′ is unique up to K -isomorphism.

When we have a map of curves defined over K, φ : C1 → C2, we can define
its degree: it will be 0 when φ is constant, and otherwise we will say that is
a finite map of degree deg φ = [K(C1) : φ∗K(C2)]. We say that φ is separable,
inseparable or purely inseparable when the corresponding field extension has that
property.

These results show a strong connection between curves and their functions field.
We can say that there is an equivalence of categories: on one side, smooth curves
defined over K, where the maps are non-constant rational maps over K; on
the other, finitely generated extension of K/K of transcendence degree one with
K∩K̄ = K, being the maps field injections fixing K. The following two theorems
(that could be called curves-fields correspondence) explain that fact:

Theorem 2.1. The map C → K(C) induces a bijection from the set of isomor-
phim classes over K of non-singular projective algebraic curves over K to the set
of conjugacy classes over K of function fields over K.

That theorem gives the map from curve-classes to field-classes explicitly. To
describe the map from field-classes to curve-classes, let K be a function field
over K. Since the extension K/K(t) is finite, in characteristic zero the primitive
element theorem says that K = K(t, u), where as we have already pointed out
u satisfies an irreducible polynomial over K(t). We will have therefore, clearing
denominators, a relation of the form φ(t, u) = 0, φ ∈ K[x, y]. Since K ∩ K̄ = K,
it can be seen that the polynomial φ(x, y) will be irreducible over K̄ and the set
of points (x, y) ∈ K̄2 such that φ(x, y) = 0 gives a plane curve C ′. The typical
process of desingularizing (chapter 7 of Fulton) will produce a non-singular curve
C with function field K. The problem is that in general C ′ and C will not be
isomorphic, just birationally equivalent. The point is that maybe the non-singular
curve corresponding to the field K is not plane, and in fact in the theorem we are
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not saying anything about that.
Let now h : C → C ′ be a non-constant morphism over K, and consider h∗ :
K(C ′)→ K(C) defined as usual.

Theorem 2.2. Let C,C ′ be non-singular projective algebraic curves over K.
Then, the map h → h∗ is a bijection from the set of non-constant morphisms
over K from C to C ′ to the set of K-injections of K(C ′) in K(C).

Definition 2.2. Let φ : C1 → C2 be a non-constant map of smooth curves and
let P ∈ C1. The ramification index of φ at P , eφ(P ) is eφ(P ) = ordP (φ∗tφ(P )).

Proposition 2.5. Let φ : C1 → C2 be a non-constant map of smooth curves.

a) For every Q ∈ C2, ∑
P∈φ−1(Q)

eφ(P ) = deg(φ)

b) For all but finitely may Q ∈ C2, #φ−1(Q) = degs(φ)

c) Let ψ : C2 → C3 be another non-constant map of smooth curves. Then,
eψ◦φ = eφ(P )eψ(φP ).

We introduce now the Frobenius map. For that, assume that char(K) = p > 0
and let q = pr. We define f (q) to be the polynomial obtained by raising each
coefficient of the polynomial f to the q-th power. So when we have a curve C/K
we can define a new curve C(q)/K (as the one whose homogeneous ideal is given
by the one generated by {f (q) : f ∈ I(C)}).

Proposition 2.6. Let K be a field of characteristic p > 0, let q = pr, let C/K
be a curve and let φ : C → C(q) be the q-th power Frobenius morphism.

a) φ∗(K(C(q)) = K(C)q.

b) φ is purely inseparable.

c) deg φ = q.

We continue our walk through basic algebraic geometry recalling some basic def-
initions.

Definition 2.3. The divisor group of a curve C is the free abelian group generated
by the points of C. A divisor D ∈ Div(C) is principal if it has the form D =
div(f) (where div(f) =

∑
P∈C ordP (f)(P )) for some f ∈ K̄(C)∗. Two divisors

are equivalent when their difference is principal. The divisor class group or Picard
group of C is the quotient of Div(C) by its subgroup of principal divisors. Finally,
PicK(C) is the subgroup of Pic(C) fixed by GK̄/K.

The degree of a divisor niPi is
∑
ni; a super-index Pic0 will mean that we are

considering only those divisors of zero degree.
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Definition 2.4. Let C be a curve. The space of meromorphic differential forms of
C, ΩC, is the K̄-vector space generated by symbols of the form dx, for x ∈ K(C)
subjec to the relations of linearity, Leibnitz rule and that da = 0 for all a ∈ K̄.

We now state Riemann-Roch theorem, one of the central results of algebraic
geometry:

Theorem 2.3. Let C be a smooth curve and let KC be a canonical divisor on C.
Let g be the genus of C. Then, for every divisor D ∈ Div(C),

l(D)− l(KC −D) = degD − g + 1

We conclude this first section with a classical relationship connecting the genera
of curves linked by a non-constant map (Riemann-Hurwitz):

Theorem 2.4. Let φ : C1 → C2 be a non-constant separable map of smooth
curves of genera g1 and g2 respectively. Then,

2g1 − 2 ≥ (deg φ)(2g2 − 2) +
∑
P∈C1

(eφ(P )− 1)

with equality if and only if K is of characteristic zero or the characteristic p does
not divide eφ(P ) for all P ∈ C1.

2.2 Algebraic varieties

This section is not strictly necessary for this thesis, but in the last chapter we
will try to explain some concepts that require the notion of scheme. We will not
properly explain what does it mean, but we consider appropriate to state here the
situation we have in the framework of classical algebraic geometry, to point out
after how this can be generalized to give rise to the modern theory of schemes.

Ringed spaces

Let V be a topological space and k a field.

Definition 2.5. Suppose that for every open subset U of V we have a set OV (U)
of functions U → k. Then OV is a sheaf of k-algebras if it satisfies the following
conditions:

a) OV (U) is a k-subalgebra of the algebra of all k-valued functions on U (equiv-
alently, OV (U) contains the constant functions and if f, g are in OV (U) then
so also do f + g and fg).

b) If U ′ is an open subset of U and f ∈ OV (U), then f |U ′ ∈ OV (U ′).

c) A function f : U → k on an open subset U of V is in OV (U) if f |Ui ∈ OV (Ui)
for all Ui in some open covering of U .
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When only the two first conditions are satisfied, we say that it is a presheaf.

Definition 2.6. A pair (V,OV ) consisting on a topological space V and a sheaf of
k-algebras will be called a ringed space. OV (U) is frequently written as Γ(U,OV ).
Its elements are called sections of OV over U .

A morphism of ringed spaces (V,OV )→ (W,OW ) is a continuous map φ : V → W
such that f ∈ Γ(U,OW ) implies that f ◦ φ ∈ Γ(φ−1U,OV ).
Every ringed space isomorphic to an algebraic set V ∈ kn is an affine algebraic
variety over k. A map f : V → W of affine varieties is regular if it is a morphism
of ringed spaces. An affine k-algebra is a reduced (without nilpotent elements)
finitely generated k-algebra. We can attach a ringed space (V,OV ) to such an
algebra A by letting V be the set of maximal ideals in A. For f ∈ A let D(f) =
{m | f(m) 6= 0}. We consider the topology for which the D(f) form a base.
It is immediate to see that the pair (V,OV ) is an affine (algebraic) variety with
Γ(V,OV ) = A. We write spm(A) for the topological space V and Spm(A) for the
ringed space (V,OV ).

Proposition 2.7. A ringed space (V,OV ) is an affine variety if and only if
Γ(V,OV ) is an affine k-algebra and the canonical map V → spm(Γ(V,OV )) is
an isomorphism of ringed spaces.

With the usual notations, we have the following elementary result:

Proposition 2.8. Let V = V (a) ⊂ km, W = V (b) ⊂ kn. The following condi-
tions on a continuous map φ : V → W are equivalent:

a) φ is regular.

b) The components φ1, · · · , φm of φ are all regular.

c) f ∈ k[W ] implies f ◦ φ ∈ K[V ].

Definition 2.7. An algebraic prevariety over k is a ringed space (V,OV ) such
that V is compact and every point of V has an open neighborhood U for which
(V,OV |U) is an affine algebraic variety over k. When (V,OV ) and (W,OW ) are
algebraic varieties, a map φ : V → W is regular if it is a morphism of ringed
spaces.

Definition 2.8. An algebraic variety is an algebraic prevariety that is separated,
that is, for every pair of regular maps φ1, φ2 : Z → V with Z an affine algebraic
variety, the set where φ1(z) = φ2(z) is closed in Z.

Definition 2.9. An algebraic group is a variety G with regular maps, multipli-
cation, inverse and identity e : A0 → G, that make G into a group in the usual
sense.
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Complete varieties

The introduction of this concrete type of varieties is necessary for the proper defi-
nition of abelian varieties that are the natural generalization of elliptic curves. In
the category of algebraic varieties, complete varieties are the analogue to compact
spaces in the category of Hausdorff topological spaces. The basic fact (that will
be used several times, for instance at the beginning of the proof of Mordell-Weil)
is that the image of a complete variety is complete, and we will look for analo-
gies: in general topology, the image of a compact is compact, and if the space
is Hausdorff, then it is closed; furthermore, a Hausdorff space is compact if and
only if for all topological spaces W the projection map π : V ×W → W is closed.

Definition 2.10. An algebraic variety V is complete if for all algebraic varieties
W the projection map π : V ×W → W is closed.

We now state the so called rigidity theorem:

Proposition 2.9. Let φ : V ×W → Z be a regular map, and assume that V is
complete, that V and W are irreducible and that Z is separated. If there exists
points v0 ∈ V , w0 ∈ W and z0 ∈ Z such that

φ(V × {w0}) = {z0} = φ({v0} ×W )

then φ(V ×W ) = {z0}.

2.3 Abel’s theorem

Let ω be a closed C∞ 1-form on X. If D is a triangulated subset of X, Stoke’s
theorem told us that

∫
∂D
w =

∫ ∫
D
dw = 0. We know, therefore, that the integrals

of ω around any closed chain only depend on the homology class of the chain.
Hence for every homology class [c] we obtain a well defined functional on the
space Ω1(X) of holomorphic 1-forms, which is integration around c.

Definition 2.11. A linear functional λ : Ω1(X) → C is a period if it is
∫

[c]
for

some homology class [c].

Note that the set of periods Λ is a subgroup of the dual space Ω1(X)∗.

Definition 2.12. Let X be a compact Riemann surface. The jacobian of X,
Jac(X) is the quotient group

Jac(X) =
Ω1(X)∗

Λ
=

Ω1(X)∗

H1(X,Z)

i.e., the space of holomorphic 1-forms modulo periods.
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The Abel-Jacobi map

Choose a base point p0 on the compact Riemann surface X and for any other
point p ∈ X, we choose a path γp from p0 to p contained in X. So it is possible
to define the map A : X → Ω1(X)∗ : A(p)(ω) 7→

∫
γp
ω. Of course this is not

well defined, and what we have to do is define it modulo periods (since the value
of A(p), when choosing a different path, changes by integration around a closed
chain), so A goes from X to Jac(X). This is the so called Abel-Jacobi map for
X, which depends on the base point.

Theorem 2.5. Let X be a compact Riemann surface of genus g and let D be
a divisor of degree 0 on X. Then D is principal if and only if A0(D) = 0 in
Jac(X).

Another way of stating the theorem is the following: if we denote by Pic0(X) the
subgroup of Pic(X) given by classes of divisors of degree 0, what we are saying
is that

Pic0(X) ∼= Jac(X)

For example, when X = Ĉ the jacobian is trivial because g = 0 and Abel’s
Theorem states that every degree zero divisor on the Riemann sphere is principal.
One of the main results around this thesis will be, as announced, modularity
theorem: in one of its formulations, what it says is that there is a surjective
holomorphic homomorphism between the jacobian of a certain curve X0(N) and
a complex elliptic curve whose j-invariant is rational.

Maps between jacobians

Let h : X → Y be a non-constant holomorphic map of compact Riemann surfaces.
We are going do define now forward and reverse holomorphic homomorphisms of
jacobians, hJ : Jac(X) → Jac(Y ), hJ : Jac(Y ) → Jac(X) and consequently, due
to the isomorphism above mentioned, between the Picard groups hP , h

P . Begin
by considering the pullback map induced by h,

h∗ : C(Y )→ C(X)

defined as usual as h∗g = g ◦ h. From the theory of algebraic curves, each point
x ∈ X has a ramification degree ex ∈ Z+ such that h is locally ex-to-1 at x The
following relation between the orders of vanishing ν of a function and its pullback
will be useful

νx(h
∗g) = exνh(x)(g)

where g ∈ C(Y )∗. The important fact now is that the pullback can be extended
to a linear map of holomorphic differential

h∗ : Ω1
hol(Y )→ Ω1

hol(X)

We omit the explanation but is the rather typical procedure of geometry of work-
ing in local coordinates.
The pullback dualizes to a linear map of dual spaces, that we will denote by h∗.
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Definition 2.13. The forward map of jacobians is the holomorphic homomor-
phism induced by composition with the pullback,

hJ : Jac(X)→ Jac(Y ) hJ [φ] = [h∗φ] = [φ ◦ h∗]

If we return to the general situation, a map h : X → Y , we also have a norm
map between C(X) and C(Y ), denoted normh

(normh f)(y) =
∏

x∈h−1(y)

f(x)ex

The orders of vanishing of a nonzero function and its norm are related by

νy(normh f) =
∑

x∈h−1(y)

νx(f)

Consequently, we will have that

div(normh f) =
∑
y

( ∑
x∈h−1(y)

νx(f)
)
y =

∑
x

νx(f)h(x)

The map on general divisor that extends this will be

hD : Div(X)→ Div(Y ) hD(
∑
x

nxx) =
∑
x

νx(f)h(x)

Note that it takes zero-degree divisors to zero-degree divisors, and also principal
divisors to principal divisors, since hD(div(f)) = div(normh f).

Definition 2.14. The forward map of Picard groups is the homomorphism

hP : Pic0(X)→ Pic0(Y ) hP (
∑
x

nxx) = (
∑
x

nxh(x))

Defining the reverse map hJ is more delicate. Let now h be a surjection of finite
degree d, locally ex-to-1 at each x ∈ X, and let ε = {x ∈ X : ex > 1} be the
finite set of points where h is ramified. If Y ′ = Y − h(ε) and X ′ = h−1(Y ′)
are the Riemann surfaces obtained by removing the exceptional points and their
preimages, we get a restriction map h : X ′ → Y ′ that is a d-fold covering map.
That means that every point y ∈ Y ′ has a neighborhood Ũ whose inverse image
is a disjoint union of neighborhoods U1, . . . , Ud in X ′ such that each restriction
hi : Ui → Ũ of h is invertible.
We recall now some facts in general topology: given a path δ in Y ′ and a preimage
x ∈ h−1(δ(0)) in X ′, there is a unique lift γ of δ to X ′ starting at x. When δ is
a path in Y and only its endpoints might lie in h(ε) the local mapping theorem
shows that for every x ∈ h−1(δ(0)) there exist ex lifts of γ starting at x. When
we have a loop β in Y ′ the map taking the initial point of each of its lifts to the
terminal point is a permutation of the d-element set h−1(β(0)). Summing up,
since any path can be perturbed to avoid h(ε) without changing integration of
holomorphic differential, any path integral of holomorphic differentials on Y can
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be taken over a path δ such that only its endpoints might lie in h(ε).
Define the trace map induced by h as

trh : Ω1
hol(X)→ Ω1

hol(Y )

To do this, we have to consider local inverse h−1
i : Ũ → Ui (in local coordinates)

and the trace will be

(trh ω)|Ũ =
d∑
i=1

(h−1
i )∗(w|Ui)

As usual, this dualizes to a linear map of dual spaces

tr∗h : Ω1
hol(Y )∗ → Ω1

hol(X)∗

defined as tr∗h ψ = ψ ◦ trh.

Definition 2.15. The reverse map of jacobians is the holomorphic homomor-
phism induced by composition with the trace

hJ : Jac(Y )→ Jac(X) hJ(ψ) = [ψ ◦ trh]

Proposition 2.10. Let h : X → Y be a non-constant holomoprhic map of com-
pact Riemann surfaces. Take h∗ to be the dual map of h∗ restricted to H1(X,Z)

h∗ : H1(X,Z)→ H1(Y,Z) h∗

(∑
α

nα

∫
α

)
=
∑
α

nα

∫
h◦α

Then, h∗(H1(X,Z)) is a subgroup of finite index in H1(Y,Z). If V is a subspace
of Ω1

hol(Y ) then the restriction h∗(H1(X,Z))|V is a subgroup of finite index in
H1(Y,Z)|V .

To finish, we just establish the reverse map of Picard groups. Observe that

div(h∗g) =
∑
x

exνh(x)(g)x =
∑
y

νy(g)
∑

x∈h−1(y)

exx

Definition 2.16. The reverse map of Picard groups is the homomorphism

hP : Pic0(Y )→ Pic0(X) hP (
∑
y

nyy) = (
∑
y

ny
∑

x∈h−1(y)

exx)

2.4 Further results in Algebraic Geometry

Definition 2.17. Let S be a set of meromorphic functions on a compact Riemann
surface X. We say that S separates points of X if for every pair of distinct points
p and q in X there is a meromorphic function f ∈ S such that f(p) 6= f(q). We
say that S separates tangents of X if for every point p ∈ X there is a meromorphic
function f ∈ S which has multiplicity one at p. A compact Riemann surface X
is an algebraic curve if the field M(X) of global meromorphic functions separates
the points and tangents of X.
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This will be important for us, but we will be looking for something stronger,
canonical models over the rationals for certain curves, and this will be more
difficult A rather deep theorem is the following one:

Theorem 2.6. Every compact Riemann surface is an algebraic curve.

This is a deep theorem that requires tools of functional analysis for its proof.
Indeed, it is not trivial that a compact Riemann surface has any nonconstant
meromorphic functions at all. This result is used in the proof of Riemann Roch
and in some sense it can be considered equivalent to it.
Another important result that will be around us in some moments is this:

Proposition 2.11. Every algebraic curve of genus one is isomorphic to a smooth
projective plane cubic curve.

Abelian varieties

As we mentioned in the introduction, the main object of this thesis will be elliptic
curves (together maybe with modular curves). A tentative definition of elliptic
curve could be: a non-singular projective curve together with a group structure
defined by regular maps (in fact, we will give four different definitions and just
sketch how this can be taken as equivalent to them). But the important fact is
that is the definition that can be generalized. We have then the concept of an
abelian variety, that fulfills most of the good properties of elliptic curves.

Definition 2.18. An abelian variety is a complete connected group variety.

Proposition 2.12. Every regular map α : A → B of abelian varieties is the
composite of a homomorphism with a translation; in particular, a regular map
α : A→ B such that α(0) = 0 is a homomorphism.

Proof. After composing α with a translation we may suppose that α(0) = 0.
Consider the map φ : A × A → B given by φ(a, a′) = α(a + a′) − α(a) − α(a′).
Then, φ(A× 0) = 0 = φ(0× A) and so φ = 0 and α is a homomorphism.

Proposition 2.13. The group law on an abelian variety is commutative.

Proof. A property that characterizes commutative groups is that the map that
takes an element to its inverse is a homomorphism. Since the map that takes a
to −a takes the identity element to itself, by the preceding result we know that
it is a homomorphism.



Chapter 3

Elliptic curves: definitions and
first properties

As we pointed out in the introduction, elliptic curves are one of the main topics
of this essay, and one of the most well-known objects in number theory. They
are introduced in any course in basic algebraic geometry when studying algebraic
curves over algebraically closed fields. From that approach, it is convenient to
keep in mind that they have a group structure, that can be defined with a partic-
ular geometric construction (the classical proof of associativity is in some sense
weird). The important fact here is that they are group algebraic varieties, so we
can take advantage both of its algebraic and geometric properties. We begin by
giving four different (and equivalent) definitions of an elliptic curve over a field
k that, for convenience will be assumed to be perfect (this is only necessary in
some moments).

Definition 3.1. An elliptic curve over k can be defined as:

a) A non-singular projective plane curve E over k of degree 3 together with a
point 0 ∈ E(k).

b) A non-singular projective plane curve E over k of degree 3 together with an
inflection point 0 ∈ E(k).

c) A non-singular projective plane curve over k of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

d) A non-singular projective plane curve E of genus 1 together with a point O ∈
E(k).

Proof. That a) implies b) follows from the fact that, in a projective cubic plane
curve over k, we can transform a point to a point of inflection: this is maybe
the hardest of the implications and is based in a change of variables suggested
around 1928 by Nagell. Let O ∈ C(k) and suppose that it is not an inflection
point, so the tangent line to C at O meets C in another point P . We make a
change of variables in such a way that the tangent line at O is the Y -axis and
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P = (0 : 0 : 1). That way, C does not have term in Z3 and the corresponding
affine curve (defined as the intersection of C with Z = 1) does not have constant
term. Write Caff = F1(X, Y ) + F2(X, Y ) + F3(X, Y ), where Fi is homogeneous
of degree i. Since O = (0, y) is a double point, we have that y is a double root
of F1(0, 1)Y +F2(0, 1)Y 2 +F3(0, 1)Y 3 (since when putting Fi(0, 1) we obtain the
coefficient of Y i). Extracting Y as a common factor, we have a second degree
polynomial with a double root, so its discriminant is 0, i.e.,

F2(0, 1)2 = 4F1(0, 1)F3(0, 1)

Consider now a line of the form Y = tX, and look at their intersection with Caff;
this happens at those points whose x-coordinate verifies

x(F1(1, t) + xF2(1, t) + x2F3(1, t)) = 0

We have by one side the origin and we must work with the other factor. The
relation F1(1, t) + xF2(1, t) + x2F3(1, t) can be written completing squares in the
same spirit that when we solve a quadratic equation as

(2F3(1, t)x+ F2(1, t))2 = F2(1, t)2 − 4F1(1, t)F3(1, t)

Now we can define a change of variables in a natural way:

s 7→ 2F3(1, y/x)x+ F2(1, y/x) and t 7→ y/x

This defines a homomorphism k[s, t]→ k[x, y][x−1] where

s2 = G(t) being G(t) = F2(1, t)2 − 4F1(1, t)F3(1, t)

That way, we have a regular map from Caff\{0} → E, where E is the affine curve
defined by s2 = G(t). The polynomial G(t) can be interpreted as a fourth-degree
polynomial that we can homogenize. Previously, we saw that it has a root in
(0, 1), so when substituting (1, t) it can only have degree three (the homogeneous
polynomial of degree four has already the root (0, 1)). We can extend this ap-
plication to a morphism Caff → E by sending O to (0 : 1 : 0) (the point with
s-coordinate 1, since it does not appear term in s3) and we get that the origin is
now an inflection point.

We continue with the chain of implications: it is clear from basic algebraic geom-
etry that after an invertible linear change of variables with coefficients in k, the
point O (that was an inflection point) can have coordinates (0 : 1 : 0) and the
tangent line to a curve C at O can be L∞ : Z = 0. The general form of the cubic
would be

c1X
3+c2X

2Y +c3X
2Z+c4XY

2+c5XY Z+c6XZ
2+c7Y

3+c8Y
2Z+c9Y Z

2+c10Z
3

Since (0 : 1 : 0) ∈ C(k), we must have c7 = 0. We consider now

U1 = {(x : y : z) | y = 1}
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and we identify as usual U1 with A2 through (x : 1 : z) 7→ (x, z). We also know
that C ∩ U1 is the affine curve

c1X
3 + c2X

2 + c3X
2Z + c4X + c5XZ + c6XZ

2 + c8Z + c9Z
2 + c10Z

3

but the tangent line at (0, 0) is c4X + c8Z = 0 and by hypothesis it was Z =
0, so c4 = 0 (and c8 6= 0 to be non-singular). The intersection number is
I(Z, c1X

3 + c2X
2) = I(Z,X2) + I(Z, c1X + c2) = 2 + I(Z, c1X + c2), so we

must have (since this intersection number is ≥ 3 for the condition of being a
point of inflection) that c2 = 0. In addition, we must have that c1 6= 0, other-
wise the polynomial would be divisible by Z. We divide by c1 and replace Z by
−c1Z/c8, to finally obtain the desired equation.

The fact that c) implies d) is the easiest one: clearly, the equation defined in
c) is non-singular and by the genus formula it has genus 1; the point (0 : 1 : 0)
also belongs to the curve.

Let now E be a complete non-singular curve of genus 1 over k and let O ∈ E(k).
By virtue of Riemann-Roch, the rational functions on E having no poles except
at O (where they are allowed to have at most a pole of order m), form a k-vector
space of dimension m (for m ≥ 1). In L([O]) we have only constant functions
({1} is a basis). Choose now x such that {1, x} is a basis for L(2[O]) and y such
that {1, x, y} is a basis for L(3[O]). In L(4[O]) the basis will be {1, x, y, x2} and in
L(5[O]), {1, x, y, x2, xy}. But in L(6[O]) we already know about the existence of
seven elements, {1, x, y, x2, xy, y2, x3}, so we must have a relation between them
of the form

a0y
2 + a1xy + a3y = a′0x

3 + a2x
2 + a4x+ a6

where both a0 and a′0 must be nonzero; we can replace y with a0y/a
′
0 and x with

a0x/a
′
0. Multiplying by a

′2
0 /a

3
0, the coefficients in y2 and x3 can be assumed to be

both equal to 1. To sum up, the map P → (x(P ), y(P )) sends E\{0} onto the
plane affine curve

C : Y 2 + a1XY + a2Y = X3 + a5X
2 + a6X + a7

x has a double pole at O so it has only two zeros, and so x+ c has two zeros, too
(counting multiplicities). That way, the map

E\{0} → A1, P 7→ x(P )

has degree two, and the map sending P to y(P ) has degree 3. Therefore, the
degree of E\{O} → C must divide both 2 and 3 so it is 1. If C were singular, its
genus would be 0, and this cannot be. For being C non-singular, the map is an
isomorphism and it extends to an isomorphism onto C̄.

3.1 The Weierstrass equation for an elliptic curve

Definition 3.2. Let E an elliptic curve over k. An equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3
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is called a Weierstrass equation for the elliptic curve. The quantity ∆ = −16(4a3+
27b2) is the discriminant of the elliptic curve (we sometimes omit the factor −16).

If char(k) 6= 2, 3 we perform first the change

X ′ = X, Y ′ = Y + a1/2X,Z
′ = Z

to eliminate the term XY Z, and then

X ′ = X + a2/3, Y
′ = Y + a3/2, Z

′ = Z

to eliminate the terms in X2 and Y . We finally get an equation of the form

E(a, b) : Y 2Z = X3 + aXZ2 + bZ3

which is the way kids know elliptic curves. Note that a curve in this form is
non-singular if and only if 4a3 + 27b2 6= 0. From now on, we will write the
curve sometimes as a projective curve but in some moments we will consider its
intersection with one of the affine planes.
The following two propositions are our first approach to study isomorphisms of
elliptic curves.

Proposition 3.1. Let φ : E(a′, b′) → E(a, b) be an isomorphism sending O =
(0 : 1 : 0) to O′ = (0 : 1 : 0), then there exists a c ∈ k∗ such that a′ = c4a, b′ = c6b
and φ is is the map (x : y : z) 7→ (c2x : c3y : z). Conversely, if a′ = c4a, b′ = c6b
for some c ∈ k∗, then (x : y : z) 7→ (c2x : c3y : z) is an isomorphsim sending O
to O′.

Proof. Consider the function x ◦ φ on E(a′, b′) that has a double pole at O′, like
x′; therefore x◦φ = u1x

′+r (u1 ∈ k∗, r ∈ k). For the same reason, and using now
that y ◦φ has order three and so is an affine combination of the base functions of
less order, y ◦φ = u2y

′+sx′+ t, u2 ∈ k∗, s, t ∈ k. Use now that the map f → f ◦φ
is a homomorphism between k[x, y] and k[x′, y′]; since we know Y 2 = X3+aX+b,
then the same equation holds for x ◦ φ and y ◦ φ

(u2y
′ + sx′ + t)2 = (u1x

′ + r)3 + a(u1x
′ + r) + b

and any polynomial satisfied by x′, y′ should be a multiple of Y 2 −X3 − aX − b.
From here, we deduce that u2

2 = u3
1, r = s = t = 0, a′ = (u2/u1)4a, b′ = (u2/u1)6b,

as we wanted. The reciprocal is obvious.

Proposition 3.2. Let (E,O) be an elliptic curve with a point O isomorphic to
(E(a, b), O). We define

j(E) =
1728(4a3)

4a3 + 27b2

Then (j, E) depends only on (E,O) and two elliptic curves E,E ′ are isomorphic
over the algebraic closure of the field k if and only if j(E) = j′(E).
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Proof. If two curves are isomorphic, there exists a c like in the preceding propo-
sition, so the numerator and the denominators of j(E) are multiplied by c6 and
give the same result. To proof the converse, suppose that j(E) = j(E ′). A first
trivial observation is that a = 0 if and only if a′ = 0. Over kal, two elliptic
curves of the form Y 2Z = X3 + bZ3 are isomorphic (the isomorphisms here are of
the form b′ = c6b and for the condition of being algebraically closed we can put
any b′). Assume now that a, a′ 6= 0 and replace now (a, b) with (c4a, c6b), where
c = 4

√
a′/a. That way we already have a = a′ and from j(E) = j(E ′), b = ±b. A

change like before where c =
√
−1 shows the final isomorphim between the two

curves with opposite b.

Note that the condition of being algebraically closed is necessary and two curves
can have the same j-invariant without being isomorphic. Two curves like that,
which become isomorphic over the algebraic closure, are called twists and will be
studied in detail later.
A similar study of the isomorphisms between elliptic curves can be done in gen-
eral, without assuming that the characteristic is different from 2 or 3, but the
ideas are the same and we just get formulas and proofs that are more tedious.

3.2 Reduction of an elliptic curve modulo p

Let’s consider now an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Q, ∆ = −16(4a3 + 27b2) 6= 0

After a change of variables X ′ 7→ X/c2, Y ′ 7→ Y/c3 we can assume that the
coefficients are in Z so we can look at them modulo p to obtain a curve Ē over
Fp. But this curve is not necessary an elliptic curve, since the discriminant may
vanish.
To introduce the topic, we will take a look to different irreducible algebraic curves
over k (that is assumed to be perfect) having group structures defined by regular
maps.

• Elliptic curves: they will result to be the only irreducible projective curves
that have a group structure defined by polynomial maps.

• Clearly, we also have that the affine line A1 is a group under addition. We
will write it as Ga.

• The same occurs for the affine line with the origin removed, which is a group
under multiplication, Gm.

• We have the so called twisted multiplicative groups: to define them, take a a
non-square in k∗ and let L = k[

√
a] the corresponding quadratic extension,

and consider the elements of L∗ of norm 1 (or equivalently, the affine plane
curve X2 − aY 2 = 1). The group operation is defined as

(x, y) · (x′, y′) = (xx′ + ayy′, xy′ + x′y)
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We write for this group Gm[a] and since it can be transformed by an in-
vertible change of coordinates in Gm[ac2], it will only depend on the field
k(
√
a). In particular Gm[a] is isomorphic to Gm over k(

√
a). An important

fact is that in Fq, Gm[a] has q + 1 elements. This is because there exists
an exact sequence where the map from F∗q2 to F∗q corresponding to taking
norms is surjective, since a quadratic form in three variables always has a
nontrivial zero over a finite field (Chevalley).

Lefschetz fixed point theorem

We are going to give an intuition of why the previous examples are the only ones (a
clear and rigurous statement of this would lead too far). For our purposes, we will
enunciate a theorem with reminiscences from algebraic topology, the Lefschetz
fixed point theorem.

Theorem 3.1. Let M be a compact oriented manifold, and let α : M →M be a
continuous function. Let ∆ denotes the diagonal in M×M and Γα the graph of α
(∆ · Γα is therefore the number of fixed points taking into account multiplicities).

(∆ · Γα) =
∑

(−1)i Tr(α|H i(M,Q))

Let L(α) be the integer on the right. Assume that M has a group structure;
we take the translation map, that has no fixed points: τa = (x 7→ x + a). But
the map a 7→ L(τa) : M → Z is continuous, then constant on each connected
component. If we let a tend to 0, L(τ0) = 0 and we get

0 = L(τ0) =
∑

dimQH
i(M,Q)

Consequently, if the manifold has group structure, its Euler characteristic is 0 so
the genus is 1.
We will still have to prove that Ga and Gm are the only affine algebraic groups
of dimension one over an algebraically closed field.

Singular cubic curves

Consider so an elliptic curve expressed in reduced form

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Q with ∆ = −16(4a3 + 27b2) 6= 0

where (maybe performing a change of the form X 7→ X/c2, Y 7→ Y/c3) a, b are
integers chosen in such a way that |∆| is minimal. Consider now the reduction
Ē of the curve to Fp.
We will have three options for a generic curve: good reduction, cuspidal reduction
and nodal reduction, depending on the value of −2ab. Since (0 : 1 : 0) is always
non-singular, we study the affine curve Y 2 = X3 + aX + b and we want to see
if it is possible to find a t such that Y 2 = (X − t)2(X + 2t) = X3 − 3t2X + 2t3,
i.e., t2 = −a/3, t3 = b/2, from where t = − 3b

2a
(and in this case ∆ = 0 as



CHAPTER 3. ELLIPTIC CURVES: DEFINITIONS AND FIRST PROPERTIES 51

expected). Expressing X + 2t = (X − t) + 3t we can write the affine curve as
Y 2 = (X−t)3 +3t(X−t)2, that is singular at (t, 0) and it has a cusp when 3t = 0,
a node with rational tangents if 3t is a square in k∗ and a node with non-rational
tangents elsewhere.
Since −2ab = −2(−3t2)(2t3) = (2t2)2(3t), the value of −2ab will determine the
type of singularity.

a) Good reduction: it occurs when p 6= 2 and p does not divide ∆. In that
case, Ē is an elliptic curve in Fp. Any point in E, P = (x : y : z) can
be reduced by taking a primitive representative (x, y, z) (integer coordinates
without common factors), obtaining a point (x̄ : ȳ : z̄). (0 : 1 : 0) reduces to
(0 : 1 : 0) so the reduction map is a homeomorphism. In the next chapter we
will see that the number of points in this case is p + 1 more or less a small
factor (2

√
p).

b) Additive reduction (or cuspidal): when the reduced curve has a cusp. The
name comes from the fact that the set of non-singular points (that still has a
group structure) is isomorphic to Ga. Note that the set of non-singular is a
group since when we add up two of them, the result cannot be the singular
point since, for having multiplicity strictly greater than 1, we would have a
line cutting the elliptic curve at more that three points. When p 6= 2, 3, this
case occurs when p divides ∆ and at the same time divides −2ab.
We will justify the different affirmations we have made, about all the isomor-
phism with Ga. We are considering a projective curve E : Y 2Z = X3, that has
a cusp in P = (0 : 0 : 1) since the affine curve y2 = x3 has a cusp at (0, 0) (two
equal tangents). P is the only point of the curve whose Y coordinate is zero.
This is a way to state that the set E(k)\{S} (i.e., our non-singular points) are
the points of the curve E ∩{Y = 0} (F : Z = X3). A generic line Z = aX + b
cuts F in three points, satisfying that X3−aX−b (the quadratic term is 0, so
using Cardano-Viéte formulae the sum of the x-coordinates is 0). It is natural
now to consider the map F → k : P 7→ x(P ) that has the property that if
P1 + P2 + P3 = 0 (the points are collinear), then x(P1) + x(P2) + x(P3) = 0.
From here, we deduce that x(−P ) = −x(P ) (we can also argue that since P , Q
and −(P +Q) add up to 0, then x(P ) +x(Q) = x(P +Q)). We conclude from
this that the map P 7→ x(P ) is a homomorphism and also an isomorphism of
algebraic varieties (so an isomorphism of algebraic groups). We finally have

that the map P 7→ x(P )
y(P )

is an isomorphism of algebraic group from the set of

non-singular points to Ga (p points).

c) Multiplicative reduction (or nodal): when the reduced curve has a node. When
p 6= 2, 3, this occurs when p divides ∆ and does not divide −2ab. The tangents
at the node can be rational over Fp: the rational point (once we are in the affine
chart corresponding to Z = 1) is (− 3b

2a
, 0), so looking for the tangents in the

usual way we obtain that they are the two lines corresponding to the quadratic
part y2 + 9b

2a
x2, so we require −2ab to be a square. In this case the set of non-

singular points is isomorphic to Gm and E has split multiplicative reduction
(and p − 1 points). Elsewhere, when −2ab is not a square, Ens ' Gm[−2ab]
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and E has split multiplicative reduction (p+ 1 points).
We have to justify again the stated isomorphisms, and we will follow the
approach taken in Cassels’ book. Considering the projective curve Y 2Z =
X3 + cX2Z, where c 6= 0, we see that at (0 : 0 : 1) it has a node because the
corresponding affine curve is y2 − cx2 − x3 = 0 and the tangents at (0, 0) are
different. When c 6= 0, the tangent cone factors as (Y −

√
cX)(Y +

√
cX) = 0.

We will say that the tangent lines are defined over k (or are rational over k).
We shall now exhibit an isomorphism of Ens and Gm. We define c = γ2 and
U = Y + γX, V = Y − γX so the curve is 8γ3UV Z = (U − V )3. A line that
not passes through the origin can be written as Z = aU + bV and it meets the
curve when

(U − V )3 − 8γ3UV (aU + bV ) = 0

Since everything is homogeneous, we can assume that V = 1 and in that case
the product of the U -th coordinates is 1; in general, it would be equal to
the product of the V -th coordinates, resulting that u1

v1

u2
v2

u3
v3

= 1. The same
reasoning than above implies that this is a homomorphism of groups (three
points that add up zero map to three points whose product is 1) and also an
algebraic isomorphism.
We finish with the case when γ is not a square. We adjoin γ to the ground field,
where γ = c2. For a point (x, y, z) of the curve, write y+γx

y−γx = r + sγ, where

r2 − cs2 = 1 (since the norm is multiplicative). So we have an isomorphism
with the curve R2 − cS2, that has the twisted multiplication law explicated
before.

Definition 3.3. An elliptic curve is semistable if it has bad reduction only of
multiplicative type.

From here, it is interesting to keep in mind the number of points we have in the
reduced elliptic curve: p for the case of additive reduction, p − 1 for the split
multiplicative and p+ 1 for the non-split multiplicative. In the next chapter, we
will do the counting for the case of good reduction.

3.3 Elliptic curves over Qp

After having studied some basic facts of elliptic curves over Q, we notice that we
can replace Q or Z for Qp and Zp and in general for any finite extension of Qp

and its ring of integers. Recall that by Hensel’s lemma the image of the reduction
map E(Qp)→ E(Fp) includes every non.singular point (we can lift a solution in
Fp, in the same way that we did in the proof of Selmer example). Obviously,
we can also replace Q with a number field, but it may happen that the ring of
integers is not a PID, and in that case it can occur that there is not an equation
for the elliptic curve that is minimal for all primes at the same time. We will
focus our attention now in Qp.
Consider as usual our standard model for an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3, a, b ∈ Qp, 4a3 + 27b2 6= 0



CHAPTER 3. ELLIPTIC CURVES: DEFINITIONS AND FIRST PROPERTIES 53

where with an admissible change of variables we can assume that a, b ∈ Zp. As
we did in the previous section, we have a reduction map E(Qp)→ Ē(Fp), P 7→ P̄ .
Along these lines, we will define a particular filtration identifying the quotients.
We begin by defining

E0(Qp) = {P | P̄ is nonsingular}

As we have already pointed out, this has group structure since O is always non
singular and a line through two non-singular points will meet the curve again
in a non-singular point, since elsewhere the intersection number of that point
and the curve would be at least two, and the cubic will meet a line in more
than three points. Define now E1(Qp) to be the kernel of the reduction map
E0(Qp)→ Ēns(Fp), P 7→ P̄ , that is a homomorphism. E1(Qp) is the set of points
whose x and z coordinates are 0 modulo p and y is not. In general, we can define

En(Qp) = {P ∈ E1(Qp) |
x(P )

y(P )
∈ pnZp}

Note that we have the filtration

E(Qp) ⊃ E0(Qp) ⊃ · · · ⊃ En(Qp) ⊃ · · ·

Their properties are summarized in the following proposition:

Proposition 3.3. The previous filtration fulfills:

a) E(Qp)/E
0(Qp) is finite.

b) The reduction map defines an isomorphism E0(Qp)/E
1(Qp)→ Ēns(Fp)

c) En(Qp) is a subgroup of E(Qp) when n ≥ 1 and the map P 7→ p−n x(P )
y(P )

mod p

defines an isomorphism of groups between Fp and En(Qp)/E
n+1(Qp).

d) The filtration is exhaustive (∩nEn(Qp) = {0}).

Proof. For the first claim, we will analyze the topological aspects: in Q3
p we

put the product topology and then in P2(Qp) the corresponding quotient topol-
ogy; note that the equivalence relation that defines P2(Qp) allows us to clean
denominators and consider the coordinates in Zp (one of them, at least, being a
unity, since elsewhere we divide by p). Therefore, P2(Qp) is the union of the sets
Z∗p×Zp×Zp, Zp×Z∗p×Zp, Zp×Zp×Z∗p. Each of them is compact and open (just
write the corresponding definitions), so P2(Qp) is compact and E(Qp) is closed
since it is the set of zeros of a polynomial there. We have a closed set inside a
compact, so it is also compact. Note now that E0(Qp) is an open subgroup (we
already have seen that it is a subgroup and it is open because we are considering
a topology where a point is close to another when they have the same reduction).
To sum up, E(Qp) is compact, and it is the union of the cosets of its subgroup
E0(Qp), and to stablish the compactness, note that there is only a finite number.
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The second claim is the first isomorphism theorem applied to the map

E0(Qp)→ Ēns(Fp)

already defined, where the surjectivity is given by Hensel.

For the third claim, we proceed by induction, assuming that En(Qp) is a sub-
group of E(Qp). Let P = (x : y : 1) a point of E1(Qp); note that y /∈ Zp since
as we commented before in E1(Zp), x and z are divisible by p and y is not, i.e.,
the multiplicity of p in z is greater than the multiplicity in y, so now y /∈ Zp.
Write x = p−mx0, y = p−m

′
y0 where x0, y0 are units. Putting this in the equation

results
p−2m′ = p−3mx3

0 + ap−m + b

and since a, b were chosen to be in Zp we can take orders and conclude that
2m′ = 3m. From this, it follows that there is a positive integer such that
m = 2n,m′ = 3n. Furthermore n = m′ − m. These considerations allow us
to conclude that if P = (x : y : z) is in En(Qp) but not in En+1(Qp) then
P = (pnx0, y0, p

3nz0), where x0, y0, z0 are units of Zp. A general point of En(Qp)
has the same form, but we only require y0 to be a unit.
Substituting again in the equation, dividing by p3n and reducing modulo p we
get that P0 = (x̄0 : ȳ0 : z̄0) verifies E0 : Y 2Z = X3. This is a homomorphism
between En(Qp)→ E0(Fp) where nobody goes to the singular point (y0 is a unit)
and whose kernel will be En+1(Qp) (the points such that x0 is a multiple of p are
those in En+1(Qp)). From Hensel again, we see that any non-singular point of

E0(Fp) is in the image, and since we already now that Q 7→ x(Q)
y(Q)

is an isomorphim,
the composition of the two is also an isomorphism.

For the last item, just consider a point in the intersection, so x(P ) = 0 and
y(P ) 6= 0, which implies that either z(P ) = 0 or y(P )2 = bz(P )3; the sec-
ond option is not possible, since P would not be in E1(Qp), so z(P ) = 0 and
P = (0 : 1 : 0).

Corollary 3.1. Let m be an integer not divisible by p. Then,

E1(Qp)→ E1(Qp), P 7→ mP

is a bijection.

Proof. The injectivity is due to the fact that En(Qp)/E
n+1(Qp) ' Z/pZ; if P ∈

En(Qp)\En+1(Qp) and at the same time mP = 0 (assuming that of course P 6= 0),
then the image of P in Z/pZ is not zero but the image of mP is 0, and that is a
contradiction.
For the surjectivity, take P ∈ E1(Qp). Multiplication by m is an isomorphism
in E1(Qp)/E

2(Qp), so there exists Q1 ∈ E1(Qp) such that P = mQ1 modulo
E2(Qp). Iterating the process, we will have a point Q2 ∈ E2(Qp) such that
P − mP1 = mQ2 modulo E3(Qp) and in general we have a sequence of points
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{Qi}, where Qi ∈ Ei(Qp) and such that P −m
∑n

i=1Qi ∈ En+1(Qp). Bearing in
mind that E(Qp) is compact, we have that

∑
Qi converges to a point in E(Qp)

and from what we said the limit verifies P = mQ.

3.4 Torsion points

In Birch and Swinertonn-Dyer conjecture, we are concerned about the rank of an
elliptic curve, for which relatively little is known. For instance, there is not an
easy way to compute it. However, the torsion part admits an easy treatment, and
the following results will clearly establish an algorithmic procedure to determine
it. For this section, we consider again an elliptic curve E given by

E : Y 2Z = X3 + aXZ2 + bZ3a, b ∈ Z,∆ = 4a3 + 27b2 6= 0

We will denote as E(Q)tors the torsion group of E(Q).

Theorem 3.2. (Lutz-Nagell) If P = (x : y : 1) ∈ E(Q)tors, then x, y ∈ Z and
y = 0 or y|∆
We will prove first two proposition and the theorem will directly follow.

Proposition 3.4. Let P = (x : y : 1) ∈ E(Q). If P and 2P have integer
coordinates, then either y1 = 0 or y1|∆.

Proof. We assume that y1 6= 0. To find −2P = (x2 : y2 : 1), we do the intersection
of the tangent at P with the affine curve Y 2 = X3 + aX + b. For the formula to
get the inverse of a point, we know that if Q has integer coordinates, also −Q has.
Let Y = αX + β be the tangent line at P ; the X-coordinates of the intersection
satisfy

0 = (αX + β)2 −X3 − aX − b
The term in X2 is α2, that when divided by the leading term remains −α2.
Therefore, the X-coordinates of the intersection verify x0 + x1 + x2 = α2, so α2

is an integer. We have now that f ′(x1)
2y1

is an integer, where f(X) = X3 + aX + b.

We already knew from y2
1 = f(x1) that y1|f(x1), and we now have that y1|f ′(x1).

For the properties of the resultant, there exist r(X), s(X) ∈ Z[X] such that

∆ = r(X)f(X) + s(X)f ′(X)

and so y1|∆.

Proposition 3.5. The group E1(Qp) is torsion-free

Proof. Since we already now that multiplication by an integer coprime with p is
a bijection, we are just concerned with pP . In particular, we want to show that
E1(Q) does not contain any point such that pP = 0. When P ∈ E1(Qp), y(P ) 6=
0, so we are considering the intersection with the affine plane corresponding to
y 6= 0, E1 : Z = X3 + axZ2 + bZ3. The new coordinates of a point P = (x : y : z)

are x′(P ) = x(P )
y(P )

, z′(P ) = z(P )
y(P )

. With this map, the property that three points
are collinear if and only if they add up to 0 still holds. Now, we can reformulate
the definition of En(Qp) as the points P ∈ E1(Qp) such that x′(P ) ∈ pnZp. A
tedious algebraic manipulation (that we omit) shows the following:
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Lemma 3.1. Let P1, P2, P3 ∈ E(Qp) collinear points. If P1, P2 ∈ En(Qp), then
P3 ∈ (Qp) and x′(P1) + x′(P2) + x′(P3) ∈ p5nZp.

We define now a projection map given by

En(Qp)→ pnZp/p5nZp : P 7→ x̄(P )

It is a homomorphism of abelian groups because x̄(−P ) = −x̄(P ) and P1 +
P2 + P3 = 0 implies x̄(P1) + x̄(P2) + x̄(P3) = 0 (this suffices, just taking now
0 = x̄(P +Q) + x̄(−P ) + x̄(−Q) = x̄(P +Q)− x̄(P )− x̄(Q)). If now P ∈ E1(Qp)
has order p, it lies in En(Qp)\En+1(Qp) for some n and so x̄(P ) is in pnZp\pn+1Zp,
and so x̄(pP ) ∈ pn+1Zp\pn+2Zp, contradicting the fact that pP = 0.

