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Abstract

This paper introduces a new arc routing problem for the optimization of a

collaboration scheme among carriers. This yields to the study of a pro�table un-

capacitated arc routing problem with multiple depots, where carriers collaborate

to improve the pro�t gained. In the �rst model the goal is the maximization of

the total pro�t of the coalition of carriers, independently of the individual pro�t

of each carrier. Then, a lower bound on the individual pro�t of each carrier is

included. This lower bound may represent the pro�t of the carrier in the case

no collaboration is implemented. The models are formulated as integer linear

programs and solved through a branch-and-cut algorithm. Theoretical results,

concerning the computational complexity, the impact of collaboration on pro�t

and a game theoretical perspective, are provided. The models are tested on a

set of 971 instances generated from 118 benchmark instances for the Privatized

Rural Postman problem, with up to 102 vertices. All the 971 instances are solved

to optimality within few seconds.

1 Introduction

Collaboration among carriers becomes more and more valuable because of surging
pressures to improve pro�tability and to reduce costs. Nowadays, collaborative trans-
portation is regarded as one of the major trends in transportation research. Indeed,
increasing carrier insurance and fuel costs combined with a more intense market com-
petition lead carriers to look for new and more e�cient solutions. Primarily, carriers
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focus on reducing costs looking for e�cient route planning and scheduling. These costs
are strongly correlated with the location of customers. Whereas a carrier would bene�t
from having its customers concentrated in the same area, for a number of reasons they
may end up being geographically dispersed. This forces the carrier to create long routes
for its vehicles, with associated high cost in terms of vehicles usage and drivers time.
It is often the case that customers that are inconveniently located for a carrier are
conveniently located for a di�erent carrier. Thus, a collaborating set of carriers can re-
distribute the customers, opening up, through collaboration, cost saving opportunities
otherwise non achievable.

In general, there are di�erent types of carriers: general, regional or functional. The
general carrier is non specialized and has the assets and the logistics to serve all its
customers taking care of all kinds of item distributions. Instead, a regional carrier is
more bound to a de�ned geographical service area whereas a functional carrier serves a
speci�c market or speci�c goods that require a specialization in transportation. Hence,
for instance, a regional carrier can rely on a general one to serve customers outside
its service area, or a general carrier can choose to handle particular goods (such as
furniture, frozen foods) through a functional carrier.

Logistic collaboration can be pushed further considering that it allows carriers to
increase the average load of the vehicles. In fact, also in the case the customers are
located in the same area, the load to be delivered in a trip by a carrier may be substan-
tially lower than the vehicle capacity and make the individual trip non pro�table. A
carrier that has to deliver a certain amount of goods that �lls only part of the capacity
of its smallest vehicle may borrow a vehicle of the right size from another carrier or
transfer the load on a vehicle of another carrier traveling to the same area at the same
time.

Increasing attention to the environmental impact of emissions in cities represents an
additional strong motivation to study collaboration among carriers, since local author-
ities increasingly push carriers to �nd new policies and new technological and logistical
solutions that improve city logistics. In [31] challenges and pressures faced by carriers
to cooperate to make urban freight transport more e�cient are pointed out, and best
practices actually brought into practice in The Netherlands are presented.

Recently, collaboration has been enhanced by advances in information and commu-
nication technology that have enabled information sharing among carriers. Information
can be shared in two alternative ways. In a centralized collaboration scheme, a central
decision maker redistributes customers and/or logistic assets among carriers. This de-
cision maker may be a third party who acts in a non-partisan way or may be a large
carrier that resorts to other carriers to manage all its orders and customers. In a decen-
tralized collaboration scheme, carriers exchange their orders individually or in clusters.
In this case, carriers cooperate at the same level trusting each other for the informa-
tion shared. All the above considerations and approaches apply to both truckload or
less-than-truckload carriers.
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In this paper, we focus on situations where collaboration is managed in a centralized
way. We consider a set of carriers cooperating under the guidance of a central station
that acts in a non-partisan way. Each carrier has a depot and a set of customers. Each
customer is represented with an arc and its service generates a revenue. Each carrier
identi�es a subset of customers that it wants or needs to serve. These customers may be
the most easily served, the most pro�table or the most strategic ones. The remaining
customers are de�ned as shared customers, that is customers that may be served by
other carriers. A shared customer may end up being served by the carrier that decided
to share it, when combined with customers shared by other carriers. Part of the revenue
of a shared customer goes to the carrier that decided to share the customer and part
goes to the carrier that actually serves it. We allow a shared customer not to be served
by any carrier of the coalition. In this case the revenue is not collected by any carrier.
This corresponds to the situation where the customer is not pro�table for any carrier
of the collaborating group and in a further phase a di�erent and interested carrier will
be searched. We assume that each carrier has one vehicle and that vehicle capacity is
not relevant, that is the vehicles are uncapacitated.