We are now about to finish the proof of the main theorem. We state the following
result as a proposition but it is quite direct using the previous result:

Proposition 3.6. Let P = (x : y : 1) ∈ E(Qp)tors, then x, y ∈ Zp
Proof. We write P with primitive coordinates (x̄ : ȳ : z̄) (all in Zp but not all
three in pZp). If P = (x : y : 1) with x or y not in Zp, any primitive coordinates
will have z̄ ∈ pZp. But therefore reducing mod p, the z-coordinate will be 0 and so
the point will be P̄ = (0 : 1 : 0) that is E1(Qp). Thus, if P = (x : y : 1) /∈ E1(Qp),
then x, y ∈ Zp.
Corollary 3.2. If P = (x : y : 1) ∈ E(Q)tors, then x, y ∈ Z.

Corollary 3.3. If E has good reduction at p, then the reduction map

E(Q)tors → Ē(Fp)

is injective.

We give now some examples of how to calculate the torsion. For instance, let

E1 : Y 2 = X3 + 1

Its discriminant is 27. We see that the candidates that work as torsion points are
O, (−1, 0) (unique point of order 2), (0, 1), (0,−1) (order 3) and (2, 3), (2,−3)
(order 6). We have so that the torsion group is isomorphic to Z/6Z. We give
another example

E2 : Y 2 = X3 −X
Here, the only possibilities (that work) apart from O are (1, 0), (−1, 0), (0, 0) that
all have order 2; the torsion group is therefore isomorphic to Z/2Z×Z/2Z. Mazur
proved in the seventies that E(Q) is isomorphic to one of the groups

Z/mZ for m = 1, 2, · · · , 10, 12

Z/2Z× Z/mZ for m = 2, 4, 6, 8

It would be nice to give a proof of this result, but we do not have time to develop
of the algebraic geometry required to prove it in this essay. In a number field this
is much more difficult. The main result is due to Loic Merel:

Theorem 3.3. For all d ∈ Z, d ≥ 1 there exists a constant B(d) ≥ 0 such that
for all elliptic curves E over a number field K with [K : Q] = d, then

|E(K)tors| ≤ B(d)
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3.5 The invariant differential

We begin by recalling some concepts from algebraic geometry. Differentials are
an important topic in this area, allowing the use of some classical geometric ar-
guments in the context of varieties over any field. They can be used to define the
genus of a curve and to analyze the ramification of morphisms between curves.
The following definitions mimic those given in any undergraduate course in dif-
ferential manifolds:

Definition 3.4. Let X be a nonsingular variety, and U ⊂ X an open subset. A
differential form on U associates to each point P ∈ U an element of the Zariski
cotangent space T ∗P (X).

As it can be seen, they play a role analogous to that of arbitrary functions, and we
need to restrict to a much smaller collection of them to obtain a useful concept:

Definition 3.5. Given U ⊂ X an open subset of a nonsingular variety, and
f ∈ O(U), the differential form df associated to f is defined as follows: for P ∈ U ,
let df(P ) ∈ mP/m

2
P be the equivalence class of (U, f − f(P )). A differential form

ω on U is regular if for every P ∈ U , there exists an open neighborhood V ∈ U of
P and regular functions f1, . . . , fm, g1, . . . , gm ∈ O(V ) such that ω|V =

∑
i fidgi.

In this section, we consider the following Weierstrass equation for our elliptic
curve, writing in non homogeneous coordinates as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where the ai ∈ K.

Definition 3.6. The invariant differential associated to an elliptic curve (also
referred as Néron diferential) is

ω =
dx

2y + a1x+ a3

=
dy

3x2 + 2a2x+ a4x− a1y

The name of invariant will be soon explained. First, we prove that it is holomor-
phic and non-vanishing.

Proposition 3.7. The invariant differential associated to the Weierstrass equa-
tion of an elliptic curve is regular and non-vanishing, i.e., div(ω) = 0.

Proof. Take P = (x0, y0) ∈ E and let E : F (x, y) = y2 + axy + a3y − x3 − a2x
2 −

a4x− a6 = 0 in such a way that

w =
d(x− x0)

Fy(x, y)
=
−d(y − y0)

Fx(x, y)

Clearly, if P were a pole, Fx(x, y) = 0, Fy(x, y) = 0 and this cannot be true for
our definition of elliptic curve (it cannot have singular points). To see that P
cannot be a zero, define the map E → P1 : (x : y : 1) 7→ (x : 1); the map has
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degree 2, so ordP (x− x0) ≤ 2 and equality holds if and only if the polynomial in
one single variable F (x0, y) has a double root and in that case Fy(x, y) would have
a single zero at P . In any case ordP (ω) = ordP (x− x0)− ordP (Fy(x, y))− 1 = 0.
This is enough for concluding that no affine point will be a zero or a pole, but we
have to check what happens at infinity. We consider an uniformizer t and since
the order of O at x is −2 and at y is −3, then x = t−2f, y = t−3g for functions
f and g that have neither zeros nor poles at O. Making this substitutions in the
definition of ω, we get ω = −2f+tf ′

2g+a1tf+a3t3
dt. We see therefore that ω also behaves

well at O, assuming that the characteristic of the field is not 2. In that case, it
remains true but we should perform more careful changes of variables.

We will explain now the reason for the name of invariant, basically that it does
not change under translations.

Proposition 3.8. Let Q be a point in E(K), and let τQ be the translation by Q
map. Then, τ ∗Qω = ω.

Proof. Of course there is a straightforward way to do this. Use the addition
formulas and compute x(P + Q), y(P + Q) in terms of x(P ), y(P ), x(Q), y(Q),

and then check that dx(P+Q)
2y(P+Q)+a1x(P+Q)+a3

remains invariant. Alternatively, we can
use a more elegant approach using properties of divisors: let ΩE the space or
holomorphic 1-forms, that has dimension one over K̄(E). We have so a function
aQ ∈ K(E)∗ depending on the point and such that τ ∗Qω = aQω. But since
div(ω) = 0, we can conclude that div(aQ) = 0, so it is constant.
We now consider the map f : E → P1 that sends Q to (aQ : 1). It is clear that if
we compute explicitly aQ, it would be a rational function of x(Q) and y(Q), so f
is a rational map that is not surjective (since it omits at least (0, 1) and (1, 0)).
Consequently f is constant and evaluating at O we find that its value is 1. We
conclude that τ ∗Qω = ω.

3.6 Isogenies

Definition 3.7. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is
a non-zero morpshim of curves φ : E1 → E2 such that φ(O) = O. Two elliptic
curves E1 and E2 are isogenous if there is an isogeny from E1 to E2.

The fact of excluding the zero morphism is a convention to preclude the possibility
that any two elliptic curves were isogenous. Because of that, we will say that
Hom(E1, E2) are the morphisms of curves sending 0 to 0 (or the set of isogenies
together with the zero-map). In fact, some authors do not exclude this possibility.
The most natural example is the multiplication-by-m isogeny, that we will denote
as [m].

Proposition 3.9. Let E/K be an elliptic curve and let m ∈ Z,m 6= 0.

a) The multiplication-by-m map [m] is not constant.

b) Let E1 and E2 be elliptic curves. Then the group Hom(E1, E2) is a torsion
free Z-module.
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c) Let E be an elliptic curve. Then the endomorphism ring End(E) is a ring of
characteristic 0 that is an integral domain.

Proof. For the first item, recall that [2] 6= [0]. For that, use the formula that
gives you the x-coordinate of 2P and put it equal to 0 (we have not provided in
any moment explicit formulas for the double of a point but there are relatively
straightforward to obtain): 4x3 + b2x

2 + 2b4x + b6 = 0. When the characteristic
is not two, this shows that there are only finitely many solutions. In the case of
characteristic two, we need b2 = b6 = 0, and this forces ∆ = 0. Now, taking into
account that [mn] = [m] ◦ [n] we just have to deal with the case m odd. This
requires some tedious computations that we only sketch: the first observation is
that (in characteristic different from two) x4 − b4x

2 − 2b6x− b8 is not a multiple
of 4x3 + b2x

2 + 2b4x+ b6 (since ∆ 6= 0). Therefore, there exists x0 such that the
second polynomial vanishes at higher order than does the first. We choose one
of the possible y0 ∈ K̄ so that P = (x0, y0) ∈ E and we have that [2]P = O.
This proves that E has a nontrivial point of order 2 and so [m]P0 = P0 6= O. In
characteristic two, we need the triplication formula and everything is the same
but with longer computations.
The second statement is direct: if φ ∈ Hom(E1, E2) and m ∈ Z satisfy [m]◦φ = [0]
we can use the multiplicativity of the degrees to conclude that either m = 0 or
φ = [0].
Once we know that the endomorphism ring has characteristic 0, take φ, ψ such
that φ ◦ ψ = [0]. Then, using again the multiplicativity of the degrees, either
φ = [0] or ψ = [0].

An important result is that although we have defined an isogeny as a morphism
of curves, it behaves well a morphism of groups. Note that in the definition we
only impose that 0 is sent to 0 but we can prove the following result:

Theorem 3.4. Let φ : E1 → E2 be an isogeny. Then, for all P,Q ∈ E1,

φ(P +Q) = φ(P ) + φ(Q)

Proof. When we have the 0-map there is nothing to prove. Elsewhere, φ is a finite
map so it induces a homomorphism φ∗ : Pic0(E1)→ Pic0(E2) sending the class of∑
ni(Pi) to the class of

∑
ni(φPi). Furthermore, we have a group isomorphisms

ki : Ei → Pic0(Ei) that sends P to the class of (P ) − (O) (for i = 1, 2). Recall
that

φ = k−1
2 ◦ φ∗ ◦ k1

and since all k1, k
−1
2 , φ∗ are group homomorphisms, so is φ.

Corollary 3.4. Let φ : E1 → E2 be an isogeny. Then, kerφ is a finite group.

We state now one of the main theorems, that says that the number of points
in the kernel coincides with the degree when the map is separable. We do not
provide the proof, just say that everything reduces to take into account that for
a morphism between curves φ, φ−1(Q) is the degree of separability of φ but for a
finite number of points.
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Theorem 3.5. Let φ : E1 → E2 be an isogeny.

a) Let Q ∈ E2. Then, #φ−1(Q) = degs φ. Furthermore, if P ∈ E1, eφ(P ) =
degi φ.

b) The map kerφ→ Aut(K̄(E1)/φ∗K̄(E2)) : T 7→ τ ∗T is an isomorphism.

c) Suppose that φ is separable. Then, # kerφ = deg φ and K̄(E1) is a Galois
extension or φ∗K̄(E2).

An important result (that will be the key for proving Hasse’s theorem), is the
following:

Proposition 3.10. Let E be an elliptic curve over a finite field Fq of character-
istic p and let φ the q-th power Frobenius morphism. Let m,n ∈ Z. Then m+nφ
is separable if and only if p does not divide m (and 1− φ is therefore separable).

Proof. Let ω be an invariant differential on E. We know that the map ψ : E → E
is inseparable if and only if ψ∗ω = 0. Applying this to m + nφ, we get that
(m+ nφ)∗ω = mω + nφ∗ω.

φ∗
( dx

2y + a1x+ a3

)
=

d(xq)

2yq + a1xq + a3

=
qxq−1

2yq + a1xq + a3

= 0

Hence, (m+nφ)∗ω = mω, and this last one expression is 0 if and only if p|m.

The dual isogeny

When we have an isogeny φ from E1 to E2 this induces a map φ∗ : Pic0(E2) →
Pic0(E1). Furthermore, we also have group isomorphisms ki : Ei → Pic0(Ei)
sending P to the class of (P )− (O). This allows us to construct a homomorphism
in the opposite direction:

E2 → Pic0(E2)→ Pic0(E1)→ E1

It is basically k−1
1 ◦φ∗◦k2(Q) and we will see that if Q ∈ E2, P ∈ E1 satisfy φ(P ) =

Q then k−1
1 ◦ φ∗ ◦ k2(Q) = [deg φ](P ). But previously we have to check several

things: when we take a preimage P of Q we are taking roots of polynomials, so we
have to check that applying [deg φ] to P make the roots to appear symmetrically
when φ is separable. The non-separable case will be more technical.

Theorem 3.6. Let E1 → E2 be a non-constant isogeny of degree m.

a) There exists a unique isogeny φ̂ : E2 → E1 such that φ̂ ◦ φ = [m].

b) As a group homomorphism, φ̂ is the composition

E2 → Div0(E2)→ Div0(E1)→ E1

where we go from Div0(E2) to Div0(E1) through φ∗.
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Proof. Uniqueness is clear: in case of having φ̂ and φ̂′ with the desired properties,
then (φ̂ − φ̂′) ◦ φ = [0]. φ is surjective (since it is non-constant), so necessarily
φ̂− φ̂′ must be constant, and therefore φ̂ = φ̂′.
Note also that if we have ψ : E2 → E3 another non-constant isogeny, now of
degree n, and we assume the existence of φ̂ and ψ̂, then (φ̂ ◦ ψ̂) ◦ (ψ ◦ φ) =

φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [mn]. We have proven that φ̂ ◦ ψ̂ = ψ̂ ◦ φ. We recall
here a very important lemma in the theory of algebraic curves:

Lemma 3.2. Every map ψ : C1 → C2 of smooth curves over a field of charac-
teristic p > 0 factors as C1 → C

(q)
1 → C2, where q = degi(ψ), the first map is the

q-th power Frobenius map and the second one is a separable map.

From this lemma, and for the property of compositions, it is enough with proving
the existence of the isogeny when φ is separable and when φ is the Frobenius
morphism.
For the first case, note that # kerφ = m, so every element of the kernel has order
a divisor of m and ker[φ] ⊂ [m]. To prove this we need another lemma:

Lemma 3.3. Let φ : E1 → E2 and ψ : E1 → E3 be non-constant isogenies such
that φ is separable and kerφ ⊂ kerψ. Under these hypothesis, there is a unique
isogeny λ : E2 → E3 such that ψ = λ ◦ φ.

The idea for the proof of the lemma is that the separability condition gave us the
inclusions

ψ∗K̄(E3) ⊂ φ∗K̄(E2) ⊂ K̄(E1)

Now, from our general theory of algebraic curves, we have a map λ : E2 → E3

such that φ∗(λ∗K̄(E3)) = ψ∗K̄(E3) and so λ ◦ φ = ψ. It is trivial to check that
O goes to O, so it is an isogeny.
This finishes the proof for the separable case. For the case of the Frobenius, due
to the composition property, it is enough to do the proof when deg φ = p. Look at
the multiplication-by-p map. If ω is an invariant differential, then [p]∗ω = pω = 0.
We can affirm now that [p] is not separable and can be decomposed as a Frobenius
morphism followed by a separable map: [p] = ψ ◦ φe. We take now φ̂ = ψ ◦ φe−1

and this works.

We state now some of the most remarkable properties of the dual isogeny:

Theorem 3.7. Let φ : E1 → E2 be an isogeny and φ̂ the corresponding dual
isogeny.

a) Let m = deg φ. Then, φ̂ ◦ φ = [m] and φ ◦ φ̂ = [m].

b) Let λ : E2 → E3 be another isogeny. Then, λ̂ ◦ φ = φ̂ ◦ λ̂.

c) Let ψ : E1 → E2 be another isogeny. Then φ̂+ ψ = φ̂+ ψ̂.

d) The dual isogeny of the multiplication-by-m map is again the multiplication by
m-map and its degree is m2.

e) deg φ̂ = deg φ.



62 3.7. THE TATE MODULE

f)
ˆ̂
φ = φ.

We recall now that in an abelian group A we can define the concept of quadratic
form d : A→ R as a function satisfying that d(α) = d(−α) for all α and that the
pairing A× A→ R sending (α, β) 7→ d(α + β)− d(α)− d(β) is bilinear.
Using the properties of the dual isogeny, we can prove that the degree map is a
quadratic form (positive definite):

Proposition 3.11. Let E1, E2 be elliptic curves. The degree map

deg : Hom(E1, E2)→ Z

is a positive definite quadratic form.

Proof. The unique part that is not clear is that 〈φ, ψ〉 is bilinear. For that, use
that there is an injection from Z to End(E1) (multiplication-by-m) and so

[〈φ, ψ〉] = [deg(φ+ ψ)]− [deg(φ)]− [deg(ψ)] = φ̂ ◦ ψ + ψ̂ ◦ φ

Using now that the dual isogeny is linear (the third item of the previous theorem),
the result follows.

We finish this section with an important fact about the torsion of an elliptic
curve, that is a direct consequence of the properties of the Frobenius map.

Proposition 3.12. Let E be an elliptic curve and let m ∈ Z with m 6= 0. Then,

a) deg[m] = m2.

b) If m 6= 0 in K, then
E[m] = Z/mZ× Z/mZ

c) If char(K) = p > 0, then either E[pe] = {O} for all e > 0 or E[pe] = Z/peZ
for all e > 0.

3.7 The Tate Module

Consider as usual an elliptic curve and an integer m ≥ 2 that is coprime with the
characteristic of the field when this is not zero. We already know that E[m] ∼=
Z/mZ×Z/mZ. But this group isomorphism can be viewed as something deeper,
since E[m] has more structure. For instance, an element of the absolute Galois
group σ acts on E[m] since [m](P σ) = ([m]P )σ = Oσ = O. That way, we have
obtained a representation

GK̄/K → Aut(E[m]) ∼= GL2(Z/mZ)

But this is not very interesting, since we tend to prefer representations of groups
in a ring of characteristic 0. We copy the idea of the construction of the p-adic
integers Zp as a projective limit, and now we define the l-adic Tate module of E:
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Definition 3.8. Let E be an elliptic curve and let l ∈ Z be a prime. The l-adic
Tate module of E is the group Tl(E) = lim←−E[ln], where we have the natural maps
to pass from E[ln+1] to E[ln] consisting on multiplication by l.

Note that E[ln] is a Z/lnZ module, so the Tate module has a structure of Zl-
module. The next proposition is a direct corollary of the previous section:

Proposition 3.13. As a Zl-module, the Tate module has the following structure:

a) When l 6= char(K), then Tl(E) = Zl × Zl.

b) When p = char(K) > 0, then Tp(E) ∼= {0} or Zp.
Definition 3.9. The l-adic representation of GK̄/K associated to E is the homo-
morphism

ρl : GK̄/K → Aut(Tl(E))

induced by the action of the absolute Galois group on the ln-torsion points of E.

A very important fact is that there is a natural way in which the m-torsion
subgroup E[m] can be identified with the homology group H1(E,Z/mZ) and
similarly Tl(E) with H1(E,Zl) While the homology does not admit a Galois ac-
tion (generally), the torsion subgroup and the Tate module do admit such action.
This idea has been generalized in the theory of etale cohomology.

When we have an isogeny of elliptic curves φ : E1 → E2, it induces a map between
the ln-torsion points, and therefore a Zl-linear map: φl : Tl(E1) → Tl(E2). We
thus obtain a natural homomorphism

Hom(E1, E2)→ Hom(Tl(E1), Tl(E2))

that when E1 = E2 is a homomorphism of rings. This map is injective, and
furthermore we have the following result:

Theorem 3.8. Let E1, E2 be elliptic curves, and let l 6= char(K) be a prime.
Then, the natural map

Hom(E1, E2)⊗ Zl → Hom(Tl(E1), Tl(E2))

sending φ to φl is injective.

We omit the proof, and content ourselves with give a very important corollary:

Corollary 3.5. Let E1, E2 be elliptic curves. Then, Hom(E1, E2) is a free Z-
module of rank at most 4.

Proof. We already know that Hom(E1, E2) is torsion free, and from the previous
injectivity

rkZl Hom(E1, E2)⊗ Zl ≤ rkZl Hom(Tl(E1), Tl(E2))

Choosing now a Zl-basis for Tl(E1) and Tl(E2) we see that Hom(Tl(E1), Tl(E2)) =
M2(Zl), whose rank is four.

A natural question now is when HomK(E1, E2) ⊗ Zl → HomK(Tl(E1), Tl(E2)) is
an isomorphism (since we already know that is injective). The answer is that
this happens if and only if K is a finite field or a number field. The proof of this
result is beyond the scope of this thesis.



64 3.8. THE WEIL PAIRING

3.8 The Weil pairing

In this section, we are going to consider an elliptic curve E/K and an integer m ≥
2 which we assume to be prime with the characteristic p of K, when p > 0. Recall
that, seen as a group, E[m] ' Z/mZ×Z/mZ. We have that E[m] is a free Z/mZ-
module or rank 2, and we have so a natural non-degenerate alternating multilinear
map, the determinant, that has the drawback that is not Galois invariant, i.e.,
det(P σ, Qσ) is not necessarily equal to det(P,Q)σ. To have this Galois invariance,
we will do a small modification and consider a pairing of the form ζdet(P,Q).
We are going to develop the definition to do it from an intrinsic point of view,
recalling for that the result that a divisor

∑
ni(Pi) is the divisor of a function

(over an elliptic curve) if and only if ni = 0 and
∑

[ni]Pi = 0. Therefore, if
T ∈ E[m] there is a function f ∈ K̄(E) such that

div(f) = m(T )−m(O)

From our hypothesis that m is coprime with the characteristic, we can take T ′ ∈ E
such that [m]T ′ = T . Consequently, we have a function g ∈ K̄(E) such that

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]

(T ′ +R)− (R)

The sum of the divisors is clearly O since there are m2 points of M -torsion and
now we use that [m2]T ′ = O. The functions f ◦[m] and gm have the same divisors,
so multiplying f by a constant in K∗, we can assume that f ◦ [m] = gm.
Consider now another point S ∈ E[m]. Then, for any X ∈ E,

g(X + S)m = f([m]X + [m]S) = f([m]X) = g(X)m

and therefore the function g(X +S)/g(X) takes finitely many values (m-th roots
of the unity). We can define in these circumstances a map from E to P1 given
by S 7→ g(X + S)/g(X), that clearly is not surjective, so it must be constant (a
map of curves over an algebraically closed field is either constant or surjective).
We have defined therefore the map

em : E[m]× E[m]→ µm em(S, T ) =
g(X + S)

g(X)

(note that the dependence of T is seen when constructing the function g); it is
well-defined where X ∈ E is any point such that g(X + S) and g(X) are both
defines and nonzero. We call this pairing Weil em-pairing.

Proposition 3.14. The Weil em-pairing has the following properties:

a) It is bilinear.

b) It is alternating.

c) It is non-degenerate: if em(S, T ) = 1 for all S ∈ E[m] then T = O.
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d) It is Galois invariant.

e) It is compatible: emm′(S, T ) = em([m′]S, T ) for all S ∈ E[mm′] and T ∈ E[m].

Proof. The linearity in the first factor is obvious. For the second one, let f1, f2, f3,
g1, g2, g3 be the functions for the points T1, T2, T3 = T1+T2. Choose also a function
h ∈ K̄(E) with divisor div(h) = (T1 + T2)− (T1)− (T2) + (O). Then,

div
( f3

f1f2

)
= m · div(h)

and we conclude that f3 = cf1f2h
m. Compose now with the multiplication-by-m

map, and then take m-th roots. That way, we have that g3 = d · g1g2(h ◦ [m]),
where d ∈ K̄∗. Now,

em(S, T1 + T2) =
g1(X + S)g2(X + S)h([m]X + [m]S)

g1(X)g2(X)h([m]X)
= em(S, T1)em(S, T2)

The other properties follow also from the same game of algebraic manipulations.

Corollary 3.6. There exist points S, T ∈ E[m] such that em(S, T ) is a primitive
m-th root of unity. In particular, if E[m] ⊂ E(K), then µm ⊂ K∗.

Proof. The image of em(S, T ) is a subgroup of µm, say µd. We have so that
1 = em(S, T )d = em([d]S, T ) for all S, T . Since the pairing is non-degenerate,
[d]S = O, but S is arbitrary, so d = m. On the other side, if E[m] ⊂ E(K), using
the Galois invariance of the em-pairing, we have that em(S, T ) ∈ K∗ for all S, T ,
and hence µm ⊂ K∗.

Proposition 3.15. Let φ : E1 → E2 be an isogeny of elliptic curves. Then for
all m-torsion points S ∈ E1[m], T ∈ E2[m],

em(S, φ̂(T ))) = em(φ(S), T )

Proposition 3.16. There exists a bilinear, alternating, non-degenerate, Galois
invariant pairing:

e : Tl(E)× Tl(E)→ Tl(µ)

Furthermore, if φ : E1 → E2 is an isogeny, then φ and φ̂ are adjoints for the
pairing: e(φS, T ) = e(S, φ̂T ). More generally, if φ : E1 → E2 is a non-constant
isogeny, there is a Weil pairing

eφ : kerφ× ker φ̂→ µm

3.9 The endomorphism ring

Until now, we know that the endomorphism ring of an elliptic curve End(E) has
characteristic 0, no zero divisors and rank at most 4 as a Z-module. Furthermore,
it possesses an anti-involution φ → φ̂ and for φ ∈ End(E) the product φφ̂ is a
nonnegative integer, being 0 if and only if φ = 0. We define a concept that will
reappear several times along the thesis:
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Definition 3.10. Let K be a Q-algebra finitely generated over Q. An order R
of K is a subring of K finitely generated as a Z-module satisfying R ⊗ Q = K.
A definite quaternion algebra (we will then dedicate a whole chapter to them) is
an algebra of the form K = Q + Qα + Qβ + Qαβ satisfying α2, β2 ∈ Q, α2, β2 <
0, αβ = −βα.

In this section we prove the following result:

Theorem 3.9. Let R be a ring of characteristic 0, without 0 divisors, of rank at

most four as a Z-module, with an anti-involution satisfying: α̂ + β = α+ β̂, α̂β =
β̂α̂, ̂̂α = α, α̂ = α for α ∈ Z ⊂ R. Assume also that αα̂ = 0 if and only if α = 0.
Then, R can only be one of the following type of rings:

a) R ∼= Z.

b) R is an order in an imaginary quadratic extension of Q.

c) R is an order in a definite quaternion algebra.

Proof. Let K = R⊗Q. Since R is finitely generated as a Z-module, it suffices to
prove that K is either Q, an imaginary quadratic field or a quaternion algebra.
For that, we extend the anti-involution to K and define the norm and trace from
K to Q by Nmα = αα̂ and Tr(α) = α + α̂. We begin by observing that

Tr(α) = 1 + Nmα− Nm(α− 1)

(just routine). From here, we observe that the trace belongs to Q and that is
Q-linear. Furthermore, Tr(α) = 2α when α ∈ Q and if α ∈ K satisfies Tr(α) = 0,
then 0 = α2 + Nmα. That way, α2 ∈ Q and α2 < 0.
IfK = Q, everything is clear. Otherwise, take α ∈ K but not in Q and replacing α
by α−1/2 Tr(α) we can assume that the trace of α is 0. Then Q(α) is a quadratic
imaginary field, and if K = Q(α) we are done. Elsewhere, take β ∈ K not in

Q(α). Replace β by β−1/2 Tr(β)−Tr(αβ)
2α2 ·α. In that case, Tr(β) = Tr(αβ) = 0 and

consequently β2 ∈ Q, β2 < 0. We also have that Tr(α) = Tr(β) = Tr(αβ) = 0
and that α = −α̂, β = −β̂, αβ = −βα. From here, αβ = −βα and we can
conclude that

Q(α, β) = Q + Qα + Qβ + Qαβ
It only remains to prove that Q(α, β) = K, and it will be done if we see that
1, α, β, αβ are linearly independent over Q. If w+xα+yβ+zαβ = 0, then taking
traces w = 0 and multiplying on the left by α and β, it yields

(xα2)β + (yβ2)α + zα2β2 = 0

What we know is that 1, α, β are linearly independent, so xα2 = yβ2 = zα2β2 = 0,
which implies that x = y = z = 0.

The next corollary is a consequence of the previous theorem together with the
fact that when the characteristic of K is 0, then End(E) is commutative and
so we cannot have the case of a quaternion algebra (this is because when the
characteristic is 0, every endomorphism is separable and so End(E) injects into
K̄∗).
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Corollary 3.7. The endomorphism ring of an elliptic curve E/K is either Z, an
order in an imaginary quadratic field or an order in a quaternion algebra. If the
characteristic of K is 0, the last option is not possible.

Determine the endomorphism ring is not usually easy. For the automorphism
group the situation is more direct and we have the following result, that is a
consequence of a little bit work with the elliptic curve in its Weierstrass form.

Proposition 3.17. Let E/K be an elliptic curve. Then, its automorphism group
Aut(E) is a finite group. More precisely,

a) It has order 2 when the j-invariant is neither 0 nor 1728.

b) It has order 4 when j(E) = 1728 and the characteristic of K is nor 2 neither
3.

c) It has order 6 when j(E) = 0 and the characteristic of K is nor 2 neither 3.

d) It has order 12 when j(E) = 0 and the characteristic is 3.

e) It has order 24 when j(E) = 0 and the characteristic is 2.

Corollary 3.8. Let E/K be a curve over a field of characteristic nor equal to 2
or 3. Let n = 2 when j(E) 6= 0, 1728, n = 4 when j(E) = 1728 and n = 6 if
j(E) = 0. Then, Aut(E) ∼= µn.
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Chapter 4

Elliptic curves over finite fields

BSD conjecture relates the rank of an elliptic curve with the order of vanishing
of a certain L-function obtained from taking information about the number of
points the curve has over finite fields. In the previous chapter, we introduce
elliptic curves from a very general point of view, and now we study its behavior
in finite fields, with special attention to Hasse’s theorem, that provides a bound
for the number of points, and to the L-function associated to an elliptic curve.
In chapter six, we will prove that over a number field, the rank of an elliptic
curve is finite, and so we will have all the ingredients we need to understand the
statement of BSD.

4.1 Number of rational points over a finite field

Take the usual Weierstrass equation of the affine curve

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

A first insight shows that for each value of x we can only have 2 possible values
of y, so the number of points is bounded by 2q. But, being more realistic, what
we expect is that for half of the values of x, we will have a pair of solutions (half
of the values are squares), and for the other half we will not have any solution.
This would give us a value of q points (q + 1 taking into account the infinity).
The main result of this section is:

Theorem 4.1. Let E/Fq an elliptic curve over a finite field. Then,

|#E(Fq)− q − 1| ≤ 2
√
q

Proof. We take a Weierstrass equation with coefficients in Fq and we take the
Frobenius morphism (x, y) 7→ (xq, yq). In the infinite Galois group GF̄q/Fq , we

take the Frobenius morphism acting on F̄q, and for any point in the algebraic
closure we know that P ∈ E(Fq) if and only if φ(P ) = P . We conclude that
E(Fq) = ker(1 − φ). Since the map 1 − φ is separable (as it was seen in the
previous chapter) we know that # ker(1−φ) = deg(1−φ). Therefore, #E(Fq) =
# ker(1− φ) = deg(1− φ). But the degree map on End(E) is a positive definite

69
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quadratic form (seen in the previous chapter) and deg φ = q. We will have the
result from the following Cauchy-Schwarz type inequality.

Proposition 4.1. Let G be an abelian group and let d be a positive definite
quadratic form taking values on the integers. Then

|d(ψ − φ)− d(φ)− d(ψ)| ≤ 2
√
d(φ)d(ψ) for all ψ, φ ∈ G

Proof. It is basically the typical Cauchy-Schwarz inequality. Consider the associ-
ated bilinear form 〈x, y〉 = d(x+ y)− d(x)− d(y), that takes values in Q. In that
case |d(ψ − φ) − d(φ) − d(ψ)| = |〈φ, ψ〉| and what we obtain now is directly the
Cauchy inequality (note that here we define the bilinear form without the usual
2 dividing, so we obtain that 2 in the RHS).

Corollary 4.1. Let now f(x) = ax3 + bx2 + cx + d be a cubic polynomial with
distinct roots in F̄q and let χ be the unique nontrivial character of order 2 (the
one that takes the value 1 if it is a square and −1 otherwise). Take E : y2 = f(x).
We will have that

E(Fq) = 1 +
∑
x∈Fq

(1 + χ(f(x))) = q + 1 +
∑
x∈Fq

χ(f(x))

so the sum must be smaller or equal than 2
√
q.

4.2 Zeta functions of affine plane curves over

finite fields

Zeta functions over number fields

Recall that the usual zeta function is defined as

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

An elementary result in complex analysis is that the zeta function can be extended
to the whole complex plane, being holomorphic except for a pole at s = 1:

Theorem 4.2. The function ζ(s) can be extended to a function over all the
complex plane, analytic except for a pole at s = 1 with residue 1. Further, it
satisfies a functional equation: let ξ(s) = π−s/2Γ(s/2)ζ(s) (where Γ(s) is the
usual Gamma function), so except at 0 and 1, ξ(s) is bounded in all the vertical
strip and satisfies

ξ(s) = ξ(1− s)

Corollary 4.2. The function ξ(s) does not vanish in the half-plane <(s) > 1; in
the half-plane <(s) < 0 only vanishes at the even negative integers −2,−4,−6, . . ..
All the other zeros are in the critical strip 0 ≤ <(s) ≤ 1.
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We will not reproduce here the proof, that is a classical result. It uses harmonic
analysis, defining the Fourier transform of a function f as f̂ =

∫
R f(x) exp(2πixy)dx.

Then, we have Poisson’s summation formula:∑
n∈Z

f(n) =
∑
n∈Z

f̂(n)

Defining θ(u) =
∑

n∈Z exp(−πun2) we can also prove that θ(1/u) =
√
uθ(u) and

combining this with a careful manipulation of integrals we arrive to the desired
symmetry.

Over a number field we can also define a zeta function, usually called Dedekind
zeta function. It is defined both by a sum or by a product that are convergent
for <(s) > 1

ζK(s) =
∑
I

1

N(I)s
=
∏
p

(
1− 1

N(p)s

)−1

where I runs over all nonzero ideals of the ring OK and p runs over the nonzero
prime ideals. Note that behind the equality of the two expressions we have the
idea that the decomposition of an ideal as a product of prime ideals is unique in
a Dedekind domain (and particularly in a number field).
The functional equation will involve the discriminant ∆K , the number r1 of real
embeddings and the number r2 of pairs of complex embeddings (we use here r2

instead s to avoid a confusion with the complex variable s).

Theorem 4.3. The function ζK(s) can be extended to a function over all the
complex plane, holomorphic except for a simple pole at s = 1 with residue λ(K).
Furthermore, it satisfies a functional equation. Let

ξK(s) = ∆
s/2
K ΓR(s)r1ΓC(s)r2ζK(s)

where ΓR(s) = π−s/2Γ(s/2) and ΓC(s) = (2π)−sΓ(s). Then, outside 0 and 1,
ξK(s) is bounded over all the vertical strip and verifies

ξK(s) = ξK(1− s)

There is an expression for the residue

λ(K) =
hKRK√

∆K

· 2r1(2π)r2

ωK

where hK is the number of classes; RK is the regulator of units (we have not
defined it, is a measure of how dense units are, for instance it is 1 in an imagi-
nary quadratic field where units are a finite group and it is the logarithm of the
fundamental unit in a real quadratic extension); finally ωK is the number of roots
of the unity.
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Zeta functions of curves over finite fields

In the same spirit that we have defined zeta functions over number fields, we can
do the same for curves over finite fields. For that, we start by considering an
affine plane curve C : f(X, Y ) = 0 over Fp. As it could be expected, we just
write, for complex numbers s with <(s) > 1,

ζ(C, s) =
∏
p

1

1− Np−s

where the product is over the prime ideals of the ring of functions of the curve
Fp[x, y] = Fp[X, Y ]/(f(X, Y ). Note that when doing the quotient by a prime
ideal, it is finite, and of course it is an integral domain, and it is a basic result in
ring theory that under this hypothesis is also a field. We will denote by deg(p)
its degree over Fp (since it would be a finite extension of this base field). Writing
Np = pdeg(p) we can rewrite our definition in the following way:

Z(C, T ) =
∏
p

1

1− T deg(p)

and we trivially have the relation ζ(C, s) = Z(C, p−s). We will not discuss for
the moment convergence issues and we will work with it as a formal series. The
easiest way to understand this zeta functions is through an example.
Take for instance the affine curve X = 0. The quotient Fp[X, Y ]/(X) is just the
polynomial ring in one variable, and there prime ideals are the same than irre-
ducible polynomials. Our product is therefore a product over all the irreducible
polynomials, and deg(p) is just the degree of the polynomial. But we do not know
how many polynomials of degree n there is (in a closed form, I mean), what we
know is that Xpm − X is the product of all the irreducible polynomials whose
degree divides m. Taking logarithms, we put

logZ(A1, T ) = −
∑
f

log(1− T deg(f))

We take now derivatives and finally get something that we can compute explicitly:

Z ′(A1, T )

Z(A1, T )
=
∑
f

deg(f)T deg(f)−1

1− T deg(f)
=
∑
f

∑
n≥0

deg(f)T (n+1) deg(f)−1

For instance, a prime polynomial of degree 3 will contribute with a coefficient of
3 to all the powers of T of the form T 3k−1. Using now the preceding observation

Z ′(A1, T )

Z(A1, T )
=
∑

pmTm−1

If we finally integrate, it results that

logZ(A1, T ) = log
1

1− pT
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and finally

Z(A1, T ) =
1

1− pT
We observe that in this example occurs a particular coincidence that is our first
proposition of this section:

Proposition 4.2. If Nm is the number of points of an affine curve C in Fpm,
and let Z(C, T ) be the zeta function of C over Fp. Then

Z(C, T ) = exp
(∑
m≥1

NmT
m

m

)
Proof. We just reproduce the steps of the example to get

Z ′(C, T )

Z(C, T )
=
∑
f

deg(p)T deg(p)−1

1− T deg(p)
=
∑
p

∑
n≥0

deg(p)T (n+1) deg(p)/T

Note that the coefficient of Tm−1 is
∑

deg(p) where the sum is over all the nonzero
prime ideals such that deg(p) divides m. It also holds that

deg(p) = [Fp[x, y]/p : Fp]

Recall also that, from field theory Fpr is a subfield of Fps if and only if r divides s,
so the condition deg(p)|m can be reformulated by saying that there is a homomor-
phism Fp[C]/p → Fpm . In particular, since the extension is separable, there will
be deg(p) such homomorphisms (take a primitive element of the multiplicative
field and send it to one of the m roots of its irreducible polynomial). Conversely a
homomorphism between Fp[C] and Fpm factors through Fp[C]/p for a prime ideal
p, with deg(p)|m (the preimage of {0} will be a prime ideal). We conclude that
the coefficient of Tm−1 is the number of homomorphisms of Fp-algebras

Fp[x, y]→ Fpm

But one such homomorphism is determined by the images a, b of x, y and con-
versely the homomorphism P (X, Y ) 7→ P (a, b) factors through Fp[X, Y ]/(f(X, Y ))
if and only if f(a, b) = 0. We conclude that there is a correspondence between
homomorphisms from Fp[C] to Fpm and the points of C(Fpm). Now, the result
follows.

We now extend this definition to the case of plane projective curves:

Definition 4.1. For a projective plane curve C over Fp we define

Z(C, T ) = exp
(∑
m≥1

NmT
m

m

)
where as usual Nm denotes the number of points in C(Fpm).
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For example, a trivial substitution gives us that

Z(P1, T ) =
1

(1− T )(1− pT )

and for an elliptic curve since we have for every finite field a point in the infinity,

Z(E, T ) =
Z(Eaff , T )

1− T

To continue with this theory, we need a lemma to know the number of divisors
of a fixed degree on an elliptic curve:

Lemma 4.1. On an elliptic curve E over Fp the number of positive divisors of
degree m ≥ 1 is N pm−1

p−1
, where N is the number of points of E(Fp).

Proof. Start by taking a divisor D0 and consider the set of divisors that are
equivalent to D0, P (D0) (all those divisors D such that D = D0 + (f), where
f ∈ Fp(E)∗. We have a bijection between (L(D0)\{0})/F∗p and P (D0) since the
map L(D0)\{0} → P (D0) : f 7→ D0 + (f) is clearly surjective (by definition) and
two functions have the same image if and only if one is multiple of the other.
We recall that using Riemann-Roch, if m ≥ 1 and deg(D0) = m, we know that
dim(L(D0)) = m. From here, the cardinal of P (D0) will be the quotient of the
cardinal of L(D0)\{0} (that is, pm − 1) divided by p − 1. As we pointed out in
the introduction to Riemann surfaces, the degree of a principal divisor factors
through Pic(E). The map deg is surjective since we can take for instance p∞,
that is mapped to 1. If we consider PicmE as the elements in Pic(E) of degree
m, we have these two trivial affirmations:

• The map Pic0(E)→ Picm(E) : D → D +mp∞ is a bijection.

• There is a bijection between E(k) and Pic0(E) (as we pointed out in chapter
two).

Now the conclusion follows, since the number of elements in Picm(E) is the same
as the number of points in E(Fp).

We are now in conditions to state the most important theorem of this section:

Theorem 4.4. Let E be an elliptic curve over Fp. Then,

Z(E, T ) =
1 + (N1 − p− 1)T + pT 2

(1− T )(1− pT )

Proof. For what we say before, and passing to the affine form of the curve

Z(E, T ) =
1

1− T
∏
p

1

1− T deg p

(the product again over the prime ideals of Fp[C] = Fp[X, Y ]/(Y 2−X3−aX−b).
That expression can also be written as Z(E, T ) =

∑
dmT

m, where now dm is the
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number of divisors of degree m, that have already been counted in the previous
lemma. Therefore,

Z(E, T ) = 1 +
∑
m≥1

N1
pm − 1

p− 1
Tm = 1 +

N1

(p− 1)(1− pT )
− N1

(p− 1)(1− T )
=

=
1 + (N1 − p− 1)T + pT 2

(1− T )(1− pT )

Beyond the simplicity of this proof, there are some deep remarks: take α, β to be
the zeros of Z(E, T ). After some algebra,

logZ(E, T ) =
∑

(1 + pm − αm − βm)Tm/m

and we get that Nm(E) = 1 + pm − αm − βm. There is also a relation with the
Riemann hypothesis (the zeros of the ζ function have real part equal to 1/2). In
fact

ζ(E, s) =
(1− αp−s)(1− βp−s)
(1− p−s)(1− p1−s)

The poles are at s = 0, 1 and the zeros are the roots of ps = α, ps = β, so the
Riemann hypothesis is the same as saying that α, β have absolute value

√
p. But

α, β are the inverse of the roots of a quadratic polynomials and by Cardano-Viete,
their product is 1. So, if we see that the roots are complex conjugates, we will
be done. But that is the same as saying that |N1− p− 1| ≤ 2

√
p, and that is the

content of Hasse’s theorem.

4.3 Weil conjectures

Weil conjectures are one of the most well-known problems of the twentieth cen-
tury. They were one of the excuses to produce a further development of algebraic
geometry and as frequently happened in mathematics, they are elementary in its
formulation. Furthermore, it has deep implications, as its relations with the Ra-
manujan conjecture about the coefficients of ∆(q), that will be introduced later
as one of the most classical examples of modular forms.

∆(q) = q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn

Weil conjectures state that |τ(p)| ≤ 2p11/2 for any prime number p and this is
related to the problem of the number of ways to write a number as a sum of 24
squares. Until now, we have proved Riemann hypothesis for elliptic curves, but
our aim would be to extend it to general curves over finite fields. In 1941, Andre
Weil produce one such proof, but it relied on some facts in algebraic geometry
that were only proved for varieties over the complex numbers. To address this
deficiency, Weil wrote Foundations of Algebraic Geometry (1948), where it was
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introduced for the first time the notion of an abstract algebraic variety. In the
next years, people made some deep conjectures about projective varieties in higher
dimensions, the celebrated Weil conjectures, announced now in form of a deep
theorem:

Theorem 4.5. Let V/Fq be a smooth projective variety of dimension N . Then,
we have:

a) Rationality: Z(V, T ) ∈ Q(T ).

b) Functional equation: there is an integer ε (Euler characteristic of V ), such
that

Z(V, 1/qnT ) = ±qNε/2T εZ(V, T )

c) Riemann Hypothesis: The zeta function factors as

Z(V, T ) =
P1(T ) · · ·P2N−1(T )

P0(T ) · · ·P2N(T )

where Pi(T ) ∈ Z[T ] and P0(T ) = 1 − T , P2N(T ) = 1 − qNT . Furthermore
Pi(T ) =

∏bi
j=1(1−αijT ), with |αij| = q1/2. We will call bi the i-th Betti number

of V .

Weil proved the conjecture for curves and abelian varieties, and Dwork estab-
lished the rationality in 1960 using p-adic functional analysis. The development
of l-adic cohomology by Artin, let Grothendieck to give another proof of ratio-
nality. It was in 1973 when Deligne, a student of Grothendieck, gave a proof of
the Riemann hypothesis.

We have proved basically the Weil Conjectures for the case of elliptic curves
using arguments of counting divisors. Another approach is also possible, which
reveals some properties of the Frobenius morphism in characteristic p. For that,
take a prime l different from the characteristic p of Fq. We know that there is a
representation

End(E)→ End(Tl(E));ψ 7→ ψl

just choosing a Zl-basis of Tl(E). It makes sense to talk about the determinant
and the trace of ψl. We have the following result:

Proposition 4.3. Let ψ ∈ End(E). Then,

det(ψl) = deg(ψ)

and

Tr(ψl) = 1 + deg(ψ)− deg(1− ψ)

Proof. We will use some of the properties concerning the Weil pairing states in
the previous chapter. Take a Zl-basis for Tl(E) and write ψl(v1) = av1 + bv2,
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ψl(v2) = cv1 + dv2.
Then,

e(v1, v2)deg φ = e([deg φ]v1, v2) = e(φ̂lφlv1, v2) = e(φlv1, φlv2) =

= e(av1 + cv2, bv1 + dv2) = e(v1, v2)ad−bc = e(v1, v2)detφl

Since e is non-degenerate, deg φ = detφl. Furthermore, it is a trivial check that
for any 2× 2 matrix A,

Tr(A) = 1 + det(A)− det(1− A)

Using this, we can prove the following theorem, that has interest by itself and
that can be eventually used to derive the proof of the Weil conjectures for elliptic
curves in a similar way than before:

Theorem 4.6. Let E/Fq be an elliptic curve and let φ : E → E be the q-th power
Frobenius endomorphism. Define a = q + 1−#E(Fq). Then,

a) Let α, β ∈ C be the roots of T 2 − aT + q. Then, α, β are complex conjugates
of modulo

√
q and for every n ≥ 1,

#E(Fqn) = qn + 1− αn − βn

b) The Frobenius endomorphism satisfies the following equation in End(E):

φ2 − aφ+ q = 0

Proof. The characteristic polynomial of φl can be factored as det(T −φl) = T 2−
aT+q = (T−α)(T−β). Note also that for every rational number det(m/n−φl) =
deg(m−nφl)/n2 ≥ 0. A quadratic polynomial that is non-negative for all rational
numbers, has either two complex conjugate roots or a double root. In either case,
the modulo of both of them is the same and equal to the square root of q.
Similarly, when we consider the qn-th power Frobenius endomorphism, its roots
will be αn, βn and so

#E(Fqn) = deg(1− φn) = det(1− φnl ) = 1− αn − βn + qn

The second part of the proposition follows from Cayley-Hamilton: φl satisfies its
characteristic polynomial, and so φ2

l − aφl + q = 0. Consequently,

deg(φ2 − aφ+ q) = 0

and so φ2 − aφ+ q is the zero map.
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4.4 The endomorphism ring (revisited)

The following theorem relates the values of E[p] and End(E).

Theorem 4.7. Let K be a field of characteristic p, and let E/K be an elliptic
curve. For each integer r ≥ 1, let

φr : E → E(pr) and φ̂r : E(pr) → E

The following conditions are equivalent:

a) E[pr] = 0 for one (all) r ≥ 1.

b) φ̂r is (purely) inseparable for one (all) r ≥ 1.

c) The map [p] : E → E is purely inseparable and j(E) ∈ Fp2.

d) End(E) is an order in a quaternion algebra.

Proof. That a is equivalent to b is almost direct: since the Frobenius map is
purely inseparable,

degs(φ̂r) = degs[p
r] = (degs[p])

r = (degs φ̂)r

and now we recall that the cardinal of E[pr] is then

degs(φ̂r) = deg(φ̂)r

The result now follows.

We prove now that b implies c. From the second condition, [p] = φ̂ ◦ φ is purely
inseparable. We consider now the map φ̂ : E(p) → E; by hypothesis φ̂ is purely
inseparable. We can then factor it through a morphism φ′ from E(p) to E(p2) (the
p-th power Frobenius map) and then a morphism ψ from E(p2) to E; comparing
degrees we see that it has degree one so it is an isomorphism. Then,

j(E) = j(Ep2) = j(E)p
2

To see that c implies d we proceed by contradiction, assuming that K = End(E)⊗
Q is either Q or an imaginary quadratic extension of Q. We consider E ′ an elliptic
curve isogenous to E, ψ : E → E ′. Since ψ ◦ [p] = [p] ◦ ψ and [p] : E → E is
purely inseparable (hypothesis), taking the inseparability degrees we have that
[p] : E ′ → E ′ is purely inseparable. Then, the number of points in E ′[p] =
degs[p] = 1, and since we already know that a implies c, j(E ′) ∈ Fp2 . We have
seen that up to isomorphim there are finitely many elliptic curves isogenous to
E.
Take now a prime l 6= p such that l is still prime in End(E ′) for every elliptic
curve E ′ isogenous to E. We know that

E[li] = Z/liZ× Z/liZ
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so we can take a sequence of subgroups

Φ1 ⊂ Φ2 ⊂ . . . ⊂ E

with Φi
∼= Z/liZ. If Ei = E/Φi, there is an isogeny E → Ei with kernel Φi. But

up to isomorphism, there are only finitely many distinct Ei, so there are integers
m,n such that Em+n and Em are isomoprhic. This yields an endomorphism of
Em,

λ : Em → Em+n
∼= Em

The kernel of λ is cyclic of order ln. But l is prime in the ring End(Em) so by
comparing degree λ = u ◦ [ln/2] for some u ∈ Aut(Em) (n even). But the kernel
of [ln/2] is not cyclic for any n, so K is not a number field. We omit the proof
that d implies b.

4.5 The zeta function of a variety over Q
Let V be a non-singular projective variety over Q, so it is the zero set of a
collection of homogeneous polynomials F (X0, · · · , Xn) ∈ Q([X0, · · · , Xn]). We
can assume that the polynomials are in Z and have no common factor, and
consider its reductions F̄ (X0, · · · , Xn) to Fp[X0, · · · , Xn]. As it occurred with
elliptic curves, when F̄ defines a non-singular variety Vp we say that p is good
for V . All but finitely many primes are good for a given variety. For each good
prime, we have the usual zeta function

ζ(Vp, s) = Z(Vp, p
−s), with logZ(Vp, T ) =

∑
#Vp(Fpm)

Tm

m

It is natural to define
ζ(V, s) =

∏
p

ζ(Vp, s)

where the product is over the good primes. Since the Riemann hypothesis holds
for Vp, the product is convergent for <(s) > d + 1, where d is the dimension of
V . Take for instance the variety A0 consisting on one single point, good at any
prime. Then,

ζ(A0, s) =
∏
p

1

1− p−s

which is just the Riemann zeta function. If V = Pn, then all primes are good and
now

ζ(Pn, s) = ζ(s)ζ(s− 1) · · · ζ(s− n)

where ζ(s) is the usual Riemann zeta function.
The following statement is known as the Hasse-Weil conjecture.

Conjecture 4.1. For any non-singular projective variety V over Q, ζ(V, s) can
be analytically continued to a meromorphic function on the whole complex plane,
and satisfies a function equation relating ζ(V, s) with ζ(V, d + 1 − s), where d is
the dimension of V .
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The case of elliptic curves

Let E be an elliptic curve over Q and let S be the set of primes where E has bad
reduction. Then

ζ(E, s) =
∏
p/∈S

1 + (Np − p− 1)p−s + p1−2s

(1− p−s)(1− p1−s)
=
ζS(s)ζS(s− 1)

LS(s)

where ζS(s) is the Riemann’s zeta function omitting the factors corresponding to
the primes in S and LS is the celebrated L-function of an elliptic curve. In a first
approximation, we can define it as

LS(E, s) =
∏
p/∈S

1

1 + (Np − p− 1)p−s + p1−2s

and if we write the denominator as (1− αpT )(1− βpT ), then

LS(E, s) =
∏
p/∈S

1

1− αpp−s
1

1− βpp−s

Taking into account that
∏

p
1

1−p−s converges for <(s) > 1, then
∏

p
1

1−p1/2−s will

converge for <(s) > 3/2. Since precisely |αp| = |βp| =
√
p, it follows (the formal

justification would require more rigor but the idea is clear enough) that LS(E, s)
converges for <(s) > 3/2.
The good definition of the L function will also take into account the bad primes:

Definition 4.2. For any prime p, define Lp(T ) as:

• 1− apT + pT 2 where ap = p+ 1−Np if p is good.

• 1− T if E has split multiplicative reduction at p.

• 1 + T if E has non-split multiplicative reduction at p.

• 1 if E has additive reduction.

Note (and this will be important then in the understanding of BSD) that

Lp(p
−1) =

Np

p
,
p− 1

p
,
p+ 1

p
,
p

p

In any case Lp(p
−1) = #Ens(Fp)/p where Ens is the non-singular part of the

reduction of the elliptic curve. We finally define

L(E, s) =
∏ 1

Lp(p−s)

Another concept that should be properly understood is the conductor NE/Q (or
simply N) of an elliptic curve. It is defined to be an expression of the form∏

p p
fp where fp is zero for the good primes, 1 for those where p has multiplicative

reduction and ≥ 2 for those where the reduction is additive, being equal to 2 if
p 6= 2, 3. For those values, the definition is more complicated and we do not
need it here. The work of Wiles and others around modularity has lead to the
following theorem:
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Theorem 4.8. The L-function L(E, s) extends to an entire function on C and
has a functional equation relating its value at s and 2− s of the form

Λ(E, s) = ±ωEΛ(E, 2− s)

where
Λ(E, s) = (2π)−sΓ(s)N s/2L(E, s)

Wiles (together with Taylor) proved the theorem for the case where E is a par-
ticular type of elliptic curve (semistable) and it was finally established in the
modularity theorem.
The concept of L-function can be of course extended to the case of number fields:
in general, take v a prime ideal and let |v| be its norm. Then,

L(E/K, s) =
∏
v

Lv(E/K, s)

where the local factors are given by

Lv(E/K, s) = (1− a|v||v|−s + |v|1−2s)−1

when v does not divide N and

Lv(E/K, s) = (1− a|v||v|−s)−1

when v|N .
We prove here a theorem relating the L-function of an elliptic curve over a
quadratic field with the L-function of the elliptic curve (over the rationals):

Theorem 4.9. Let K be a quadratic extension of Q. Then, the following formula
holds:

L(E/K, s) = L(E, s)L(ED, s)

where ED is the quadratic twist of E over K (this will be explained later; ba-
sically, it is a curve isomorphic to the given one over a quadratic extension of
discriminant D).

Proof. Let
E : y2 = x3 + ax2 + bx+ c = f(x)

and consider now the quadratic twist, obtained by considering

ED : Dy2 = x3 + ax2 + bx+ c

where D is the discriminant of the extension. Let ap the corresponding coefficients
of the first L-series, and let bp the coefficients attached to ED. Recall that ap =
p + 1 − Np. We will denote by Np the number of points of E and by Mp the
number of points of ED. If N is the conductor of the curve and p is a prime not
dividing neither D nor N , both curves have good reduction in p. We distinguish
now two cases:
If p splits in K (D is a square), clearly y2 = f(x) have the same number of



82 4.5. THE ZETA FUNCTION OF A VARIETY OVER Q

solutions than Dy2 = f(x) (it will depend if f(x) is zero, a non-zero square or a
non-square). Then, Mp = Np and so ap = bp and since p splits, each of the primes
contributes to the L-function of the curve over K with the same factor, that will
be present once both in the L-function of E and ED (seen now as curves in Q).
We move now to the case in which p is inert. Then, we have that if f(x) is zero
modulo p then both y2 = f(x) and Dy2 = f(x) have one solution. Elsewhere, one
of the equations will have two solutions and the other zero. Taking into account
the infinite point

Np +Mp = 2 + 2p

and so
ap + bp = p+ 1−Np + p+ 1−Mp = 0

We conclude that

(1− app−s + p1−2s)(1− bpp−sp1−2s) = 1 + 2p1−2s + p2−4s + (apbp)p
−2s

If we see now the curve over K, we will have that |p| = p2, and the inverse of the
local factor will be

1− ap2p−2s + p2−4s

and consequently all we need is

ap2 = a2
p − 2p

that is true for the theory developed in the previous sections.
The case in which p|ND requires a more careful manipulation, but the same
conclusion holds.



Chapter 5

An introduction to cohomology

In this chapter we present the main definitions about group cohomology, without
giving many examples and proofs, focusing on the main theorems we will need
in subsequent chapters. Cohomology is the natural language to state most of the
theorems of number theory, so a good understanding of this seems to be necessary
to be able to formulate many results not only around BSD, but in the whole area.
However, in this first and naive approach in many of the topics, we will skip many
technical aspects due to a lack of time.

5.1 Definition of the cohomology groups

Definition 5.1. Let G be a group (abelian or not). A G-module is an abelian
group M together with a map G × M → M : (g,m) 7→ gm such that for all
g, g′ ∈ G,m,m′ ∈M satisfies:

a) g(m+m′) = gm+ gm′.

b) (gg′)(m) = g(g′m), 1m = m

Definition 5.2. A homomorphism of G-modules is a map α : M → N such that:

a) α(m+m′) = α(m) + α(m′).

b) α(gm) = gα(n).

An important remark is that if M and N are G- modules, then the set Hom(M,N)
is a G-module with the structures

(φ+ φ′)(m) = φ(m) + φ′(m)

(gφ)(m) = g(φ(g−1m))

Definition 5.3. Let H be a subgroup of G, and let M be an H- module. We
define IndGH(M) to be the set of maps φ : G → M such that φ(hg) = hφ(g) for
all h ∈ H.

83
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Again, IndGH(M) is a G-module with the operations

(φ+ φ′)(x) = φ(x) + φ′(x)

(gφ)(x) = φ(xg)

Also note that when we have a homomorphism α : M → M ′ of H-modules, this
induces a homomorphism between IndGH(M) and IndGH(M ′) by sending φ to α◦φ.

Proposition 5.1. For every G-module M and H-module N ,

HomG(M, IndGH(N)) ' HomH(M,N)

Further, the functor
IndGH : ModH → ModG

is exact.

In the particular case in which H = {1}, we use the notation IndG(M0), that will
denote the set of maps φ from G to M0. A G-module will be called induced if it
is isomorphic to IndG(M0) for some abelian group M0. We continue with more
definitions:

Definition 5.4. A G-module I is injective if every G-homomorphism from a
submodule of a G-module extends to the whole module.

Proposition 5.2. The category ModG has enough injectivities, that is, every
G-module M can be embedded into an injective G-module I.

We are now ready to define the cohomology groups. Let MG be the set of points
of M fixed by G. The functor M 7→ MG is left exact, and since the category
of G-modules has enough injectivities we can use what is called the theory of
derived functors (imagine that here goes an unexisting subsection about that).
Summing up, if M is an object in an abelian category C, a resolution of M is a
long exact sequence

0→M → I0 → I1 → · · · → Ir → · · ·

and when the Ir are injective objects of C, the resolution is said to be injective.
One of the first results is that an injective resolution M → I• of M exists and
it is unique in the sense that if M → J• is a second injective resolution there
exists a homomorphism from M → I• to M → J•. Basically, what we have is an
injective resolution

0→M → I0 → I1 → . . .

where the morphism that goes from I i to I i+1 is di. Take now fixed points, and
so the new complex need no longer be exact, and define now

Hr(G,M) =
Ker(dr)

Im(dr−1)

A first result is Shapiro’s lemma. When M is a G-module, we can also regard Z
as a G-module. Since any homomorphism from Z to M is uniquely determined
by α(1), we have that

HomG(Z,M) 'MG
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Proposition 5.3. Let H be a subgroup of G. For every H-module N , there is a
canonical isomorphism

Hr(G, IndGH(N))→ Hr(H,N)

It is possible to define in a more intuitive way (at least, more similar to al-
ready known things like homology groups in algebraic topology) the cohommol-
ogy groups. If Pr is the free Z module with basis the (r + 1)-tuples (g0, . . . , gr)
of elements of G, with G acting by multiplication, define a homomorphism
dr : Pr → Pr−1 given by

dr(g0, . . . , gr) =
r∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gr)

Let ε be the map P0 → Z sending each basis element to 1. It is immediate to see
that dr−1 ◦ dr it is a complex.
An element of Hom(Pr,M) can be identified with a function φ : Gr+1 →M , and
φ is fixed by G if and only if

φ(gg0, . . . , ggr) = g(φ(g0, . . . , gr))

C̃r(G,M) is the set of φ satisfying the condition. It is natural to define a boundary
map d̃r : C̃r(G,M)→ C̃r+1(G,M) as

(d̃rφ)(g0, . . . , gr+1) =
∑

(−1)iφ(g0, . . . , ĝi, . . . , gr+1)

We will have that

Hr(G,M) ' Ker(d̃r)

Im(d̃r−1)

A homogeneous cochain φ : Gr+1 →M is determined by its values on the elements
(1, g1, g1g2, . . . , g1 . . . gr). We can introduce the group Cr(G,M) of inhomogenous
r-cochains of G with values in M , that are all maps φ : Gr → M . Define now a
map dr : Cr(G,M)→ Cr+1(G,M) by

(drφ)(g1, . . . , gr+1) =

= g1φ(g2, . . . , gr+1) +
r∑
j=1

(−1)jφ(g1, . . . , gjgj+1, gr+1) + (−1)r+1φ(g1, . . . , gr)

Now, letting Zr(G,M) = Ker(dr);Br(G,M) = Im(dr−1) the group of r-cocycles
and r-coboundaries respectively, we have the following:

Proposition 5.4. The sequence of groups Ci(G,M) joined by the morphisms di

is a complex (dr ◦ dr−1 = 0) and there is a canonical isomorphism

Hr(G,M) ' Zr(G,M)

Br(G,M)
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5.2 A more down to earth vision

Since this may seem a very abstract framework, we explain first the meaning of
the 0-th and 1-st cohomology groups:

Proposition 5.5. The 0-th cohomology group of the G-module M , denoted by
MG or H0(G,M) is the submodule of M consisting of all G-invariant elements:

H0(G,M) = {m ∈M | σ(m) = m,∀σ ∈ G}

A very typical picture is when we have a short exact sequence of G-modules. A
natural question is what happens when we take G-invariants. It is straightforward
to see that the first two exactness are preserved, but not the third one (there is
a lack of surjectivity). This is measured through the first cohomology group. We
particularize some of the previous definitions:

Definition 5.5. Let M be a G-module. The group of 1-cochains from G to M is

C1(G,M) = {maps ξ : G→M}

The group of 1-cocycles from G to M is given by

Z1(G,M) = {ξ ∈ C1(G,M) | ξ(τσ) = τ(ξ(σ)) + ξ(τ)}

Finally, the group of 1-coboundaries from G to M is

B1(G,M) = {ξ ∈ C1(G,M) | there exists an m ∈M such that ξ(σ) = σ(m)−m}

With these definitions,

H1(G,M) =
Z1(G,M)

B1(G,M)

The existence of a long exact sequence between the cohomology groups when we
have a short exact sequence applied to

0→ P →M → N

(where we will denote by φ and ψ the maps between P and M and M and N
respectively) gives us a map δ : H0(G,N) → H1(G,P ) defined as follows: let
n ∈ H0(G,N). Choose m ∈ M such that ψ(m) = n and define the cochain ξ by
ξ(σ) = σ(m)−m. Since the value of ξ are in P , ξ ∈ Z1(G,P ) and we define δ(n)
to be the cohomology class of ξ.

Take now a subgroup H of G. As we pointed out, a G-module is also an H-module
and a cochain from G to M can be also seen (by restriction) as a cochain from H
to M . This process takes cocycles to cocycles and coboundaries to coboundaries,
so we have a restriction homomorphism

Res : H1(G,M)→ H1(H,M)
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In the same way, if H is a normal subgroup of G, the submodule MH has a natural
structure of G/H-module Let ξ : G/H → MH be a 1-cochain. The projection
map, followed by ξ and then by the inclusion MH ⊂ M gives a cochain from G
to M that is well behaved, so we can define

Inf : H1(G/H,MH)→ H1(G,M)

We state now a result relating the inflation and restriction maps:

Proposition 5.6. Let M be a G-module and let H be a normal subgroup of G.
Then, the following sequence (when the maps are the inflation and restriction
homomorphisms already defined) is exact:

0→ H1(G/H,MH)→ H1(G,M)→ H1(H,M)

5.3 Galois cohomology

Let K be a perfect field, K̄ an algebraic closure and GK̄/K the absolute Galois
group (inverse limit of GL/K when L varies over all finite Galois extensions of K.
GK̄/K is a profinite group, equipped with a topology (Krull topology) in which
a basis of open sets around the identity is that formed by the normal subgroups
having finite index in GK̄/K .

Definition 5.6. A discrete GK̄/K-module is an abelian group on which the Galois
group acts such that the action is continuous for the profinite topology on GK̄/K

and the discrete topology on M . Equivalently, for all m ∈ M the stabilizer of M
is of finite index in the whole group.

With this language, we can remember the following results studied in a standard
course in Galois theory:

Proposition 5.7. Let K be a field.

a) H1(GK̄/K , K̄
+) = 0.

b) H1(GK̄/K , K̄
∗) = 0 (Hilbert’s Theorem 90).

c) If char(K) does not divide m or it is 0, then H1(GK̄/K , µm) ' K∗/(K∗)m.

5.4 Twisting: general theory

In the next chapter we will talk about the computation of the rank of an elliptic
curve and the possibility of finding a set of generators. When doing this, we have
the problem of the existence or nonexistence of a single rational point on various
other curves. These other curves are twists of E that are called homogeneous
spaces.
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Definition 5.7. Let C/K be a smooth projective curve. The isomorphism group
of C, Isom(C), is the group of K̄-isomorphisms from C to itself. We denote the
subgroup of Isom(C) consisting of isomorphisms defined over K by IsomK(C).
This group we have defined is sometimes called the automorphism group of C,
but we have already defined Aut(E) to be the group of isomorphisms from E to E
taking O to O. For instance, the group Isom(E) will contain translation maps.

Definition 5.8. A twist of C/K is a smooth curve C ′/K that is isomorphic to
C over K̄. Two twists are equivalent if they are isomorphic over K. The set of
twists of C/K modulo K-isomorphisms, is denoted by Twist(C/K).

Let C ′/K be a twist of C/K. There is an isomorphism φ : C ′ → C defined over
K̄. A measure of how φ fails to be defined over K̄ is given by the map

ξ : GK̄/K → Isom(C), ξ(σ) = φσφ−1

We note that ξ is a 1-cocycle:

ξ(τσ) = φτσφ−1 = (φσφ−1)τ (φτφ−1) = (ξ(σ))τξ(τ)

Theorem 5.1. The cohomology class {ξ} is determined by the K-isomorphism
class of C ′ and is independent of the choice of φ. We thus obtain a natural map
from Twist(C/K)→ H1(GK̄/K , Isom(C)). Not only this: the map is a bijection.

Proof. Let C ′′/K be another twist of C/K K-isomorphic to C ′. Choose a K̄-
isomorphism ψ : C ′′ → C. We have to show that the cocycles φσφ−1 and ψσψ−1

are cohomologous. We know that there is a K-isomorphism θ : C ′′ → C ′ and we
can consider α = φθψ−1 ∈ Isom(C). Note that

ασ(ψσψ−1) = (φθψ−1)σ(ψσψ−1) = φσθψ−1 = (φσφ−1)(φθψ−1) = (φσφ−1)α

So the difference of the two is a principal crossed homomorphism and both are
cohomologous.
In order to establish the bijection, recall that if C ′/K and C ′′/K give the same
cohomology class there is a map α ∈ Isom(C) such that ασ(ψσψ−1) = (φσφ−1)α.
It is a simple calculation to prove that θ = φ−1αψ is defined over K by showing
that θσ = θ. Therefore C ′′ and C ′ are isomorphic and give the same element of
Twist(C/K). Surjectivity is not so direct and would require a longer discussion.

We put an example: let E/K be an elliptic curve and let K(
√
d) be a quadratic

extension of K. Consider the character χ : GK̄/K → {±1} such that χ(σ) =√
d
σ
/
√
d. χ defines a 1-cocycle φ : GK̄/K →Isom(E), χ(σ) = [ξ(σ)]. Let now C/K

be the corresponding twist of E/K and let us derive an equation for C/K. We
begin with an equation for E/K of the form y2 = f(x). Note that K̄(E) = K̄(x, y)
and K̄(C) = ξ(K̄(x, y)). Note that [−1](x, y) = (x,−y) and this implies that the
action of σ on ξ(K̄(x, y) is determined by

√
d
σ

= ξ(σ)
√
d, xσ = x, yσ = ξ(σ)y. If

we define x′ = x, y′ = y/
√
d they are fixed by GK̄/K and satisfy

dy′2 = f(x′)
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the equation of an elliptic curve over K. The isomorphism of the curves is over
the quadratic extension K(

√
d). It is an easy verification to check that we have

a cocycle.
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Chapter 6

Mordell-Weil theorem for elliptic
curves

In this chapter we prove one of the main results in the theory of elliptic curves:
Mordell-Weil theorem. The proof has two clear steps: the first one, known as the
Weak Mordell Theorem, in which what we prove is that E(K)/mE(K) is a finite
group; this can be done for any number field and we present two approaches that
are similar in the ideas but that have some differences. The final part needs to
introduce what we call height functions to do a descendence procedure. This is
quite technical and we just explain it for the case of Q. For a number field, the
details can be found in the second book of Silverman. In the last part of the
chapter, we explore the notion of homogeneous spaces.

6.1 The Selmer and Tate-Shafarevich groups

We begin by recalling this result already stated in chapter two:

Lemma 6.1. For every elliptic curve E over an algebraically closed field k and
integer n, the map E(k) → E(k) : P 7→ nP is surjective (assume n does not
divide the characteristic).

Proof. We can identify E(k) with an algebraic variety (since k is algebraically
closed); since this map is regular and E is connected and complete, the image is
connected and closed, i.e., it is either a point or the whole of E, but the first is
impossible.

From the lemma, we have the following exact sequence:

0 En(Q)al E(Q)al E(Q)al 0
n

and now we will take cohomologies; note that H0 correspond to the points of the
base field Q that are the ones fixed by the Galois group.

91
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0 En(Q) E(Q) E(Q) H1(Q, En) H1(Q, E) H1(Q, E)
n n

and from this it is possible to extract another exact sequence, where H1(Q, E)n
will denote the subgroup of elements in H1(Q, E) killed by n:

0 E(Q)/nE(Q) H1(Q, En) H1(Q, E)n 0

It would be enough to prove that H1(Q, En) is finite, but that does not necessarily
holds. So we will proceed in a different way: consider E as an elliptic curve over
Qp, obtaining a similar exact sequence and the following commutative diagram.

0 E(Q)/nE(Q) H1(Q, En) H1(Q, E)n 0

0 E(Qp)/nE(Qp) H1(Qp, En) H1(Qp, E)n 0

We cannot affirm the finiteness ofH1(Q, En), but we would like to have in its place
a set containing the image of E(Q)/nE(Q) and of course, being well-behaved in
which concerns finiteness. If γ ∈ H1(Q, En) comes from an element of E(Q), its
image γp in H1(Qp, En) comes from an element of E(Qp). Once we are at this
point, it is natural to define both the Selmer and Tate-Shafarevich group.

S(n)(E/Q) = {γ ∈ H1(Q, En) | ∀p, γp comes from E(Qp)}

= Ker
(
H1(Q, En)→

∏
p=2,3,···∞

H1(Qp, E)
)

W (E/Q) = Ker
(
H1(Q, E)→

∏
p=2,3,···∞

H1(Qp, E)
)

We need now some very basic homological algebra, in concrete a lemma that
allow us to establish a connection between the Selmer and the Tate-Shafarevich
groups:

Lemma 6.2. Let α, β two maps of abelian groups (or modules) of the form:

A B C
α β

In this case, we have the following exact sequence:

0 Ker(α) Ker(β ◦ α) Ker(β)

Ker(β) Coker(α) Coker(β ◦ α) Coker(β) 0

α

α
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Most of the exactness are trivial and just a matter of writing down the definitions.
For instance, note that when we go from Ker(α) to Ker(β ◦ α) the image is
precisely Ker(α), and the kernel of the next application is also Ker(α). For the
next exactness, it is trivial that both the image and the kernel of the corresponding
morphisms are Ker(β) ∩ Im(α). The other ones follow in a similar way.
We will now apply this lemma to the following maps:

H1(Q, En) H1(Q, E)n
∏

p=2,3,··· ,∞H
1(Qp, E)n

From here we will extract an exact sequence:

0 E(Q)/nE(Q) S(n)(E/Q) W (E/Q)n 0

Note that by virtue of the first diagram of this section, the first map is surjective,
so Coker(α) = 0. Then we only have to identify the other sets; for instance,
Ker(α) = E(Q)/nE(Q) also because of the same exact sequence. The other
identifications directly follow from the corresponding definitions.
We go no to one of the keys aspects, the proof of the finiteness of the Selmer
group. We begin with a lemma that tells us information about the behavior in
Qp once we know about Fp.

Lemma 6.3. Let E be an elliptic curve over Qp with good reduction, and let n
be an integer not divisible by p. A point P ∈ (Qp) is of the form nQ if and only
if its image P̄ in E(Fp) is of the form nQ̄ for some Q ∈ E(Fp).

0 E1(Qp) E(Qp) Ē(Fp) 0

0 E1(Qp) E(Qp) Ē(Fp) 0

n n n

Proof. First of all, necessity is obvious. In previous chapters we saw that the
first vertical arrow is an isomorphism. So, let P ∈ E(Qp) be such that P̄ = nQ̄;
then P − nQ is 0 in Ē(Fp) and is therefore 0 in E1(Qp). We conclude that
P − nQ = nQ′ for Q′ ∈ E1(Qp), so P = n(Q+Q′).

We prove now another lemma in the context of algebraic number theory, but that
will be very useful here, that also relates in some way extensions of Fp with those
of Qp.

Lemma 6.4. For any finite extension k of Fp, there is an unramified extension
K of Qp of the same degree than [k : Fp] such that Ok/pOk = k.

Proof. Take a primitive element for k over Fp and let f0(X) be its minimum
polynomial over Fp. Take now a monic polynomial f(X) ∈ Zp[X] such that
f0(X) ≡ f(X) modulo p. It is a simple verification to see that K = Qp[X]/(f(X))
has the required properties.
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Lemma 6.5. Let E be an elliptic curve over Qp with good reduction, and let
n be an integer not divisible by p. For P ∈ E(Qp), there is a finite unramified
extension K of Qp such that P ∈ nE(K).

Proof. Take the same K than before. OK is a principal ideal with p as the only
prime, so every α ∈ K∗ is of the form upm, where u ∈ O∗K and m ∈ Z. We can
define m to be the order of α, and that way we have a homomorphism between
K∗ and Z that extends the usual homomorphism between Q∗p and Z. The key fact
is that we can now translate our study of elliptic curves over Qp to its unramified
extensions, and in particular E0(K)/E1(K) ' Ēns(k), En(K)/En+1(K) ' k.
Take so P ∈ E(Qp) and P̄ ∈ nĒ(k) for a finite extension k of Qp. We conclude
that P ∈ nE(K) for any unramified extension K of Qp where k is the residue
field.

We can now state the most important proposition of this part of the proof:

Proposition 6.1. Let E be an elliptic curve over Q (let ∆ be its discriminant)
and let T the set of primes which do not divide ∆. Take p /∈ T, γ ∈ S(n)(Q).
There exists a finite unramified extension K of Qp such that γ is 0 in H1(K,En).

Proof. From the definition, we have P ∈ E(Qp) mapping to the image γp of γ in
H1(Qp, En). Since p does not divide 2∆, E has good reduction at p and so there
exists an unramified extension K of Qp such that P ∈ nE(K) and so γp maps to
zero in H1(K,En).

E(Q) E(Q) H1(Q, En)

E(Qp) E(Qp) H1(Qp, En)

E(K) E(K) H1(K,En)

n

n

n

Consider now L a number field, where as we already commented we have one
valuation for each prime ideal of OL, one for each embedding of L into R and
another one for each pair of embeddings of L into C. Write P (p) for the set of
valuations that extends | · |p. We have that

L⊗Q Qp '
∏

v∈P (p)

Lv

For an elliptic curve over L, we can generalize the definition of the Selmer group
and define

S(n)(E/L) = Ker
(
H1(L/En)→

∏
v∈P

H1(Lv, E)
)
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For our purposes, it will be easier to prove the finiteness of S(n) rather than that
of S(n)(E/Q). This suffices because of the following lemma:

Lemma 6.6. For any finite Galois extension L of Q, the kernel of S(n)(E/Q)→
S(n)(E/L) is finite.

Proof. We are dealing with the finiteness of an application between subgroups of
H1(Q, En) and H1(L,En), so we will prove that the kernel of this application is
finite. But this coincides with the kernel of H1(Gal(L/Q), En(L)), which is finite
because both the Galois group and En(L) are finite.

We will call now C to the ideal class group C of OL. Note also that a is a unit
in OL if ordp(a) = 0 for all prime ideals p. We clearly have the following exact
sequence:

0→ U → L∗ →
⊕
p

Z→ C → 0

where from algebraic number theory U is finitely generated (of rank r+s−1 and
C is finite).
Recall that if T is a finite set of prime ideals in L, we have the following pair of
maps of abelian groups

L∗ →
⊕
p

Z→
⊕
p/∈T

Z

where the second arrow is the natural projection. Use here the kernel-cokernel
exact sequence and extract the following exact sequence

0→ U → UT →
⊕
p∈T

Z→ C → CT → 0

We just need a final lemma to finish the proof of the finiteness of the Selmer
group:

Lemma 6.7. For any finite subset T of P (the set of valuations of the number
field) that contains P (∞), let N be the kernel of

L∗/L∗n →
⊕
p/∈T

Z/nZ

Therefore, we have an exact sequence

0→ UT/U
n
T → N → (CT )n

Proof. Recall that we have the following exact sequence:

0→ UT → L∗ →
⊕
p/∈T

Z→ CT → 0

Let α ∈ L∗ an element of N ; then n| ordp(α) for all p /∈ T so we can map α to
the class c of ordp(α)/n in CT (with nc = 0). If c = 0, then there exists β ∈ L∗
such that ordp(β) = ordp(α)/n for all p /∈ T . We conclude that α/βn is in UT , so
it is well defined up to an element of Un

T .



96 6.2. HEIGHTS

6.2 Heights

The title of this section may seem unclear, and it is just to point out that heights,
in general, are a key concept in number theory; different types of heights can be
defined and its theory is crucial for the proof of many theorems, like this of
Mordell-Weil or Bilu’s equidistribution theorem. Here, let P = (a0 : · · · : an) ∈
Pn(Q); we will call it primitive representative for P if all the components are
coprime integers. In that case, we define H(P ) = maxi |ai| and h(P ) = logH(P ).

We need now a technical proposition that tells us about then case when we have
two homogeneous polynomials of degree m, F (X, Y ), G(X, Y ) ∈ Q[X, Y ], that
clearly define a map from P1(Q)\V (Q) to P1(Q) by sending (x, y) 7→ (F (x, y) :
G(x, y). Intuitively, our proposition will state that the height of φ(P ) is ap-
proximately mh(P ) (note that this would be the case when taking for instance
(xm : ym)).

Proposition 6.2. If F (X, Y ) and G(X, Y ) do not have commons zeros in P(Qal)
there is a constant B such that

|h(φ(P ))−mh(P )| ≤ B for all P ∈ P1(Q)

Proof. We may assume that F and G have integer coefficients. If (a : b) is a
primitive representative of P , then H(φ(P )) ≤ CH(P )m, for some constant C,
just by considering that the maximum of |F (a, b)|, |G(a, b)| is a sum of m + 1
monomials and considering the greater coefficient. That way we have, taking
logarithms, that h(φ(P )) ≤ mh(P ) + logC, that is the easy inequality. For
the remaining part, we will have to use some properties of the resultant of two
polynomials:
F and G do not have common zeros, so its resultant is nonzero. We are going
to consider the homogeneization of the two polynomials, F (X/Y, 1), G(X/Y, 1),
that can be viewed as polynomials in one variable X/Y (and its resultant R is
the same than that of F (X, Y ), G(X, Y )). Therefore, we can assure the existence
of polynomials U(X/Y, 1), V (X/Y, 1) of degree m− 1 verifying

U(X/Y )F (X/Y, 1) + V (X/Y )G(X/Y, 1) = R

We now homogeneize, and obtain

U(X, Y )F (X, Y ) + V (X, Y )G(X, Y ) = RY 2m−1

and we perform the same trick with Y/X to obtain

U ′(X, Y )F (X, Y ) + V ′(X, Y )G(X, Y ) = RX2m−1

Putting in the equation (a, b), we observe (Bezout) that gcd(F (a, b), G(a, b)) di-
vides R gcd(a2m−1, b2m−1) = R. As we did before we have another constant D
such that U(a, b), U ′(a, b), V (a, b), V ′(a, b) ≤ C(max |a|, |b|)m−1. Combining this
last inequality with the previous equations, we observe that

|R||a|2m−1 ≤ 2C(max(|a|, |b|)m−1 max(|F (a, b)|, |G(a, b)|)
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and the same for b. From here, and taking into account that gcd(F (a, b), G(a, b))
divides R

H(φ(P )) ≥ 1

|R|
max(|F (a, b)|, |G(a, b)|) ≥ H(P )m

2C

and taking logarithms we get the desired inequality.

But the height we have defined could be called naive and it is not very interesting,
so we will try to give a better definition more adjusted to our goals. Define
therefore

ĥ(P ) = lim
n→∞

h(2nP )

4n

Lemma 6.8. For any P ∈ E(Q), the sequence h(2nP )/4n is Cauchy in R (and
so it converges in R).

Proof. As we have seen before, there exists a constant C such that |h(2P ) −
4h(P )| ≤ C for all P . Consider now positive integers n ≥ m and a point P ∈
E(Q). We have the following chain of inequalities:

∣∣∣h(2nP )

4n
− h(2mP )

4m

∣∣∣ =
∣∣∣ n−1∑
i=m

(h(2i+1P )

4i+1
− h(2iP )

4i

)∣∣∣ ≤
≤

n−1∑
i=m

1

4i+1
|h(2i+1P )− 4h(2iP )| ≤

n−1∑
i=m

C

4n+1
≤ C

3 · 4M

The importance of this new height is that it behaves as a quadratic function, and
in some way, it could be said that starting from h, is the unique function that,
being close to h, behaves as a quadratic function. All these things are summarized
in the following propositions:

Lemma 6.9. There exists at most a function g : E(Q) → R that satisfies that
g(P )− h(P ) is bounded and g(2P ) = 4g(P )

Proof. From the boundedness condition |g(2nP )−h(2nP )| < C. Impose now the

second fact and we get that |g(P ) − h(2nP )
4n
| ≤ C

4n
. From this, we get that g(P )

should be the above defined function ĥ.

Our next aim will be the proof that g is a quadratic form. It is a relatively
well-known result that it suffices to show to verify the parallelogram law:

Lemma 6.10. A function f : M → K from an abelian group into a field whose
characteristic is not 2 is a quadratic form if and only if it satisfies the parallelo-
gram law:

f(x+ y) + f(x− y) = 2f(x) + 2f(y)
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Proof. The necessity is straightforward. Recall that for proving that a function f :
M → K is a quadratic form when f(2x) = 4f(x) and the associated form defined
as 〈x, y〉 = f(x + y) − f(x) − f(y) (we sometimes normalize this value dividing
by 2) is biadditive, i.e., 〈x + z, y〉 = 〈x, y〉 + 〈z, y〉. Putting the corresponding
values, we see that our objective is proving that

f(x+ y + z) + f(x) + f(y) + f(z) = f(x+ y) + f(y + z) + f(z + x)

We have to perform some tedious calculations using several times the parallelo-
gram law:

f(x+ y + z) = 2f(x+ y) + 2f(z)− f(x+ y − z) =

= 2f(x+ y) + 2f(z)− 2f(y − z)− 2f(x) + f(x+ z − y) =

= 2f(x+ y) + 2f(z)− 2f(y − z)− 2f(x) + 2f(x+ z) + 2f(y)− f(x+ y + z)

We divide now by two and get

f(x+ y + z) = f(x+ y) + f(x+ z)− f(x) + f(y) + f(z)− f(y − z) =

= f(x+ y) + f(x+ z) + f(y + z)− f(x)− f(y)− f(z)

as we wanted. To prove that f(2x) = 4f(x) just put x = y = 0 and get f(x) = 0
(here we are using once more that the characteristic is not 2) and then x = y and
the result follows.

Proposition 6.3. The height function ĥ : E(Q)→ R satisfies the parallelogram
law, so it is a quadratic form.

Proof. The proof is not immediate at all. We will begin by proving the existence
of a constant C such that

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) + C

This would imply the desired fact in an easy way, since substituting P for 2nP
and the same for Q, then dividing for 4n and taking limits, we get

ĥ(P +Q) + ĥ(P −Q) ≤ 2ĥ(P ) + 2ĥ(Q)

For the reverse inequality, perform the change P = (P ′ +Q′)/2, Q = (P ′−Q′)/2
and using that we already know that ĥ(2P ) = 4(̂P ), we get

ĥ(P ′) + ĥ(Q′) ≤ ĥ(P ′ +Q′) + ĥ(P ′ −Q′)
2

All we have to prove therefore is that

H(P1 + P2)H(P1 − P2) ≤ KH(P1)2H(P2)2

for a certain constant K. Call P1 +P2 = P3, P1−P2 = P4 and for the coordinates
of the points put Pi = (xi : yi : zi).
Consider now the point of coordinates (x3x4 : x3z4 + x4z3 : z3z4) = (i : j : k).
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Now, after tedious manipulations that we will not reproduce (see either Milne or
Silverman for a more detailed computation) we obtain expressions for i, j, k and
conclude that

H(i : j : k) ≤ KH(P1)2H(P2)2

Now it only remains to prove that

H(i : j : k) ≥ 1/2H(P3)H(P4)

and this is again a matter of being careful with algebraic manipulations.

Now we are almost done and just need one more result:

Proposition 6.4. Let C > 0 be a real number such that

S = {P ∈ E(Q) | ĥ(P ) ≤ C}

contains a set of coset representatives for 2E(Q) in E(Q). Then, S generates
E(Q).

Proof. By contradiction. Take Q ∈ E(Q) not in the subgroup generated by S
and such that ĥ(Q) takes the smallest value among these points. We know that
there is a P such that Q = P + 2R, where P ∈ S and R ∈ E(Q). Since R is not
in the subgroup generated by S (elsewhere Q would be), ĥ(R) ≥ ĥ(Q). That way

2ĥ(P ) = ĥ(P +Q) + ĥ(P −Q)−2ĥ(Q) ≥ (̂2R)−2(̂Q) = 4ĥ(R)−2ĥ(Q) ≥ 2ĥ(Q)

but ĥ(P ) ≤ C and ĥ(Q) > C, and that is a contradiction.

A few remarks about the canonical height

Proposition 6.5. The canonical height extends to a positive definite quadratic
form on the real vector space E(K)⊗ R.

The picture we have now is one contains an elliptic curve E/K, a finite dimen-
sional vector space E(K)⊗ R, a positive definite quadratic form in that space ĥ
and a lattice in E(K) ⊗ R, E(K)/Etors(K). In such a situation, an important
invariant is the volume of a fundamental domain for the lattice (computed with
the metric induced by the quadratic form):

Definition 6.1. The canonical height pairing on E/K is the bilinear form

〈, 〉 : E(K̄)× E(K̄)→ R

defined by
〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q)

The elliptic regulator of E/K, RE/K is the volume of a fundamental domain for

E(K)/Etors(K) computed with the quadratic form ĥ. In other words, given a set
of generators of the lattice P1, . . . , Pr,

RE/K = det(〈Pi, Pj〉)

with the convention that if r = 0 the regulator is 1.
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Extension to number fields

If K is a number field and OK is not a PID there may be a problem: the non-
existence of a primitive representative for a point P ∈ Pn(K). We define therefore
a new heigth:

H(P ) =
∏

p=2,··· ,∞

max
i

(|ai|p)

For the product formula this does not depend of the representative chosen. For
a number field, we copy this definition:

H(P ) =
∏
v

max
i

(|ai|v)

where the product runs over all the valuations.
Roughly speaking, we can say that the canonical height functions we would like
to define

ĥ : E(K̄)→ [0,∞)

is a quadratic form that measures the arithmetic complexity at P , relating the
geometrically defined group law to the arithmetic properties of the points on E.
In the last chapter of the second book of Silverman there is a detailed treatment
of local height functions in number fields.

6.3 The weak-Mordell-Weil revisited

Recall that the weak Mordell-Weil theorem states that if K is a number field and
E/K is an elliptic curve, then, for m ≥ 2

E(K)/mE(K)

is finitely generated. It is possible to proceed in a slightly different way simplifying
some of the technicalities involved in the first proof. We begin by observing the
following:

Lemma 6.11. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite,
then E(K)/mE(K) is also finite.

Proof. The inclusion of E(K) in E(L) induces a natural map

E(K)/mE(K)→ E(L)/mE(L)

The kernel of the map Φ will be Φ = E(K)∩mE(L)
mE(K)

. For each P modulo mE(K) we

can take a point QP ∈ E(L) such that [m]QP = P . Once we have done this, we
define the map

λP : GL/K → E[m]; λP (σ) = Qσ
P −QP

It is straightforward that Qσ
P − QP ∈ E[m] and that if P, P ′ ∈ E(K) ∩ mE[L]

satisfy λP = λ′P , then they are equal modulo mE(K). Hence, there is a one to
one correspondence between the elements of Φ and the maps from GL/K to E[m].
But since both sets are finite, the set of maps is also finite. Therefore Φ is finite
and we are done.
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So we can prove now the weak Mordell-Weil theorem under the assumption that
E[m] ⊂ E[K].

Definition 6.2. The Kummer pairing

κ : E(K)×GK̄/K → E[m]

is defined in the following way. Let P ∈ E(K) and take Q ∈ E(K̄) such that
[m]Q = P . Then

κ(P, σ) = Qσ −Q

Proposition 6.6. The Kummer pairing is well defined and it is bilinear. Fur-
thermore, it satisfies:

1. The kernel of the Kummer pairing on the left is mE(K).

2. The kernel of the Kummer pairing on the right is GK̄/L, where

L = K([m]−1E(K))

is the compositum of all fields K(Q) as Q runs over the points in E(K̄)
satisfying [m]Q ∈ E(K).

Hence the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K)×GL/K → E[m]

If we were interested now in proving this proposition, we would go through some
of the facts we have seen in the first section of this chapter, but without explicitly
introducing the Selmer and Shafarevich groups.
We have not still studied in many detail elliptic curve over local fields (we will
go back when talking about complex multiplication), but for the moment let
M0

K ,M
∞
K be the non-archimedean and archimedean absolute values of K, respec-

tively. Let v ∈M0
K be a discrete valuation. We say that E has good reduction at

v if E has good reduction over the completion Kv. Taking a minimal Weierstrass
equation for E over Kv, denote by Ẽv/kv the reduced curve over the residue field
(we have not done all these definition but they can be understood as a general-
ization of the p-adic case). It is not always possible to choose a single Weierstrass
equation for E over K simultaneously minimal for all Kv, but it can be done if
K = Q.

Proposition 6.7. Let v ∈ M0
K be a discrete valuation ring such that v(m) = 0

and such that E has good reduction at v. Then, the reduction map

E(K)[m]→ Ẽv(kv)

is injective.

We proved this for the case of K = Q when the residue field is simply Fp. The
proof of the general case is similar.
Let us analyze the extension L/K:
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Proposition 6.8. Let
L = K([m]−1E(K))

defined as before. Then, L/K is abelian with exponent m (every element of GL/K

has order dividing m) and if

S = {v ∈M0
K : E has bad reduction at v} ∪ {v ∈M0

K : v(m) 6= 0} ∪M∞
K

then L/K is unramified outside S (that is, if v ∈ MK and v /∈ S, L/K is
unramified at v).

Assuming these results, there is just one thing remaining: prove that a field
extension satisfying the conditions of the previous proposition is finite. Here is
where we use both the finiteness of the ideal class group and the finite generation
of the group of units:

Proposition 6.9. Let K be a number field, S ⊂ MK a finite set of places con-
taining M∞

K and m ≥ 2 an integer. Let L/K be the maximal abelian extension of
K with exponent m unramified outside S. Then, L/K is a finite extension.

Proof. Imagine that we know that the proposition is true for some finite extension
K ′ of K, where S ′ is the set of places of K ′ lying over S. Then, LK ′/K ′ is abelian
of exponent m unramified outside S ′ and so is finite, and hence L/K is also finite.
So it is enough to prove the result under the assumption that K contains the m-th
roots of unity µm. Similarly, we can increase the size of S, just making L larger.
Using this fact, we can adjoin a finite number of elements to S so that the ring
of S-integers, RS (those that have non-negative valuation for all the valuations
not in S) is a principal ideal domain, since it is more or less clear that there is an
extension in which every element of the ideal class group becomes principal (for
instance, the Hilbert class field). We also enlarge S to ensure that v(m) = 0 for
all v /∈ S.
We recall now the main theorem of Kummer theory:

Proposition 6.10. If a field of characteristic 0 contains µm, its maximal abelian
extension of exponent m is obtained by adjoining the m-th roots of all of its
elements.

Thus, L is the largest subfield of K( m
√
a : a ∈ K) that is unramified outside S.

Let now v ∈MK with v /∈ S, and consider Xm − a = 0 over Kv. Since v(m) = 0
and since the discriminant of the polynomial is±pmam−1, we see thatKv( m

√
a)/Kv

is unramified if and only if ordv(a) is a multiple of m. Recalling that when
adjoining m-th roots it is necessary to take only one representative for each class
in K∗/(K∗)m, if we let

Ts = {a ∈ K∗/(K∗)m : ordv(a) ≡ 0 mod m for all v ∈MK with v /∈ S}

then
L = K( m

√
a : a ∈ TS)

It will be enough to show that TS is finite and this comes from the Dirichlet unit
theorem applied to prove this claim:
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Lemma 6.12. The natural map

R∗S → TS

is surjective.

Summing up, if L = K([m]−1E(K)), since E[m] is finite, the perfect pairing
induced by the Kummer pairing shows that E(K)/mE(K) is finite if and only if
GL/K is finite. Now, establishing that L has certain properties, we showed that
any extension with these properties is finite.

6.4 Homogeneous spaces

Associated to an elliptic curve E/K we have a Kummer sequence like the following
one:

0→ E(K)

mE(K)
→ H1(GK̄/K , E[m])→ H1(GK̄/K , E)[m]→ 0

The key in the proof of Mordell’s theorem was that the image of the first term in
the second consists of elements unramified outside of a certain finite set of primes.
Now, we analyze the third term, associating to each element of H1(GK̄/K , E) a
twist of E called a homogeneous space.

Definition 6.3. Let E/K be an elliptic curve. A principal homogeneous space
for E/K is a smooth curve C/K with a simply transitive algebraic group action
of E on C defined over K. Equivalently, a homogeneous space for E/K is a pair
(C, µ) where C/K is a smooth curve and µ : C × E → C is a morphism over K
satisfying:

a) µ(p,O) = p for all p ∈ C.

b) µ(µ(p, P ), Q) = µ(p, P +Q) for all p ∈ C,P,Q ∈ E.

c) For all p, q ∈ C there is a unique P ∈ E such that µ(p, P ) = q.