The motivation for studying this problem comes from potential applications. In
general, applications arise in private companies o�ering services which allow competi-
tion and collaboration, and where customers may be modelled as arcs of a network. As
an example we mention home pick-up and delivery, including private mail and small
packaging distribution, and taxi services. For example, the problem that we address
can model a group of independent taxi drivers collaborating under the guidance of a
central station.

We call the proposed problem, that may be seen as belonging to the class of
arc routing problems with pro�ts, Collaboration Uncapacitated Arc Routing Prob-
lem (CUARP). We study two di�erent variants of the CUARP. In the �rst one the
goal is the maximization of the total pro�t of the coalition of carriers, independently
of the individual pro�t of each carrier. The second variant includes a lower bound
on the individual pro�t of each carrier. This lower bound may represent the pro�t of
the carrier in the case no collaboration is implemented. We formulate mixed integer
programming models for the two variants of the problem and study their relations with
well-known arc routing problems. We also look at the CUARP from a game theory
perspective. As it is usual in arc routing problems, the proposed formulations have a
number of connectivity constraints which is exponential in the number of customers.
This leads us to study the separation problem for such constraints. We solve the for-
mulations for the two proposed variants with a branch-and-cut algorithm and quantify
the impact of collaboration. Starting from 118 benchmark instances for the Privatized
Rural Postman problem, we generate a total of 971 instances, with 2 or 3 carriers and
varying characteristics, such as di�erent locations of the depots and di�erent thresholds
for the pro�t. We solve all instances within few seconds. On each instance we compare
the optimal solution obtained in the case where no collaboration is allowed with the
case where collaboration is allowed, and show that the pro�t of the coalition increases
up to twice or even three times the pro�t achieved without collaboration.
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The rest of the paper is organized as follows. Section 2 introduces the relevant
literature. The two variants of the CUARP are formally described and formulated
in Section 3. Section 4 presents the theoretical results. In Section 5 we describe the
separation procedure for the connectivity constraints that is used in the branch-and-cut
algorithm. Data generation and computational experiments are described in Section
6. Finally, conclusions and future work are discussed in Section 7.

2 Literature review

The literature on collaboration in transportation can be divided in two streams, one on
vertical and the other on horizontal collaboration. Vertical collaboration arises when
shippers and customers collaborate to help each other optimize their objective, while
horizontal collaboration takes place when shippers collaborate among them (and/or
the same do customers) at the same logistic level. Ergun et al. [19] develop a col-
laboration model among shippers, involving only full truckload companies, to identify
tours that minimize asset repositioning costs. The same authors discuss in [18] how
to reduce truckload transportation cost through the identi�cation of repeatable, dedi-
cated continuous move tours using collaboration among carriers to reduce the need for
repositioning and lowering costs. Mason et al. [28] focus on customer driven supply
chain and freight management with the aim of studying if collaborative models for
management transportation give optimized solutions.

Some authors addressed carrier collaboration from a perspective of costs and pro�ts
allocations, possibly within a game theory context. Figliozzi [20] proposes a setting in
which a set of carriers, each with its own customers, has some incentive to submit all
customers requests to a centralized collaborative decision making mechanism based on
sequential second-price auction. Ozener et al. [30] focus, instead, on reducing costs
through collaboration. Given a set of lanes carriers have to serve, their aim is to set up
a process to exchange lanes either sharing or not sharing information about customers
and/or side payments. Argawal and Ergun [1] study transportation networks that
operate as an alliance among di�erent carriers. They focus on formation of alliances and
network design using both mathematical programming and game theory to investigate
the mechanism that leads to an optimal collaborative strategy. In contrast to those
studies, in our setting we deal with a network of carriers (regional or functional) that
form a coalition to collaborate and we consider as a given fact that collaboration is
better than competition, as pointed out in Argawal [2], Meyer [29], and Fugate [21].

Audy et al. [9] and Krajewska et al. [26] are case oriented papers. The former deals
with the supply chain of the Canadian furniture industry, while the latter deals with
more general coalitions among carriers. Both make use of game theory to allocate cost
among companies, customers, carriers and coalitions. In particular, in [26] the authors
also use the classic Shapley value to allocate costs among carriers and coalitions of
carriers. In [23] various criteria are presented to allocate costs using classical game
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theory in a vehicle routing problem. Our perspective in this paper is quite di�erent.
While we do not focus on cost allocation among carriers, we study how to improve
pro�ts for the whole carriers network within the framework of a �xed collaboration
agreement by stating our model as a prize-collecting arc routing problem with several
carriers and depots.