We frequently write p+ P instead µ(p, P ).

With these definitions in mind, we can define a subtraction map from C × C to
E, ν, characterized by ν(p, q) is the unique P ∈ E satisfying µ(p, P ) = q. We
now here state the most basic properties of addition and subtraction maps, just
to be sure that they behave well:

Proposition 6.11. Let C/K be a homogeneous space for E/K. Then, for all
p, q ∈ C and P,Q ∈ E,

a) p+O = p, p− p = O.

b) p+ (q − p) = q, (p+ P )− p = P .
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c) (q +Q)− (p+ P ) = (q − p) +Q− P .

Next, we show that a homogeneous space C/K for E/K is a twist of E/K
and describe addition and subtraction on C in terms of a given K̄-isomorphism
E → C.

Proposition 6.12. Let E/K be an elliptic curve, and let C/K be a homogeneous
space for E/K. Fix a point p0 ∈ C and define a map θ : E → C by θ(P ) = p0+P .
Then,

a) θ is an isomorphism over K(p0). In particular C/K is a twist of E/K.

b) For all p ∈ C and all P ∈ E, p+ P = θ(θ−1(p) + P ).

c) For all p, q ∈ C, p− p = θ−1(q)− θ−1(p).

d) The subtraction map is a morphism and is defined over K.

Proof. Everything is routine. For the first item, take σ ∈ GK̄/K fixing p0. Then,
θ(P )σ = θ(P σ), so θ is defined over K(p0). Further, since the action is simple
and transitive, θ has degree one and so is an isomorphism.
For the second, θ(θ−1(p) + P ) = p0 + θ−1(p) + P = p+ P , using only that θ−1(p)
is the unique point of E that gives p when added to p0. The other claims follow
in a similar way.

Definition 6.4. Two homogeneous spaces C/K and C ′/K for E/K are equiva-
lent if there is an isomorphism θ : C → C ′ over K compatible with the action of
E on C and C ′, or what is the same

θ(p+ P ) = θ(p) + P

for all p ∈ C and all P ∈ E. The equivalence class containing E/K is the trivial
class, and the collection of equivalence class of homogeneous spaces for E/K is
called the Weil-Chatelet group for E/K, WC(E/K) (it is not still immediate why
it is a group).

Proposition 6.13. Let C/K be a homogeneous space for E/K. Then, C/K is
in the trivial class if and only if C(K) is not the empty set.

Proof. If it is in the trivial class, there is a K-isomorphism θ : E → C and
so θ(O) ∈ C(K). For the converse, suppose that p0 ∈ C(K). Then, the map
θ : E → C defined by θ(P ) = p0 + P is an isomorphism over K(p0) = K. The
compatibility condition on θ is p0 + (P +Q) = (p0 +P ) +Q, which is part of the
definition of homogeneous space.

We state now the two main theorems of this section:

Theorem 6.1. Let E/K be an elliptic curve. There is a natural bijection from
WC(E/K) to H1(GK̄/K , E) defined as follows: when C/K is a homogeneous
space for E/K, choose a point p0 ∈ C and do

{C/K} 7→ {σ 7→ pσ0 − p0}
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The following result states that if C/K is a homogeneous space for E/K, then
Pic0(C) can be canonically identified with E. This means that E is the jacobian
variety of C/K. It can be proved that every curve C/K of genus one is a ho-
mogeneous space for some elliptic curve E/K, this shows that the group Pic0(C)
is always the group of points of an elliptic curve. This remains true in higher
dimension, but the proof is clearly much more complicated.

Theorem 6.2. Let C/K be a homogeneous space for an elliptic curve E/K.
Choose a point p0 ∈ C and consider the map sum from Div0(C) to E that sends∑
ni(pi) to

∑
[ni](pi − p0). Then,

a) There is an exact sequence

1→ K̄∗ → K̄(C)∗ → Div0(C)→ E → 0

b) The summation map is independent of the choice of p0.

c) The summation map commutes with the natural action of the Galois group
on Div0(C) and on E. Hence, it induces an isomorphism of GK̄/K modules

between Pic0(C) and E.
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Chapter 7

Modular functions and modular
forms

The aim of this chapter is to introduce a basic tool not only in the study of elliptic
curves, but in the whole area of number theory: modular forms. A priori, it may
seem that this is unrelated with our previous work but as we have already pointed
out in some moments, the deep connection comes from the modularity theorem,
that assures that we can attach to any elliptic curve over Q a modular curve
where things may seem easy. This is a recent theorem, proved in the last twenty
years and with a lot of implications. The most important results around elliptic
curves and Birch and Swinertonn-Dyer conjectures arise from this concept of
modularity, so the study of this (at first sight) strange objects is highly advisable
for a better understanding of elliptic curves. We will begin with some basic
definitions, the analytic theory and we will move at the end of the chapter to the
study of certain moduli interpretations that will play a preponderant role then
in chapter ten. Throughout the pages, the connections with elliptic curves will
be clear, for instance when proving that we have an L-function attached to the
modular curve satisfying identical properties than those we saw in chapter four.
Here, we will denote H as the complex upper plane (H = {z ∈ C|=(z) > 0}),
that will be the natural place to develop our concepts. We will then see it as
the Poincare upper half place, with its corresponding Haar measure given by the
form dxdy

y2
.

7.1 Elliptic modular curves as Riemann surfaces

In this section we present some facts about H.
There is a natural action of SL2(R) on H, given by

SL2 ×H→ H, (α, z) 7→ α(z) =
az + b

cz + d
, where α =

(
a b
c d

)
This is clear since =(αz) = =(z)

|cz+d|2 ; when we give SL2 and H their natural topolo-
gies, the action is continuous. We can see this as a group acting on a topological

107
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space, so a natural question is to determine whether or not the action is transi-
tive, and try to obtain some information from this fact. We have some easy-to-see
properties:

Proposition 7.1. The group SL2 acts transitively on H

Proof. It is enough to show that, given a ∈ H we can map i to it; if a = x + iy,

we consider the matrix

( √
y x√

y

0 1√
y

)
which is clearly in our group and maps i to

a.

We can write now the orbit-stabilizer theorem; for that, take point i and impose
ai+b
ci+d

= i; from that, it results that a = d, b = −c and from the group condition
a2 + b2 = 1; this clearly correspond to the special orthogonal group, so we have
that SL2(R)/SO2(R) ' H is a group isomorphism. But we can give a stronger
result: this is also a topological homeomorphism, just using the following result:

Proposition 7.2. Suppose that G is a group acting continuously and transitively
on X. If G and X are locally compact and Hausdorff, and G is second countable,
then the map

[g] 7→ gx : G/ Stab(x)→ X

is a homeomorphism.

Proof. We saw that the map is a bijection (just orbit-stabilizer theorem) and
continuity is also clear; we will show that it is open. For that, we take an open
set U of G and let g ∈ U : we will show that gx is an interior point of Ux. For
that, consider the map φ : G×G→ G, (h, h′) 7→ ghh′ (g is fixed); it is continuous
and maps (e, e) to g (which is in U), so we have a neighborhood V of e (which
can be assumed to be compact for being in a locally compact space) such that
V × V is mapped into U (in fact, we can replace V with V ∩ V −1), and we have
gV 2 ⊂ U .
Recall that e ∈ V , and we can write G =

⋃
gV , but each of the sets is a union

of open sets of the basis, and for the assumption that G is 2AN, we only need a
countable number of g’s. Therefore G =

⋃
gnV . We know that gnV is compact,

so gnV x is also compact, and for being in a Hausdorff space, it is closed. At
this point of the proof, we recall a well-known fact from general topology (Baire’s
theorem): if a nonempty locally compact and Hausdorff space X is a countable
union X =

⋃
Vn of closed subsets, then at least one of them has an interior point.

Assume then that gnV x has an interior point, and consider the homeomorphism
between V x and gnV x ψ : X → X, y 7→ gny; we conclude that V x has an interior
point hx, for which we can take an open subset W of X such that hx ∈ W ⊂ V x
and consequently gx = gh−1hx ∈ gh−1W ⊂ gV 2x ⊂ Ux.

We continue our study recalling what is the group of automorphisms of H.

Proposition 7.3. The action of SL2(R) on H induces an isomorphism

SL2(R)/{± Id} → Aut(H)
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where Aut(H) means here biholomorphic automorphisms (H seen as a Riemann
surface)

Proof. If an element of SL2(R) fixes every z, we have that cz2 + (d− a)z− b = 0,
which forces b = c = 0, a = d, but ad = 1, so the only possibilities are ± Id.
Let α be an automorphism of H, and consider β ∈ SL2(R) such that β(i) = α(i).
If we change α by β−1 ◦ α we have that i is a fixed point. Take now the usual
isomorphism from H onto the open disk D, ρ : z 7→ z−i

z+i
, that sends i to 0.

But it is an easy corollary of the Schwarz’s lemma that an automorphism of the
disk fixing the origin is of the form f(z) = λz (with |λ| = 1), and therefore
ρ ◦ β−1 ◦ α ◦ ρ−1 = e2θiz. After an algebraic manipulation, we conclude that
β−1 ◦ α is an element of SO2(R), and therefore also of SL2(R); consequently
α ∈ SL2(R).

We move now to the study of congruence subgroups of SL2(R).

Definition 7.1. Let M =

(
a b
c d

)
∈ SL2(Z). We say that one such matrix M

is in Γ(N) if it is congruent with the identity modulo N . Γ0(N) is the set of those
satisfying c ≡ 0 modulo N , and Γ1(N) are the ones such that c ≡ 0, a, d ≡ 1
modulo N .
A congruence subgroup of SL2(Z) is a subgroup containing Γ(N) for some N .
A Fuschian group is a discrete subgroup of PSL2(R).

Proposition 7.4. The sequence

1→ Γ(N)→ SL2(Z)→ SL2(Z/nZ)→ 1

is exact.

Proof. The only non-obvious fact is the surjectivity of the last one: take one
element of SL2(Z/nZ), i.e., a matrix A whose determinant is congruent with 1
modulo n and with integral entries. We want to prove the existence of another
matrix B (with integral coefficients) such that A ≡ B and det(B) = 1. Let

A =

(
a b
c d

)
; we know, from the condition, that ad − bc − Nk = 1. We can

replace d with d+ nN , where n is chosen in such a way that gcd(c, d+ nN) = 1
(that can be done just by using the Chinese Remainder theorem, taking n such
that d+nN ≡ 1 mod p, for every prime dividing c but not N , and n ≡ 0 mod p
for every prime dividing both c and N). We assume now that (c, d) = 1 and we

take B =

(
a+ eN b+ fN

c d

)
, whose determinant is ad − bc + N(ed − fc) =

1+(m+ed−fc)N ; but since (c, d) = 1, we can select e, f such that ed−fc = −m
(Bézout).

We are now concerned with the classification of this linear fractional transforma-
tions in SL2(R) (that we take as acting on P1(C)), identified with C∪∞. We say
that one such transformation α is:
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a) Parabolic: if it has a unique fixed point (which will be real or infinite); it is the
case when the Jordan form is not diagonal or equivalently, when Tr(α) = ±2
and the matrix is not ± Id.

b) Elliptic: two fixed points that are complex conjugates (one in the upper half
plane and the other in the lower half plane). It admits diagonal form and
|Tr(α)| < 2.

c) Hyperbolic: two real fixed points in R ∪ ∞. It admits diagonal form and
|Tr(α)| > 2.

This can also be extended to SL2(C) and the definitions are similar: α is parabolic
when the trace is ±2, elliptic when the trace is real and smaller than 2 in abso-
lute value, hyperbolic when it is real and greater than 2 in absolute value and
loxodromic when the trace is not real.
We introduce now some useful terminology.

Definition 7.2. Let Γ be a discrete subgroup of SL2(R). A point z ∈ H will be
called elliptic point if it is fixed by some elliptic element of Γ; in the same way,
it will be called a cusp if there is a parabolic element of Γ that has it as a fixed
point.

We start by the following proposition:

Proposition 7.5. If z is an elliptic point of Γ, we have that C = {γ ∈ Γ | γz = z}
is a finite cyclic group.

Proof. We take an element β in SL2(R) such that β(i) = z, and we then have an
isomorphism given by γ 7→ β−1γβ between C and SO2(R)∩ (β−1Γβ) (recall that
SO2(R) are the ones fixing i); this last group is compact and discrete, so it is
finite. Recall also that SO2(R)tors ≡ Q/Z (since SO2(R) ≡ R/Z) and every finite
subgroup of Q/Z is clearly cyclic.

Take as a first example SL2(Z); here the cusps must be between the points of

Q ∪ ∞ and all of them will be equivalent to ∞. If we take T =

(
1 1
1 0

)
, ∞

is the only fixed point, and generally if m/n ∈ Q, (m,n) = 1, we take r, s such

that mr − sn = 1 and R =

(
m s
n r

)
, for which R(∞) = m/n and RTR−1 is a

parabolic element fixing m/n.

Definition 7.3. Let Γ be a discrete subgroup of SL2(R). A fundamental domain
for Γ is a connected open subset D of H such that no two points of D are equivalent
under Γ and H =

⋃
γD̄ (equivalently, D → Γ\H is injective, or D̄ → Γ\H is

surjective).

It is a theorem that every Γ has a fundamental domain, but we we do not prove
this here. In the literature, there are many pages written about how to calculate
these fundamental domains, how to count their vertexes, how to find its area (it
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is not difficult to prove that they are polygons with finite sides in the Poincare
plane with its usual metric dx·dy

y2
). For instance, the fundamental domain for Γ(1)

is D = {z ∈ H such that |z| > 1, |<(z)| < 1/2}. The key step in the proof is to
observe that Γ(1)/{± Id} is generated by Tz = z + 1 and Sz = −1/z.

Now we have some topological work to define our Riemann surfaces. Take first
Γ(1)\H: if P is any non-elliptic point there, we take Q ∈ H mapping to it, and we
can choose a neighborhood U of Q such that there is a homeomorphism between
U and p(U), where p is the projection map. The only elliptic points in Γ(1) are
i, ρ, ρ2, and so for instance if Q is equivalent to i, take it directly equal to i and
consider the map z 7→ z−i

z+i
that is an isomorphism of an open neighborhood D

of i stable under the inversion S = −1/z onto an open disk D′ centered at the
origin, so the action of S on D is now the automorphism σ : z 7→ −z of D′.
Note that 〈S〉\D is homeomorphic to 〈σ〉\D′; we would like also a biholomorphic
isomorphism between them. Summing up: z−i

z+i
is a holomorphic function defined

in a neighborhood of i and S maps it to − z−i
z+i

. Thus, z 7→ ( z−i
z+i

)2 is a holomorphic
function defined in a neighborhood of i invariant under S, so it is σ-invariant in
a neighborhood of p(i). With ρ the treatment is similar.
The problem is that this orbit space is not compact so we need to compactify it
to have a new space H∗. We consider so H∗ = H∪P1(Q), the union of H with the
set of cusps; here, the cusps are ∞ and the rational points of the real axis, that
are of the form σ(∞) for some σ ∈ Γ(1). We give now to σ(∞) the fundamental
system of neighborhoods for which σ is a homeomorphism, and that way Γ(1)
acts continuously on H∗ making sense to consider the quotient Γ(1)\H∗.
The next theorem is very direct from our construction (to prove it, just consider a
triangulation or observe that Γ(1)\H is simply connected and the only Riemann
surface that is simply connected is the sphere.

Proposition 7.6. The Riemann surface Γ(1)\H∗ is compact and of genus zero
(and therefore isomorphic to the Riemann sphere).

All these things can be done in any subgroup Γ of Γ(1) of finite index, putting a
complex structure just in the same way (remember also that we have to check the
Hausdorff condition). We will write X(Γ) = Γ\H∗ and Y (Γ) = Γ\H. X(Γ) will
be called a modular curve. In chapter two of [1] it is possible to find a detailed
explanation.

To compute the genus of X(Γ), consider it as a covering of X(Γ(1)) (of degree
m). Riemann-Hurwitz’s formula gives us

g = 1−m+
∑

(ep − 1)/2

where ep is the ramification index at a point P . It is not difficult using the multi-
plicity of the ramification indexes to obtain the following fundamental theorem:

Theorem 7.1. Let Γ be a subgroup of Γ(1) of finite index, let ν2 be the number
of inequivalent elliptic points of order 2, ν3 the number of inequivalent points of
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order 3 and ν∞ the number of inequivalent cusps. Then the genus of X(Γ) is

g = 1 +m/12− ν2/4− ν3/3− ν∞/2

The announced Taniyama-Weil conjecture states that, for an elliptic curve E/Q,
there exists a surjective function X0(N)→ E, where N is the conductor of E and
X0(N) the compatification of Γ0(N)\H. This conjecture, that implies Fermat’s
last theorem, was proved by Breuil, Conrad, Diamond and Taylor, and previously
the work of Wiles and Taylor made possible to deduce Fermat theorem just by
proving the conjecture for semistable elliptic curves.
An elliptic curve for which there is a nonconstant map X0(N)→ E for some N is
a modular elliptic curve, that is not the same than elliptic modular curves, that
are the ones of the form Γ\H∗.

7.2 Elliptic functions

We take two complex numbers ω1, ω2 and maybe interchanging their roles we can
assume that τ = ω1/ω2 is in the upper half plane (we do not consider, for its lack
of interest, the case where the number are not algebraically independent over the
reals). We consider Λ = Zω1 + Zω2 the lattice generated by ω1 and ω2.
If Λ is a lattice in C, we can make the quotient C/Λ into a Riemann surface as
follows: let Q be a point in C and let P be its image in C/Λ; for our construction,
we have neighborhoods V of Q and U of P such that the quotient map p defines
a homeomorphism; we take every such pair (U, p−1 : U → V ) to be a coordinate
neighborhood, so we have a complex structure that verifies that the map p is
holomorphic and for every open subset U of the lattice, f : U → C is holomorphic
if and only if f ◦ p is holomorphic on p−1(U). Obviously, all these surfaces are
topologically homeomorphic (torus of genus 1), but they will not be isomorphic
as Riemann surfaces. In fact, two lattices are isomorphic if and only we can pass
from one to the other through a homothety, and that every Riemann surface of
genus one is in fact isomorphic to one such torus.
We make some remarks: algebraically, a complex torus is an abelian group under
the addition it inherits from C; geometrically, it is a parallelogram with its sides
identified in opposing pairs (from this points of view it is clear that it is a Riemann
surface).
From now on, we will deal with doubly periodic functions (also called elliptic
functions) in a lattice generated by 1 and τ (after the normalization which is
nothing but a homothety of the complex plane). Therefore we are in a situation
of a function such that

f(z + 1) = f(z), f(z + τ) = f(z)

We have two different objects: first of all, the lattice, defined as

Λ = {m+ nτ,m, n ∈ Z}

on the other, the fundamental parallelogram,

P0 = {z ∈ C : z = a+ bτ, 0 ≤ a, b < 1}
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An equivalence relation is defined, where two points are related if their difference
is a point of the lattice. We state without proof some really obvious properties:

Proposition 7.7. Let C/Λ be a lattice and let P0 be its fundamental parallelo-
gram. Let f be a complex function in the lattice, then:

• Every point in C is congruent to a unique point in the fundamental paral-
lelogram.

• The function f is completely determined by its values in any period paral-
lelogram.

• An entire doubly periodic function is constant (by Liouville’s theorem).

• The number of poles at P0 is at least 2 (by the residue theorem for Riemann
surfaces, the sum of the residues is 0, so if there is one single pole its residue
would be zero and that makes no sense).

We give now our first example of elliptic function, the Weierstrass ℘ function:

Proposition 7.8. Let Λ∗ = Λ\{(0, 0)} (the lattice minus the origin), and con-
sider the function

℘(z) =
1

z2
+
∑
ω∈Λ∗

1

(z + ω)2
− 1

w2

Then, ℘(z) is an elliptic function with double poles at the points of the lattice.

Proof. We begin by analyzing the convergence of the series. We will see that the
following two series converge when r > 2:∑

(m,n)6=(0,0)

1

(|m|+ |n|)r
,

∑
(m,n)6=(0,0)

1

(|n+mτ |)r

To do this, note that if n 6= 0, then∑
m∈Z

1

(|n|+ |m|)r
=

1

|n|r
+

∑
k≥|n|+1

2

|k|r
≤ 1

|n|r
+ 2

∫ ∞
|n|

dx

xr
≤ 1

|n|r
+

C

|n|r−1

From this, it is immediate (using that the series
∑

n≥1
1
nα

converges when α > 1)
that ∑

(m,n)6=(0,0)

1

(|m|+ |n|)r
≤
∑
m 6=0

1

|n|r
+
∑
n6=0

( 1

|n|r
+

C

|n|r−1

)
<∞

To prove the convergence of the second series, we will be done if we find a constant
D such that |m| + |n| ≤ D|n + mτ |. But if τ = a + bi (where b > 0), we
know that |n + mτ | = |(n + ma) + mbi| ≥ |n + mbi| =

√
n2 +m2b2. If b ≥ 1,

then this last quantity is at least
√
n2 +m2 ≥ |m|+|n|√

2
. If b < 1, we have that

√
n2 +m2b2 > b

√
n2 +m2 ≥ b |m|+|n|√

2
. Now, the convergence of the ℘ is clear,

since the function is

℘(z) =
1

z2
+
∑
|ω|≤2R

1

(z + ω)2
− 1

w2
+
∑
|ω|>2R

1

(z + ω)2
− 1

w2
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The second sum is O(1/|ω|3) uniformly when |z| < R and by the previous re-
marks we are done.
The existence of double poles in the lattice points is also clear, and for the peri-
odicity we consider an important function, the derivative of ℘(z)

℘′(z) =
∑

(n,m)∈Z

2

(z + n+mτ)3

This series converges absolutely when z is not in the lattice and it is clearly
periodic with periods 1 and τ and therefore ℘(z+1) = ℘(z)+a, ℘(z+τ) = ℘(z)+b
but since ℘(z) is even, substituting z = −1/2 and z = −τ/2, we conclude that
a = b = 0.

Define now ℘(1/2) = a, ℘(τ/2) = b, ℘((1 + τ)/2) = c. The following equality
holds:

Proposition 7.9.
(℘′)2 = 4(℘− a)(℘− b)(℘− c)

Proof. Note that ℘′ is elliptic of order 3 so it has three zeros; but for being odd,
℘′(1/2) = −℘′(−1/2) = −℘′(−1/2 + 1), so the function has a zero in 1/2 (and
similarly in τ/2 and (1 + τ)/2), and these three are the only ones. On the other
side, since ℘′ has a single zero at 1/2 and ℘−a has also zero at 1/2, it must have
a double zero there (same reasoning for the other factors). But the function is of
order 2, so it has no more zeros. Therefore, both the LHS and RHS have the same
zeros and the same poles (all of order six in the points of the lattice). We conclude

that (℘′)2

(℘−a)(℘−b)(℘−c) is constant, and near zero ℘(z) = 1
z2

+ · · · , ℘′(z) = 2
z3

+ · · · .
Consequently, the constant must be 22/1 = 4.

We finish this digression with a final proposition that states that every elliptic
function is a simple combination of ℘ and ℘′.

Proposition 7.10. Every elliptic function with periods 1 and τ is a rational
function of ℘ and ℘′.

Proof. We begin by showing that every elliptic function F with these periods and
the additional property of being even, is a rational function of ℘. If F has a pole
or a zero at the origin, it must have even order (F is even); we have so an integer
m such that F℘m has neither zeros nor poles at the lattice points. We assume
so that F has neither zeros nor poles in the lattice points (elsewhere multiply by
℘m). We consider ℘(z)− ℘(a), and we already know that it has a double zero in
a if a is a half-period and in any other case, it has two zeros in a and −a.
We now count the zeros and poles of F : if a is a zero so is −a, and the same with
the poles: we consider that the zeros are z1, . . . , zm and the poles p1, . . . , pn and
we define now

G(z) =
(℘(z)− ℘(z1)) . . . (℘(z)− ℘(zm))

(℘(z)− ℘(p1)) . . . (℘(z)− ℘(pn))

We now have that F/G is holomorphic and doubly periodic, hence constant and
we are done.
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To finish the proof, having in mind that ℘ is even and ℘′ is odd, we write f =
feven + feven, where feven = f(z)+f(−z)

2
and fodd = f(z)−f(−z)

2
. But fodd/℘

′ is even,
so applying the previous result about even functions to fodd/℘

′ and feven we reach
the desired result about f(z).

We state now the following remarkable result that is a trivial consequence of
Riemann-Roch theorem, and that characterizes all the functions we have in a
complex torus:

Proposition 7.11. Let P1, · · · , Pn and Q1, · · · , Qn be two sets of points (n ≥ 2)
in the complex plane such that Pi is not Qj modulo the lattice Λ. If

∑
Pi ≡

∑
Qi

modulo Λ, there exists a periodic function f(z) whose poles are the Pi and whose
zeros are the Qj, and f(z) is unique up to multiplication by a nonzero constant.

Eisenstein series

Define

G2k(Λ) =
∑

ω∈Λ,ω 6=0

ω−2k

and define also G2k(z) = G2k(zZ + Z). Then, we have the following result:

Proposition 7.12. G2k(z), k ≥ 1 converges to a holomorphic function on H
taking the value 2ζ(2k) at infinity.

Proof. The convergence is clear from the previous results. To see the value at
infinity, taking into account that converges uniformly and absolutely on compact
sets,

lim
z→i∞

G2k(z) =
∑

lim
z→i∞

1

(mz + n)2k

and the limit of each summand is 0 unless m = 0. Therefore,

lim
z→i∞

G2k(z) = 2
∑
n≥1

1

n2k
= 2ζ(2k)

The elliptic curve E(Λ)

We observe now a very remarkable fact. If Λ is a lattice in C, we know that

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

Let E(Λ) be the projective curve defined by

Y 2Z = 4X3 − g2XZ
2 − g3Z

3

It is natural to state the following proposition:
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Proposition 7.13. The curve E(Λ) is an elliptic curve and the map C/Λ →
E(Λ) sending 0 to (0 : 1 : 0) and any other point z to (℘(z) : ℘′(z) : 1) is an
isomorphism of Riemann surfaces, and reciprocally, every elliptic curve over C
is isomorphic to E(Λ) for some Λ.

While the first statement is obvious, the second one is the content of the uni-
formization theorem. Its proof begins by observing that the universal cover of a
Riemann surface of genus one is C and the proof that if G is a group of automor-
phisms of C without fixed points such that every orbit of G is discrete, then G is
either the trivial group, the group of all translations of the form z 7→ z+nγ or the
groups of translations z 7→ z + mγ1 + nγ2, where γ1, γ2 are linearly independent
over R.
Although it has no relation with modular forms, we state here a remarkable
consequence of the uniformization theorem that can be useful to bear in mind:

Proposition 7.14. Let E/C be an elliptic curve with Weierstrass coordinate
functions x and y. Then,

a) Let α, β closed paths on E(C) giving a basis for H1(E,Z). Then, the periods

ω1 =

∫
α

dx

y
, ω2 =

∫
β

dx

y

are linearly independent over R.

b) Let Λ be the lattice generated by ω1 and ω2. Then the map F : E(C)→ C/Λ

F (P ) 7→
∫ P

O

dx

y
mod Λ

is a complex analytic isomorphism of Lie groups.

Endomorphisms of C/Λ
Proposition 7.15. Let Λ,Λ′ two lattices in C. An element α ∈ C such that
αΛ ⊂ Λ′ defines a holomorphic map φα between C/Λ and C/Λ′, [z] 7→ [αz] that
sends [0] to [0] and any such map is of this form.

Proof. That α defines a holomorphic map of this form is trivial. Consider a
holomorphic map φ : C/Λ → C/Λ′ such that φ([0]) = [0]. C is the universal
covering of both spaces, so by general topology φ lifts to a continuous map φ̄ :
C → C such that φ̄(0) = 0. The projection maps are local isomorphisms, then
φ̄ is holomorphic (for being the composition of holomorphic maps). Take now
ω ∈ Λ; then z 7→ φ̄(z + ω) − φ̄(z) takes values in Λ′, but φ̄ is a continuous map
from C to a discrete set, so for connection properties it must be constant. From
here, we deduce that the derivative of φ̄ is a double periodic function, but it is
also holomorphic, so it must be constant. We conclude that φ̄(z) = αz + β, and
if we impose that φ(0) = 0, then β = 0.
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Note also that Z ⊂ End(C/Λ). From our previous proposition is already clear
that two torus C/Λ, C/Λ′ are isomorphic if and only if Λ′ = αΛ. We can recover
from here the structure of the ring of endomorphisms of C/Λ. The main result
here was that is either Z or a certain subring of OK , for K an imaginary quadratic
field:

Corollary 7.1. R = End(C/Λ) is either Z or there is imaginary quadratic field
K such that R is a subring of OK of rank 2 over Z.

Proof. We put Λ = Zω1 + Zω2, τ = ω1/ω2 ∈ H. For the previous result, we
consider the α associated to a particular endomorphism. In concrete, assume
that we have α /∈ Z such that αΛ ⊂ Λ. Then, we must have a, b, c, d, c 6= 0
such that ατ = aτ + b, α = cτ + d. Dividing both equations by α, it remains
cτ 2 + (d − a)τ − b = 0. From here [Q(τ) : Q] = 2 and to see that α is integral
over Z (from any of the two equations we already have that is in Q(τ)) we just
eliminate τ and it remains the equation α2 − (a + d)α + (ad − bc) = 0. α is so
integral over Z and is contained in the ring of integers of Q(τ).

7.3 Modular Functions and Modular Forms

Once we have constructed our subgroups Γ of finite index in Γ(1) we are interested
in studying holomorphic and meromorphic functions there.

Definition 7.4. Let k be an integer and let Γ be a subgroup of finite index in
Γ(1). A meromorphic function f : H→ C is weakly modular of weight k if

f(γ(τ)) = (cτ + d)kf(τ) for γ =

(
a b
c d

)
∈ Γ, τ ∈ H

Definition 7.5. Let Γ be a subgroup of finite index in Γ(1). A modular function
for Γ is a meromorphic function on the compact Riemann surface Γ\H∗ (or a
meromorphic function on H∗ invariant under Γ). Generally, we can define a
modular function f for Γ as a function on H that satisfies these three conditions:

a) f(γz) = f(z) for all γ ∈ Γ and all z ∈ H.

b) f(z) is meromorphic in H.

c) f(z) is meromorphic at the cusps.

We will do a few comments about the definition and that condition, that at first
sight may seem subtle, of meromorphicity (maybe an invented word) at the cusps:
for the cusp i∞, we know that the group that fixes it in Γ(1) is the free abelian
group of rank 1 generated by T , and therefore the subgroup of Γ fixing i∞ is

of finite index in 〈T 〉, so generated by

(
1 h
0 1

)
for some h ∈ N. Therefore,

f(z + h) = f(z) and f(z) can be expressed as a function f ∗(q) in the variable
q = exp(2πiz/h). f ∗(q) is defined in a punctured disk around the origin, and
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the condition for f to be meromorphic at i∞ means that is meromorphic at
q = 0. This condition is extended to other cusps τ just by considering an element
σ ∈ Γ(1) taking i∞ to τ ; then the function z 7→ f(σz) is invariant under σΓσ−1

and f(σz) is required to be meromorphic at i∞ like before.

Definition 7.6. Let Γ be a subgroup of finite index in Γ(1). A modular form for
Γ of weight 2k is a function on H verifying these three properties:

a) f(γz) = (cz + d)2kf(z)

b) f(z) is holomorphic in H

c) f(z) is holomorphic at the cusps of Γ

With the notations above, the condition of holomorphicity means that the ex-
pansion of f ∗(q) does not have negative terms (when the first term vanishes we
call it a cusp form). Note that condition a) is what we have called before weakly
modularity. The easiest example of modular form are the Einsenstein series.
This definition may seem strange but is not. A modular form of weight 0 is noth-
ing but a holomorphic modular function; a form of weight 2 will correspond to
a differential one-form on the Riemann surface. That is, consider ω = f(z) · dz,
where f is meromorphic. If γ(z) = az+b

cz+d
, then γ∗ω = f(γz)(cz + d)−2dz, so it

is clear that modular forms of weight 2k correspond to Γ-invariant differential
forms on Γ\H∗ (and in general, modular forms of weight 2k correspond to k-fold
differential forms on Γ\H∗). It also makes sense to consider modular forms of
odd weight, but the interpretation is not so clear.

The dimension of the space of modular forms

In these next sections we restrict our attention to modular forms of even weight.
Our next objective is to compute the dimension of M2k(Γ), the space of modular
forms of weight 2k for a subgroup of finite index of Γ(1), and also of S2k(Γ),
the subspace of cusp forms of weight 2k. Note that when multiplying a modular
form of weight k with another of weight l we get a modular form of weight k+ l.
Therefore we have that

M(Γ) =
⊕
k≥0

M2k(Γ)

is a graded ring (it would have been also possible to allow forms of odd weight).

Theorem 7.2. The dimension of M2k(Γ) is:

dim(M2k(Γ) =


0 if k < 0

1 if k = 0

(2k − 1)(g − 1) + ν∞k +
∑

P bk(1− 1/epc if k > 0

where g is the genus of X(Γ), ν∞ is the number of inequivalent cusps and the
sum is over a set of representatives for the elliptic points, and eP is the order or
the stabilizer of P in the image of Γ in Γ(1)/{± Id}
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The proof of the theorem is almost direct combining the following lemma with
the Riemann-Roch theorem.

Lemma 7.1. Let f be a meromorphic modular form of weight 2k and let ω be
the associated k-fold differential on Γ\H∗. Let Q ∈ H∗ maps to P ∈ Γ\H∗.

a) If Q is an elliptic point with multiplicity e, then ordQ(f) = e·ordp(ω)+k(e−1)

b) If Q is a cusp, then ordQ(f) = ordp(ω) + k

c) If Q is any other point, then ordQ(f) = ordp(ω)

Using the preceding lemma, we can also count the number of zeros and poles of
a meromorphic differential form and get the following theorem:

Theorem 7.3. Let f be a meromorphic modular form of weight 2k, then∑
(ordQ(f)/eQ − k(1− 1/eQ)) = k(2g − 2) + kν∞

where the sum is over a set of representatives for the points in Γ\H∗, ν∞ is the
number of inequivalent cusps and eQ is the ramification index of Q over p(Q)
when Q ∈ H and 1 when Q is a cusp.

Proof. We just have to sum the equalities of the previous lemma over the three
types of points we have (elliptic, cusps and the remaining ones).

We are going to state some specific properties for the case of Γ(1), where we can
give a precise description of all the modular forms.

Proposition 7.16. In Γ(1), the following facts hold:

a) For k < 0 and k = 1, M2k = 0.

b) For k = 0, 2, 3, 4, 5, M2k is a space of dimension 1 where a possible basis is
1, G4, G6, G8, G10, respectively.

c) Multiplication by ∆ = g3
4 − 27g2

6 (where g4 = 60G4, g6 = 140G6) defines an
isomorphism of M2k−12 onto S2k.

d) ⊕M2k = C[G4, G6].

We quote here a proposition that will be useful:

Proposition 7.17. The assignment which to a cuspidal form f ∈ S2(Γ) of weight
two associates the expression

ωf = 2πif(τ)τ

identifies S2(Γ) with the space of holomorphic differential forms on X0(N)(C).
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Petersson inner product

Before the proper beginning of this part, we quote a theorem from linear algebra
that will be our motivation (the spectral theorem):

Theorem 7.4. Let V be a finite dimensional complex vector space with a positive
definite hermitian form 〈, 〉. Then,

1. Any self-adjoint linear map α : V → V is diagonalizable, that is, V is a
direct sum of eigenspaces for α.

2. Let α1, α2, . . . be a sequence of commuting self-adjoint linear maps V → V .
Then V has a basis consisting of vectors that are eigenvectors for all αi.

Let f and g be two modular forms of weight 2k > 0 for a subgroup Γ of finite
index in Γ(1).

Lemma 7.2. Let w(z) be a holomorphic function. Then the map z 7→ w(z)
multiplies areas by |dw

dz
|2

Proof. Write w(z) = u(x, y) + iv(x, y), and so the jacobian of our map is uxvy −
vxuy and using now the equations of Cauchy-Riemann this is equal to u2

x + v2
x =

|w′(z)|2.

The next lemma is now almost straightforward just using that a k-fold differential
form on a Riemann surface can be written, locally, as ω = f(z)(dz)k and if
g = g(z), then g∗ω = f(g(z))(dg(z))k = f(g(z))g′(z)k(dz)k (this is a classical
result for differential forms).

Lemma 7.3. The differential f(z)g(z)y2k−2dxdy is invariant under the action of
SL2(R)

Proof. Note that f(γz)g(γz) = (cz + d)2k(cz + d)
2k
f(z)g(z) and γ∗(dx · dy) =

dx·dy
|cz+d|4 (for the previous lemma). Multiplying all this, we get the result.

For which concerns convergence, we have the following:

Lemma 7.4. Let D be a fundamental domain for Γ. If f or g is a cusp form
then the integral ∫ ∫

D

f(z) · g(z)y2k−2dxdy

converges.

If we recapitulate, what we have is that, if f and g are modular forms of weight
2k for some group Γ ⊂ Γ(1), at least one of them being a cusp form, the Petersson
inner product satisfies that is a positive definite hermitian form on S2k(Γ), so this
is a finite dimensional Hilbert space. For the Hilbert basis theorem, we should
have that every cusp form is a linear combination (not necessarily finite) of a
certain basis, called in this case the Poincare basis.
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7.4 Hecke operators

This is one of the most important points in the theory of modular points. We
will define two types of Hecke operators: first of all we will define them on L, the
set of full lattices in C. Then we will define them on modular forms. They are
like some kind of endomorphisms of the modular curve, but this is not exactly
true and they are only correspondences (in fact, they are endomorphisms of the
jacobian).
Let now D be the free abelian group generated by the elements of L.

Definition 7.7. We define T (n) : D → D as the sum of all sublattices of Λ of
index n.

T (n)[Λ] =
∑

(Λ:Λ′)=n

[Λ′]

We also define the operator R(n).

R(n)[Λ] = [nΛ]

Proposition 7.18. a) Let m,n be coprime positive integers. Then T (m)◦T (n) =
T (n) ◦ T (m) = T (mn).

b) Let p be a prime number and n ≥ 1. Then

T (pn) ◦ T (p) = T (pn+1) + pR(p) ◦ T (pn−1)

Proof.

T (m) ◦ T (n)[Λ] = T (m)
( ∑

Λ:Λ′=n

[Λ′]
)

=
∑

Λ:Λ′=n,Λ′:Λ′′=m

[Λ′′]

But each lattice Λ′′ of index mn admits a unique chain of sublattices Λ ⊃ Λ′ ⊃ Λ′′

where Λ′ is of index n in Λ.
For the second part, note that:

a) T (pn) ◦ T (p)[Λ] is the sum over all lattices Λ′′ such that there exists another
lattice Λ′ such that (Λ : Λ′) = p, (Λ′ : Λ′′) = pn.

b) On the other side, T (pn+1)[Λ] is the sum of all the lattices Λ′′ with (Λ : Λ′) =
pn+1.

c) Note also that pR(p) ◦ T (pn−1) is p times the sum over all lattices Λ′ with
(Λ : Λ′) = pn−1 of R(p)[Λ′].

Fix a lattice Λ′′ of index pn+1 in Λ and count how many times occurs in the first
sum (call it a) and b the number of times it appears in the last expression. Our
objective is to prove that a = 1 + pb. If Λ′′ is not in pΛ, then b = 0 and a is
the number of lattices Λ′ that contain Λ′′ of index p in Λ. It is not difficult to
check that there is only one such lattice. When Λ′′ ⊂ pΛ, b = 1 and every lattice
Λ′ of index p contains pΛ; the problem is to count the number of subgroups of
Λ/pΛ of index p, i.e., the number of lines through te origin in the Fp plane, that
is, p+ 1.
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Corollary 7.2. For any m,n,

T (m) ◦ T (n) =
∑

d| gcd(m,n),d>0

dR(d) ◦ T (mn/d2)

The importance of this operators is that if F : L→ C is a function of weight 2k,
then T (n) · F is again of weight 2k.

We can now define Hecke operators for Γ(1). For that, we note that there is a
correspondence between functions F on L of weight 2k and functions f on H that
are weakly modular of weight 2k:

F (Λ(ω1, ω2)) = ω−2k
2 f(ω1/ω2)

f(z) = F (Λ(z, 1))

We need first an easy lemma concerning 2× 2 matrices.

Lemma 7.5. Let A ∈ M2(Z) and determinant n. There exists an invertible

matrix U in M2(Z) such that U · A =

(
a b
0 d

)
with ad = n, a ≥ 1, 0 ≤ b < d

(and moreover the integers a, b, d are uniquely determined).

Proof. We put A into upper triangular form using just elementary operations:
add a multiple of one row to another and swap two rows (the proof of this is
just routine). This operations are invertible in M2(Z) since the corresponding
matrices have determinant 1. These operations do not change the gcd of one
column, so a is uniquely determined (it is the gcd of the first column), and d is
the number such that ad = n. Once we have this it is clear that b is also fixed
modulo n.

With the correspondence between functions on L of weight 2k and weakly mod-
ular function of weight 2k in H in mind, we will define T (n) · f(z) to be the
function associated with T (n) · F , but multiplying by a factor n2k−1 to have
integer coefficients. Therefore,

T (n) · f(z) = n2k−1 · (T (n)F )(Λ(z, 1))

If we want a more explicit formula, we can put the following sum over all the
a, b, d satisfying the condition of the previous lemma

T (n) · f(z) = n2k−1
∑

d−2kf
(az + b

d

)
Proposition 7.19. If f is a weakly modular form of weight 2k for Γ(1), then
T (n) · f is also weakly modular of the same weight 2k, and it verifies these prop-
erties (note the analogy with the previously defined Hecke operators for lattices):

a) T (m) · T (n) · f = T (mn) · f , when (m,n) = 1.

b) T (p) · T (pn) · f = T (pn+1) · f + p2k−1T (pn−1) · f , when p prime and n > 0.
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c) Let f be a modular form of weight 2k for Γ(1) with Fourier expansion f =∑
m≥0 c(m)qm, where as usual q = e2πiz. Then T (n) · f is a modular form sat-

isfying T (n) · f(z) =
∑

m≥0 γ(m)qm, where γ(m) =
∑

a| gcd(m,n),a≥1 a
2k−1c(mn

a2
)

(the Fourier coefficients will be denoted by c(m) when it is clear the function
associated to them and by cm(f) elsewhere).

Proof. We begin with the last item.

T (n) · f(z) = n2k−1
∑

ad=n,a>0

d−1∑
b=0

d−2kf
(az + b

d

)
=

= n2k−1
∑

ad=n,a>0

d−1∑
b=0

d−2k
(∑
m≥0

c(m)e2πim(az+b
d

)
)

=

= n2k−1
∑

ad=n,a>0

d−2k+1
( ∑
m′≥0

c(m′d)e2πim′az
)

=

=
∑
m′′≥0

( ∑
a|(n,m′′)

a2k−1c
(m′′n
a2

))
qm
′′

We prove now that T is weakly multiplicative, i.e., that T (m) · T (n) = T (mn)
when (m,n) = 1. It is enough with showing that the Fourier coefficients coincide.
The r-th Fourier coefficient of T (mn) · f(z) is∑

a|(mn,r)

a2k−1c
(mnr
a2

)
On the other hand, the r-th Fourier coefficient of T (m) · T (n) · f(z) is∑

e|(r,m)

e2k−1crm/e2(T (m) · f(z)) =
∑
e|(r,m)

∑
d|(m,rn/e2)

d2k−1e2k−1c
(rmn
e2d2

)
=

=
∑

h|(mn,r)

h2k−1c
(rmn
h2

)
where we have written ci(g) to denote the i-th Fourier coefficient of g.
We finally prove b, that is quite technical but there are no great ideas, just
algebraic manipulations (we will sum over a set of representatives, as it would be
expected):

T (pn) · f(z) = pn(k−1)
∑

0≤i≤n

p−2ik
∑

0≤b<p

f
(pn−iz + b

pi

)

T (p) · g(z) = p2k−1g(pz) + p−1
∑

0≤b<p

g
(z + b′

p

)
Combining these two equalities,

T (p) · T (pn) · f(z) = p(n+1)(2k−1)
∑

0≤i≤n

p−2ik
∑

0≤b<p

f
(pn+1−iz + b

pi

)
+
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+p−1pn(2k−1)
∑

0≤b′<p

∑
0≤i≤n

p−2ik
∑

0≤b<pi
f
(pn−i(z + b′) + pb

pi+1

)
Consider now, in the second summand, the case i = n; there, what we have is

p−1−n
∑

0≤b′<p

∑
0≤b<pn

f
(z + b′ + pb

pn+1

)
= p−1−n

∑
0≤b≤pn+1

f
(z + b

pn+1

)
This term should be now added to the expression obtained for T (pn) · f(z) and
we obtain that way T (pn+1) ·f(z). For the rest of the terms, we will see now. For
each i, the set {b + pn−1−ib′ : 0 ≤ b < pi, 0 ≤ b′ < p} has pi+1 numbers, having
representatives of all classes modulo pi, p times each one. Since f(z + 1) = f(z),
we always obtain the same value, and therefore that is equal to

pn(2k−1)
∑

0≤i≤n−1

p−2ki
∑

0≤b<p

f
(pn−1−iz + b

pi

)
= pk−1T (pn−1) · f(z)

as we wanted.

For instance, it is clear now that γ(0) = σ2k−1(n) · c(0) (where as usual σi(n) =∑
d|n d

i), and γ(1) = c(n). That is, the Fourier coefficient gave us information
about arithmetic properties. Another virtue of this operator is that it preserves
cusp forms, or said in another way, the T (n)′s act on the spaces Mk(Γ(1)) and
Sk(Γ(1)).
Let us now look further: beyond this long computations, we are now in a situation
where is natural to define the Hecke algebra H as the algebra generated by the
Hecke operators Tn for all n ≥ 1. The two previous results show that H is a
commutative algebra, generated by the operators Tp, where p is a prime. The
key fact will be that all these operators would be self adjoint with respect to the
Petersonn inner product. We need a lemma before proving that:

Lemma 7.6. Let f ∈ S2k(Γ). Then, f satisfies the bound |f(z)| ≤ C|=(z)|−k for
all z ∈ H. Furthermore, |cn(f)| = O(nk)

Theorem 7.5. T (n) is a self-adjoint operator in (S2k(Γ), 〈·, ·〉).

Proof. We start by introducing some notation. If α ∈ GL2(R)+, and f is a
function on H, then f |kα = (detα)k(cz+ d)−2kf(az+b

cz+d
). It is easy to check that f

is weakly modular of weight 2k for Γ if and only if f |kα = f when α ∈ Γ. Writing
with this new notation the definition of the Hecke operators,

T (n) · f(z) =
∑

nk−1f |kα

A first claim here is that 〈f |kα, g|kα〉 = 〈f, g〉.
To see that, consider ω(f, g) = f(z)ḡ(z)yk−2dxdy and prove that ω(f |kα, g|kα) =
α∗ω(f, g). Since multiplication of α by an scalar does not change any of the sides,
assume that detα = 1 and therefore

f |kα = (cz + d)−2kf(αz) and also ḡ|kα = (cz̄ + d)−2kg(αz)



CHAPTER 7. MODULAR FUNCTIONS AND MODULAR FORMS 125

We know that α∗(dx · dy) = dx · dy/|cz + d|4 and combining all these facts

α∗(ω(f, g)) = f(αz) · g(αz) · |cz + d|4−4ky2k−2 · |cz + d|−4dxdy = ω(f |kα, g|kα)

This tells us that ∫ ∫
D

ω(f |kα, g|kα) =

∫ ∫
αD

ω(f, g)

which is equal to 〈f, g〉 if αD is also a fundamental domain for Γ(1), but that is
not true. However, we can take a sufficiently small congruence subgroup Γ such
that αΓα−1 ⊂ Γ(1); if D is a fundamental domain for Γ, what we have is that
αD is a fundamental domain for αΓα−1 that has the same volume as D and so
by our choice of Γ, both f, g are modular with respect to αΓα−1.
This lemma implies that

〈f |kα, g〉 = 〈f, g|kα−1〉

for all α ∈ GL2(R)+. Since the Hecke algebra is generated by T (p) it is enough
with proving that

〈T (p)f, g〉 = 〈f, T (p)g〉

But this is easier if we assume the following straightforward lemma:

Lemma 7.7. Let M(n) be, as usual, the set of integer matrices with determinant
n. There exists a common set of representatives {αi} for the set of left orbits
Γ(1)\M(p) and for the set of right orbits M(p)/Γ(1).

Then,

〈T (p)f, g〉 = pk−1
∑
i

〈f |kαi, g〉 = pk−1
∑
i

〈f, g|kα−1
i =

= pk−1
∑
i

〈f, g|kα′i〉 = 〈f, T (p)g〉

Using the results of linear algebra we quote, together with the commutativity of
the Hecke operators, we will have the following:

Corollary 7.3. For each k ≥ 1 there is an orthonormal basis of S2k(Γ) of eigen-
functions of all Hecke operators, T (n) · f = λ(n)f , where λ(n) ∈ R. These
eigenfunctions are called Hecke autoforms (or eigenforms).

Proposition 7.20. Let f ∈ M2k(Γ) be a Hecke autoform such that T (n) · f =
λ(n)f for all n ∈ N. If k > 0 we have that c1(f) 6= 0 and if k = 0 then ck(f) = 0
and f is constant. If k > 0 and c1(f) = 1 (we will say that f is normalized) then
we have:

a) cn(f)cm(f) = cnm(f) if (m,n) = 1.

b) cp(f)cpn(f) = cpn+1(f) + p2k−1cpn−1(f)



126 7.4. HECKE OPERATORS

Proof. The coefficient of q in T (n) · f is c(n) but at the same time is λ(n)c(1), so
c(n) = λ(n) · c(1), so if c(1) were 0 all the other coefficients would be zero, so f
would be constant. From the relations between the coefficients, it is straightfor-
ward knowing that these relations hold for the eigenvalues, and since c(n) = λ(n)
we are done.

Corollary 7.4. Two cuspidal normalized eigenforms are either orthogonal or
equal.

Proof. Let f, g such that T (n) · f = λ(n) · f, T (n) · g = µ(n) · g for all n. Then

λ(n)〈f, g〉 = 〈T (n) · f, g〉 = 〈f, T (n) · g〉 = µ(n)〈f, g〉

We only have two options: or 〈f, g〉 = 0 (and in that case are orthogonal) or
λ(n) = µ(n) for each n, so cn(f) = cn(g).

Integral structure on the space of modular functions

We have already introduced the Einsenstein series

G2k(z) =
∑

(m,n)6=(0,0

1

(mz + n)2k

Its values at q = 0 are 2ζ(2k), so we will divide for this factor to obtain the so
called normalized Eisenstein series, E2k(z) = G2k(z)/2ζ(2k).

Proposition 7.21. The Eisenstein series Gk (k ≥ 2) is an eigenform of T (n)
with eigenvalue σ2k−1(n).

Proof. Note that M2k = S2k⊕〈Gk〉 and since T (n) is Hermitian and preserves S2k,
T (n) ·Gk should be a multiple of Gk. To find the eigenvalue some manipulations
are required.

A useful fact is that ⊕kM2k(Z) is a Z-structure on Mk(Γ(1)) (in a vector space
V over C a Z-structure is a Z-submodule V0 free of rank equal the dimension of
V): since we already know that ⊕kM2k(C) = C[E4, E6] it will be enough with
showing that ⊕kM2k(Z) = Z[E4, E6]. E4(z), E6(z) and ∆′ = q

∏
(1 − qn)24 have

integer coefficients, and an easy induction shows that M2k(Z) is the 2k-th graded
piece of Z[E4, E6]. Then, given f(z) =

∑
anq

n, with an integers,

f = a0E
a
4 · Eb

6 + ∆ · g

where 4a + 6b = 2k and g ∈ Mk−12. Then a0 ∈ Z and it can be seen that
g ∈M2k−12(Z).

We finish with an important result. Since Mk(Z) is stabilized by T (n), the ma-
trix of T (n) with respect to a basis for Mk(Z) has integer coefficients, and so the
eigenvalues of T (n) are algebraic integers.

Proposition 7.22. The eigenvalues of the Hecke operators are algebraic integers.
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7.5 Interpretation of Hecke Operators

In the previous section we have introduced a particular type of operators, we
checked that they have some good properties but, however, everything we did
was quite restrictive (only of Γ(1)) and there was not a clear idea of the intuition
behind that. In this section we try to give a more accurate interpretation of the
Hecke operators.
We begin by introducing a notation that is very useful and that we have still not
used. For any matrix γ ∈ SL2(Z), define the factor of automorphy j(γ, τ) ∈ C,
for any τ ∈ H as

j(γ, τ) = cτ + d

For an integer k, define now the weight k-operator [γ]k on functions f : H → C
as

(f [γ]k)(τ) = j(γ, τ)−kf(γ(τ)), τ ∈ H

With these notations, a weakly modular function of weight k with respect to
Γ is just a meromorphic functions such that f [γ]k = f for all γ ∈ Γ. Some
straightforward properties are the following:

Proposition 7.23. Let γ, γ′ ∈ SL2(Z) and τ ∈ H, we have that:

a) j(γγ′, τ) = j(γ, γ′(τ))j(γ′, τ).

b) [γγ′]k = [γ]k[γ
′]k.

c) =(γ(τ)) = =(τ)
|j(γ,τ)|2 .

d) dγ(τ)
dτ

= 1
j(γ,τ)2

.

Fix now a group of finite index in Γ(1), and let α ∈ GL2(R)+, so α defines a map
x 7→ αx from H to itself, and we would like to define α : Γ\H→ Γ\H,Γz 7→ αΓz,
and this cannot obviously be done, since Γ is not normal in GL2(R). In fact,
αΓz is not even a Γ-orbit, and what will interest us are orbits of the form ΓαΓz.
Every left or right coset of Γ in GL2(R)+ that meets ΓαΓ is contained in it, so

ΓαΓ =
⋃

Γαi

where the ∪ is a disjoint union. That way, α can define a many valued map from
Γ\H to itself sending Γz to {Γαiz}. But this is totally illicit, since talking about
many-valued maps sounds like an ad-hoc trick. We first justify that the maps are
finite:

Lemma 7.8. Let α ∈ GL2(R)+. Then ΓαΓ is a finite union of right (left) cosets
if and only if α is a scalar multiple of a matrix with integer coefficients.

Lemma 7.9. Let α ∈ GL2(R)+. If we write

Γ =
⋃

(Γ ∩ α−1Γα)βi
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where the ∪ is a disjoint union, then

ΓαΓ =
⋃

Γαi

where αi = αβi and the ∪ is again a disjoint union.

In a more general way, we can consider operators between Mk(Γ1) and Mk(Γ2).
We omit some of the proofs of the most technical results.

Lemma 7.10. Let Γ be a congruence subgroup of SL2(Z) and let α be an element
of GL+

2 (Q). Then, α−1Γα ∩ SL2(Z) is a congruence subgroup of SL2(Z).

Lemma 7.11. Let Γ1,Γ2 be congruence subgroups of SL2(Z) and let α be an
element of GL+

2 (Q). Let Γ3 = α−1Γ1α ∩ Γ2, a subgroup of Γ2. Then, left multi-
plication by α

Γ2 → Γ1αΓ2 given by γ2 7→ αγ2

induces a natural bijection from the coset space Γ3\Γ2 and the orbit space Γ1\Γ1αΓ2.
Furthermore, {γ2,j} is a set of coset representatives for Γ3\Γ2 if and only if
{βj} = {αγ2,j} is a set of orbit representatives for Γ1\Γ1αΓ2.

Definition 7.8. Let Γ1,Γ2 be congruence subgroups of SL2(Z) and let α ∈ GL+
2 (Q).

The weight-k Γ1αΓ2 operators takes functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑
j

f [βj]k

where the {βj} are orbit representatives: Γ1αΓ2 = ∪jΓ1βj.

We would like to check that this double coset operator is independent of how
the βj are chosen and that for each f ∈ Mk(Γ1), f [Γ1αΓ2]k is Γ2-invariant and
holomorphic at the cusps. We can also see that this operators carry Sk(Γ1) to
Sk(Γ2).
We first note that if β = γ1αγ2 and β′ = γ′1αγ

′
2 represent the same orbit, then

αγ2 ∈ Γ1αγ
′
2 and using now that f is weight-k invariant under Γ1, we have that

f [β]k = f [β′]k.
For the invariance, note that γ2 permutes the orbit space Γ1\Γ1αΓ2 by right
multiplication. Thus,

(f [Γ1αΓ2]k)[γ2]k =
∑
j

f [βjγ2]k = f [Γ1αΓ2]k

We show now holomorphy at the cusps: note first that if f ∈ Mk(Γ1), for any
γ ∈ GL+

2 (Q), the function g = f [γ]k is holomorphic at infinity, so it has a Fourier
expansion

g(τ) =
∑
n≥0

an(g)e2πinτ/h

for some h ∈ Z+. Also note that the sum of a finite number of these holomorphic
functions is holomorphic, and for any δ ∈ SL2(Z), the function (f [Γ1αΓ2]k)[δ]k is
a sum of functions gj = f [γj]k (where γj = βjδ), so it is holomorphic at infinity.
A similar reasoning yields to the fact that it preserves the space of cusp forms.
We comment three special case of the double coset operator [Γ1αΓ2]k:
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a) Γ1 ⊃ Γ2. In that case Mk(Γ1) ⊂ Mk(Γ2) and taking α = I the double coset
operator is simply f [Γ1αΓ2]k = f and what we have is simply the inclusion
between the two spaces.

b) Γ1 and Γ2 are conjugates, and take α such that α−1Γ1α = Γ2. Here the double
coset operator is f [α]k, the natural translation (isomorphism) between Mk(Γ1)
and Mk(Γ2).

c) Γ1 ⊂ Γ2. Taking α = I and letting {γ2,j} be a set of coset representatives for
Γ1\Γ2 makes the double coset operator f [Γ1αΓ2]k =

∑
j f [γ2,j]k the natural

trace map that projects Mk(Γ1) onto its subspace Mk(Γ2) (it is a surjection).

It comes as no surprise that any double coset operator is a composition of these (as
a linear application is a composition of an injection, a bijection and a surjection).
Given Γ1,Γ2, α, set Γ3 = α−1Γ1α∩Γ2 and let Γ′3 = αΓ3α

−1 = Γ1∩αΓ2α
−1. Then,

Γ1 ⊃ Γ′3, α−1Γ′3α = Γ3 and Γ3 ⊂ Γ2, giving the three cases. The corresponding
composition is

f 7→ f 7→ f [α]k 7→
∑
j

f [αγ2,j]k

which is the general [Γ1αΓ2]k.
This also admits a geometric interpretation: we are transferring points back
between the corresponding modular curves. To see this in a more precise way,
recall that every congruence subgroup Γ has a modular curve X(Γ) = Γ\H∗ con-
sisting of orbits Γτ . In this sense, note that what we will have is a map between
Div(X2) and Div(X1) and since it behaves well with respect to principal divisor
what we really have with Hecke operators is a map between the jacobians of the
corresponding modular curves.
A few remarks: the map α : X3 → X ′3 given by Γ3τ 7→ Γ′3α(τ) is well defined.
As usual, we put Γ3\Γ2 = ∪jΓ3γ2,j and βj = αγ2,j so that Γ1αΓ2 = ∪jΓ1βj. Call
π2, π1 the projections of X3 in X2 and X ′3 in X1 respectively. Then, each point of
X2 is taken back by π1 ◦α◦π−1

2 to a set of points of X1. π−1
2 takes a point x ∈ X2

to the multiset of overlying points y ∈ X3: π−1
2 (x) = {eyy : y ∈ X3, π2(y) = x}.

Summing up, what we have is a map between Div(X2) and Div(X1), as we pre-
viously announced.

We are going to analyze now in this framework the Tp operators and also the
so called diamond operators.
To define this first type of operators, take any α ∈ Γ0(N) and set Γ1 = Γ2 =
Γ1(N). Take now [Γ1αΓ2]k. Since Γ1(N) is a normal subgroup of Γ0(N) we have
an operator of the second case in the list above (conjugation). We are trans-
lating each function f ∈ Mk(Γ1(N)) to f [α]k. We have so that Γ0(N) acts on
Mk(Γ1(N)) and since its subgroup Γ1(N) acts trivially, this is really an action of
the quotient, that can be identified with (Z/nZ)∗. The action of a generic matrix
α is determined by the d element (modulo N):

〈d〉 : Mk(Γ1(N))→Mk(Γ1(N))
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and is given by 〈d〉f = f [α]k for any α with its (2, 2) position congruent with
d modulo N . This operator is also called diamond operator. It is important to
note that for any character χ : (Z/NZ)∗ → C the space

M(N,χ) = {f ∈Mk(Γ1(N)) : f [γ]k = χ(dγ)f for all γ ∈ Γ0(N)}

(dγ the (2, 2)-position) is just the χ-eigenspace of the diamond operator, that is,
those functions such that 〈d〉f = χ(d)f . Observe that

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ)

The second kind of Hecke operators, already commented for the particular case
of SL2(Z) occurs also when Γ1 = Γ2 = Γ1(N), and now α is the diagonal matrix
with 1 and p along the diagonal (p prime). The double coset is here

Γ1(N)

(
1 0
0 p

)
Γ1(N) = {γ ∈M2(Z) | γ ≡

(
1 ∗
0 p

)
(mod N), det γ = p}

It is not difficult to verify that 〈d〉Tpf = Tp〈d〉f .
Working carefully with the expressions we also obtain expression for Tp:

Proposition 7.24. Let N ∈ Z+, and let Γ1 = Γ2 = Γ1(N). Let α =

(
1 0
0 p

)
where p is a prime. The operator Tp = [Γ1αΓ2]k is given by:

Tpf =

p−1∑
j=0

f
[( 1 j

0 p

)]
k

if p|N

Tpf =

p−1∑
j=0

f
[( 1 j

0 p

)]
k

+ f
[( m n

N p

)(
p 0
0 1

)]
k

if p - N ;mp− nN = 1

As it occurred in the simplest case, we now have TpTq = TqTp so we can define
Tn, when n is square free, as the product of the Tp, where p are the prime factors
of n. For a prime power, define

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2

and again extend by multiplicativity to all n.

7.6 L-series attached to modular forms

Consider
∑
c(n)qn, a cusp form that is a normalized eigenfunction for all Hecke

operators T2k(n). We have already pointed out the multiplicative relations be-
tween the coefficients

c(m)c(n) = c(mn), (m,n) = 1

c(pe)c(p) = c(pe+1) + p2k−1c(pe−1)

We will prove now that this is equivalent to an Euler product decomposition for
the Dirichlet series attached to f ; we introduce here again a mysterious ad-hoc
definition for the L-series, that will seem natural after a few chapters:
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Definition 7.9. For any power series f =
∑

n≥1 c(n)qn, the L-series attached to
f is the Dirichlet series

L(f, s) =
∑
n≥1

c(n)n−s

For the moment, we will see that L-series as a formal series, without dealing with
convergence issues.

Proposition 7.25. Let f =
∑

n≥1 c(n)qn be a power series where c(1) = 1. Then,
the coefficients of f satisfy

c(m)c(n) = c(mn), (m,n) = 1

c(pe)c(p) = c(pe+1) + p2k−1c(pe−1)

if and only if the associated L− series has the Euler product expansion

L(f, s) =
∏
p

1

1− c(p)p−s + p2k−1−2s

Proof. We will begin by proving that the relation between the coefficients imply
the Euler product. Note that, as with the usual Dirichlet function,

L(f, s)
∏
p

∑
e≥0

c(pe)p−es

We will do now some algebraic manipulations bearing in mind that c(1) = 1:

(1− c(p)p−s + p2k−1−2s)(
∑
e≥0

c(pe)p−es) =

=
∑
e≥0

c(pe)p−es −
∑
e≥0

c(pe)c(p)p−e(s+1) + c(pe)p2k−1−(2+e)s =

= (c(1)+ c(p)p−s)− (c(p)c(1)p−s)+
∑
e≥2

(c(pe)− c(p)c(pe−1)+ c(pe−2p2k−1)p−es = 1

The result now follows (for the converse, just go back taking care of little modi-
fications).

For which concerns convergence, we recall here a few facts that are quite direct:

Proposition 7.26. Let f(τ) be a cusp form of weight 2k with Fourier expansion∑
c(n)qn. There exists a constant C that only depends on f such that

|c(n)| ≤ Cnk for all n ≥ 1

Corollary 7.5. Let f be a cusp form of weight 2k. Then the associated L-series
converges to a holomorphic function in the upper half plane for <(s) > k + 1. If
f is not a cusp form, the L-series converges for all s with <(s) > k.
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We have now the following theorem, also due to Hecke, that asserts that is possible
to do the analytic continuation of L(f, s) to all of C. For the case of elliptic curves,
this will not be always obvious, so it would be a great advance to justify that the
L-function of an elliptic curve is the same as the one of a certain modular form.

Proposition 7.27. Let f(τ) be a cusp form of weight 2k. Then:

a) L(f, s) has an analytic continuation to all of C.

b) Let R(s) = (2π)−sΓ(s)L(f, s). Then

R(f, 2k − s) = (−1)kR(f, s) s ∈ C

7.7 Oldforms and newforms

From the beginning of this chapter, we have worked in a particular level N . Now
we try to explain what happens when we move between levels, more precisely
the relation between levels M and N when M |N . We begin by observing that
when M |N , then Sk(Γ1(M)) ⊂ Sk(Γ1(N)). Another way to embed Sk(Γ1(M)) in
Sk(Γ1(N)) is composing with the map consisting in multiplication by d, where d
is a factor of N/M ; to do this, let

αd =

(
d 0
0 1

)
and consider (f [αd]k)(τ) = dk−1f(dτ) for any f : H → C. It can be checked
that this carries the level M to level N . We distinguish therefore the part of
Sk(Γ1(N)) that comes from lower levels.

Definition 7.10. For each divisor d of N , define

id : (Sk(Γ1(Nd−1)))2 → Sk(Γ1(N))

such that
(f, g) 7→ f + g[αd]k

The subspace of old forms is so

Sk(Γ1(N))old =
∑
p|N

ip((Sk(Γ1(Np−1)))2)

and the subspace of newforms (at level N) is the orthogonal complement with
respect to the Petersson inner product (it is possible to change the sum and do it
over all the divisors of N , not only primes, and nothing changes).

Proposition 7.28. The subspaces Sk(Γ1(N))old and Sk(Γ1(N))new are stable un-
der the Hecke operators Tn and 〈n〉 for all n ∈ Z+.

Corollary 7.6. The spaces Sk(Γ1(N))old and Sk(Γ1(N))new have orthogonal bases
of eigenforms for the Hecke operators away from the level, {Tn, 〈n〉 : (n,N) = 1}.
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Let now M |N and let d|(N/M), with d > 1. We have two important maps from
Sk(Γ1(M)) to Sk(Γ1(N)). Inclusion and the weight-k operators [αd]k operator.
Define now a variant of the map id, ιd, again from Sk(Γ1(M)) to Sk(Γ1(N)) as

ιd = d1−k[αd]k, (ιdf)(τ) = f(dτ)

If f ∈ Sk(Γ1(N)) takes the form f =
∑

p|N ιpfp with fp ∈ Sk(Γ1(N/p)), and if

the Fourier expansion of f is f(τ) =
∑
an(f)qn, then an(f) = 0 for all n such

that (n,N) = 1. The main lemma in the theory of new forms is that the converse
holds. In fact, this result is referred as the Main Lemma.

Theorem 7.6. If f ∈ Sk(Γ1(N)) has Fourier expansion f(τ) =
∑
an(f)qn with

an(f) = 0 when (n,N) = 1, then f is of the form f =
∑

p|N ιpfp with fp ∈
Sk(Γ1(N/p)).

Write S2(N) for S2(Γ0(N)). We are going to define now T as the commutative
subalgebra of EndC(S2(N)) generated over Z by the Hecke operators Tn and T0

as the subalgebra generated by the operators Tn, where (n,N) = 1. We have the
following result:

Proposition 7.29. The Hecke algebras T and T0 are finitely generated as Z-
modules and its rank is g, the genus of X0(N).

Proof. Let V be the vector space dual of S2(N), that is, the homomorphisms
from S2(N) to C. By the theory of Abel-Jacobi, H1(X0(N)(C),Z) is a sublattice
Λ of V , just by associating to a closed cycle c on X0(N) the functional ηc ∈ V
that will be the integral of ωf around c. The action of T on S2(N) induces an
action on V which leaves stable Λ (we will turn over this on chapter ten). Hence,
T is a subalgebra of the endomorphisms of Λ, and since this latter ring is finitely
generated as a Z-module the same will be true for T and for T0.
To see that the rank is at most g, we must consider the action of complex con-
jugation τ on X0(N)(C). It induces an action on Λ commuting with that of T.
Hence, T preserves the submodules Λ+,Λ− on which τ acts as multiplication by
1 and −1 respectively. Both of them are free of rank g and so T is identified
with a commutative subalgebra of Mg(Z). It is an algebraic fact that there ex-
ists T ∈ T such that T contains Z[T ] with finite index, and hence these two
rings have the same rank as Z-modules; but Z[T ] is generated by 1, T, . . . , T g−1

(Cayley-Hamilton), so the result follows.
It remains to prove that the rank is exactly g. Take TC = T⊗C, and so we have
a C-bilinear pairing

〈, 〉 : TC × S2(N)→ C

given by 〈T, f〉 = a1(Tf) (ai are now the Fourier coefficients). We see that
〈Tn, f〉 = an(f) and so the pairing is non-degenerate on the right and the natural
map

S2(N)→ Hom(TC,C)

induced by 〈, 〉 is injective. Hence, the complex dimension of TC is greater or
equal than g, and hence the rank of T is ≥ g, as we wanted.
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We quote now some results that follow almost directly from our previous work.

Corollary 7.7. S2(N) has a basis consisting of modular forms with integer
Fourier coefficients.

Proposition 7.30. If T is in T0, then it is self-adjoint with respect to the Pe-
tersson scalar product.

(this last fact is not immediate at all).
All this, combined with the spectral theorem, assures that

S2(N) =
⊕
λ

S0
λ

taken over all C-algebra homomorphisms λ : T0 → C, where S0
λ denotes the

corresponding eigenspace in S2(N). These spaces need not be of dimension one,
but if λ : T → C is a ring homomorphism defined over the full Hecke algebra,
and Sλ is the associated eigenspace, then:

Proposition 7.31. The eigenspace Sλ attached to λ : T→ C is one-dimensional

But S2(N) does not decompose in general into direct sum of one dimensional
eigenspace Sλ, since the operators in T need not act semisimply on S2(N). But the
space of newforms does decompose as a direct sum of one dimensional eigenspaces
under both the action of T and T0. We finish this section with a remarkable
theorem of Atkin-Lehner.

Theorem 7.7. Let f ∈ Snew
2 be a simultaneous eigenform for the action of T0.

Let S be any finite set of prime numbers and g ∈ S2(N) an eigenform for Tp for
all p /∈ S. If ap(f) = ap(g) for all p /∈ S, then g = λf for some λ ∈ C.

An immediate corollary of this is the following:

Corollary 7.8. The full Hecke algebra T acts semisimply on Snew
2 (N) with one

dimensional eigenspaces. We therefore have an orthogonal decomposition

S2(N) = Sold
2 (N)

⊕
λ

Cfλ

where the sum is over all algebra homomorphisms λ : T → C corresponding to
eigenvectors in Snew

2 (N) and fλ(τ) =
∑∞

n=1 λ(Tn)e2πinτ .
The simultaneous eigenvector fλ is called a normalized eigenform or a newform
of level N (it satisfies a1(f) = 1).

7.8 Eigenforms

Let us summarize what we have done until the moment: after having presented
our place of work, H, we have defined modular forms and study Hecke operators
for the case of SL2(Z). Then, we have done an interpretation of these operators in
terms of jacobians and in that context it was natural to generalize the operators
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to other groups of finite index in SL2(Z). There, we had to distinguish between
two types of forms: newforms and oldforms. In Γ(1), the Hecke operators were
self-adjoint and they diagonalize simultaneously. In other congruence subgroups,
we can repeat those procedure but with some changes; for instance we have the
following:

Theorem 7.8. In the inner product space S2k(Γ1(N)), the Hecke operators 〈p〉
and Tp for p - N have adjoints 〈p〉∗ = 〈p〉−1 and T ∗p = 〈p〉−1Tp. Thus, the Hecke
operators 〈n〉 and Tn for n relatively prime to N are normal.

Note that the Petersson inner product is defined in the same way, with a normal-
izing factor to take into account the measure of the fundamental region, that will
satisfy

Vol(Γ) = 2π[SL2(Z) : {± Id}Γ]

Recall also that the spaces S2k(Γ1(N))old and S2k(Γ1(N))new have orthogonal
bases of eigenforms for the Hecke operators {Tn, 〈n〉 : (n,N) = 1}. Let f be such
an eigenform; the Main Lemma can be used to deduce that if f ∈ S2k(Γ1(N))new

then f is an eigenform for all Tn and 〈n〉. We explore these ideas:

Definition 7.11. A nonzero modular form f ∈M2k(Γ1(N)) that is an eigenform
for the Hecke operators Tn and 〈n〉 for all n ∈ Z+ is a Hecke eigenform (or simply
eigenform). The eigenform f(τ) =

∑∞
n=0 an(f)qn is normalized when a1(f) = 1.

A newform is a normalized eigenform in S2k(Γ1(N))new.

If f ∈ S2k(Γ1(N)) is an eigenform for the Hecke operators Tn and 〈n〉 with
(n,N) = 1, then take the corresponding eigenvalues for each n, cn and dn in such
a way that Tnf = cnf, 〈n〉 = dnf . The map n 7→ dn defines a Dirichlet character
χ : (Z/NZ)∗ → C and so f ∈ S2k(N,χ). Consequently, an(f) = cna1(f) when
(n,N) = 1, and so if a1(f) = 0 then an(f) = 0 for all n coprime with N and so
f ∈ S2k(Γ1(N))old. Recall that M2k(N,χ) denotes those f ∈ M2k(Γ1(N)) such
that f [γ]k = χ(dγ)f for all γ ∈ Γ0(N) (where χ is a Dirichlet character modulo
N).

Theorem 7.9. Let f ∈ S2k(Γ1(N))new be a nonzero eigenform for the Hecke
operators Tn and 〈n〉 for all n with (n,N) = 1. Then,

a) f is a Hecke eigenform, that is, an eigenform for Tn and 〈n〉 for all n ∈ Z+.
A suitable scalar multiple of f is a newform.

b) If f̃ satisfies the same conditions as f and has the same Tn-eigenvalues, then
f̃ = cf for some constant c.

The set of newforms in S2k(Γ1(N))new is an orthogonal basis of the space. Each
such newform lies in an eigenspace S2k(N,χ) and satisfies Tnf = an(f)f for all
n ∈ Z+. That is, its Fourier coefficients are its Tn-eigenvalues.

We finish the section with a proposition where we see again the important role
played by L-functions:
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Proposition 7.32. Let f ∈M2k(N,χ). Then the following conditions are equiv-
alent:

a) f is a normalized eigenform.

b) Its Fourier coefficients satisfy:

1. c(1) = 1.

2. c(mn) = c(m)c(n) when (m,n) = 1.

3. c(p)c(pr) = c(pr+1) + χ(p)p2k−1c(pr−1) for all prime p and r ≥ 1.

c) L(s, f) has an Euler product expansion

L(s, f) =
∏
p

(1− c(p)p−s + χ(p)p2k−1−2s)−1

7.9 Modular curves as algebraic curves

We have seen that a complex elliptic curve could be described as an algebraic
curve via the Weierstrass ℘-function. Let N be a positive integer. We have
sketched how X0(N) = Γ0(N)\H, X1(N) = Γ1(N)\H and X(N) = Γ(N)\H can
also be described as algebraic curves. The existence can be assured by a general
theorem on Riemann surfaces, that states that any Riemann surface is isomorphic
(as a Riemann surface) to an algebraic curve with complex coefficients. But here
we want something stronger, since X0(N) and X1(N) are curves over the rational
numbers. This will be the content of some of the theorems of chapter ten.
From the theory we have developed until now, we know that two elliptic curves
over the complex numbers, C/Λ,C/Λ′ are holomorphically group isomorphic if
and only if mΛ = Λ′,m ∈ C. It is natural to consider therefore an equivalence
relation consisting in viewing two elliptic curves as the same if they are isomor-
phic. Similarly, we take in H the equivalence relation given by Γ(1) and consider
the fundamental domain. We will show in this section that there is a bijection
between the two sets. We have to introduce first some terminology:

Definition 7.12. A moduli problem over k is a contravariant functor F from
the category of algebraic varieties over k to the category of sets. In particular,
for each variety V over k we are given a set F (V ) and for each regular map
φ : W → V , we are given a map F (φ) : F (V ) → F (W ) (typically, F (V ) will be
the set of isomorphism classes of certain objects over V .

For instnce, the j-invariant would be a solution to the moduli problem of clas-
sifying elliptic curves over an algebraically closed field, since two curves are iso-
morphic if and only they have the same j-invariant.
Let N be now a positive integer. An enhanced elliptic curve for Γ0(N) is an or-
dered pair (E,C), where E is a complex elliptic curve and C is a cyclic group of
E of order N . Two pairs (E,C) and (E ′, C ′) are equivalent if some isomorphims
between E and E ′ takes C to C ′. We will write S0(N) for the set of equivalence
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classes and [E,C].
In the same way, we define an enhanced elliptic curve for Γ1(N) to be a pair
(E,Q), where E is a complex elliptic curve and Q is a point of E of order N .
Here, the equivalence relation is defined by an isomorphism taking Q to Q′. Call
S1(N) to the set of equivalence classes.
Finally, an enhanced elliptic curve for Γ(N) is a pair (E, (P,Q)) where here (P,Q)
is a pair of points of E that generates the N -torsion subgroup E[N ] with Weil
pairing eN(P,Q) = e2πi/N . Two pairs are equivalent when we have an isomor-
phism taking P to P ′ and Q to Q′. The set of equivalences is called here S(N).

Theorem 7.10. The moduli space of Γ1(N) is S1(N), and two points [Eτ , 1/N +
Λτ ], [Eτ ′ , 1/N + Λτ ′ ] are equal if and only Γ1(N)τ = Γ1(N)τ ′. So there is a
bijection ψ1 between S1(N) and Y1(N).

Proof. Take a point [E,Q] ∈ S1(N) and recall that E is isomorphic to C/Λτ ′ ,
with τ ′ ∈ H. That way, Q = (cτ ′ + d)/N , for some c, d ∈ Z and (c, d,N) = 1 for
the condition that the order of Q is exactly N . For that reason, we have that there

exist a, b, k ∈ Z such that ad−bc−kN = 1 and the matrix γ =

(
a b
c d

)
∈M2(Z)

can be seen as a matrix in SL2(Z/nZ) (reducing modulo N). We can furthermore
modify the entries of γ modulo N , and this does not affect Q. Since we know
that SL2(Z) surjects to SL2(Z/nZ) we take the matrix γ to be directly in SL2(Z).
Writing m = cτ ′ + b and τ = γ(τ ′) we have that mτ = aτ ′ + b and so

mΛτ = m(τZ⊕ Z) = (aτ ′ + b)Z⊕ (cτ ′ + d)Z = τ ′Z⊕ Z = Λτ ′

On the other side

m(1/N + Λτ ) = (cτ ′ + d)/N + Λτ ′ = Q

From these two observations we have that [E,Q] = [C/Λτ , 1/N + Λτ ]. Similarly,
when we have two points τ, τ ′ ∈ H such that Γ1(N)τ = Γ1(N)τ ′, we have γ ∈
Γ1(N) such that τ = γ(τ ′) and it can be easily verified that [C/Λτ , 1/N + Λτ ] =
[C/Λτ ′ , 1/N + Λτ ′ ].
Conversely, when [C/Λτ , 1/N + Λτ ] = [C/Λτ ′ , 1/N + Λτ ′ ], it is clear that we have
m ∈ H such that mΛτ = Λτ ′ and a straightforward manipulation shows that it
suffices to assure that Γ1(N)τ = Γ1(N)τ ′.

In the same way, it is possible to prove that there is a bijection between S0(N)
and Y (N) and another between S(N) and Y (N).
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Chapter 8

Quaternion algebras

This chapter may seem unrelated with our previous work, but that would be
an erroneous thinking. There are at least three basic reasons why quaternion
algebras play a prominent role in the study of elliptic curves, modular forms and
consequently BSD:

• They arise in a natural way as one of the three possibilities for the endo-
morphism ring of an elliptic curve (chapter 3).

• There is a close relationship (that we will explain in this chapter), between
the second cohomology group and the Brauer group, that classifies quater-
nion algebras over a given field.

• We will see that under certain circumstances, we have a map X0(N) →
E, where N is the conductor of the elliptic curve. This kind of modular
parametrizations are in some sense restrictive and to enlarge this we need to
introduce Shimura curves, that provide a plentyful supply of constructions.

8.1 First definitions

Let F be a field of characteristic different than 2. Given a, b ∈ F ∗, let us define
an algebra over F with basis {1, i, j, k} where multiplication is given by

i2 = a, j2 = b ij = −ji = k

This algebra will be written as
(
a,b
F

)
and will be called quaternion algebra. A

particular case corresponds to the celebrated Hamilton’s quaternions, namely(−1,−1
R

)
. The basis {1, i, j, ij} is called a standard basis, and obviously the stan-

dard basis is not unique; for instance
(
a,b
F

)
=
(
ax2,by2

F

)
=
(
a,−ab
F

)
. We have to

make now some straightforward verifications:

Proposition 8.1. Let a, b ∈ F ∗. Then
(
a,b
F

)
exists.

Proof. Take α, β in an algebraic closure E of F such that α2 = a, β2 = −b and
consider the matrices

i =

(
α 0
0 −α

)
, j =

(
0 β
−β 0

)
, k =

(
0 αβ
αβ 0

)
139
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We clearly have that k = ij = −ji and that {Id2, i, j, k} are independent over E
(so also over F ); therefore, they generate a four dimensional algebra H over F ,
what we call H =

(
a,b
F

)
.

Theorem 8.1. A quaternion algebra over F is central and simple (where central
means that the center is F and simple that it does not have any nonzero proper
two-sided ideal)

Proof. Take an element of the form x = α + βi + γj + δk and suppose that is
in the center of H (where α, β, γ, δ ∈ F ). Then, 0 = xj − jx = 2k(β + δj), so
β = δ = 0. Doing the same but multiplying now by i, we reach γ = 0. We
conclude that x ∈ F .
The next step is showing that a nonzero two-sided ideal A must be equal to H.
We will be done by showing that A contains an element of F ; for that, take a
nonzero element y = a+ bi+ cj+ dk in A, where a, b, c, d ∈ F and one of b, c, d is
nonzero; assume also that a 6= 0 (if not, replace it with iy, jy or ky). Using now
that yj− jy = 2k(b+dj) and 2k is a unity in H, we have that b+dj, bi+dk ∈ A.
Subtracting this from y, we also have that a + cj ∈ A. The same reasoning
allows us to say that a + bi, a + dk are in A. We have now another element in a
(a+ bi) + (a+ cj) + (a+ dk)− (a+ bi+ cj + dk) = 2a ∈ F . We have therefore a
contradiction.

We quote now without proof some classical theorems about the classification of
central simple algebras that will help us in studying quaternion algebras. The
first one is the Wedderburn’s structure theorem and the second one, the Skolem-
Noether theorem.

Theorem 8.2. Let A be a finite dimensional simple algebra. Then A is iso-
morphic to Mn(D), where D ' EndA(N) is a division algebra over F with N a
nonzero minimal right ideal of A. The integer n and the isomorphism class of the
division algebra D are uniquely determined by A.

Theorem 8.3. Let A be a finite dimensional central simple algebra over F and
let B be a finite dimensional simple algebra over F . If φ, ψ are algebra homo-
morphism from B to A, then there exists an invertible element c ∈ A such that
φ(b) = c−1ψ(b)c for all b ∈ B (φ, ψ are conjugate). In particular, all nonzero
endomorphism of A are inner automorphisms.

Let us apply Wedderburn theorem to a quaternion algebra. H ' M(n,D), so
4 = dimK H = n2 dimK D which gives only two possibilities: either n = 1 and so
H ' D is a division algebra of n = 2 and D = K, so H ' M(2, K) is a matrix
algebra (split).
From the construction of the quaternion algebra, we can see that if F is al-
gebraically closed, we only obtain matrix algebras (in general, when we put

H =
(
a,b
F

)
we can construct a morphism φ of quaternion algebras between H

and M(2, F (
√
a)) given by

φ(x+ yi+ zj + tij) =

(
x+ y

√
a x+ t

√
a

b(z − t
√
a) x− y

√
a

)
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This proves that if
√
a is a square, we obtain matrix algebras.

We state now the first main theorem about quaternion algebras:

Theorem 8.4. Let H be a quaternion algebra over F . Then,

a) H is a division algebra or H 'M2(F ).

b) Let E be a subfield of H which is a quadratic extension of F , and let τ be a
nontrivial automorphism of E/F . Then there exists j ∈ H∗ such that j2 ∈
F ∗, H = E + Ej and jx = τ(x)j for all x ∈ E.

We will discuss now the case when a quaternionic algebra H is isomorphic to
M2(F ). The treatment of this problem is analogous to the case of quadratic
forms discussed at the beginning, so we omit most of the proofs.

Theorem 8.5. Let H =
(
a,b
F

)
be a quaternion algebra. Then, the following

conditions are equivalent.

a) H '
(

1,1
F

)
'M2(F ).

b) H is not a division algebra.

c) H has an element of norm zero (isotropic).

d) H0 (the pure quaternions) has an isotropic element.

e) The equation ax2 + by2 = 1 as a solution in F × F (note the presence here of
the Hilbert symbol).

f) If E = F (
√
b), then a ∈ NE/F (E)

We give a first easy proposition:

Proposition 8.2. If Fq is a finite field, any quaternion algebra is isomorphic to
M2(Fq).

Proof. It is enough with proving that ax2 + by2 = 1 has a solution in Fq. But the
image of ax2 has (q + 1)/2 elements and the same for the image of 1 − by2. We
conclude that they must have at least a common value, i.e., there is a solution of
ax2 = 1− by2.

Proposition 8.3. If K is a local field (different from C) there exists a unique
division quaternion F -algebra up to isomorphisms. When F = R we get the
Hamilton quaternions.

We can recover here the notations of the Hilbert symbol: when (a, b)v = 1, Hv is
a matrix algebra and H is non-ramified at v; when (a, b) = −1, Hv is a division
algebra and H is ramified at v.

Definition 8.1. The reduced discriminant DH of a quaternion Q-algebra H is
the integral ideal of Z equal to the product of prime ideals of Z that ramify in H.
It can be identified with an integer number.
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The main theorem about ramification is the following. Note that is not new, is a
direct consequence of the theory of quadratic forms.

Theorem 8.6. Consider a quaternion Q-algebra H. Then,

a) H is ramified at a finite even number of places.

b) Given an even number of non complex places of Q, there exists a quaternion
Q-algebra ramifying exactly at these places.

c) Two quaternion Q-algebras are isomorphic if and only if they are ramified at
the same places (they have the same reduced discriminant). In particular, H
is a matrix Q-algebra if and only if DH = 1.

Let us finish this section with some notation. A quaternion algebra over Q is
called definite if when tensored with R is isomorphic to the Hamilton quaternions.
Elsewhere (isomorphic to M2(R), it is called indefinite.
For the case of a number field F , we typically use the word indefinite to mean
that there is at least an embedding i : F → R such that the tensor product of
the algebra H with R is isomorphic to M2(R) seeing R as an F -algebra via the
inclusion i. When this works for any embedding i we call it totally indefinite.

8.2 Orders in Quaternions Algebras

We take F to be a number field or a p-adic field. Its rings of integers, OF , is a
Dedekind domain, and F is the field of fractions of OF . OF is, furthermore, an
integrally closed noetherian ring in which every nonzero prime ideal is maximal.
We call IF the set of nonzero finitely generated o-submodules of F (fractional
ideals). As we already commented, it makes sense to define the product of two
fractional ideals and also the inverse of a, a−1 as that formed by elements x ∈ F
such that xa ⊂ OF . We already know from basic algebraic number theory that
IF is the free abelian group on the set of nonzero prime ideals of OF . Let PF be
here the set of principal fractional ideals, and consider as usual IF/PF , the ideal
class group (finite). In the case of p-adic fields, the class number is trivially one.
Remember also that an OF -lattice L over a finite dimensional F -vector space, V ,
is complete when FL = V .

Definition 8.2. Let H be a quaternion algebra over F . An OF -ideal in H is a
complete OF -lattice in H. An order in H is an OF -ideal which is also a ring.

Definition 8.3. Let O be an OF -order in H. The discriminant of O, d(O), is
the fractional ideal of OF generated by the elements det(Tr(xixj)), where xi ∈ O.

We will work from now on over Q. We can reformulate the definition and say
that a Z-order O of H is a subring of H whose elements are integral (or what
is the same here, the trace and the norm are integers), that contains Z and that
Q⊗O = H.
Further, we can affirm that if {v1, v2, v3, v4} is a basis of the order O, then d(O)
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is the principal ideal generated by det(Tr(xixj)). An important fact is that if
O ⊂ O′ are orders, then d(O′)|d(O).
We introduce now maximal orders:

Proposition 8.4. A maximal order is an order that is not properly contained in
any other order. Then,

a) Each order is contained in a maximal order.

b) O is maximal if and only if Ov is maximal for every finite place v.

c) O is a maximal order if and only if d(O) = DH . In particular, all the maximal
orders have the same discriminant.

Definition 8.4. An Eichler order in a quaternion algebra is the intersection of
two maximal orders. The level of an Eichler order is the index of O1 ∩O2 either
in O1 or in O2 (it gives the same number).

There are two alternative characterizations of Eichler orders that are very useful:

Proposition 8.5. Let O be an order in a quaternion Q-algebra H of discriminant
D. Let N ⊂ Z be coprime to D. Then, the following conditions are equivalent:

a) O is an Eichler order of level N .

b) For every prime p, O satisfies that if p does not divide N , the local Zp order

Op is maximal, and if p|N , Op is isomorphic to the order

(
Zp Zp
NZp Zp

)
.

c) For every prime p, O satisfies that if p divides D, the local Zp is maximal and

if p does not divide D, Op is isomorphic to the order

(
Zp Zp
NZp Zp

)
.

There is no an explicit characterization of Eichler orders in terms of their dis-
criminant, but we can state some of their properties:

Proposition 8.6. Let H be a quaternion Q-algebra of discriminant D.. Then,

a) For each integer N such that (D,N) = 1 there exists an Eichler order of level
N .

b) Let O(D,N) ⊂ O(D, 1). Then, the index as Z-modules is [O(D, 1) : O(D,N)] =
N .

c) For O = O(D,N), d(O) = DN .

d) If d(O) = DN is a square free, then O is an Eichler order of level N .

We finish this section with a remarkable result in number fields:

Theorem 8.7. Let F be a totally real number field and let H be an indefinite
quaternion F -algebra. If the ideal class number of F is odd, there is only one
conjugacy class of Eichler orders having the same level. In particular, for indef-
inite quaternion rational algebras, all Eichler orders having the same level are
conjugated.
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8.3 Shimura curves: an introduction

In this section we define Shimura curves X(D,N) attached to Fuschian groups
defined from Eichler orders O(D,N) in a quaternion Q-algebra. Define first
O(D,N)∗+ as the elements in O(D,N) with norm one. Assume that D is the
product of an even number of different primes and take an isomorphism Φ :
R ⊗ H → M(2,R). By the last theorem of the previous section, O(D,N)∗+ will

only depend on D and N up to conjugation. Given H =
(
a,b
Q

)
, with a > 0, we

will take

Φ(x+ yi+ zj + tij) =

(
x+ y

√
a x+ t

√
a

b(z − t
√
a) x− y

√
a

)
Let Γ(D,N) = Φ(O(D,N)∗+). It is a subgroup of SL(2,R) whose elements will
be called quaternion transformations.
We note that

Γ(D,N) ⊂ {
(

α β
bβ′ α′

)
| α, β ∈ Q(

√
a)} ⊂ SL(2,Q(

√
α))

where α′ denotes the usual Galois conjugation.
We are now in conditions to define a Shimura curve. LetD,N be natural numbers,
where D is the product of an even number of different primes and (D,N) = 1..
Fix an indefinite quaternion Q-algebra H of discriminant DH = D, an Eichler
order O(D,N) of level N in H and a monomorphism Φ : H →M(2,R). Consider
also the group of quaternion transformations Γ(D,N) associated with the order
O(D,N) and Φ. The group Γ(D,N) is a Fuschian group that acts on the upper
half plane, and the quotient Γ(D,N)\H is a Riemann surface. We define for this
Riemann surface a canonical model with the following properties:

a) X(D,N) is a projective curve defined over Q.

b) There exists a map jD,N : H→ X(D,N)(C) that factorizes in an isomoprhism
between the analytic space Γ(D,N)\H and a Zariski open set in X(D,N)(C).

c) Let F = Q(
√
d) be an imaginary quadratic field splitting the algebra H. Let

φ be an embedding of F into H, and let z ∈ H the unique common fixed
point of all the elements in Φ(φ(F ∗)). Then, the coordinates of the point
jD,N(z) are algebraic, more specifically jD,N(z) ∈ X(D,N)(F ab) where F ab is
the maximal abelian extension of F .

X(D,N) is called the Shimura curve associated to Γ(D,N). The case D = 1
corresponds to a non-ramified quaternion algebra. In this case, Γ(1, N)\H is a
non-compact Riemann surface with finite volume. It is clear that the correspond-
ing compact Shimura curve X(1, N) is the modular curve X0(N). If D > 1 the
quaternion algebra H is ramified and the Riemann surface Γ(D,N)\H is already
compact.
We can give the following moduli interpretation: a point in X(D,N)(C) corre-
sponds to an isomorphism class of triples (A, i,G), where A is a certain kind of
abelian surface, i : H → Q⊗ZEnd(A) is a monomorphism such that i(O(D, 1)) ⊂
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End(A) and G is a subgroup of the group of N -torsion points of A which is a
cyclic O(D,N)-module.

8.4 Brauer group

Let A,B be k-algebras, and let A ⊗k B be the tensor product of A and B as
k-vector spaces. There is a unique k-bilinear multiplication on A⊗k B such that

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′ for all a, a′ ∈ A, b, b′ ∈ B

Identifying k with k × (1⊗ 1) ⊂ A⊗k B we give it structure of k-algebra.
We state now some propositions about the structure of these tensor products.

Proposition 8.7. Let A,A′ be k-algebras with subalgebras B,B′ and let C(B)
and C(B′) be the centralizers of B,B′ in A,A′ respectively. Then, the centralizer
of B ⊗k B′ in A ⊗k A′ is C(B) ⊗ C(B′). In addition, the center of a simple
k-algebra is a field.

Proposition 8.8. The tensor product of two simple k-algebras, at least one of
which is central, is again simple. Furthermore, the tensor product of two central
simple k-algebra is again central simple.

Recall that from Noether-Skolem theorem we can say a lot about the homomor-
phisms of a k-algebra. For instance, it is immediate that when A is a central
simple algebra over k and B1, B2 are simple k-subalgebras, any isomorphism
f : B1 → B2 is induced by an inner automorphism of A, that is, there exists an
invertible a ∈ A such that f(b) = aba−1 for all b ∈ B1. This implies that all
automorphisms of a central simple k-algebra are inner (the classical example: for
Mn(k) the automorphism group is PGLn(k)).

We can now move to the definition of the Brauer group. Let A and B central
simple algebras over k. We say that they are similar (A ∼ B) if A ⊗k Mn(k) ≈
B⊗kMm(k) for some m,n. It is direct to check that it is an equivalence relation.
We define the Brauer group of k, Br(k), to be the set of equivalence classes of
central simple algebras over k, and write [A] for one such element. In Br(k) we
have the following operation

[A][B] = [A⊗k B]

that is well defined and is also associative and commutative. Since for every n,
[Mn(k)] is an identity element, the fact that A⊗k Aopp ≈Mn(k) implies that [A]
has [Aopp] as inverse. We conclude that Br(k) is an abelian group.
Wedderburn’s theorem states that every central simple algebra over k is iso-
morphic to Mn(D) for some central division algebra D and that D is uniquely
determined by A up to isomorphism. Therefore each similarity class is repre-
sented by a central division algebra and two central division algebras represent
the same similarity class if and only if they are isomorphic.
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We give now some examples: when k is algebraically closed, Br(k) = 0 since
if α ∈ D (where D is a central division algebra), we can take k[α], the subalgebra
generated by k and α that is a commutative field of finite degree over k because
it is an integral domain of finite degree over k. Hence, k[α] = k and this shows
that D = k. Frobenius showed that Hamilton’s quaternion algebra is the only
central division algebra over R. Therefore, Br(R) is cyclic of order 2. In any
undergraduate course of algebra it is studied the little Wedderburn’s theorem: a
finite division algebra is commutative. This says that the Brauer group of a finite
field is zero.
We move now to more interesting examples. The first one refers to the Brauer
group of a non-archimedean local field and it is due to Hasse. It says that the
Brauer group is canonically isomorphic to Q/Z. The proof of this fact is very
related with cohomology. Recall that for a Galois extension L/k of fields, we
write H2(L/k) = H2(Gal(L/k), L∗).

Theorem 8.8. There is a natural isomorphism between H2(L/k) and Br(L/k).
In other word, the second cohomology group classifies the central simple algebras
over k split by L.

To understand this theorem we have to do some previous considerations. The
first one is the following proposition:

Proposition 8.9. Let A be a central simple algebra over k, and let K be a field
containing k. Then, A⊗k K is a central simple algebra over K.

As we have already pointed out in our discussion of quaternion algebras, a central
simple algebra A is said to be split by L (and L is called a splitting field for A)
if A ⊗k L is a matrix algebra over L. Thus, we can define Br(L/k) are the
elements of Br(k) siplit by L or alternatively, the kernel of the homomorphism
Br(k)→ Br(L) defined by sending A to A⊗k L.

Proposition 8.10. For every field k, Br(k) = ∪Br(K/k) where K runs over the
finite extensions of k contained in some fixed algebraic closure kal of k.

The proof of the theorem relating the second cohomology group with the Brauer
group is quite long and we skip it. However, we explain a consequence of this
fact. With class field theory it is possible to prove that for non-archimedean local
fields, H2(Kal/K) ' Q/Z and so Br(K) ' Q/Z. From here, we see that the
Brauer group is a torsion group.

The study of the Brauer group of a number field is considerably much more
difficult. Albert, Brauer, Hasse and Noether showed that for any number field K
there is an exact sequence

0→ Br(K)→
⊕
v

Br(Kv)→ Q/Z→ 0

where the sum is over all primes of K (including the infinite primes) and the
morphism that goes from ⊕Br(Kv) to Q/Z is the sum of the respective images
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of each of the isomorphisms we have between Br(Kv) and Q/Z.
We finish the section with a theorem due to Tsen:

Theorem 8.9. If k is a field of transcendence degree one over an algebraically
closed field, k has trivial Brauer group.
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Chapter 9

Complex multiplication

The study of curves whose endomorphism ring is greater than Z is of special
interest for us, since these curves have certain special properties that we will
study in the next chapter and that are of special interest to understand the
most basic results around BSD. One of the main motivations for the study of
complex multiplication comes from the Kronecker-Weber theorem, that says that
the maximal abelian extesion of Q equals the maximal cyclotomic extension; the
theory of complex multiplication tries to study abelian extensions of quadratic
imaginary fields. There is no a natural generalization to the case of real quadratic,
and it is not still well understood how to know the maximal abelian extension.

9.1 Complex multiplication over C
Recall that over C the ring of endomorphisms of an elliptic curve can be either
Z either an order of a quadratic imaginary field. In this last case we say that
E has complex multiplication by R (where R is the order) or by K, defining
K = R⊗Q. It is necessary to bear in mind the usual isomorphism given by the
Uniformization Theorem:

f : C/Λ→ E(C) : z 7→ (℘(z,Λ), ℘′(z,Λ))

When E has complex multiplication, there are two ways to embed the order
End(E) into C, but it is important to pin down one of these embeddings.

Proposition 9.1. Let E/C be an elliptic curve with complex multiplication by
the ring R ⊂ C. There is a unique isomorphism

[·] : R→ End(E)

such that for any invariant differential ω ∈ ΩE on E, [α]∗ω = αω for all α ∈ R.
In this case, we say that the pair (E, [·]) is normalized.

In order to study a particular elliptic curve with complex multiplication, we
should look at the set of all elliptic curves with the same endomorphism ring.
We define ELL(R) to be the set of elliptic curves whose endomorphism ring is R

149
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modulo isomorphism over C. The most natural question in this moment is how
can we construct an elliptic curve with complex multiplication by OK . If a is a
nonzero fractional ideal of K, we know that a is a lattice in C (the definition of
fractional ideals for quadratic imaginary fields implies that a is a Z-module of
rank two not contained in R). That way, any nonzero fractional ideal a of K will
give an elliptic curve with complex multiplication by OK , the ring of integers of
a quadratic number field. Since we are taking the relation modulo isomorphisms,
we see that a and ca give the same elliptic curve, so we just have to look at
the ideal class group of OK . These observations are contained in the following
proposition:

Proposition 9.2. Let Λ be a lattice with EΛ ∈ ELL(OK) and let a, b be nonzero
fractional ideals of K. Then,

1. aΛ is a lattice in C.

2. EaΛ satisfies that its endomorphism ring is OK.

3. EaΛ ' EbΛ if and only if they are equal in CL(OK).

Proof. For the first part, choose a nonzero integer d such that da ∈ OK ; then,
aΛ ⊂ 1/dΛ, so aΛ is a discrete subgroup of C. Similarly, take another nonzero
integer d such that dOK ⊂ a and so dΛ ⊂ aΛ. We have that aΛ spans C and so
is a lattice.

Let now α ∈ C, and let a 6= 0 be a fractional ideal. We have that αaΛ ⊂ aΛ if
and only if αΛ ⊂ Λ. Hence, End(EaΛ) = End(EΛ) = OK .

For the last part, in previous chapters we have seen that the isomorphism class
of EaΛ depends only on the homothety class of aΛ. Alternatively, we want to
know if there is a c ∈ C∗ such that aΛ = cbΛ. Manipulating now the expression,
EaΛ
∼= EbΛ if and only if both ca−1b and c−1ab−1 take Λ to itself (it is the same

than saying that they are in OK). Therefore, a = cb (or they are the same in the
class group).

Note that it is natural to consider now an action of CL(OK) over ELL(OK) given
by ā ∗ EΛ = Ea−1Λ. The choice of a−1 is arbitrary and it is done in order to ease
expressions in the future.

Proposition 9.3. The previous action is simply transitive. In particular, the
number of classes CL(OK) coincides with the number of elliptic curves with com-
plex multiplication by OK modulo isomorphisms.

Orders in K

Let K be a quadratic imaginary number field. An order there is a subring that
contains Z and free of rank 2 over Z. For the definition (an order is also a ring),
every element of R is integral over Z, so R ⊂ OK and OK is the unique maximal
order.
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Proposition 9.4. Let R be an order in K. Then, there is a unique integer f > 0
such that R = Z+fOK. Conversely, Z+f ·OK is an order in K for every integer
f > 0. f is called the conductor of R.

Proof. Take {1, α} a Z-basis for OK , in such a way that OK = Z + Zα. Then
R ∩ Zα is a subgroup of Zα, so it is equal to Zαf (the only subgroups of Z are
the multiples of f , for f > 0). We have so that Z + fOK ⊂ Z + Zαf ⊂ R. Now,
if m + nα ∈ R (m,n ∈ Z), then nα ∈ R and therefore n ∈ fZ. We have proved
that m+ nα ∈ Z + fαZ ⊂ Z + fOK .

The easy case, and that will be the one for which we develop most of our results, is
when f = 1. But we will be interested also in the cases where the endomorphism
ring is not maximal. We now give a characterization about R-submodules of K
that can be useful in some moments.

Proposition 9.5. Let R be an order in K. The following conditions on an
R-submodule a of K are equivalent:

a) a is a projective R-module (a module a is projective if there is a free module
f and another module b such that the direct sum of a and b is f).

b) R = {c ∈ K | ca ⊂ a}.

c) a = xOK for some x ∈ I (here I is the group of ideles of Q, to be introduced
in a few sections).

9.2 Rationality questions

In this section we will talk about the field of definition for complex multiplication
elliptic curves and their endomorphisms. The key result is that when an elliptic
curve has complex multiplication, its j invariant is an algebraic number. We
begin with the following proposition:

Proposition 9.6. Let E/C be an elliptic curve. Then,

a) Let σ : C→ C be a field automorphism of C. It holds that End(Eσ) = End(E).

b) If E has complex multiplication by OK, then j(E) ∈ Q̄ (in fact, it is an
algebraic integer).

c) ELL(OK) is isomorphic to the elliptic curves over Q̄ with OK as the endomor-
phism ring modulo isomorphism over Q̄.

Proof. The first item is clear, since if φ is an endomorphism of E, φσ is an endo-
morphism of Eσ.

For the second one, let σ be an automorphism of C. Eσ is obtained by letting σ
act on the coefficients of the Weierstrass equation for E, and j(E) is a rational
combination of those coefficients, and j(Eσ) = j(E)σ. But End(Eσ) ∼= OK , and
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there are only finitely many classes of elliptic curves with the same endomorphism
ring (modulo isomorphism). But j determines the isomorphism class of an elliptic
curve, so j(E)σ takes only finitely many values when σ is an automorphism of C.
Therefore, [Q(j(E)) : Q] is finite.

For the last part of the proposition, consider a subfield F of C and define
ELLF (RK) to be the set of elliptic curves over F with OK as the endomorphism
ring modulo isomorphisms of F . When we fix an embedding of Q̄ in C there is a
natural map ε : ELLQ̄(OK)→ ELLC(OK). The proposition says that this map is
a bijection.
For any element of ELLC(OK) we already know that j(E) is an algebraic number,
that there is an elliptic curve E ′ over Q(j(E)) with j(E) = j(E ′) and that E ′ is
isomorphic to E over C. Consequently ε(E ′) = E. Surjectivity is so established.
On the other hand, if two curves E1, E2 over Q̄ fulfills that ε(E1) = ε(E2), then
j(E1) = j(E2) and since Q̄ is algebraically closed and the j invariant coincide,
they must be isomorphic. We have so that ε is also injective.

Recall the analogy with cyclotomic fields: we know that if ζ is a primitive N -
th root of unity and σ ∈ Gal(Q(ζ)/Q), then ζσ s another primitive N -th root,
say ζσ = ζρ(σ) and it is easy to check that ρ : Gal(Q(ζ)/Q) → (Z/NZ) is an
injective homomorphism (also surjective in the case of Q) and that the extension
is abelian. We state now a similar fact for elliptic curves:

Theorem 9.1. Let E/C be an elliptic curve with complex multiplication by OK.
Let L = K(j(E), Etors) be the field generated by the j-invariant and the coordi-
nates of all of the torsion points of E. Then L is an abelian extension of K(j(E))

Proof. Let H = K(j(E)) and Lm = H(E[m]), the extension of H generated
by the m-torsion points of E. It will be enough to show that Lm is an abelian
extension of H, since L is the compositum of all the Lm. We have the usual
representation

ρ : Gal(K̄/H)→ Aut(E[m])

determined by the condition ρ(σ)(T ) = T σ, where T ∈ E[m]. For a general elliptic
curve we can deduce that Gal(Lm/H) injects into the automorphism group of the
abelian group E[m] so Gal(Lm/H) is isomorphic to a subgroup of GL2(Z/mZ).
But once we know that the curve has complex multiplication we can take a model
for E over H and for what we have seen, every endomorphism of E is also defined
over H. Consequently, elements of Gal(Lm/H) commute with elements of OK

when acting on E[m].

([α]T )σ = [α](T σ)

Alternatively, ρ is a homomorphism from Gal(K̄/H) to the group of OK/mOK-
module automorphisms of E[m]. Hence, we have an injection of Gal(Lm/H)
in AutOK/mOK(E[m]). But using that E[m] is a free OK/mOK-module of
rank one, this last group is isomorphic to (OK/mOK)∗ and so Gal(Lm/H) is
abelian.
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Until now, we have identified ELL(OK) with the elliptic curves with complex
multiplication by OK modulo isomorphisms of Q̄. That way, we have a natural
action of the absolute Galois group sending the isomorphism class of E to that
of Eσ. We also know that the action of the class group is simply transitive,
so there is a unique a ∈ CL(OK) such that a ∗ E = Eσ. We conclude that
we have a well defined map F : Gal(K̄/K) → CL(OK) characterized by that
property. Furthermore, F is a homomorphism and is independent of the choice
of the curve E ∈ ELL(OK). Note also the analytic component of F , that can also
be characterized by j(Λ)σ = j(F (σ)−1Λ).

Proposition 9.7. Let K be a quadratic imaginary field. There exists a homo-
morphism

F : Gal(K̄/K)→ CL(OK)

uniquely characterized by Eσ = F (σ) ∗ E for all σ ∈ Gal(K̄/K) and all E ∈
ELL(OK).

Proposition 9.8. Let E/Q̄ be an elliptic curve that represents an element of
ELL(OK), and let a ∈ CL(OK), σ ∈ Gal(Q̄/Q). Then

(a ∗ E)σ = aσ ∗ Eσ

9.3 Two words about class field theory

The goal of class field theory is to describe the abelian Galois extensions of a local
or a global field in terms of the arithmetic of the field (the case of non-abelian
extensions is much more complicated and it appears as one of the central topics
in the Langlands’ programme). It is an essential tool for a full understanding
of arithmetic and extensions of number fields so we use the following lines to
give a brief insight that will be necessary to continue our exposition of complex
multiplication. When we have a Galois extension L/K, a prime in K factors as
pOL = (p1 · · · pg)e, where n = efg and f is the degree of the residue field ex-
tension (seen in the first chapter). Let Spl(L/K) be the set of primes of K that
split in L. Frobenius proved that this set has density 1/[L : K] in the set of all
primes. Several results from class field will explain that the Galois extensions of
K are classified by the sets Spl(L/K).

Let us consider the example of quadratic extensions of Q for the sake of clar-
ity. Let p be an odd prime, and let p∗ = (−1)

p−1
2 (that way p∗ ≡ 1 modulo 4).

This implies that Q(
√
p∗)/Q is ramified only at p (the discriminant is p, this is

precisely the quadratic extension contained in Q(ζp)/Q), and a prime number
q 6= p will split in the extension if and only if p∗ is a square modulo q, and when
q is odd for the quadratic reciprocity law this is the same than saying that q is a
square modulo p. We have that Spl(Q(

√
p∗/Q) are the primes q such that q mod

p lies in the unique subgroup of index 2 of (Z/pZ).

Consider now an unramified abelian extension (for instance, in Q this is not
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possible). Let I be the group of fractional ideals of K, and let i : K∗ → I be
the map sending a ∈ K∗ to the principal ideal (a). Clearly I/i(K∗) is the class
group C and there is a bijection between subgroups H of C and subgroups H̃ of
I containing i(K∗). As usual, we call primes of K to the equivalence classes of
nontrivial valuations on K. A real prime of K is said to split in an extension L/K
if every prime lying over it is real, and otherwise is said to ramify. For example,
Q(
√
−5) is ramified over Q in (2), (5) and∞. Let H be a subgroup of C; a finite

unramified extension L of K is a class field of H if the prime ideals of K splitting
in L are exactly those in H̃.

Theorem 9.2. A class field exists for each subgroup of C, it is unique and every
finite unramified abelian extension of K arises as the class group of some subgroup
of C. If L is the class field of H, then Gal(L/K) ' C/H and f(p) is the order
of the image of p in C/H for all prime ideals p of K.

Two brief remarks: the subgroup H of C corresponding to a finite unramified
abelian extension L of K is that generated by the primes splitting in L. The
class field of the trivial subgroup of C is called the Hilbert class field of K, and it
is the largest abelian extension L of K unramified at all primes of K, the prime
ideals that split are the principal ones and the Galois group is isomorphic to C.

Dealing with ramified abelian extensions is not so easy since we need a gen-
eralization of the notion of ideal class group. Take for instance a cyclotomic
extension, Q(ζm), and clearly the primes that ramify are the ideals (p) where p|m
and also ∞. We want to identify (Z/mZ)∗ with an ideal class group: to do so,
let S be the set of prime ideals (p) such that p|m and let IS be the group of
fractional ideals of Q generated by the prime ideals not in S. An element of IS

can be written as (r/s), where r, s are positive integers coprime with m, and we
map (r/s) to [r][s]−1 in (Z/mZ)∗. We have so a homomorphism IS → (Z/mZ)∗

whose kernel can be thought as those elements such that r, s have the same sign
and they map to the same element in (Z/pordp(m)Z)∗ for all primes p dividing m.
We introduce now an important concept: a modulus of a number field K is the
formal product m = m0m∞, where m0 is an integral ideal and m∞ is the prod-
uct of some real primes. IS(m) is the group of fractional ideals generated by the
primes not dividing m0. Cm is the quotient of IS(m) by the subgroup of principal
ideals in IS and generated by an element a such that a > 0 for all real primes
dividing m∞ and ordp(a− 1) ≥ ordp(m0) for all prime ideals dividing m0.
Let now H be a subgroup of Cm for some modulus m and let H̃ be its inverse
image in IS(m). An abelian extension L of K is a class field for H if the prime
ideals of K not dividing m0 that split in L are those in H̃.

Theorem 9.3. A class field exists for each subgroup of a class group Cm, it is
unique and every finite abelian extension of K is the class field of some subgroup
of a class group. If L is the class field of H ⊂ Cm, then Gal(L/K) ' Cm/H and
the prime ideals p of K not dividing m are unramified in L are unramified in L
and have f(p) equal to the order of the image of p in the group Cm/H.

We are going to state now one of the main theorems in class field theory, the local
reciprocity law:
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Theorem 9.4. Let K be a nonarchimedean local field, then there exists a unique
homomorphism

φK : K∗ → Gal(Kab/K)

with the properties that:

a) For every prime π of K and every finite unramified extension L, φK(π) acts
on L as FrobL/K.

b) For every finite abelian extension L of K, NmL/K(L∗) is contained in the
kernel of a 7→ φk(a)|L, and φK induces an isomorphism

φL/K : K∗/NmL/K(L∗)→ Gal(L/K)

For the moment, we do not need all the theory, so we will explain some particular
facts that will be useful in our context. Assume from the moment that we have
K, a totally imaginary number field, and L is a finite abelian extension. Let
p be a prime of K that does not ramify in L and let P be a prime of L lying
over p. We consider as usual the Galois group of RL/P over RK/p, that is cyclic
and generated by the Frobenius element σp, that is under these circumstances
uniquely determined by the condition σp(x) = xq, being q the cardinal of the
residue field RK/p.
Let now c be an integral ideal of K divisible by all primes that ramify, and let
I(c) the group of fractional ideals of K relatively prime to c. Then we can define
the Artin map using the Frobenius σp

I(c)→ Gal(L/K); (
∏
p

pnp , L/K) 7→
∏
p

σnpp

Proposition 9.9. Let L/K be a finite abelian extension of number fields. There
exists an integral ideal c ⊂ OK divisible by the primes of K that ramify in L such
that (

(α), L/K
)

= 1

for all α ∈ K∗ such that α ≡ 1 modulo c.

If the proposition is true for two ideals c1 and c2 so it is for the sum, so there
is a larger ideal for which the statement is true. We call it the conductor of the
extension and write cL/K . Artin reciprocity states that the kernel of the Artin
map contains P (c) for an appropriate choice of c. If p is an unramified prime of
K, then p splits completely in L if and only if the extensions of residue fields has
degree one and that way, the unramified prime ideals in the kernel of the Artin
map are those of K that split completely.

Definition 9.1. Let c be an integral ideal of K. A ray class field of K (modulo
c) is a finite abelian extension Kc/K with the property that for any finite abelian
extension L/K, if cL/K |c, then L ⊂ Kc.
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More generally, take a module m and put Ik(M) as the group of fractional ideals
in OK whose norm is coprime with m. We can define PK,1(m) as the subgroup of
IK(m) generated by the principal ideals αOK where α ≡ 1 mod m0 and σ(α) > 0
for all the infinite primes dividing m∞. We say that a subgroup H of IK(m) is a
congruence subgroup for the module m if it satisfies PK,1(m) ⊂ H ⊂ IK(m). In
this case, IK(m)/H is a generalized class group for m.
When K ⊂ L is an abelian extension, we have seen that there exists a module
f = f(L/K) such that a prime of K ramifies if and only if it divides f , and if
m is a module divisible by all the primes of K ramifying in L, then the kernel of
the Artin map that goes from IK(m) to Gal(L/K) is a congruence subgroup for
m if and only if f |m.
Our focus of interest will be in the case when O is an order in a quadratic
imaginary field of conductor c. We define PK,Z(c) as the congruence subgroup
generated by the principal ideals α ≡ a mod cOK , where a is an integer coprime
with c. The quotient IK(c)/PK,Z(c) is isomorphic to Pic(O). We have so that
there must exist an abelian extension L/K (the class field of O) satisfying the
previous hypothesis. When c = 1, the extension we obtain is the Hilbert class
field, that is, the maximal non-ramified abelian extension of K.

9.4 Idelic formulation of class field theory

It was a matter of time to define the concept of adeles and ideles, since it is a
key definition in number theory and it will reappear in the next chapters when
studying deeper facts of modular forms (over quaternion algebras, for instance).

Definition 9.2. Let S be a finite set of places (in Q) containing the infinity. We
define the set of S-adeles, denoted by ASQ, to be

ASQ =
∏
p/∈S

Zp ×
∏
p∈S

Qp × R

This ring is a topological ring endowed with the product topology. The ring of
adeles in the union over all the finite sets S of ASQ. Note that Q is a subring of
AQ.
The group of invertible elements of the adele ring is the idele group. It can be
realized as the restricted product of the unit group of the different places with
respect to the subgroup of local integral units.

This can be generalized in the obvious way to the case of number fields, just
letting the product be over all the primes. For the case we will need here, let
K be an arbitrary number field and for each absolute value v on K, let Kv be
the completion of K at v. Let Rv be the ring of integers of Kv when v is non
archimedean and let Rv = Kv otherwise. The idele group is nothing but

I∗K =
′∏
v

K∗v
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where the ′ indicates that the product is restricted relative to the Rv’s.
Let s ∈ A∗K be an idele. The ideal of s is the fractional ideal of K given by

(s) =
∏
p

pordp sp

where the product is over all prime ideals of K and this is well defined since sp
is a p-adic unit for all but finitely many p. For an integral ideal, define Uc as the
subgroup of I∗K given by

Uc = {s ∈ A∗K | sp ∈ R∗p and sp ≡ 1 mod cRp for all primes p}

Proposition 9.10. Let K be a number field and Kab the maximal abelian exten-
sion of K. There exists a unique continuous homomorphism

A∗K → Gal(Kab/K) | s 7→ [s,K]

with the property that if L/K is a finite abelian extension and s ∈ I∗K is an idele
whose ideal (s) is not divisible by any prime ramifying in L, then

[s,K]|L = ((s), L/K)

where (·, L/K) is the Artin map. This homomorphism, called the reciprocity map,
verifies that is surjective, with K∗ in the kernel, that is compatible with the norm
map

[x, L]|L = [NL/K(x), K] for all x ∈ A∗L

9.5 Applications of class field to complex mul-

tiplication

The main theorem of this part will be the following one:

Theorem 9.5. Let K/Q be a quadratic imaginary field with ring of integers
OK, and let E/C be an elliptic curve with OK as the endomorphism ring. Then
K(j(E)) is the Hilbert class field H of K.

For proving this result, we strongly need the following proposition:

Proposition 9.11. There is a finite set of rational primes S ⊂ Z such that if
p /∈ S is a prime splitting in K (pOK = pp′), then

F (σp) = p ∈ CL(OK)

We show how using this result, we can prove that K(j(E)) is the Hilbert class
field H of K:
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Proof. Let L/K be the finite extension corresponding to the homomorphism F :
Gal(K̄/K)→ CL(OK), that is, L is the fixed field of the kernel of F . Then,

Gal(K̄/L) = kerF = {σ ∈ Gal(K̄/K) : F (σ) = 1} =

= {σ ∈ Gal(K̄/K) : F (σ) ∗ E = E} = {σ ∈ Gal(K̄/K) : Eσ = E} =

= {σ ∈ Gal(K̄/K) : j(E)σ = j(E)} = Gal(K̄/K(j(E)))

We conclude that L = K(j(E)), and since F maps injectively Gal(L/K) into
CL(OK) we see that L/K is an abelian extension and so L is an abelian extension.
Let now cL/K be the conductor of L/K and consider the composition of the Artin
map with F

I(cL/K)→ GL/K → CL(OK)

We will prove that F ((a, L/K)) = ā for all a ∈ I(cL/K). To see this, take
a ∈ I(cL/K) and let S the finite set described in the proposition. From the
class field theory version of Dirichlet theorem, there exists a degree one prime
p ∈ I(cL/K) in the same P (cL/K) ideal class as a and not lying over a prime in S.
Equivalently, we have α ≡ 1 modulo cL/K and a = (α)p. Now, just observe

F ((a, L/K)) = F (((α)p, L/K)) = F ((p, L/K)) = p̄ = ā

The following proposition is almost immediate using the previous results:

Proposition 9.12. Let E be an elliptic curve representing an isomorphism class
in ELL(OK). Then:

a) [Q(j(E)) : Q] = [K(j(E)) : K] = hK, where hK is the class number of K (and
it is also equal to the cardinal of Gal(H/K).

b) If E1, . . . , Eh is a complete set of representatives for ELL(OK), then j(E1), . . . , j(Eh)
is a complete set of Galois conjugates for j(E).

c) For every prime ideal p of K,

j(E)σp = j(p̄ ∗ E)

and more generally for every nonzero fractional ideal a of K, then

j(E)(a,H/K) = j(ā ∗ E)

We do not prove the technical result that lead us to state the main theorems, but
just quote the lemma required to show it. It says basically that isogenies behave
nicely under reduction.

Proposition 9.13. Let L be a number field, P a maximal ideal of L, and
E1/L,E2/L two elliptic curves with good reduction at P . Let Ẽ1, Ẽ2 the cor-
responding reductions. Then, the natural map

Hom(E1, E2)→ Hom(Ẽ1, Ẽ2)

sending φ to φ̃ is injective and preserves degrees.
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9.6 Integrality of j

Here we state one of the most celebrated results in this theory: that j(E) is
an algebraic integer for every elliptic curve with complex multiplication. There
are several approaches to this, and the ideas will be more clear after the proof
of some results in chapter ten. We sketch now the idea: let Λ1,Λ2 the lattices
corresponding to two isogenous elliptic curves E1/C, E2/C. We will have that
j(E1) and j(E2) are algebraically dependent over Q by explicitly constructing a
polynomial in two variables such that F (j(E1), j(E2)). Note the following: two
isomorphic elliptic curves have the same j-invariant, and when they are isoge-
nous, this is weakened but they still have some relation. When E has complex
multiplication, taking E1 = E2 = E we will have a monic polynomial with j(E)
as a root.

Proof. Let Dn the set of integral matrices with determinant n and Sn those that
are upper-triangular, with determinant n and with d > 0, 0 ≤ b < d.

Lemma 9.1. Let

Fn(X) =
∏
α∈Sn

(X − j(α)) =
∑
m

smX
m

(the coefficients are clearly the m-th elementary symmetric function in j ◦ α).
Then,

a) sm(γτ) = sm(τ) for all γ ∈ SL2(Z) and τ ∈ H.

b) sm ∈ C[j].

c) The Fourier expansion of sm has coefficients in Z.

d) sm(τ) ∈ Z[j].

This told us that there is a polynomial Fn(Y,X) ∈ Z[Y,X] such that∏
α∈Sn

(X − j(α) = Fn(j,X)

But that is not all: when β ∈ M2(Z) is a matrix with integer coefficients and β
has positive determinant, the function j ◦ β is integral over Z[j] and when n is
not a perfect squre Hn(X) = Fn(X,X) is non constant with leading coefficient
±1.
This suffices to prove the main theorem. We begin with the case in whichR = OK ;
take an element of the ring ρ whose norm is not a perfect square, and so [ρ] is
an isogeny of degree n. Fixing τ such that j(τ) = j(E) multiplication by ρ
send the lattice Zτ + Z to a sublattice of inde n. Let α be the matrix of the
endomorphism in our basis, and since by definition j ◦ α is a root of Fn(j,X),
substituting X = j ◦ α and evaluating at τ , we get that

0 = Fn(j(τ), j(ατ)) = Fn(j(E), j(E)) = Hn(j(E))
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From the previous observations, we see that j(E) is integral over Z. The case
when the endomorphism ring is not the whole OK is done in a similar way but
taking care of small modifications.

This proof has a clear analytic character, and the problem can be tackled with
more algebraic tools, in at least two other ways, and the other approaches have
the virtue that can be generalized to abelian varieties. This idea is due to Serre
and Tate and is based on the criterion of Néron, Ogg and Shafarevich.
To introduce it, consider a local field with a discrete valuation v.

Definition 9.3. Let Σ be a set on which GK̄/K acts. We say that Σ is unramified
at v if the action of Iv, the inertia group of GK̄/K, on Σ is trivial.

Lemma 9.2. Let E/K be an elliptic curve such that the reduced curve Ẽ/k
is non-singular. Let m ≥ 1 an integer prime with the characteristic (v(m) =
0). Then, E[m] is unramified at v. Further, if l is a prime different from the
characteristic, Tl(E) is also unramified at v.

We state now Néron-Ogg-Shafarevich theorem.

Theorem 9.6. Let E/K be an elliptic curve. Then, the following are equivalent:

1. E has good reduction at K.

2. E[m] is unramified at v for all integers m ≥ 1 relatively prime to the char-
acteristic of k.

3. The Tate module Tl(E) is unramified at v for some (all) primes l satisfying
l 6= char(k).

4. E[m] is unramified at v for infinitely many integers m ≥ 1 relatively prime
to char(k).

Using this, we can prove that E has potential good reduction at all primes, and
from this, j(E) is integral at all primes. Thus, if L is a local field and E/L
an elliptic curve with complex multiplication, using that the action of Gal(L̄/L)
on the Tate module is abelian we can conclude that this action factors through
a finite quotient of Gal(Lab/L). We will give a rough presentation of the ideas
behind Néron models in chapter twelve and we will comment this again.

9.7 The Main Theorem of Complex Multiplica-

tion

Let K be a quadratic imaginary field with ring of integers OK . Let E be an
elliptic curve with endomorphism ring OK , σ an automorphism of the complex
numbers, σ an idele satisfying [s,K] = σ|Kab . Further, fix

f : C/a→ E(C)
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a complex analytic isomorphism, where a is a fractional ideals. Then, there exists
a unique complex isomorphism

f ′ : C/s−1a→ Eσ(C)

such that f ′ ◦ s−1 = σ ◦ f , where s−1 is the morphism sending K/a to K/s−1a.
This statement can be adapted for elliptic curve whose endomorphism ring is not
OK , but then some modifications are required.
Notice for instance how this theorem transforms the algebraic action of σ on the
torsion subgroup f(K/a) = Etors into the analytic action of multiplication by
s−1, that is

f(t)[s,K] = f ′(s−1t) for t ∈ K/a and s ∈ A∗K

The maximal abelian extension

Forget for one moment about elliptic curves and take the multiplicative group
Gm(C)∗. Consider the morphism given by z 7→ zN and take

µN = ker
(
Gm(C∗)→ Gm(C∗)

)
the group of N -torsion points of Gm. The extension Q(µN)/Q is a cyclotomic
extension ramified at primes dividing N . It is easy to see that Q(ζ) = Q(µN) is
the ray class field of Q of conductor N .
Let now L/Q be an abelian extension and let N be the conductor of L. Then,
for class field theory, L will be contained in the ray class field of conductor N
and this is basically the content of the Kronecker-Weber Theorem. Thus, the ray
class field of Q is generated by the value of the analytic function

e2πiz =
∑
n≥0

(2πiz)n

n!

evaluated at points of finite order in the group R/Z. It can be seen that the
action of a Frobenius element σp on e2πia/N is given by

(e2πia/N)σp = e2πiap/N assuming p - N

That way, the Galois action of σp is transformed into a multiplication action on
the circle group.
The importance of complex multiplication is that the torsion points of an elliptic
curve E with complex multiplication by OK can be used to generate abelian ex-
tensions of K. The problem is that the torsion points themselves do not generate
abelian extensions of K, but of the Hilbert class field H of K. Take so a model
for E defined over H and fix a finite map

h : E → E/Aut(E) ∼= P1

also defined over H. This map H will be called a Weber function. To generated
abelian extensions of K, we will use the values of a Weber function on torsion
points, which roughly speaking means that we will take the x-coordinates of the
torsion points. Note the analogy of the following result with the cyclotomic case:
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Theorem 9.7. Let K be a quadratic imaginary field, and let E be an elliptic
curve with complex multiplication by OK. Let h : E → P1 be a Weber function
for E/H. Let c be an integral ideal of OK. Then, the field

K(j(E), h(E[c]))

is the ray class field of K modulo c. In particular,

Kab = K(j(E), h(Etors))

(if j(E) 6= 0, 1728 and E is an elliptic curve with coefficients in K(j(E)), the
maximal abelian extension of K is generated by j(E) and the x-coordinates of the
torsion points of E).



Chapter 10

Connections between elliptic
curves and modular forms

Until now, we have described elliptic curves and modular forms separately, seeing
in some moments relationships between them (when dealing with L-functions, in
the moduli interpretation of certain modular groups that classify elliptic curves,
. . .). We will now apply the preceding theory first to obtain elliptic modular
curves over number fields and also to study the zeta functions of modular curves
and of elliptic curves. We prove, for instance, the Eichler-Shimura relation, that
leads us to prove that when we have a normalized eigenform f whose Fourier
coefficients are integer numbers, then we can get an elliptic curve over Q with
the same L-function.

10.1 X0(N) as an algebraic curve over Q
For a congruence subgroup Γ of Γ(1), we have seen that Γ\H∗ is an algebraic
curve that will be defined over a certain number field. In this section we will
find a canonical polynomial F (X, Y ) with coefficients in Q such that the curve
F (X, Y ) = 0 is birrationally equivalent to X0(N) = Γ0(N)\H∗. It is possible to
derive explicit formulas for the genus of X0(N), or for the number of inequivalent
cusps. But our interest now is to study the field of functions of X0(N).
The simplest case will be X0(1). Note that for the Riemann sphere, the meromo-
prhic functions are the rational functions of z and the automorphisms of S2 are
the Mobius transformations.

Proposition 10.1. There exists a unique meromorphic function J on X0(1) that
is holomorphic except at ∞, where it has a simple pole, and that takes the value
J(i) = 1, J(ρ) = 0. Moreover, the meromorphic functions on X0(1) are the
rational functions of J .

Proof. X0(1) has genus zero, so it is isomorphic to the Riemann sphere as a
Riemann surface S2. If we take a map f : X0(1)→ S2 that is an isomorphism and
P,Q,R are the images of ρ, i,∞, there is a unique fractional transform carrying
g them to 0, 1,∞, so g ◦ f has the desired properties. In case of having another

163
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such function J ′ then J ′ ◦ J−1 is an automorphism of S fixing 0, 1,∞. But from
the study of isomorphisms of the Riemann sphere, we have that the only ones are
the Mobius transformations, and if ones fixes these three points, it must be the
identity map.

Recall that for a general lattice Λ, we have G2k(Λ) =
∑

ω∈Λ,ω 6=0 1/ω2k, G2k(Zz +
Z), g4(z) = 60G4(z), g6 = 140G6(z). Then we had a map sending (℘, ℘′) onto the
curve Y 2Z = 4X3 − g4(z)XZ2 − g6(z)Z3 whose discriminant was not 0 and its

j-invariant was j(z) = 1728g4(z)3

∆
. We can find a Fourier development of j in terms

of q = e2πiz,
j = 1/q + 744 + 196884q + 21493760q2 + · · ·

We observe these three facts:

a) j is invariant under SL2(Z) since j(z) depends only on the lattice Zz + Z.

b) j(ρ) = 0 since Z/ρ + Z has complex multiplication by ρ2 = 3
√

1 and so is of
the form Y 2 = X3 + b.

c) j(i) = 1728 since C/Zi + Z has complex multiplication by i and therefore is
of the form Y 2 = X3 + aX.

Our previous proposition can be written also in this way:

Proposition 10.2. The function j = 1728J is the unique meromorphic function
on X0(1) that is holomorphic except at ∞, where it has a simple pole, and takes
the values j(i) = 1728, j(ρ) = 0. In particular j defines an isomorphism from
X0(1) onto the Riemann sphere, so the field of meromorphic functions on X0(1)
is C(j).

In X0(N), we define jN(z) = j(Nz). It is an easy matter to check that jN(γz) =
jN(z) if γ ∈ Γ0(N). With these notations, we state the following theorem:

Theorem 10.1. The field C(X0(N)) of modular functions for Γ0(N) is generated
by j(z) and j(Nz). Further, the minimum polynomial F (j, Y ) ∈ C(j)[Y ] of j(Nz)
over C(j) has degree µ = (Γ(1) : Γ0(N)). F (j, Y ) is a polynomial in j with
coefficients in Z. When N > 1, F (X, Y ) is symmetric in X, Y , and when N is a
prime p, then

F (X, Y ) ≡ Xp+1 + Y p+1 −Xp − Y p −XY mod p

Proof. Let γ ∈ Γ0(N). Then, j(Nγz) = j(Nz). Therefore, C(j(z), j(Nz)) is
contained in the field of modular functions for Γ0(N). Now there is an easy way
to finish, that is observing that X0(N) is a covering of X(1) of degree µ. From
algebraic geometry, we can say that the field of meromorphic functions C(X0(N))
on X0(N) has degree µ over C(j). But let us do it explicitly:
Let {γ1, . . . , γµ} be a set of representatives for the right cosets of Γ0(N) in Γ(1).
Note that if γ ∈ Γ(1), then {γ1γ, . . . , γµγ} is also a set of right representatives.
When f(z) is a modular functions for Γ0(N), then f(γiz) depends only on the
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coset Γ0(N)γi. Hence, {f(γiγz)} is a permutation of {f(γiz)} and every sym-
metric polynomial in the f(γiz) is invariant under Γ(1). Such a polynomial will
be a modular function for Γ(1) and hence a rational function of j. Note also that
f(z) satisfies a polynomial of degree µ with coefficient in C(j)∏

(Y − f(γiz))

This holds for every f ∈ C(X0(N)), so C(X0(N)) has degree at most µ over C(j).
Our next claim is that f(γiz) are conjugate to f(z) over C(j). Take F (j, Y ) to be
the minimum polynomial of f(z) (in particular, it will be monic and irreducible
as a polynomial in Y with coefficients in C(j)). Replace z with γiz and since
j(γiz) = j(z), we find that F (j(z), f(γiz)) = 0, as we wanted. We will be done
if we prove that the µ functions j(Nγiz) are all distinct. If j(Nγiz) = j(Nγi′z)
where i 6= i′ there will exist γ ∈ Γ(1) such that Nγiz = γNγi′z for all z. But this
will force γiγ

−1
i′ to be in Γ0(N), which contradicts our hypothesis.

The minimum polynomial of j(Nz) is

F (j, Y ) =
∏

(Y − j(Nγiz))

The symmetric polynomials in j(Nγiz) are holomorphic on H, so they must
be polynomials in j(z) and F (X, Y ) ∈ C[X, Y ]. But recall that j(z) = q−1 +∑∞

n=0 cnq
n, with cn ∈ Z. We also know that taking an appropriate representa-

tive, j(Nγz) = j
(
az+b
d

)
for integers a, b, d, ad = N . We conclude from all this

that j(Nγz) has a Fourier expansion in powers of q1/N whose coefficients are in
Z[e2πi/N ] and hence are algebraic integers. Obviously the same is true for the
symmetric polynomials in j(Nγiz). These polynomials, that are in C[j(z)], will
result to be polynomials in j with coefficients that are algebraic integers.
If P =

∑
cnj

n and the coefficients are not algebraic integers, take the one of
smallest index that is not an algebraic integer (cm). Then, the coefficient of q−m

in the q-expansion is not an algebraic integer and P cannot be equal to a sym-
metric polynomial in the j(Nγiz). Thus, F (X, Y ) =

∑
cm,nX

mY n, with cm,n
algebraic integers and c0,µ = 1. Using now the q-expansion, F (j(z), j(Nz)) = 0
and equating coefficients we obtain a set of linear equations for cm,n. We can see
that the system is compatible with a unique solution in C, and so also in Q. But
we already knew that they are algebraic integers, so they are in Z.
Replacing z with −1/Nz and using the invariance of j, we see that F (Y,X) is a
multiple of F (X, Y ). So, F (Y,X) = cF (X, Y ) and equating coefficients, c2 = 1
and since c = −1 would imply that F (X,X) = 0 (and X − Y would be a factor
of F (X, Y )), c = 1.
Finally, if N = p is a prime, the functions j(pγiz) are

j
(z +m

p

)
where 0 ≤ m ≤ p− 1. Let ζp a p-th root of unity and m the maximal ideal 1− ζp
in Z[ζp]. Then, mp−1 = (p). Regarding the previous functions as power series in
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q, they are all congruent modulo m, and so

F (j(z), Y ) = (Y − j(pz))
∏(

Y − j
(z +m

p

))
=

= (Y − j(pz))(Y − j(z/p))p = (Y − j(z)p)(Y p − j(z))

always working modulo p. We have so the last equality.

Now, recall from algebraic geometry that every compact Riemann surface X
has a unique structure of a complete non-singular algebraic curve, in this case
X0(N)C. This is the unique complete non-singular curve over C having the field
C(j(z), j(Nz)) of modular functions as its field of rational functions (curves-field
correspondence). If we compare it with the polynomial that we have constructed,
FN(X, Y ), we see that this is also a curve C, but with singularities that we can
remove to obtain a non-singular curve over Q, say C ′. We can embed C ′ into
a complete regular curve C̄; the coordinate functions x, y are rational functions
on C̄, they generate the field of rational functions on C̄ and satisfy FN(x, y) =
0. Seeing this C̄ inside the complex field, C̄C there is an isomorphism between
C̄C → X0(N)C making the rational functions x, y correspond to j(z) and j(Nz).
Summing up, C̄ can be seen as a model of X0(N) over Q. The curve X0(N)Q is
what we call the canonical model of X0(N) over Q.

10.2 L-series revisited

L-series and isogeny classes

Let us recall some facts about L-series that will be useful now. In chapter seven
we already pointed out the close connection between the L-series of modular
forms and elliptic curves, and now we will study some deeper facts.
An isogeny E → E ′ defines a group homomorphism E(Q) → E ′(Q) that has a
finite kernel and cokernel. Therefore, E(Q) and E ′(Q) have the same rank (but
of course, not necessarily the same torsion), but not only this: there is a result
that states they also have the same number of points over a finite field.

Theorem 10.2. Let E,E ′ be isogenous elliptic curves over Q. Then Np(E) =
Np(E

′) and conversely, if those numbers are equal for sufficiently many good p,
then E is isogenous to E ′.

Proof. We already know that Np(E) = deg(1−φ), where φ is the Frobenius map.
An isogeny α : E → E ′ induces an isogeny αp : Ep → E ′p on the reductions
modulo p that commutes with the Frobenius map. We have so that

deg(α)Np(E) = Np(E
′) deg(α)

and we are done. The converse is beyond the scope of this thesis (it was conjec-
tured by Tate and proved by Faltings when he proved Mordell’s conjecture).

Working around the ideas of Faltings, it is possible to prove also the following
important theorem:
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Theorem 10.3. Two elliptic curves E,E ′ are isogenous if and only if L(E, s) =
L(E ′, s).

This is a rough way of saying that there is a one to one correspondence between
isogeny classes of elliptic curves over Q and certain L-series. In many cases we are
interested in classifying elliptic curves up to isogeny, and for that is important a
theorem of Shafarevich that assures that there are only finitely many isomorphism
classes of elliptic curves over Q with a given conductor (and hence only finitely
many in each isogeny class).

L-series of modular forms revisited

Recall that we can attach to a cusp form of weight 2k

f(q) =
∑
n≥1

c(n)qn

an L-series defined as
L(f, s) =

∑
n≥1

c(n)n−s

We saw that |c(n)| ≤ Cnk for some constant C, and so the Dirichlet series
converges for <(s) > k + 1.
We introduce now an object whose importance may not be clear for the moment,
but it is a rather important tool in the study of modular forms. Let a1, a2, . . .
be a sequence of complex numbers such that an = O(nM) for some M . For the
same reason than before, φ(s) =

∑
ann

−s is absolutely convergent for <(s) >
M + 1, and f(q) =

∑
anq

n is absolutely convergent for |q| < 1. There is a clear
correspondence between f and φ, in a similar way than in harmonic analysis we
see a correspondence between a functions and its Fourier transform.
A suggesting example is the following (sometimes referred as Mellin inversion
formula):

Lemma 10.1. For every real c > 0,

e−x =
1

2πi

∫ c+i∞

c−i∞
Γ(s)x−sds for x > 0

(where the integral is taken upwards on a vertical line).

The proof is a direct application of the residue theorem.

Definition 10.1. The Mellin transform of f = c(n)qn, or more accurately of the
function y 7→ f(iy) that goes from R>0 to C is defined as

g(s) =

∫ ∞
0

f(iy)ys
dy

y

The Mellin transform can be viewed as a version of the Fourier transform appro-
priate for the multiplicative group R>0 with invariant measure dx/x.
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Lemma 10.2.
g(s) = (2π)−sΓ(s)L(f, s)

Proof. Ignoring for the moment convergence issues,

g(s) =

∫ ∞
0

∞∑
n=1

c(n)e−2πnyys
dy

y
=
∞∑
n=1

cn

∫ ∞
0

e−t(2πn)−sts
dt

t
=

= (2π)−sΓ(s)
∞∑
n=1

c(n)n−s = (2π)−sΓ(s)L(f, s)

This can be written in a slightly different way: if we consider a1, a2, . . . (with an =
O(nM) for convergence reasons), and if then f(x) =

∑
ane

−nx, φ(s) =
∑
ann

−s

we say that f(x) and φ(s) are the Mellin transforms of each other.
The following result is due to Hecke and was established around 1936 and it is a
straightforward application of what we say about the Mellin transform.

Theorem 10.4. Let a0, a1, a2, . . . be a sequence of complex numbers such that
an = O(nM) for some M . Given λ > 0, k > 0, C = ±1, consider:

a) φ(s) =
∑
ann

−s (φ(s) converges for <(s) > M + 1).

b) Φ(s) = (2π
λ

)−sΓ(s)φ(s).

c) f(z) =
∑
ane

2πinz/λ (converges for =(z) > 0).

Then, these conditions are equivalent:

a) The function Φ(s) + a0
s

+ Ca0
k−s can be analytically continued to a holomorphic

function on the entire complex plane, bounded on vertical strips, satisfying

Φ(k − s) = CΦ(s)

b) In the upper half plane, f satisfies the functional equation

f(−1/z) = C(z/i)kf(z)

These kind of tools are very important when trying to establish convergence:
for instance, in BSD we have an L-function that we know is convergent when
<(s) > 3/2 but we want to determine its vanishing order at s = 1, so the first
step must be to study its analytic continuation. We will return to this in the next
chapter, since the results of Wiles around Fermat’s last theorem quarantee that
these functions can be continued.

We continue with some definitions: wN is defined to be the operator acting on
Γ0(N) such that

(wNf)(z) = (
√
Nz)2kf(−1/z)

wN preserves S2k(Γ0(N)) and is an involution. Therefore its eigenvalues must be
±1 and so S2k(Γ0(N)) is a direct sum of the eigenspaces S2k = S+1

2k ⊕ S
−1
2k .
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Theorem 10.5. Let f ∈ S2k(Γ0(N)) be a cusp form in the ε-eigenspace (where
ε = ±1). Then, f extends analytically to a holomorphic function on the whole
complex plane and satisfies the functions equation

Λ(f, s) = ε(−1)kΛ(f, k − s)

where as usual
Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s)

From our previous results, we already knew that

S2k(Γ0(N)) =
⊕

Vi

where the Vi are orthogonal subspaces each of which is a simultaneous eigenspace
for all T (n) with (n,N) = 1. The T (p) for p|N stabilize each Vi and commute,
so there does exist at least one f in each Vi that is also an eigenform for the T (p)
with p|N . Scaling f such that f = q +

∑
n≥2 c(n)qn, then

L(f, s) =
∏
p-N

1

1− c(p)p−s + p2k−1−2s

∏
p|N

1

1− c(p)−s

Note that wN is self adjoint for the Petersson inner product and commute with
the T (n) when (n,N) = 1, so Vi = V +1

i ⊕V −1
i , where this is a decomposition into

orthogonal subspaces for wN .
But we have a problem: wN does not commute with the T (p) when p|N and so
the decomposition in two subspaces is not stable under all the T (p). Thus, we do
not know if there is a single f that is simultaneously an eigenvector for wn and
all the T (p).
Note that we have already commented similar results when at the end of chapter
seven we talk about oldforms and newforms and they appear now in a natural
way. If we are in S2(N) (the common notation for S2(Γ0(N)), there we consider
two distinguished subspaces. It was a result of Atkin and Lehner that Snew

2

decompose in a direct sum of orthogonal subspaces of dimension one, old and
new (in general this holds for S2k). Since the T (p) for p|N and wN commute with
the T (n) for (n,N) = 1, each stabilizes each Wi. So, in that case, the functional
equation is written as

Λ(f, s) = εΛ(f, 2− s)

where ε = ±1 is the eignevalues of wn acting on Wi.

We will make a picture of our situation: begin with an elliptic curve and its
L-series, L(E, s) =

∑
ann

−s, whose coefficients are integers; it can be expressed
as an Euler product and it is expected to satisfy a certain functional equation.
We will have therefore a map E 7→ L(E, s), from the set of elliptic curves over Q
under the equivalence relation given by isogeny to Dirichlet series. Falting’s theo-
rem implies that this map is injective. But on the other hand, from the theory of
Atkin and Lehner we know that the subspace Snew

2 (N) decomposes into a direct
sum ⊕Wi of one-dimensional subspaces that are simultaneously eigenspaces for
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all the T (n) with (n,N) = 1. These elements that are simultaneously eigenforms
for Snew

2 (N) are called newforms (and are said to be normalized when c(1) = 1).
In the next sections we prove that a Dirichlet L-series c(n)n−s is the L-series of
an elliptic curve over Q with conductor N if it is the L-series of a normalized new-
form for Γ0(N) (under the assumption that the c(n) are rational numbers). This
is done in two steps: given f , construct Ef ; then check that L(Ef , s) = L(f, s).

Review of zeta functions

Until now, we have studied in chapter four the q-th power of the Frobenius
endomorphism, φ, for an elliptic curve E/Fq. There, we prove that defining
a = q + 1−#E(Fq), we had

φ2 − aφ+ q = 0

where the equality is in the endomorphism ring. We need to develop further the
theory to prove some other results:
Let Λ be a free module over a ring R and α : R → R a R-linear map. It makes
to sense to consider the determinant of the trace relative to some basis (and it
would be independent of that choice). We quote an almost immediate lemma:

Lemma 10.3. Let Λ be a free Z-module of finite rank, and let α : Λ → Λ be a
Z-linear map with nonzero determinant. Then, the cokernel of α is finite with
order equal to | det(α)| and the kernel of the map

α̃ : (Λ⊗Q)/Λ→ (Λ⊗Q)/Λ

is finite with order | det(α)|.

Proof. For the general theory of modules, we can take a basis e′1 · · · e′m such that
the matrix with respect to the bases e1, · · · , em is e′1, · · · , e′m is diag(n1, · · · , nm),
and now is clear that | det(α)| = n1 · · ·nm and that the cokernel is finite of that
same order.
For the kernel of α̃, just consider Λ,Λ⊗Q, (Λ⊗Q)/Λ and consider the respective
endomorphisms α, α ⊗ 1, α̃. Note that the second is an isomorphisms for being
nonzero the determinant, and from the snake lemma we obtain an isomorphisms
between ker(α̃) and coker(α).

Using this, it is not difficult to see that the following propositions hold:

Proposition 10.3. The degree of a nonzero endomorphism α of an elliptic curve
E with E(C) = C/Λ is the determinant of α acting on Λ.

Recall that we have already introduced the Tate module, that can be thought as
TlE = Λ⊕ Zl.

Proposition 10.4. For any nonzero endomorphism α of E, det(α|TlE) = degα.
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Further, let α be an endomorphism of an elliptic curve over a field k, and let

Tr(α) = 1 + deg(α)− deg(1− α) ∈ Z

Define the characteristic polynomial of α to be

fα(X) = X2 − Tr(α)X + deg(α) ∈ Z[X]

Proposition 10.5. The endomorphism fα(α) of E is zero and for l 6= char(k),
fα(X) is the characteristic polynomial of α acting on Vl(E).

Recall that for an elliptic curve E = C/Λ over C the degree of a nonzero en-
domofphism of E is the determinant of α acting on Λ. More generally, if k is
algebraically closed and l is a prime different from the characteristic of k, then

degα = det(α|TlE)

Proposition 10.6. Let E be an elliptic curve over Fp. Then the trace of the
Frobenius endomorphism φp on TlE is

Tr(φp|TlE) = ap = p+ 1−Np

Similarly, let E be an elliptic curve over Fp. Then,

Tr(φtr
p |TlE) = Tr(φp|TlE)

Proof. For any 2× 2 matrix A,

det(A− I2) = detA− TrA+ 1

We apply this to the matrix of φp acting on TlE to find that

deg(φp − 1) = deg(φp)− Tr(φp|TlE) + 1

But we already proved that deg(1− φp) = Np and that deg(φp) = p.
For the second part, note that φp has degree p and so φp ◦φtr

p = p. Consequently,
if α, β are the eigenvalues of φp, αβ = deg φ = p. Then,

Tr(φtr
p |TlE) = p/α + pβ = β + α

10.3 The ring of correspondences of a curve

Let X,X ′ be projective nonsingular curves over an algebraically closed field k. A
correspondence T between X and X ′ is a pair of finite surjective regular maps
α : Y → X, β : Y → X ′, also pictured as

X ← Y → X ′
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that can be thought of as a many valued map X → X ′ that sends P ∈ X(k)
to {β(Qi)} where the Qi are the preimages of P . That way, we have a natural
map between Div(X) and Div(X ′), [P ] 7→

∑
i[β(Qi)]. Through this map the

degree is multiplied by deg(α) and so sends divisors of degree zero on X to
divisors of degree zero on X ′, and also principal divisors to principal divisors,
defining a map T : J(X) → J(X ′). The ring of correspondences A(X) will be
the subring of End(J(X)) generated by maps defined by correspondences. We
can consider the correspondence X ′ ← Y → X; it will be called the transpose of
the correspondence.

The Hecke correspondence

As usual, let Γ be a subgroup of Γ(1) of finite index, and let α be a matrix with
integer coefficients and positive determinant. Writing ΓαΓ = ∪Γαi, we get a map

T (α) : J(X(Γ)→ J(X(Γ)), [z] 7→
∑

[αiz]

As we already pointed out, this is the map defined by a correspondence

X(Γ)← X(Γα)→ X(Γ)

where the second arrow means multiplication by α and the first one is just an
inclusion.
We are going to consider now a particular case, when Γ = Γ0(N) and T = T (p).
Here, the Hecke correspondence is defined by the double coset

Γ0(N)

(
1 0
0 p

)
Γ0(N)

If p does not divide N we can give two other characterizations of T (p).

• Y0(N) over C can be identified with an isomorphism class (E,C), where E
is an elliptic curve and C is a cyclic group of order N (or alternatively a
homomorphim α : E → E ′ of elliptic curves with kernel a cyclic group of
order N). If Ep is the subgroup of points of E of order p, is isomorphic to
(Z/pZ) × (Z/pZ) so there are p + 1 subgroups of order p, S0, S1, · · · , Sp.
Thus, T (p) sends α : E → E ′ to

{Ei → E ′i | i = 0, 1, · · · , p}

where Ei = E/Si, E
′
i = E ′/α(Si) (the kernel still has order N).

• Y0(N) is the curve C given by a polynomial FN(X, Y ); take a point (j, j′).
There are elliptic curves E,E ′ (defined up to isomorphism) such that j =
j(E), j′ = j(E ′). Since FN(j, j′) = 0, there is a homomorphism α : E → E ′

with kernel a cyclic subgroup of order N , so T (p) maps (j, j′) to {(ji, j′i) |
i = 0, 1, · · · , p} where ji = j(E/Si), j

′
i = j(E ′/α(Si)).
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The Eichler-Shimura relation

Recall that the curve X0(N) is defined over Q and T (p) is defined over a number
field K. It is a result that for almost every prime p that does not divide N ,
X0(N) still reduces to a non-singular curve X̃0(N). For one such prime, T (p)
defines a correspondence T̃ (p) on X̃0(N). We will denote by Πq the Frobenius
map from C to C(q) and by Π′q its transpose. It was a result of the third chapter
that the Frobenius map is either purely inseparable of degree q, and from here, we
deduce that multiplication by p (when char(k) = p) is either purely inseparable
(and so E has no points of order p) or its separable and inseparable degrees are
p (and so E has p points of order dividing p). If E has no points of order p, then
j(E) ∈ Fp2 .

Theorem 10.6. Let p be a prime where X0(N) has good reduction. Then, we
have the following equality in the ring A(X̃0(N)) of correspondences of X̃0(N)
over the algebraic closure F of Fp:

T̄ (p) = Πp + Π′p

Proof. We proof that they coincide as many valued maps on an open subset of
X̃0(N). Recall that over Qal

p we have that Tp(j(E), j(E ′)) = {(j(Ei), j(E ′i))}
where Ei = E/Si, E

′
i = E ′/α(Si).

Take now a point P̃ ∈ X̃0(N) with coordinates in F; ignoring a finite number of
points, assume that Ẽ ∈ Ỹ0(N) and hence is of the form (j(Ẽ), j(Ẽ ′)) for some
map α̃ : Ẽ → Ẽ ′. We deal with the case where Ẽ has p points of order dividing p.
We consider a lifting α of α̃ to Qal

p . The reduction map has kernel of order p, and
let us number the subgroups of order p in E in such a way that S0 is the kernel
of this map. Each Si, i 6= 0, maps to a subgroup of order p in Ẽ. So we have that
the map p : Ẽ → Ẽ factors through Ẽ/Si as the composition ψ ◦ φ. When i = 0,
φ is purely inseparable of degree p so ψ is separable of degree p (assuming that Ẽ
has p points of order dividing p). But recall that under these circumstances we
have an isomorphism Ẽ(p) → Ẽ/S0 and Ẽ ′(p) → Ẽ ′/S0 (we have seen this when
working with isogenies of elliptic curves). Therefore,

(j(Ẽ0), j(Ẽ ′0)) = (j(Ẽ(p)), j(Ẽ ′(p))) = (j(Ẽ)p, j(Ẽ ′)p) = Πp(j(Ẽ), j(Ẽ ′))

When i 6= 0, φ is separable since its kernel is the reduction of Si so ψ is purely

inseparable and so Ẽ is isomorphic to Ẽ
(p)
i and Ẽ ′ to Ẽ

′(p)
i . Therefore

(j(Ẽi)
(p), j(Ẽ ′i)

(p)) = (j(Ẽ), j(Ẽ ′))

and so {j(Ẽi), j(Ẽ ′i)) | i = 1, 2, . . . , p} is the inverse image of Πp, that is,
Π′(j(Ẽ), j(Ẽ ′)), as we wanted to prove.

A consequence of this is the following remarkable theorem that we have com-
mented several times:

Theorem 10.7. Let f be a normalized eigenform whose Fourier coefficients an(f)
are integers. Then, there is an elliptic curve Ef over Q such that

L(Ef , s) = L(f, s)
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The proof of this fact is basically as follows: we consider the canonical model
X0(N) defined over Q. Let J0(N) be its jacobian, that has dimension g. The
Hecke correspondences give rise to endomorphisms of J0(N) defined over Q. If
If is the kernel of the homomorphism λ : T → Z attached to f , the quotient
J0(N)/IfJ0(N) will be the desired elliptic curve. Now, we would have to see that
the L-functions are in fact equal: this is done with the Eichler-Shimura relation
and will be commented after some brief digression, trying to understand a quite
deep result that was pending, why Hecke operators act on the jacobian.
As it can be seen this is very related with the ideas behind the work of Wiles.
Recall that the Shimura-Taniyama-Weil conjecture states:

Theorem 10.8. Let E be an elliptic curve over Q with conductor N . Then, there
exists a newform f ∈ S2(N) such that

L(E, s) = L(f, s)

and furthermore, E is isogenous to the elliptic curve Ef obtained from f via the
Eichler-Shimura construction.

In the following subsections we give some ideas that help to a better understand-
ing of what is happening here:

Modular jacobians and Hecke operators

Recall that when we explained double cosets, denoting by J1(N) = Jac(X1(N))
we have seen that the Hecke operators act naturally on J1(N) and we have a
natural map

[Γ1αΓ2]2 : Div(X2)→ Div(X1)

Recalling the concepts of chapter two, we see this as a composition of forward
and reverse induced maps, [Γ1αΓ2]2 = (π1)D ◦ αD ◦ πD2 . It therefore descends to
the corresponding map of Picard groups

[Γ1αΓ2]2 = (π1)P ◦ αP ◦ πP2 : Pic0(X2)→ Pic0(X1)

Since the holomorphic differentials Ω1(X(Γ)) and the weight two cusp forms S2(Γ)
are naturally identified, ω : S2(Γ) → Ω1(X(Γ)) is a linear isomorphism, whose
dual spaces are naturally identified under ω∗.
Take H1(X(Γ),Z) as a subgroup of S2(Γ)∗, and consider its corresponding image
under ω∗ (the jacobian is nothing but the quotient of S2(Γ)∗ and H1(X(Γ),Z)).
So, consider now X, Y , the modular curves associated to the congruence sub-
groups ΓX ,ΓY . Let α ∈ GL+

2 (Q) be such that αΓXα
−1 ⊂ ΓY and consider the

corresponding holomorphic map h : X → Y given by h(ΓXτ) = ΓY α(τ). This
weight-two operator on functions is compatible with the pullback on differentials
in the sense that ωX ◦ [α]2 = h∗ ◦ ωY . The induced forward map on dual spaces
is nothing but h∗ : S2(ΓX)∗ → S2(ΓY )∗ given by h∗φ = φ ◦ [α]2. Similarly, if
αΓXα

−1\ΓY = ∪jαΓXα
−1γY,j, we have again that ωY ◦

∑
j[γYj ]2 = trh ◦ωX . The

induced reverse map tr∗h : S2(ΓY )∗ → S2(ΓX)∗ is given by tr∗h ψ = ψ ◦
∑

j[γY,j]2
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By the compatibilities we have commented, h∗, tr
∗
h descend to maps of Jacobians,

that we will denote hJ and hJ . Recall that the double coset operator on divisor
groups correspond to the double coset operator on modular forms (here weight
two cusp forms)

[Γ1αΓ2]2 : S2(Γ1)→ S2(Γ2) given by f [Γ1αΓ2]2 =
∑
J

f [βj]2

Its corresponding pullback is

[Γ1αΓ2]2 : S2(Γ2)∗ → S2(Γ1)∗ given by [Γ1αΓ2]2f = f [Γ1αΓ2]2

Now, as it occurred with the divisor map, we clearly have

[Γ1αΓ2]2 = (π1)∗ ◦ α∗ ◦ tr∗π2

and this operators descends to a composition of maps of jacobians, given by
(π1)J ◦ αJ ◦ πJ2 .
Let us summarize: the double coset operators acts on jacobians as composition
with its action on modular forms in the other direction. For the special case of
Hecke operators,

Proposition 10.7. The Hecke operators T = Tp and T = 〈d〉 act by composition
on the jacobian associated to Γ1(N).

Action of the Hecke operators on H1(E,Z)

We begin by recalling some basic facts from linear algebra. When V is a real
vector space and we are given the structure of a complex vector space on V , that
means we are given an R linear map J : V → V such that J2 = −1. J extends
by linearity to V ⊗R C and so

V ⊗R C = V + ⊕ V −

with V ± the ±1 eigenspaces of J . Then, the map

V → V ⊗R C→ V +

(where the maps are v 7→ v⊗1 and the projection) is an isomorphism of complex
vector spaces and then the map v⊗ z 7→ v⊗ z̄ : V ⊗R C→ V ⊗R C is an R-linear
involution of V ⊗R C interchanging V + and V −.
This can be stated in the following terms:

Proposition 10.8. Let α be an endomorphism of V which is C-linear. Write A
for the matrix of α regarded as an R-linear endomorphism of V , and A1 for the
matrix of α as a C-linear endomorphism of V . Then,

A ∼ A1 ⊕ Ā1
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Using that H1(X0(N),Z) is a lattice in Ω1(X0(N))∗, it is clear that

H1(X0(N),Z)⊕Z R = Ω1(X0(N))∗

Clearly,
Tr(T (p)|H1(X0(N),Z)) = Tr(T (p)|H1(X0(N),Z)⊗Z R)

so we can apply the preceding result to get:

Proposition 10.9. For any p not dividing N ,

Tr(T (p)|H1(X0(N),Z)) = Tr(T (p)|Ω1(X0(N))) + Tr(T (p)|Ω1(X0(N)))

The Eichler-Shimura construction

Let us state again our previous problem with slightly different words, taking
advantage of the facts we have underlined now (here, we sketch a construction of
Ef that may seem different but it is not):

Theorem 10.9. Let f =
∑
c(n)qn be a normalized newform in S2(Γ0(N)). As-

sume that c(n) ∈ Z for all n. Then there exists an elliptic curve Ef and a map
α : X0(N)→ Ef with the following properties:

a) α factors uniquely through Jac(X0(N)), that is

X0(N)→ Jac(X0(N))→ Ef

where the second map realizes Ef as the largest quotient of Jac(X0(N)) on
which the endomorphism T (n) and c(n) of Jac(X0(N)) agree.

b) The inverse image of an invariant differential ω on Ef under H→ X0(N)→
Ef is a nonzero rational multiple of fdz.

Consider now f = c(n)qn and a map X0(N)→ E as in the theorem.

Theorem 10.10. We have that the L-function associated to the elliptic curve we
construct coincides with the L-function of the given newform:

c(p) = ap = p+ 1−Np(E)

To begin, assume that X0(N) has genus one. Then, X0(N) → E is an isogeny
and we can take E = X0(N). Let p be a prime not dividing N . Then E has good
reduction at p for any l 6= p and the reduction map TlE → TlẼ is an isomorphism.
The Eichler-Shimura relation states that

T̃ (p) = Πp + Πtr
p

Taking traces on TlẼ, we get

2c(p) = ap + ap
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As we have already pointed out this works for the general case, but at some
points we just have to consider the jacobian variety of the curve. Anyway, the
key is that TlE is the largest quotient of Tl Jac(X0(N)) on which T (p) acts as
multiplication by c(p) for all p not dividing N .

An alternative (and maybe more direct approach) would be to define

Ef = ∩p ker(Tp − ap)

whose dimension, at first sight, is unknown (maybe it is trivial). But what we
know is that this dimension coincides with the one of the tangent space, that is
obviously the intersection of the kernels of Tp − ap, when we see the Tp as endo-
morphisms of the tangent space to the jacobian (that is naturally identified with
S2(N)). By the theory of newforms, there exists exactly one modular form (and
its multiples) in the kernels of all the Tp− ap. This modular form is obvioulsy f .
Therefore, the tangent space has dimension one and this implies that Ef is an
elliptic curve.

In general, if we do not put the conditions that the c(n) are integer numbers,
they will generate a number field Kf of degree d ≥ 1 and in that case the Eichler-
Shimura construction produces an abelian variety Af of dimension d with the
property that End(Af ) contains an order of the field Kf .

10.4 Heegner points

Definition 10.2. A Heegner point is a point in Y0(N) classifying pairs of N-
isogenous elliptic curves with the same ring of endomorphisms O (modulo iso-
morphisms).

If y = (E,E ′) is a Heegner point with complex multiplication by O, then it has
two associated lattices M,M ′ that are O-projective modules of rank one. After a
homothety, we can assume that M = a,M ′ = b, with a, b O-invertible submodules
of K with a ⊂ b. The ideal n = ab−1 is an O-proper ideal (invertible) of cyclic
quotient O/n of order N . Alternatively, we can think that E = C/M,E ′ =
C/M ′,M ⊂ M ′ and that there is an N -isogeny φ : C/M → C/M ′ that is the
identity of the covering spaces.
Conversely, when we have such an ideal (a proper ideal of cyclic quotient of order
N), we can construct a Heegner point in a similar way: let a be an O-invertible
submodule and let [a] be its class in Pic(O). Let n be the ideal with cyclic quotient
of order N and let E = C/a,E ′ = C/an−1. These curves are related through the
obvious isogeny whose kernel is an−1/a ' a/an ' Z/NZ. Since curves E,E ′ only
depend on the class of a in the Picard group, so we have proven the following:

Proposition 10.10. Let O be an order in a quadratic imaginary field, and let n
be an O-proper invertible ideal of cyclic quotient of order N . Then, the Heegner
points with endomorphism ring O are in correspondence with Pic(O).
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We can then denote a Heegner point through a triplet of the form y = (O, n, [a]).
The following proposition provides alternative characterizations of the existence
of a Heegner point:

Proposition 10.11. Let O be an order of discriminant D and let N ∈ N. The
following statements are equivalent:

a) There is a Heegner point in X0(N) with endomorphism ring O.

b) There is an ideal n ∈ O of norm N and such that O/n is cyclic.

c) There exist integers B,C with gcd(B,C,N) = 1 such that D = B2 − 4CN .

We have already sketched the proof of the equivalence between the first two
items. The equivalence with the third one is a consequence of the theory of bi-
nary quadratic forms.
From now on, we assume that (c,N) = 1, where c is the conductor of the order.
Write now D = dc2, where d is the discriminant of the field K. The third condi-
tion is equivalent now to the fact that D is a square modulo 4N .

The theory we have developed of complex multiplication assumed in some points
that the ring we where working with was OK ; in general, we have seen that an
order in a quadratic imaginary field is of the form O = Z + ZcωD, where c is
called the conductor. If A has complex multiplication by O, the corresponding
period lattice of A is a projective O-module of rank one, and its isomorphism
class depends only on the isomorphism type of A. We have, as in the other case,
a bijection between elliptic curves with complex multiplication by O and rank one
projective O-modules (always up to isomorphism), also called the Picard group.
Since it is finite, as before, we have finitely many isomorphism classes of elliptic
curves with complex multiplication by O, A1, · · · , Ah, whose j-invariants are al-
gebraic numbers.
Again, we have a natural action of Pic(O) over ELL(O) given by

[Λ] ∗ [A] = Hom(Λ, A)

When p is a prime ideal of K of norm prime to c the inclusion p → O yields
an isogeny of kernel A[p] (elements in A annihilated by all elements of p). Since
everything is essentially the same than before, we consider the action of the
absolute Galois group GK given by

η : GK → Pic(O) satisfying Aσ = η(σ) ∗ A

Since the Picard group is commutative, the definition of η does not depend on
the choice of the base curve A. The j-invariants are defined over the abelian
extension H = K̄ker η. From class field theory, we also know the following:

Theorem 10.11. There exists an abelian extension Hc of K unramified outside
the primes dividing c whose Galois group is identified via the Artin map, with
Pic(O).
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Theorem 10.12. The abelian extension H is equal to the ring class field Hc; in
fact, for all primes p of K which do not divide c,

η(σp) = [p] ∈ Pic(O)

We need now some definitions:

Definition 10.3. Consider M2(Z) and let τ ∈ H. We define the order associated
to τ by

Oτ = {γ ∈M2(Z) | det γ 6= 0, γτ = τ} ∪ 02×2

This order Oτ is isomorphic to the endomorphism ring of the elliptic curve Aτ .
In general, when O is an order in a quadratic imaginary field, we can write

CM(O) = {τ ∈ H/ SL2(Z) | Oτ = O}

Pic(O) acts on CM(O) as follows: a class α ∈ O can be represented by an integral
ideal I such that the quotient O/I is cyclic. Choosing an I like that, the lattice
(1, τ)I−1 is a projective O-module containing 1 as an indivisible element, so

〈1, τ〉I−1 = 〈1, τ ′〉

where the generator τ ′ is defined modulo the action of SL2(Z) and α ∗ τ = τ ′

(by definition). We have endowed CM(O) with an action of Pic(O) compatible
with the action of this group on ELL(O). We can reformulate so the following
theorem about complex multiplication:

Theorem 10.13. Let K ⊂ C be a quadratic imaginary field and let τ ∈ H ∩K
be an element of H quadratic over Q. Then, j(τ) belongs to H, where H is the
ring class field attached to the order O = Oτ . More precisely, for all α ∈ Pic(O)
and τ ∈ CM(O),

j(α ∗ τ) = rec(α)−1j(τ)

We continue introducing terminology:

Definition 10.4. The associated order of τ relative to the level N is O
(N)
τ =

Oτ ∩ ONτ or equivalently the matrices with determinant N satisfying γτ = τ
(together with the zero matrix).

The map from H to E(C) induced by the parametrization ΦN is transcendental
for being of infinite degree, so it will not take (generally) algebraic values when
evaluated on algebraic arguments. But there is an exception, that is one of the
most important results of this chapter:

Theorem 10.14. Let τ be any element in H∩K and let O = O
(N)
τ be its associated

order in M0(N). Let H/K be the ring class field attached to O. Then ΦN(τ)
belongs to E(H).

We focus our attention again on Heegner points.
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Proposition 10.12. Let O be an order of discriminant prime to N . Then the
set CM(O) is non empty if and only if the primes dividing N split in K/Q.

Proof. If CM(O) is nonempty, O can be realized as a subring of M0(N). We have
then a ring homomorphism from O to Z/NZ. Since the conductor of O is prime
to N , all l dividing N are split in K. Alternatively, and in a more tangible way,
writing O = 〈1, ω〉, what we have to do is to find a matrix M in Γ0(N) such that
its trace is the trace of ω and its determinant is the norm of ω. We distinguish
two cases, depending on the value of d (K = Q(

√
d))

a) If d ≡ 2, 3 mod 4, then ω = c
√
d and D = 4dc2. In this case, the trace of ω

is 0 and its norm −dc2. Then, if we write

M =

(
α β
γ δ

)
we have that α + δ = 0, αδ − βγ = −dc2, or what is the same

D = (2α)2 + 4βNγ′

where we have written Nγ′ = γ. From the equivalence stated above, this will
have a solution.

b) When d ≡ 1 mod 4, ω = c
(

1+
√
d

2

)
and D = dc2. In that case, the trace is 1

and the norm (1− d)c2/4. Imposing these conditions, we will have that

D = (2α− 1)2 + 4βγ

and again we conclude that it is possible.

Note that once we have the matrix M , it is enough with taking τ ∈ H such that
Mτ = τ .

We will call Heegner hypothesis to the assumption that all primes dividing N are
split in K/Q. Let n be any integer prime to N and let On be the order of K of
conductor n. A point of the form Φn(τ) with τ ∈ CM(On) is a Heegner point of
conductor n. Let HP (n) ∈ E(Hn) the set of all Heegner points of conductor n
in E(Hn), where Hn is the ring class field of K of conductor n. There is a set of
norm-compatibility relation between these points:

Proposition 10.13. Let n be an integer, and let l be a prime number, both prime
to N . Let Pnl be any point in HP (nl). Then, there exist points Pn ∈ HP (n) and
(if l|n) Pn/l ∈ HP (n/l) such that the trace of Pnl relative to the extension Hnl/Hn

is (if we call σλ the Frobenius element):

a) alPn if l does not divide n and is inert in K.

b) (al − σλ − σ−1
λ )Pn if l = λλ̄ does not divide n and splits in K.

c) (al − σλ)Pn if l = λ2 is ramified in K.
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d) alPn − Pn/l when l|n.

Proof. We prove, for instance, the second relation: consider the point Pn, that
is associated to a pair A → A′ of N -isogenous elliptic curves. If l is a prime
that splits in K, the action of Gal(K̄/Hn) on A[l] leaves invariant two cyclic
subgroups of order l: C0 = A[λ] and Cl = A[λ̄], permuting the other l − 1
subgroups transitively. This action factors through a simply transitive action of
Gal(Hnl/Hn) on {C1, · · · , Cl−1}. Let P j

nl be the point in E(Hnl) corresponding
to the pair A/Cj → A′/φ(Cj) and put Pnl = P 1

nl. But by the description of the
Hecke operator, we clearly have that

alPn = P 0
nl + P l

nl + P 1
nl + · · ·+ P l−1

nl

Furthermore, since P 0
nl = σλPn, P l

nl = σ−1
λ Pn and P 1

nl+ · · ·+P l−1
nl = TrHnl/Hn(Pnl)

the result follows.

An element τ ∈ Gal(H/Q) is a reflection if its restriction to K is not the identity.
It can be proved that any reflection is of order 2 and that any two reflections
differ by multiplication by an element of Gal(H/K). We also have the following:

Proposition 10.14. Let τ ∈ Gal(H/Q) be a reflection. Then there is a σ ∈
Gal(H/K) such that

τPn = − sign(E,Q)σPn

where the equality is modulo torsion and sign(E,Q) is the sign attached to E/Q
(the one appearing in the functional equation of L(E, s).

Definition 10.5. A Heegner system attached to (E,K) is a collection of points
Pn ∈ E(Hn) indexed by integers n prime to N satisfying the norm compatibilities
and the behavior under the action of reflections.

We have an important theorem in that direction:

Theorem 10.15. If (E,K) satisfies the Heegner hypothesis, then there is a non-
trivial Heegner system attached to (E,K).

Denote by H∞ the union of all the class fields with conductor coprime with N .
The proof of the theorem relies on the following lemma.

Lemma 10.4. The torsion subgroup of E(H∞) is finite.

Proof. An inert prime in K splits completely or ramifies in its class fields. Then,
the residual field in H∞ of one such prime q is Fq2 . Since the torsion is coprime
with q it can be injectively set in E(Fq2), the whole torsion group can be set
inside E(Fq2)⊕ E(Fp2), where p, q are different inert primes in K.
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10.5 Modular forms on quaternion algebras

Let B be an indefinite quaternion algebra over Q. Fix an identification

ι : B ⊗Q R 'M2(R)

Let R be an order in B and denote by R∗1 the group of elements of R∗ of reduced
norm one. Let Γ = ι(R∗1).

Lemma 10.5. Γ acts discretely on H with compact quotient.

Definition 10.6. Let N be a positive integer. The factorization N = N+N− is
an admissible factorization if:

a) (N+, N−) = 1.

b) N− is square-free and the product of an even number of primes.

Let B denote the quaternion algebra ramified at the primes dividing N− (it will
be unique, up to isomorphism). Choose a maximal order R0 in B, that will be
also unique up to conjugation by B∗. Since B is split at the primes dividing N+,
we can fix an identification

η : R0 ⊗ (Z/N+Z)→M2(Z/N+Z)

Let R denote the subring of R0 consisting of all elements x with η(x) upper
triangular. The subring R is an Eichler order of level N+ in B, and is unique up
to conjugation. With the same identification ι as before, we will have

ΓN+,N− = ι(R∗1)

We want to translate all the properties of the classical case: Hecke operators,
Petersson inner product, Atkin-Lehner. . .. But the problem is that when N−1 6= 1
one does no have the notion of Fourier expansion in the cusps since the quotient of
the upper half plane by these groups is compacts. It can be proved that through a
similar construction of that of Eichler and Shimura, one can construct a modular
parametrization

ΦN+,N− : Div0
H\ΓN+,N−

→ E(C)

Let us sketch briefly how to do it, explaining first the analogies of the space
S2(ΓN+,N−) = S2(N+, N−) with the case of S2(N).

a) S2(N+, N−) is a Hilbert space, where the duality is given by the wedge product
of differential one forms.

b) It is endowed with a natural action of Hecke operators. As usual, write

ΓαΓ =

p⋃
i=0

αiΓ

and define Tp by summing the translates of f by the left coset representatives
αi.
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c) The Hecke operators Tn for (n,N) = 1 commute and are self-adjoint, so
S2(ΓN+,N−) is diagonalisable under the action of these operators.

d) When f is an eigenform for the Hecke operators, its associated L-function can
be defined as the product of the local factors (at least for those primes l not
dividing N)

(1− al(f)l−s + l1−2s)−1

where Tlf = alf .

As in the classical case, let f be an eigenform in S2(ΓN+,N−) with integer Hecke
eigenvalues an(f). One can then associate to such an eigenform an elliptic curve
over Q.

Theorem 10.16. There exists an elliptic curve E over Q such that an(E) =
an(f) for all integers n such that (n,N) = 1.

This result, combined with the modularity theorem, leads to the conclusion that
for every admissible factorization N+N− of N and for every newform g on ΓN+,N−

with integer Hecke eigenvalues there is an associated newform f on Γ0(N) with the
same Hecke eigenvalues as those of g at the primes l not dividing N . Not only this:
it is not necessary to assume rationality of the Fourier coefficients, thanks to the
following theorem of Jacquet-Langlands whose proof uses non-abelian harmonic
analysis.

Theorem 10.17. Let f be a newform on Γ0(N) and let N = N+N− be an
admissible factorisation of N . Then, there is a newform g ∈ S2(ΓN+,N−) with

L(f, s) = L(g, s) (up to finitely many Euler factors)

Combining all the previous results, we can rewrite the Shimura-Taniyama-Weil
conjecture in terms of modular forms on ΓN+,N−

Theorem 10.18. Let E/Q be an elliptic curve of conductor N and let N =
N+N− be an admissible factorization of N . Then, there exists a unique eigenform
f ∈ S2(ΓN+,N−) such that

Tl(f) = al(E)f

for all l not dividing N .

10.6 An explicit example

Consider the maximal order in the quadratic extension Q(
√
−7) whose discrimi-

nant is −7 and whose class number is one. Then, OK = Z+Z
(

1+
√
−7

2

)
. Since −7

is a square modulo 11, 11 splits in K and verifies Heegner hypothesis. Repeating
the same procedure explained in the proof, we find in M0(11) the matrix(

−4 −2
11 5

)
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whose fixed point is τ = −9+
√
−7

22
. Writing q = e2πiτ it is possible to compute its

image through the modular parametrization (and with appropriate software, this
example is taken from Darmon’s book), and we obtain the point

P = (x, y) =
(1−

√
−7

2
,−2− 2

√
−7
)

Taking traces over Q we obtain the point

P + P̄ = (16,−61)

and since the rank of the curve is 0 this must be a torsion point (in fact, its order
is five).
When the class number is different from one thins become more delicate. Take
Q(
√
−6) and there the maximal order OK = Z[

√
−6] whose discriminant is −24.

Its class number is 2 and it verifies Heegner hypothesis since −24 =≡ 9 is a
quadratic residue modulo 11. What we have to do here is to consider the group
of primitive quadratic forms of discriminant −24, and since they will represent
11 for satisfying Heegner hypothesis we can turn them into equivalent forms with
the coefficient in x2 multiple of 11. Two non-equivalent forms are

11x2 + 8xy + 2y2 and 22x2 + 8xy + y2

A quadratic form of the form ax2+bxy+cy2 corresponds to the point −b+
√
D

2a
∈ H.

In this case, τ1 = −4+
√
−6

11
, τ2 = −4+

√
−6

22
and calculating

P = Φ11(τ1) + Φ11(τ2) = (−2−
√
−6, 5) ∈ E(K)

Taking traces we obtain the point (5,−6) which will be a torsion point.



Chapter 11

The Birch and Swinertonn-Dyer
conjecture

11.1 Motivation

The classical statement of BSD is that the rank of an elliptic curve over the
rationals (over a number field in general) equals the order of vanishing of the
associated L-function at s = 1, where we do not even know that the function can
be analytically continued.
We recall that the problem that we cannot solve, at least a priori, is the compu-
tation of the rank of E(Q) (or more generally over a number field). Our approach
when proving Mordell-Weil provides an upper bound in terms of the Selmer group,
and the difference between the real rank and the upper bound is measured by the
Tate-Shafarevich group, and there is no easy way to decide if an element from
S(2)(E/Q) comes from an element of infinite order or gives a nontrivial element
of the Tate-Shafarevich group. Call Np the number of points over Ē(Fp), where
Ē is the reduction to Fp.
Recall that if a prime p is good there is a reduction map from E(Q) to Ē(Fp),
that in general will not be injective (for instance if E(Q) is infinite) neither sur-
jective (if E(Q) is of rank zero it has at most 16 points, and by Hasse’s theorem
we know that in Ē(Fp) there is at least p+ 1− 2

√
p points). In the fifties, Birch

and Swinertonn-Dyer suggested that if E(Q) is large, then the same should occur
with the Np. For P a large number, define

f(P ) =
∏
p≤P

Np

p

(each quotient is approximately one). They formulate the following conjecture:

Conjecture 11.1. For each elliptic curve E over Q there exists a constant C
such that

lim
P→∞

f(P ) = C log(P )r

where r is the rank of E(Q).

185
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Before going to the conjecture let us look for some analogy. Take the case of
the zeta function for a number field: there, if we take into account the functional
equation given in chapter 4, it is immediate that the order of vanishing of the zeta
function at s = 0 is r1 + r2 − 1, where r1, r2 are the number of real and complex
embeddings, respectively. This is precisely the rank of the group of units, as it
states Dirichlet’s theorem.
Here it is very difficult to formalize this to present it as a good analogy, since
there are important difference: the first one is that in the case of BSD we are
evaluating the L-function at s = 1, that is the line of symmetry, while in the
other case the line of symmetry would be s = 1/2. It is a general thinking that is
more difficult to deal with values of L-functions over the line of symmetry, as it
occurred for instance with the Riemann hypothesis. The other difference between
the case of number fields is that we are taking two different objects: in BSD the
rank of a certain curve, in the case of number fields the rank of the unit group.
We will need to go into a deep interpretation of the cohomology groups to explain
these phenomena.

Before going direct into the subject, let us try to do something similar for the
case of a quadratic equation. Take the classical

x2 + y2 = 1

and look at the solutions it has modulo a certain prime p. The trick here is that
solutions are given in a certain parametric form:

(x, y) =
(t2 − 1

t2 + 1
,

2t

t2 + 1

)
so the number of solutions is p− 1 or p+ 1 according to the fact that p is 1 or 3
modulo 4 (this determines if −1 is a square or not). Then, by Wallis’ formula∏

p

p

Np

=
π

4

and bearing in mind that this equation has eight integer solutions we have the
following:

Np

p
NR = 2NZ

This computation, that is ridicously easy in the quadratic case, is still unsolvable
for the cubic case.

11.2 Some known results about BSD: a first in-

sight

The first thing we must say is that since Birch and Swiertonn-Dyer formulated
the conjecture, a great computational work has been made, and all the terms
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appearing in the conjecture have been computed for many curves. For a pair of
isogenous elliptic curves over Q, most of the terms will differ for the two curves,
but Cassels showed in 1965 that if the conjecture is true for one curve, then it
holds for all those that are isogenous to it. The first positive results were over
some function fields, where it is known to be true.
Tate described the problem as a relation between the behavior of an L-function
at a point where it is not known to be defined to the order of a group (the Tate-
Shafarevich group W ) which is not known to be finite. One first result is due to
Coates and Wiles in 1977:

Theorem 11.1. Let E be a elliptic curve with complex multiplication such that
E(Q) is infinite. Then L(E, 1) = 0.

What this says is that if the rank is greater than 0, then so is the order of
vanishing of the L-function at s = 1. The modularity theorem supposes a very
remarkable tool: we can affirm that L(E/Q, s) extends to the whole complex
plane and satisfies a functional equation of the form

Λ(E, s) = ωEΛ(E, 2− s)

where ωE = ±1. Recall that ωE = 1 if and only if L(E/Q, s) has a zero of even
order at s = 1.
Gross and Zagier (1983 and 1986) proved that if E is modular over Q (a fact that
we now know), then

L′(E/K, 1) = Cĥ(PK)

where C 6= 0. That way, PK has infinite order if and only if L′(E/K, 1) 6= 0.
In 1988 Kolyvagin showed that if ωE = 1 and PK has infinite order for some
complex quadratic extension K of Q, then E(Q) and W (E/Q) are both finite. In
1989, Bump, Friedberg and Hoffstein proved that if ωE = 1, there exists a complex
quadratic field such that L(EK/Q, s) (where EK denotes the usual quadratic
twist) has a zero of order one at s = 1, and so L′(E/K, 1) 6= 0 if L(E/Q, 1) 6= 0,
taking into account the formula L(E/K, s) = L(E/Q, s)·L(EK/Q, s). Combining
these results, we arrive to the following result:

Theorem 11.2. L(E/Q, 1) 6= 0 implies that E(Q) and W (E/Q) are finite.

Let now E/Q be an elliptic curve and let K be a quadratic imaginary field
satisfying Heegner hypothesis respect to E. Let {Pn} = {Φn(τn)} be a Heegner
system. Consider also PK = TrH1/K(P1) ∈ E(K), the trace of a Heegner point
of conductor one over the Hilbert class field of K. More generally, let χ be
a character in the class field of conductor n, i.e., χ : Gal(Hn/K) → C∗ is a
primitive character in the ring class field extension of K of conductor n. We
define

P χ
n =

∑
σ∈Gal(Hn/K)

χ̄(σ)P σ
n ∈ E(Hn)⊗ C

The following result is due to Gross, Zagier and Zhang:
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Theorem 11.3. Let 〈, 〉n be the canonical Neron-Tate height in E(Hn) extended
by linearity to the pairing in E(Hn)⊗ C. Then,

1. 〈PK , PK〉 ' L′(E/K, 1).

2. 〈P χ
n , P

χ̄
n 〉 ' L′(E/K, χ, 1)

where we have used the symbol ' to indicate equality up to a factor.

The main consequence of this result is that the Heegner vector P χ
n is nonzero if

and only if L′(E/K, χ, 1) does not vanish.
We are going to give now a more precise statement of BSD:

Conjecture 11.2. Let r be the rank of E(Q) and let P1, . . . , Pr be linearly inde-
pendent elements of E(Q). Then,

L(E, s) ∼
(

Ω
∏
p bad

cp

) [W (E/Q)] det(〈Pi, Pj〉)
(E(Q) :

∑
ZPi)2

(s− 1)r as s→ 1

where [∗] is the order or ∗, Ω =
∫
E(R)
|ω| and cp = (E(Qp) : E0(Qp)).

Let us do a few remarks. The first one is that the quotient

det(〈Pi, Pj〉)
E(Q) :

∑
ZPi)2

is independent of the choice of P1, . . . Pr and equals

disc〈, 〉
[E(Q)tors]2

when they form a basis for E(Q) modulo torsion.
Note also that the following integral,

∫
E(Qp)

|ω| makes sense and is equal to

(E(Qp) : E1(Qp))/p. The explanation of this fact is that there is bijection be-
tween E1(Qp) and pQp under which ω corresponds to the Haar measure on Zp
for which Zp has measure 1 and therefore pZp has measure 1/p. Consequently∫

E(Qp)

|ω| = (E(Qp) : E1(Qp))

∫
E1(Qp)

|ω| = cpNp

p

Note now that for any finite set S of prime numbers including those of bad
reduction of E,

L∗S(s) =
( ∏
p∈S∪{∞}

∫
E(Qp)

|ω|
)−1∏

p/∈S

1

Lp(p−s)

When p is good,

Lp(p
−1) = Np/p =

(∫
E(Qp)

|ω|
)

and so the behavior of L∗S(s) near s is independent of S satisfying the condition
and BSD can be stated as

L∗S(E, s) ∼ [W (E/Q)] disc〈, 〉
[E(Q)tors]2

(s− 1)r as s→ 1



CHAPTER 11. THE BIRCH AND SWINERTONN-DYER CONJECTURE 189

11.3 Relation of Heegner points with BSD

Let K be a number field and DK its discriminant. If v is a fractional ideal, let
|v| its norm. When E is an elliptic curve over Q we can consider the L-function
L(E/K, s) of E over K:

L(E/K, s) =
∏
v

Lv(E/K, s)

where Lv(E/K, s)
−1 is a polynomial of degree 1 or 2, that is (1 − a|v||v|−s +

|v|1−2s)−1 when v does not divide N and (1 − a|v||v|−s)−1 if v|N . If K is a
quadratic field, it is easy to see that

L(E/K, s) = L(E, s)L(E ′, s)

where E ′ is any quadratic twist of E over K.
Let χ : Gal(H/K)→ C∗ a character of the ring class field H of conductor c with
(c,N) = 1 and put D = DKc

2. The twisted L-series is defined as

L(E/K, χ, s) =
∏
v

Lv(E/K, χ, s)

where Lv(E/K, χ, s) is given, when v does not divide ND, by

Lv(E/K, χ, s) = (1− χ(σv)a|v||v|−s + χ(σv)
2|v|1−2s)−1

At the infinite primes, set L∞(E/K, χ, s) = (2π)−2sΓ(s)2.
Now, let A = (ND)2/ gcd(N,D).

Theorem 11.4. Let

Λ(E/K, χ, s) = As/2L∞(E/K, χ, s)L(E/K, χ, s)

The L-function L(E/K, χ, s) has an analytic continuation to the entire complex
plane, satisfying the functional equation

Λ(E/K, χ, s) = sign(E/K)Λ(E/K, χ, 2− s)

where sign(E,K) = ±1 depends only on E and K.

Kolyvagin’s theorem

The idea of the result we present in this section is that a non-trivial Heegner
system yields certain lower bounds on the size of the Mordell-Weil group of E
over ring class field of K. But what is more surprising is that also lead to upper
bounds on the Mordell-Weil group and Tate-Shafarevich group of E/K. This
result is the celebrated Kolyvagin’s theorem:

Theorem 11.5. Let {Pn}n be a Heegner system attached to (E,K). If PK is
non-torsion, the following facts hold:
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a) The Mordell-Weil group E(K) is of rank one, and so PK generates a subgroup
of E(K) of finite index.

b) The Tate-Shavarevich group is finite.

The proof of this theorem would be a good excuse to introduce a great amount
of concepts from cohomology, since it requires several technical results from that
area.

11.4 Sketch of the proof of Gross-Zagier-Kolyvagin

theorem

Theorem 11.6. If E is an elliptic curve over Q and ords=1 L(E, s) ≤ 1. Then,

rank(E(Q)) = ords=1 L(E, s) and W (E,Q) ≤ ∞

Proof. Denote by sign(E,Q) the sign in the function equation for L(E, s) =
L(E/Q, s). Suppose first that this sign is equal to −1:

Lemma 11.1. There exist infinitely many quadratic Dirichlet characters ε such
that

a) ε(l) = 1 for all l|N .

b) ε(−1) = −1.

c) L(E, ε, 1) 6= 0.

If a characters satisfies condition a and b, then it vanishes to even order at s = 1
because the quadratic imaginary field satisfies the Heegner hypothesis with re-
spect to E, and so L(E/K, s) = L(E, s)L(E, ε, s) vanishes to odd order at s = 1.
If the sign is 1, for parity reason L(E, ε, 1) = 0 for all quadratic Dirichlet char-
acters satisfying the first two conditions. Several complicated results guarantees
that in this circumstances we have a character ε such that

L′(E, ε, 1) 6= 0

In any case, if K is the quadratic imaginary field associated to ε, by construction
K satisfies the Heegner hypothesis relative to E and since ords=1 L(E/K, s) = 1
then L′(E/K, 1) 6= 0. If {Pn} is the Heegner system arising from the CM points
on X0(N) attached to K. For previous results, this Heegner system is nontrivial
in the sense that PK is non-torsion. Using Kolyvagin’s theorem, E(K) has rank
one and so the quotient of E(K) by 〈PK〉 is finite. Then, PK belongs to E(Q)
up to torsion if and only if the sign is −1 and it follows that the rank of E(Q) is
equal to the order of vanishing of L(E, s) at s = 1. Finally, the finiteness of that
Shafarevich group W (E/K) implies the finiteness of W (E/Q) since the natural
restriction map has finite kernel.
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11.5 Generalizations of BSD

In the last chapter we have included a section explaining the main ideas in Galois
representations, that are a key tool in number theory. Here, we content with
an intuitive view to explain the Galois equivariant version of BSD. The usual
result is simply that when we have an elliptic curve E/F (F a number field),
then the rank of E(F ) is ords=1 L(E/F, s). In this section, we will consider finite
Galois extension F ′/F . Some examples to bear in mind are H/K, where K is a
quadratic imaginary field and H is the Hilbert class field (in this case we know
that the Galois group is abelian and isomorphic to CL(OK)); recall that H/Q
has generalized dihedral Galois group.

Definition 11.1. Let G be a group and M a module over a ring R. A represen-
tation of G in M is a morphism of groups

G→ AutR(M)

The most common case is when R = K is a field and M = Kd is a vector space.

Consider for the sake of clarity the following example: M = E(F ′) seen as a
Z-module, and

MC = E(F ′)⊗Z C ∼= Cr

where the last isomorphism is due to Mordell-Weil. Another thing we know is
that G = Gal(F ′/F ) acts naturally in MC and gives a morphism

ρ : G→ GLr(C) = GL(MC)

From the classical results of representation theory, we know that ρ decomposes
uniquely as a direct sum of irreducible representations:

E(F ′)⊗ C ∼= ⊕V ri
i

We cleary have that

r =
∑

ri dim(Vi)

Let us return to our examples: when we just have K = Q(
√
−D) over Q, the

Galois group has two elements, the identity and another one (call it χ). Then

E(K)⊗ C = V r1
1 ⊕ V rχ

χ = (E(Q)⊗ C)⊕ (E(K)χ ⊗ C)

where the last summand is the set of vectors in E(K) ⊗ C such that v̄ = −v.
Observe that if P ∈ E(K), then P + P̄ ∈ E(Q) and that P − P̄ ∈ E(K)χ.
When F = K,F ′ = H, G = CL(OK). Since G is abelian, every Vi has dimension
one and so what we have are the characters

φi : G→ C∗ = Aut(C)

It is easy to see that there are |G|. Therefore,

E(H)⊗Z C ∼= ⊕C(ψ)ri ∼= ⊕E(H)ψi
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where E(H)ψ is the set of vectors in E(H) ⊗ C such that for all σ ∈ G, σ(v) =
ψ(σ)v; ri is the dimension of E(H)ψ.
Given P ∈ E(H), we can construct a vector v ∈ E(H)ψ as follows

v =
∑
σ∈G

ψ−1(σ)⊗ σ(P )

The next observation is almost trivial:

Lemma 11.2. Let τ ∈ G. Then, τ(v) = ψ(τ)v

For proving it, just observe that

τ(v) =
∑
σ∈G

ψ−1(σ)⊗ τσ(P ) = ψ(τ)v

We can do an analogous treatment for the L-functions

L(E/F ′, s) =
∏
i

L(E/F, Vi, s)
dim(Vi)

and so
ords=1 L(E/F ′, s) =

∑
ords=1 L(E/F ′, Vi, s) dim(Vi)

The Galois equivariant version of BSD states that if E/F is an elliptic curve and
we consider

ρ : Gal(F ′/F )→ GL(Vρ)

then the order at s = 1 of L(E/F, ρ, s) equal the multiplicity of Vρ in E(F ′)⊗C.

Complex L-functions revisited

The definition of L-functions we made can seem a very ad-hoc construction to
deal with our problems, but is something deeper, as we pointed out when we in-
troduced it in chapter four. The appropriate framework to deal with L-functions,
which will be explored later, is when working with Galois representations. Take
GQ = Gal(Q̄/Q) and consider

ρ : Gal(Q̄/Q)→ GL(V ) = GLn(F )

(F a field). We will say that a prime p is unramified for ρ when ρ(Ip) = {Id}
(Ip is the inertia group). In that case, we have a distinguished element ρ(Frobp),
good defined up to conjugation (here we are using that the image of the inertia
is trivial). Let Pρ,p(T ) ∈ F (T ) the characteristic polynomial of ρ(Frobp). Then,
we define

L(ρ, s) =
∏
p

1

Pρ,p(p−s)

This is a very general definition and from that we can recover some of the things
we did.
As a first example, let

ρ : GQ → Q∗
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the trivial representation sending everyone to 1. It is clear that Pρ,p(T ) = 1− T
and so

L(ρ, s) =
∏
p

1

1− p−s

which is the classical Riemann’s zeta function.
In the same way, consider now a Dirichlet character modulo N , that is, a homo-
morphism

χ : (Z/NZ)∗ → C∗ = GL1(C)

Recall that (Z/NZ)∗ ' Gal(Q(e
2πi
N )/Q) (so there is a canonical surjection of the

absolute Galois group there, we are again very close to more general facts from
the perspective of class field theory). It is almost trivial to check that here

L(χ, s) =
∏
p

1

1− χ(p)p−s
=
∑
n≥1

χ(n)

n−s

which is the usual L-function used for instance in the proof of the Dirichlet’s
theorem of primes in arithmetic progression.
Let us now move to a more interesting example, the case of elliptic curves. Let
E/Q be an elliptic curve, l a prime number and let

V = Tl(E)⊗Ql
∼= Ql ⊕Ql

We are interested in a representation of the form

ρE,l : GQ → Aut(Tl(E)⊗Ql) = GL2(Ql)

Consider a prime not dividing NE · l (NE the conductor of the curve). When
considering ρE,l(Frobp), it will have a second degree characteristic polynomial in
Ql[T ] but we have a more general result: this polynomial does not depend on l
(has coefficients in Q) and we saw that it was

PE,l(T ) = 1− ap(E)T + pT 2

Consequently, the L-series will be

L(E, s) =
∏
p

1

1− app−s + p1−2s

(we sometimes add extra factors corresponding to those primes dividing the con-
ductor, but for being only a finite number they do not modify the essential prop-
erties of the functions).
We can incorporate now the character χ of the previous example to have

L(E,χ, s) = L(ρ, s) where ρ = Vl(E)⊗Cl Vχ

where we are using what at first sight may seem a strange object, C∗p, but is just
the completion of an algebraic closure of Qp (of course the algebraic closure of
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the rationals is inside). Since Vχ has dimension one, ρ will have dimension two
and we simply have

Pρ,p(T ) =
1

1− χ(p)ap(E)T + χ2(p)pT 2

Consequently,

L(E,χ, s) =
∏
p

1

1− χ(p)app−s + χ2(p)p1−2s

An easy to prove result is the following

Lemma 11.3. Let ρ = ρ1 ⊕ ρ2. Then,

L(ρ, s) = L(ρ1, s) · L(ρ2, s)

The case of the tensor product is more interesting, and when we have two elliptic
curves E1, E2 over Q it is natural to consider L(E1, E2, s) = L(ρ, s), where

ρ = Vl(E1)⊗ Vl(E2)

It will be an interesting topic to study the analytic properties of this new L-series
(Rankin L-function), that lead to some interesting results.
We are going to consider a last example to finish. Now, H will be a number field
and GH = Gal(Q/H). Take

ρ : GH → GL(V ) = GLn(F )

Now we require a small modification in the definition of L-function over a general
number field, that will be

L(ρ, s) =
∏

P⊂OH

1

Pρ,FrobP (NmH/Q(p)−s)

where the product is over the nonzero ideals of OH .
It is natural to consider for instance an elliptic curve E/K (K imaginary quadratic
field) and ρ = Tl(E)⊗Ql that can be seen as a representation of GK or GH (now
H is the Hilbert class field). A very nice property is the following

L(E/H, s) =
∏
ψ

L(E/K,ψ, s)

where the product is over all the characters that go from Gal(H/K) to C∗ (recall
that the extension H/K is abelian with Galois group isomorphic to CL(OK).
It is important the fact that ρ = Tl(E)⊗Ql is nothing but a map

ρ : GH → Aut(Tl(E)⊗Ql)

Tl(E) is frequently called aGH-module since it is a module over the non-commutative
ring

Z[GH ] = ⊕σ∈GHZσ
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where the product is given by the composition.

We finish this section reviewing some ideas that where introduced when we ex-
posed the first notions about cohomology. We introduce the concept of represen-
tation induced by a subgroup. Let H ⊂ G be a subgroup of finite index, that
is

G = ∪ni=1giH (disjoint union)

Assume we are given a representation ρH : H → GL(V ) of the subgroup H
(alternatively, a Z[H]-module V ). From ρH we can induce a representation of G
in a natural way.
For this, consider W = ⊕ni=1giV = IndGH(V ) (that is, n copies of the vector space
V ). The induced representation ρG will map an element g ∈ G to an element
from GL(W ), that is, to an endomorphism of ⊕giV . To describe how it acts,
consider an element of the vector space,

∑
givi and note that ggi = gj(i)hi (j(i)

is nothing but an element of the symmetric group). Then, we define

ρG(g)(
n∑
i=1

givi) =
n∑
i=1

gj(i)ρH(hi)vi

As a Z-module, we can write

IndGH(V ) ∼= Z[G]⊗Z[H] V

We can relate this with the relation we had between the L-function of an elliptic
curve over Q and a quadratic twist of it: when we have K = Q(

√
−D), we

consider DD to be the twist of E with respect to K and we prove that

L(E/K, s) = L(E/Q, s)L(ED/Q, s) = L(E/Q, s)L(E/Q, χ, s)

where χ is here the order two character of (Z/DZ)∗ (in the case of D prime, the
Legendre symbol). In this framework of representation theory, this is equivalent
to

L(E/K,ψ, s) = L(E/Q, Ind
GQ
GK

(ψ), s)

In the left we have ρ = Tl(E) ⊗ Vψ as a GK-representation, and in the right

ρ = Tl(E) ⊗ Ind(ψ) as a GQ representation, and all we need is that Ind
GQ
GK

is
the direct sum of ψ and σψ, where σ is an element in GQ not in GK . Using
that in this case the corresponding characteristic polynomial is the product of
the polynomial associated to each representation, we see that the L-function in
the right factors as the product of L(E/Q, ψ, s) and L(ED/Q, ψ, s).

Galois representations and BSD. A result of Darmon and
Rotger.

Let E/Q be as usual an elliptic curve, and

ρ : GQ → GL(Vρ) = GLn(C)
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what we will define as an Artin representation, that is, a continuous representa-
tion of GQ. The hypothesis of continuity here is a very strong request: this forces
immediately that the kernel is Galois (for being the kernel of an homomorphism)
and of the form GM , where M is a finite extension of Q. Therefore, ρ factors
through the kernel and can be seen as an injection of Gal(M/Q) in GLn(C) (a
natural question would be, for instance, which Galois groups may appear here:
for instance, if n = 1 it must be a cyclic group).
We already mentioned the Galois equivariant version of BSD, that basically says
that L(E, ρ, s) vanishes at s = 1 with order r(E, ρ), the multiplicity of the rep-
resentation Vρ in the Gal(M/Q)-module E(M) ⊕ C that is inside Selp(E/M).
Obviously, they also require the same hypothesis than in their proof of BSD, that
ords=1 L(E, ρ, s) ≤ 1.

In 1987, Gross, Zagier and Kolyvagin proved this conjecture when ρ = Ind
GQ
GK

(ψ)
for all the anti-cyclotomic (also referred as dihedral or ring class) characters.

Definition 11.2. We say that a character ψ is anti-cyclotomic when one of the
following equivalent properties hold:

a) Hψ/Q is Galois and the Galois group is dihedral (generalized). With dihedral
generalized we mean that the usual semidirect product is done with an abelian
(not necessarily cyclic) group.

b) Ind
GQ
GK

is an self-dual representation of GQ.

c) Let σ0 be any element of GQ not in GK. We can define the character ψ′ :
Gal(Hψ/K) → C∗ by the formula ψ′(σ) = ψ(σ0σσ

−1
0 ) and the definition does

not depend of σ0. Then, the anti-cyclotomic property is that

ψ′ = ψ−1

(the name cyclotomic is used when ψ′ = ψ).

One of the main recent theorems towards BSD is the following result, from 2012,
of Darmon and Rotger. One of the relevant aspects of this result is that it says
something when the order of vanishing is even and non-zero:

Theorem 11.7. Let ρ1, ρ2 : GQ → GL2(C) 2-dimensional odd Artin represen-
tations (odd means that the eigenvalues are 1 and −1). Let ρ be an irreducible
component of the GQ-representation ρ1 ⊗ ρ2. Then:

a) If ords=1 L(E, ρ, s) = 0, then the conjecture is true for (E, ρ).

b) If ords=1 L(E, ρ, s) = 1 (and under some additional p-adic hypothesis), it is
possible to build a copy of Vρ in Selp(E).

c) If ords=2 L(E, ρ, s) = 2, then it is possible to build an injection of Vρ ⊕ Vρ in
Selp(E) (again under some hypothesis).

This additional requirements say, in a rough way, that the p-adic analogous of
L′′(E, ρ, 1) is not zero.

The proof is far beyond the scope of this thesis: the key ingredients are p-adic
L-functions and the construction of a new Euler system using diagonal cycles in
the cube of a modular curve.
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Miscellaneous topics

12.1 Galois representations

Along this thesis, we have seen that through reducing modulo p we can obtain
information about a modular or an elliptic curve. For instance, we prove Eichler-
Shimura relation for X0(N), that could be also stated as

Tp = Πp + Π′p

(where Π is the Frobenius) as an endormophism of Pic0(X̃0(N)). But we have
the same for elliptic curves

ap(E) = Πp + Π′p

as an endomorphism of Pic0(Ẽ). The proof in that case is quite simple: just note
that x ∈ F̄p satisfies xp = x if and only if x ∈ Fp. Thus,

Ẽ(Fp) = ker(σp − 1)

and consequently

|Ẽ(Fp)| = deg(σp − 1) = (σp − 1)∗ ◦ (σp − 1)∗ = p+ 1− σp,∗ − σ∗p
These relations hold for all but finitely many p, and each involves different geo-
metric objects as p varies. What we try to emphasize now is that we can lift these
two relations from characteristic p to characteristic 0 (as with Hensel’s lemma we
lift a solution in Fp to a p-adic field).
For any prime l, the l-power torsion groups of an elliptic curve give rise to vector
spaces Vl(E) over the l-adic number field Ql (we already studied this). But sim-
ilarly, the l-power torsion groups of the Picard group of a modular curve give an
l-adic vector space Vl(X). Vl(E) and Vl(X) are acted on by the absolute Galois
group of Q, that subsumes the Galois groups of all number fields and contains
absolute Frobenius elements FrobP for maximal ideals P of the algebraic closure
Z lying over rational primes p. The previous relations lead to

Frob2
P −ap(E) FrobP +p = 0

as an endomorphism of Vl(E) and

Frob2
P −Tp FrobP +p = 0

as an endomorphism of Vl(X0(N)).

197
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Representations of End(E)

Let A = End(E). Since E has genus one, the map
∑
ni[Pi] 7→

∑
niPi is a map

from Div0(E) to E(k) that defines an isomorphism between J(k) and E(k). A is
nothing but the full ring of correspondences of E, since there is a one to one cor-
respondence between these two objects. There are three natural representations
for A:

a) When l is a prime different from the characteristic of k, the Tate module TlE is
a free Zl module of rank two, so we have a homomorphism ρl : A→ End(TlE).

b) Let W = Tgt0(E) the tangent space to E at O. This is a one dimensional
vector space over k, and since every element α of A fixes 0, α defines an
endomorphism dα of W . We have another homomorphism ρ : A→ End(W ).

c) When k = C, H1(E,Z) is a free Z-module of rank 2, and now the homomor-
phism is ρ : A→ End(H1(E,Z)).

Proposition 12.1. If k = C, we have that ρ⊗ Zl ' ρl and ρB ⊗ C ' ρ⊕ ρ̄.

We can even consider a forth representation, taking Ω1(E), the space of holo-
morphic differentials on E. There is a canonical non-degenerate pairing Ω1(E)×
Tgt0(E) → k. The representation of A on Ω1(E) is the transpose of the repre-
sentation on Tg t0(E) and since both representations are one-dimensional, they
are equal. We recover here some results that already appeared in some moment
of the thesis and that now seem very natural in this context:

Proposition 12.2. For every nonzero endomorphism of an elliptic curve E, the
degree of α is equal to det(ρlα). Further, let E now be an elliptic curve over Fp.
Then the numbers α1, α2 satisfying Np = 1 + p− α1 − α2 in Hasse’s theorem are
the eigenvalues of Πp acting on TlE (for l 6= p).

We define now properly what we understand by a Galois representation. The
philosophy will be that Gal(Q̄/Q) is not easy to understand and we cannot tell
many things about it, so a natural way to study it is from its representations. In a
course in Galois theory, for instance, we learn that the absolute Galois group only
contains, up to conjugation, one element of finite order, the complex conjugation.
With the following tool we will be able to go further in our understanding of this
group.

Definition 12.1. A Galois representation is a continuous morphism

ρ : Gal(Q̄/Q)→ GLn(k)

where k is a field (typically, k = C,Qp,Fp). The first ones will be called Artin
representations, the second one p-adic representations and the third ones modulo
p representations. In this section GK denotes the absolute Galois group of K.

We state some results concerning these representations:
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Proposition 12.3. The image of any representation ρ modulo p is contained in
GLn(Fq) where Fq is a finite extension of Fp. In particular, it is finite.

Proof. Observe that the topology of Fp is discrete, and so the topology of GLn(Fp)
is also discrete. On the other hand, Gal(Q̄/Q) is compact, and since ρ is con-
tinuous, the image of ρ is a compact subset in a discrete space, so it must be
finite.

Proposition 12.4. Every Artin representation has finite image.

Proof. Note that in GLn(C) we have the usual operator norm. Since ρ is continu-
ous (and therefore bounded), we can take an open set U ⊂ GQ in such a way that
ρ(U) is in the ball centered at Id and radius 1/2. Suppose now that there exists
u ∈ U such that ρ(u) 6= Id, say for instance T = ρ(u). If T has an eigenvalue
λ 6= 1, we can take v an eigenvector of norm 1 and observe that

||T n − Id || ≥ ||(T n − Id)(v)|| = |λn − 1| ≥ 1/2

if n is big enough. This is a contradiction since T n is in ρ(U). On the other hand,
if 1 is the only eigenvalue, the Jordan form J will be a matrix of ones along the
diagonal and maybe some other ones. Then, the matrix J − Id has norm not
smaller than one, and so

||T − Id || = ||J − Id || ≥ 1/2

which is a contradiction again, and so ρ(U) = {Id}.
Finally, since U is an open subgroup, it has finite index in GQ, from where we
have that ρ(U) = {0} has finite index in Im(ρ), and so the image of ρ is finite.

Proposition 12.5. The image of any p-adic representation ρ is contained in
GLn(F ), where F is a finite extension of Qp (in general, this image will be infinite)

Proof. The first step is writing Qp as the union of a countable number of finite
extensions of Qp. The maximal non-ramified extension of Qp (Qnr

p ) is the union
of Qp(ωn), where ωn is an n-th root of the unity and n is relatively prime with p.
Then, Qp can be seen as the union of the extensions Qnr

p ( n
√
p) where n runs over

the set of natural numbers (this follows from class field theory).
Now, Qp = ∪Fi and so GLn(Qp) is also ∪GLn(Fi). Further, since GLn(Fi) is
closed and Im ρ is a compact written as the countable union of closed subspaces,
applying Baire’s theorem, at least one of the subspaces must have a nonempty
interior, for instance GLn(Fr)∩ Im(ρ). Since it is also a subgroup, it is also open
and has finite index in Im ρ. We deduce from here that Im(ρ) is generated by
GLn(Fr)∩ Im(ρ) and finite elements T1, . . . , Ts and so it is included in the group
generated by {GLn(Fr), T1, . . . , Ts} ⊂ GLn(F) where F is the field generated by
Fr and the coefficients of the Ti.

Definition 12.2. Given a prime p ∈ Z and a Galois representation ρ : GQ →
GLn(K), we say that ρ is unramified in p when ρ(IP ) = {Id} for all prime P of
Q̄ over p (here IP denotes the inertia group).
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We state without proof this interesting result, relating the notion of ramification
in a Galois representation with the traditional notion of ramification of a prime
in an extension:

Proposition 12.6. Let ρ be a Galois representation and L/Q the subextension
of Q fixed by Ker(ρ). Then, ρ is unramified in a prime p if and only if p does not
ramify in L.

Galois representations and modular forms

In chapter 3, we saw how to associate a Galois representation to an elliptic curve
via the Tate module, that gives a map

ρEl : GQ → GL2(Zl) ⊂ GL2(Ql)

For that kind of representations, we have the following result whose proof is not
quite complicated:

Theorem 12.1. Let l be a prime and let E be an elliptic curve over Q with
conductor N . The Galois representation ρE,l is unramified at every prime p - lN .
For any such p, let P ⊂ Z̄ be any maximal ideal over p. Then, the characteristic
equation of ρE,l(FrobP ) is

x2 − ap(E)x+ p = 0

Further, the Galois representation ρE,l is irreducible.

A much more difficult result, due to Serre, is that if we let F be the field generated
by the torsion points of an elliptic curve, that is,

F =
⋃

Q
(
{x, y}(x,y)∈E[n]

)
then, Gal(F/Q) has finite index in GL2(Ẑ) if E does not have complex multipli-
cation.

Our objective now will be to associate Galois representations to modular curves
and then decompose them into two dimensional representations associated to
modular forms. If N is a positive integer and l is a prime, X1(N) is a projective
non-singular algebraic curve over Q of genus g. Seeing the curve X1(N)C as a
compact Riemann surface, we know that J1(N) ∼= Cg/Λg. The Picard group of
the modular curve is the abelian group of divisor classes on the points of X1(N),
and it can be proved that Pic0(X1(N)) can be identified with a subgroup of
Pic0(X1(N)C). Thus, there is an inclusion of the ln-torsion

in : Pic0(X1(N))[ln]→ Pic0(X1(N)C)[ln] ∼= (Z/lnZ)2g

There is a result called Igusa’s Theorem that states that X1(N) has good reduc-
tion at the primes not dividing N , so there is also a natural surjective reduction
map from Pic0(X1(N)) to Pic0(X̃1(N)) restricting to the ln-torsion (call this map
πn). The following result relies in techniques of algebraic geometry.
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Theorem 12.2. The inclusion in is an isomorphism and the surjection πn is also
an isomorphism if p does not divide lN .

We define the l-adic Tate module of X1(N), Tal(Pic0(X1(N)) as the projec-
tive limit of Pic0(X1(N))[ln]. It is clear that any automorphism σ of the ab-
solute Galois group defines an automorphism of Div0(X1(N)) that descends to
Pic0(X1(N)). Again, this will lead to a continuous homomorphism

ρX1(N),l : GQ → GL2g(Zl) ⊂ GL2g(Ql)

(this is the 2g-dimensional representation associated to X1(N).
We had previously defined the Hecke algebra over Z as the algebra of endomor-
phisms of S2(Γ1(N)) generated over Z by the Hecke and diamond operators. This
algebra acts on Pic0(X1(N)) and since the action is linear it restricts to l-power
torsion and it extends to Tal(Pic0(X1(N))). Not only that: the Hecke action is
defined over Q and so the Galois action and the Hecke action on Pic0(X1(N))
commute and therefore also the two actions on Tal(Pic0(X1(N))).

Theorem 12.3. Let l be a prime number and N be a positive integer. The Galois
representation ρX1(N),l is unramified at every prime p not dividing lN . For any
such p let P ⊂ Z̄ (the bar denoting the integral closure of Z in Q̄) be a maximal
ideal over p. Then, ρX1(N),l(FrobP ) satisfies the equation

x2 − Tpx+ 〈p〉p = 0

Recall also that the Hecke algebra contains an ideal associated to f , the kernel of
the eigenvalue map If ; the abelian variety of f is defined as Af = J1(N)/IfJ1(N).
It can be seen that if TZ is the Hecke algebra, then TZ/If is isomorphic to Of ,
where

Of = Z[{an(f) : n ∈ Z+}]

Let Tal(Af ) be the projective limit of Af [l
n]. The action of Of on Af is defined

on l-power torsion and the extends to Tal(Af ).

Proposition 12.7. The map Pic0(X1(N))[ln] → Af [l
n] is a surjection whose

kernel is stable under GQ.

So GQ acts on Af [l
n] and so on Tal(Af ). The action commutes with the action

of Of since the GQ action and the TZ action commute on Tal(Pic0(X1(N))).
Choosing coordinates what we have is a Galois representation

ρAf ,l : GQ → GL2d(Ql)

The representation is continuous since ρX1(N),l is continuous and

ρ−1
X1(N),l(U(n, g)) ⊂ ρ−1

Af ,l
(U(n, d))

where U(n, g) is the kernel of GL2g(Zl)→ GL2g(Z/lnZ)) and similarly for U(n, d).
The representation is unramified at the primes p not dividing lN since the kernel
contains ker ρX1(N),l. For those p, let P ⊂ Z̄ be any maximal ideal over p. Then,
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since Tp acts as ap(f) and 〈p〉 acts as χ(p), at the level of abelian varieties we
have that ρAf ,l(FrobP ) satisfies the equation

x2 − ap(f)x+ χ(p)p = 0

The Tate module Tal(Af ) has rank 2d over Zl, and since it is an Of -module, then
Vl(Af ) = Tal(Af )⊗Q is a module over Of ⊗Ql = Kf ⊗Q Ql.

Lemma 12.1. Vl(Af ) is a free module of rank 2 over Kf ⊗Q Ql.

In the next section we will describe a special type of representations, those called
modular representations.

12.2 A brief insight into Fermat’s last theorem

Let S denote the usual sphere S2. Then, π = π1(S\{P1, . . . , Ps}, O) is generated
by γ1, . . . , γs loops around each of the points Pi. π classifies the coverings of S
unramified except over P1, . . . , Ps. The idea is that we want to do an analogy of
this fact over Q. When K is a number field, take OK the ring of integers and
there any ideal factors as a product of prime ideals pOK =

∏
P eP ; p is said to be

unramified when eP = 1 for each p. Let now the extension be Galois with Galois
group G. Recall from basic algebraic number theory that when P is a prime ideal
diving pOK , we can consider G(P ), the subgroup of G formed by those σ such
that σP = P . The action of G(P ) on the residue field OK/P = K(P ) defines a
surjection from G(P ) to Gal(k(P )/Fp), which is an isomorphism if and only if p
is unramified in K. Recall also that in G(P ) we have a distinguished element, the
Frobenius element at P , FP . Finally, note that if P ′ also divides pOK , there exists
a σ ∈ G such that σP = P ′ and so the Frobenius of P and P ′ are conjugated by σ
and so the conjugacy class of FP depends on p (and we will write it as Fp). This
can be generalized to infinite extensions. Let S be a finite nonempty set of prime
numbers and let KS be the union of all K ⊂ C that are of finite degree over Q
and unramified outside S. For each p ∈ S there is an element Fp ∈ Gal(KS/Q)
well defined up to conjugation called the Frobenius element at p.

Proposition 12.8. Let E be an elliptic curve over Q. Let l be a prime and let

S = {p | E has bad reduction at p} ∪ {l}

Then all points of order ln on E have coordinates in KS, that is E(KS)ln =
E(Qal)ln for all n.

Let now TlE be the Tate module of Ekal . Thus, for E over Q and S as in the
proposition TlE is a free Zl-module of rank two such that

TlE/l
nTlE = E(KS)ln = E(Qal)ln

for all n. The action of GS on the quotients defines a continuous action of GS on
TlE, that is, a representation

ρl : GS → AutZl(TlE) ≈ GL2(Zl)
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Proposition 12.9. Let E, l, S as above. For all p /∈ S

Tr(ρl(Fp)|TlE) = p+ 1−Np(E) = ap

Definition 12.3. A continuous homomorphism ρ : GS → GL2(Zl) is modular
if Tr(ρ(Fp)) ∈ Z for all p /∈ S and there exists a cusp form f =

∑
c(n)qn ∈

S2k(Γ0(N)) for some k and N such that

Tr(ρ(Fp)) = c(p)

for all p /∈ S.

To prove that E is modular what we must prove is that ρl : Gs → Aut(TlE) is
modular for some l (and in that case ρl will be modular for all l). Similarly, a
continuous homomorphism ρ : GS → GL2(Fl) is modular if there exists a cusp
form f =

∑
c(n)qn in S2k(Γ0(N)) for some k and N such that Tr(ρ(Fp)) ≡ c(p)

modulo l for all p /∈ S. A representation is odd if det ρ(c) = −1, where c is
complex conjugation. A conjecture due to Serre states that every odd irreducible
representation ρ : GS → GL2(Fl) is modular (here irreducible means that there
is no one dimensional subspace of F2

l stable under the action of GS). One of the
classical results is the following, due to Langlands and Tunnell:

Theorem 12.4. If ρ : GS → GL2(F3) is odd and irreducible, then it is modular.

Let now R be a complete local noetherian ring with residue field Fl. Two ho-
momorphisms ρ1, ρ2 → GL2(R) are strictly equivalent if ρ1 = Mρ2M

−1, where
M ∈ ker(GL2(R) → GL2(k)). A deformation of ρ0 is a strict equivalence class
of homomorphisms ρ : Gs → GL2(R) whose composite with GL2(R)→ GL2(Fp)
is ρ0. Now, if we put a set of conditions ∗ on representations ρ, under suitable
hypothesis there is a universal ∗-deformation of ρ0, that is, a ring R̃ and a de-
formation ρ̃ : Gs → GL2(R̃) satisfying ∗ and such that any other representation
with that property factors through ρ̃.
Roughly speaking, one of the strategies of Wiles was, first, state conditions ∗
as strong as possible but satisfied by the representation of GS on TlE for E a
semistable elliptic curve over Q. Fixing a modular representation ρ0, we get a
homomorphism δ : R̃ → T, which is in fact an isomorphism. We cannot go
further since a proper explanation of this ideas would be extremely complicated.
The philosophy is that both Wiles’ proof as some of the main theorems around
BSD needs, in some way or another, the concept of Galois representations and
modular representations.

12.3 Elliptic surfaces

There are several ways to introduce elliptic surfaces. They can be viewed as
one-parameter algebraic families of elliptic curves, algebraic surfaces containing
a pencil of elliptic curves or elliptic curves over one-dimensional function fields.
We will begin with this last approach and we will assume that we are working all
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the time over a field k of characteristic zero. We will consider an elliptic curve of
the form

y2 = x3 + A(T )x+B(T )

where A(T ), B(T ) ∈ k(T ) are rational functions of the parameter T . For most
values of t ∈ k̄ we can substitute T = t and get an elliptic curve

Et : y2 = x3 + A(t)x+B(t)

(this will happen when ∆(t) = −16(4a3 + 27b2) 6= 0).
Our interest will be now in proving the weak Mordell-Weil theorem for elliptic
curves defined over function fields in characteristic zero.

Theorem 12.5. Let k be an algebraically closed field, K = k(C) the function
field of a curve and E/K an elliptic curve. Then, E(K)/2E(K) is finite.

We give just an idea of the proof. Recall the steps in the proof of this theorem for
number fields: we begin by saying that the extension field L = K([m]−1E(K))
is an abelian extension of K of exponent m unramified outside a finite set of
primes S. This will work in the same way for function fields by developing the
theory of valuations. In the second part we will prove with Kummer theory that
the maximal abelian extension of K of exponent m unramified outside of S is a
finite extension. We need in this part to translate some concepts from algebraic
number theory involved in results of finiteness: for instance, the unit group is
nothing but the set of elements satisfying v(α) = 0 for all discrete valuations on
K∗. But the discrete valuations on a function field K = k(C) correspond to the
points of C(k), since k is algebraically closed. Thus if a function f has valuation
zero for all valuations, it has no zeros or poles so it is constant. Hence the unit
group of K will be k∗ (that is not finitely generated). Furthermore, the ideal
class group will be now the Picard group, that is neither finitely generated.
But we need not such a strong statement. We only used the facts that the ideal
class group has only finitely many elements of order m and that the unit group
R∗ has the property that the quotient R∗/R∗m is finite. These results remain true
for function fields under certain assumptions on the constant field k of K. The
next proposition is one of the key facts:

Proposition 12.10. Let C be a non-singular projective curve over an alge-
braically closed field k. Then, for any integer m ≥ 1, the Picard group has
only finitely many elements of order m.

Another important observation is that if E/K is the elliptic curve, that admits
a Weierstrass equation of the form

y2 = (x− e1)(x− e2)(x− e3)

where e1, e2, e3 ∈ K, and if S ⊂ C is a set of points where any one of e1, e2, e3

has a pole, together with those points where ∆ = (e1 − e2)2(e2 − e3)2(e3 − e1)2

vanishes. Then, for any point P = (x, y) ∈ E(K) with x 6= e1,

ordt(x− e1) ≡ 0 (mod 2) for all t ∈ C with t /∈ S
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where ordt is the normalized valuation on k(C) which measures the order of
vanishing of a function at t.
The following lemma, combined with this technical observation we have made,
finishes the proof of the weak Mordell-Weil theorem:

Lemma 12.2. Let k be an algebraically closed field, K = k(C) the function field
of a curve and S ⊂ C a finite set of points. Let m ≥ 1 be an integer. Then, the
group

K(S,m) = {f ∈ K∗/K∗m | ordt(f) ≡ 0 (mod m) for all t /∈ S}

is a finite subgroup of K∗/K∗m.

As we have said, it is interesting to consider elliptic surfaces as a one-parameter
family of elliptic curves. We might consider a family

ET : y2 = x3 + A(T )x+B(T )

with A(T ), B(T ) ∈ k(T ). Or more generally we can fix a projective curve C/k
and take A,B ∈ k(C) with 4A3 + 27B2 6= 0. Then, for almost all points t ∈ C(k̄)
we can evaluate A and B at t to get an elliptic curve Et. Consider now

ε = {([X, Y, Z], t) ∈ P2 × C | Y 2Z = X3 + A(t)XZ2 +B(t)Z3}

ε is a subvariety of P2 × C of dimension two (a surface formed from a family of
elliptic curves).
Since ε is a subvariety of P2 × C, projection onto the second factor defines a
morphism π : ε → C sending ([X, Y, Z], t) 7→ t. Further, for almost every point
t ∈ C, the fiber εt = π−1(t) is the curve Et we considered earlier.
But note that our family of elliptic curves has other important property. An
elliptic curve is nothing but a pair (E,O) where E is a curve of genus one and
O is a point of E. The equation that defines ε gives a one-parameter family of
elliptic curves, that is, for almost all values of t we get an elliptic curve εt, which
means a pair (εt, Ot), that is, each one is equipped with a zero element. The
interesting property here is that the collection of zero elements Ot is an algebraic
family of points, and so, since each fiber εt is an elliptic curve with zero element
Ot we get a map σ0 : C → ε mapping t 7→ Ot. This map satisfies that π(σ0(t)) = t
for all t ∈ C(k̄). Since Ot is an algebraic family, σ0 is a rational map of varieties
and σ is a section.

Definition 12.4. Let C be a non-singular projective curve. An elliptic surface
over C consists of the following data:

a) A surface ε (a two dimensional projective variety).

b) A morphism π : ε→ C such that for all but finitely many points t ∈ C(k̄) and
the fiber εt = π−1(t) is a non-singular curve of genus one.

c) A section to π, σ0 : C → E.
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12.4 Néron models

This is a deep topic that needs a good knowledge of algebraic geometry to be
properly understood. We content ourselves with giving an intuitive introduction
to it. Recall that when we have an elliptic curve E/Q, we say that a prime is
of good reduction if there exists f(x, y) ∈ Z[x, y] such that the curve E over Q
is isomorphic to {f(x, y) = 0} and at the same time the curve {f̄(x, y) = 0} is
non-singular, where the bar denotes reduction modulo p. Recall that there may
be a model where the reduction is singular and the curve can still be of good
reduction.
If p is a prime of good reduction, we can see E as a curve over Qp and consider
f(x, y) ∈ Z[x, y] isomorphic to E over Qp. It is perfectly possible to have two
polynomials over Zp, f1, f2 such that E is isomorphic to {f1 = 0} and to {f2 = 0}
over Qp but the curves associated to f1 and to f2 are not isomorphic over Zp (in
the same way that for instance two curves could be isomorphic over a number
field and not over Q). We will say here that f1 and f2 are distinct p-adic integer
models for E/Qp.

Definition 12.5. The Néron model of E/Qp is a scheme ε/Zp such that ε/Qp
∼=

E/Qp and such that is optimal and canonical in a certain sense.

Before continuing with this introduction, we recall the following:

Proposition 12.11. If p is of good reduction, there is a unique model for E over
Zp (but for isomorphism over Zp) and will be the Néron model ε/Zp.

Now suppose that p is of bad reduction. The Néron model is optimal in the
following sense, characterizing ε in a unique way but for Zp-isomorphism:

a) The reduction modulo p is a curve whose singularities are all of double ordinary
type, i.e., locally all the singularities are nodes.

b) The natural morphism ε(Zp)→ E(Qp) is an isomorphism.

c) The scheme ε is regular (its local rings are regular everywhere).

Definition 12.6. A regular local ring is a noetherian local ring with the prop-
erty that the minimal number of generators of its maximal ideal is equal to its
Krull dimension.

Note that this is very related with some of the topics we commented in several
moments. For instance, recall the criterion of Néron-Ogg-Shafarevich, that char-
acterizes if p is of good or bad reduction, and in this last case measures how bad
the reduction is. Recall also that we have seen that there is a natural action of
GQ in Tl(E) that gives us a Galois representation ρE,l that we can restrict to the
decomposition group Dp or to the inertia Ip.

Theorem 12.6. Let l 6= p. Then, ρE,l(Ip) ⊂ GL2(Zl) is a finite group and E has
good reduction in p if and only if ρE,l(Ip) = {Id} (and this is independent of the
choice of l 6= p).
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In general, for an elliptic curve E/K over a number field, and for a prime P of
OK , we have three options: either P is of good reduction or it has bad reduction,
that can be multiplicative (or stable) or additive (non-stable). The following
theorem is due to Grothendieck:

Theorem 12.7. Let E/K be an elliptic curve over a number field, and let P be
an ideal of OK. Then, there exists a finite extension L/K and an ideal PL over P
such that the reduction of E/L in PL is either good or multiplicative. Furthermore,
if L′/L is an extension of L, then the character (good or multiplicative) of the
reduction of E/L′ over the primes above PL does not change.

We can also relate this with the concepts we see about complex multiplication,
thanks to the following theorem due to Tate:

Theorem 12.8. Let E/K be an elliptic curve over a number field and let P be
a prime of OK where E has stable reduction (good or multiplicative). Then, the
reduction is good if and only if vP (j(E)) ≥ 0.

And a direct corollary of this, taking advantage of the fact that we already know
that the j-invariant of a curve with complex multiplication is an algebraic integer,
is that if the elliptic curve has CM, then for all prime P of H (the Hilbert class
field), then vP (j(E)) ≥ 0 and so they have potential good reduction in all the
primes.

We now return to the schemes and reinterpret what is the Néron model in terms
of algebraic geometry. Let E/K be an elliptic curve and let W/R be its minimal
Weierstrass model. Since W is proper over R, we have that W (R) = W (K) =
E(K). However, W is typically singular and its smooth locus Wsm is a group
scheme over R. Typically, it is not proper, and not all K-points of E extend to
Wsm. Those that do are the subgroup E0(K), of finite index in E(K).
The Néron model can be seen as an extension ε of E over R which combines the
desirable properties of W and Wsm, since it is a smooth scheme and all K-points
extend to R-points. The identity component of ε is Wsm while the component of
εk (at least for k algebraically closed) is E(K)/E0(K). So all the points of E(K)
extend to points of ε(R) and E0(K) is the subgroup of points which extend to
the identity component of ε.
Let now C/K be a curve. A regular model for C is a proper flat scheme C over
R which is regular and whose generic fiber is C. A regular model C is minimal
if for any other regular C ′ there exists a map of schemes C ′ → C extending the
identity on the generic fiber. The main theorem is that minimal regular models
exist and are canonically unique. One can find a regular model for C by starting
with any model and applying blowing-up and normalization. From there, we can
find a minimal regular model. Let E/K be an elliptic curve and let C/R be its
minimal regular model. The Néron model of E is then the smooth locus in C.
We present now the theorem that guarantees the existence of Néron models for
elliptic curves: the development of the proof will require all a course in scheme
theory:
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Theorem 12.9. Let R be a Dedekind domain with fraction field K, let E/K be
an elliptic curve, C/R a minimal proper regular model for E/K (this should be
properly define) and let ε/R be the larger subscheme of C/R which is smooth over
R. Then, ε/R is a Néron model for E/K.

One of the first applications of all this theory in the context of elliptic curves is
the proof of Mazur’s theorem, that characterizes which groups arises as torsion
groups of elliptic curves.

12.5 Reinterpretation of modular forms

A natural generalization of the theory of modular forms comes from Hilbert forms,
that is a natural extension of the same concept to several variables. Summing
up, when F is a totally real number field of degree m over the rationals, consider
σ1, . . . , σm the real embeddings of F . That way, we have a natural map GL2(F )→
GL2(R)m. If OF is the ring of integers of F , the group GL+

2 (OF ) is what we call
the full Hilbert modular group, and for every element z = (z1, . . . , zm) ∈ Hm there
is a group action of GL+

2 (OF ) defined as one can expect. A Hilbert modular form
of weight (k1, . . . , km) will be an analytic function on Hm such that for every
γ ∈ GL+

2 (OF ),

f(γz) =
m∏
i=1

j(σi(γ), zi)
kif(z)

In the development of this theory, we find some interesting analogies with the
theory of certain function spaces, that is only sketched in the following lines.
Recall that when we have an element g of GL2(R)+, we write j(g, z) = det(g)−1/2(cz+
d). To a modular form f ∈ Mk(Γ) we can attach a function φf : SL2(R) → C
defined as follows

φf (g) = f(g · i)j(g, i)−k

Proposition 12.12. The function φf satisfies the following properties:

a) φf (γg) = φf (g) for all γ ∈ Γ.

b) Let r(θ) denotes the element of SO2(R) corresponding to a rotation of angle
θ. Then, φf (gr(θ)) = exp(ikθ)φf (g).

c) If f is a cusp form, then φf is a bounded function satisfying∫
Γ\SL2(R)

|φf (g)|2dg <∞

d) If f is a cusp form, then φf is what we will call cuspidal, that is, for each
g ∈ SL2(R), for each g ∈ SL2(R) and for each γ ∈ SL2(Z),∫ 1

0

φf

(
γ

(
1 x
0 1

)
g
)
dx = 0



CHAPTER 12. MISCELLANEOUS TOPICS 209

The proof of the properties is just easy manipulations.
We also have, associated to any modular form f ∈ Sk(Γ), a function φf in
L2(Γ\ SL2(R)). We would like to study the image of this association.
Recall that the C∞ functions of Γ\ SL2(R) are dense in L2(Γ\ SL2(R))); for those
functions, we can consider the following operator, called Casimir’s operator, and
that in coordinates (x, y, θ) can be written as

∆ = −y2
( ∂2

∂x2
+

∂2

∂y2

)
− y ∂2

∂x∂θ

Proposition 12.13. The function f 7→ φf gives a bijection between Sk(Γ) and
the functions φ ∈ SL2(R) satisfying:

a) φ(γg) = φf (g) for all γ ∈ Γ.

b) φ(gr(θ)) = exp(ikθ)φf (g).

c) ∆φ = −k
2
(k

2
− 1)φ.

d) φ is bounded and cuspidal.

It would be interesting now to relate this with the theory of group representations
of Lie groups to obtain some remarkable results, but again this will lead us too far.
What we will do is to define what is an automorphic form in GL2(AQ), the ring
of adeles. If we decompose g ∈ GL2(AQ) as g = γg∞k0, where γ ∈ GL2(Q), g∞ ∈
GL2(R)+ and k0 ∈

∏
pKp, given f ∈ Sk(Γ0(N)) (Kp are subgroups of SL2(Zp)),

then we can define φf : GL2(AQ)→ C by

φf (g) = f(g∞i)j(g∞, i)
−k

This is a well-defined function, and the function f(z) → φf (g) gives an isomor-
phism between Sk(Γ0(N)) and the space of functions φ of GL2(AQ) satisfying
certain conditions about growth and invariance. We can now define Hecke op-
erators and like before, establish a correspondence between modular forms and
adelic representations.
In this context it is a must to introduce Hilbert forms:
Given an ideal B, we can define the group

GL+
2 (OK , B) =

{( a b
c d

)
| a, d ∈ OK , b ∈ B−1, c ∈ B

}
These groups are all maximal (and not necessarily conjugated if B1, B2 are in
different classes of ideals), and so as to study modular forms we must look at all
them. In the same way, given an ideal N , we define

Γ0(N,B) =
{( a b

c d

)
∈ GL+

2 (OK , B) | c ∈ NB
}

Let now X0(N,B) the quotient Γ0(N,B)\H2 ∪ P1(K).
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Definition 12.7. A holomorphic function f : H2 → C is a modular form of
weight k = (k1, k2) (where k1, k2 are non-negative integers) for Γ0(N,B) if for all
γ ∈ Γ0(N,B) we have

f(γ · (z1, z2)) = τ1(det(γ))−k1/2τ2(det(γ))−k2/2

(τ1(c)z1 + τ1(d))k1(τ2(c)z2 + τ2(d))k2f(z1, z2)

We will denote by Mk(Γ0(N,B)) the space of these functions.

Note that we do not request holomorphy in the cusps; the explanation of this
comes from the famous Koecher’s principle, that states that the condition of
holomorphy at the cusps is immediate from the definition. This same theory, as
was pointed out at the beginning of this section, generalizes to the case of m
variables and everything remains equal.

12.6 What is missing in this thesis?

When one starts the writing of a project like this, there are many topics that one
hopes to have time to develop and finally, due to the lack of time, it is not always
possible. We try to point out here several things that we projected to include in
the thesis and that would have complemented some of the chapters and give a
better global understanding of the topic:

a) A clear and concise vision of class field theory, since many of the results we
gave for instance when dealing with complex multiplication are particular cases
of a more general theory. It is also missing a better understanding of Galois
representations. For that, it would be necessary to properly explain the proof
and to develop more cohomology of groups and homological algebra.

b) An introduction to the theory of schemes and group schemes (and in general,
this thesis has a lack of algebraic geometry, that is crucial to understand
deeper results in number theory). This would lead us to a better introduction
of Néron models and to be able to develop some advanced results that rely on
this. The same applies for the theory of arithmetic geometry.

c) Explain more results around BSD, Stak-Heegner points, p-adic uniformization,
extensions to totally real fields, sketch the proof of Coates-Wiles . . . Formulate
BSD in a more general framework: this would have lead us to the Block-Kato
conjecture about motives.

d) Some results were quoted without proofs. I would like to have included them
to have a more self-contained thesis.
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