Since the CUARP belongs to the class of arc routing problems with pro�ts, we next
recall some relevant literature related to this class. Christo�des et al. [12] present a
directed version of the Rural Postman Problem (RPP) [27], which is later generalized
as the Directed Pro�table RPP (DPRPP) in [7], where some arcs may not be served
by paying a penalty for each of them. Aráoz et al. [6] propose the Privatized Rural
Postman Problem (PRPP) whose objective is to �nd a tour maximizing the pro�t
gained, starting and ending at a �xed depot. Di�erent variants of this problem were
proposed by several authors. We mention the Clustered Prize-Collecting Arc Routing
Problem introduced by Aráoz et al. [4] and its windy version studied by Corberán et
al. [13]. For a comprehensive survey on arc routing with pro�ts we refer to Archetti et
al. [8]. Di�erently from the above studies, we focus on a multi-depot model to optimize
collaboration among carriers.

3 Collaboration Uncapacitated Arc Routing Problem

The CUARP can be stated as follows. We consider a set of carriers, each with one depot
and one vehicle. We assume that the problem is uncapacitated and do not consider
capacity constraints on vehicles. Customers are represented as arcs of a graph and are
served when the vehicle traverses the corresponding arcs. Carriers reach a collaboration
agreement, described in the following, under the guidance and surveillance of a third
party central decision maker. The goal is to �nd one route for each carrier, in the
framework of the collaboration agreement, such that the pro�t is maximized. The
collaboration scheme that we study is the following. Each customer is associated with
a speci�c carrier. Each carrier partitions its customers in two sets:

• customers the carrier must serve because of contractual obligations or other types
of considerations, such as relevance or convenience;

• customers the carrier is willing to share with other carriers, because of a low level
of geographical synergies with other customers or a low pro�tability.

The customers of the �rst type are called required and form the required set, whereas
the customers of the second type are called shared and form the shared set. Required
and shared customers are called demand customers. We will refer both to customers
associated with (or assigned to) carriers and to carriers associated with (or assigned to)
customers. We note that each customer is assigned to one carrier, whereas there are
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usually several customers assigned to one carrier. While required customers must be
served by their associated carrier, shared customers can be served by any carrier. We
allow a shared customer not be served by any carrier of the coalition. This corresponds
to the situation where the customer is not pro�table for any carrier and, in the later
stage, a carrier that does not belong to the coalition will be searched.

Each customer, if served, will pay an amount of money to its associated carrier.
For each shared customer the associated carrier will share part of this revenue with
the carrier that will end up actually serving the customer. Carriers determine the side
payment for each shared customer for the case it will be served by a di�erent carrier.

Each customer can be served at most once and by only one carrier. Thus, the
revenue is collected only the �rst time the corresponding arc is traversed, even if the
arc is traversed more than once. If a shared customer is not served, a penalty is charged
to the associated carrier. Every time an arc is traversed a cost is charged, independently
of whether or not it corresponds to a demand arc.

We identify carriers with vehicles, depots, and routes, and assume that routes start
and end at the same depot.

In order to state the CUARP formally, we �rst introduce some notation. Let
G = (V,A) be a strongly connected directed graph with vertex set V = {1, . . . , n}
and arc set A. When needed, arcs will be denoted by their end-vertices a = (u, v).
A non-negative traversal cost ca is associated with each arc a ∈ A. The subset of
demand arcs (customers) is denoted by D ⊂ A, and the subsets of required and shared
customers by R and S, respectively. We have D = R∪S and R∩S = ∅. A non-negative
value ra is associated with each demand arc a ∈ D, which represents the money o�ered
by customer a in exchange of service. Furthermore, a non-negative value ga ≤ ra is
associated with each shared arc a ∈ S, which represents the side payment from the
associated carrier to the carrier that provides the service to a. A positive value φa is
also associated with each shared arc a ∈ S, which is the penalty that the associated
carrier must pay for not serving customer a.

Let L = {1, . . . , k} be the index set for the carriers, each of them with a depot
located at a vertex of the graph, denoted by vl ∈ V , l ∈ L. We also use V L = {vl|l ∈
L} ⊂ V to denote the set of all depots and I l = L \ {l}, for l ∈ L. For each l ∈ L we
denote by Dl the subset of demand customers associated with l, and by Rl = Dl ∩ R
and Sl = Dl∩S its associated required and shared customers, respectively. Customers
in Dl, Rl, and Sl will be referred to as l-demand, l-required and l-shared customers,
respectively. For l ∈ L, Dl = Rl

⋃
Sl and Rl

⋂
Sl = ∅. We also have, D =

⋃
l∈LD

l,
R =

⋃
l∈LR

l, and S =
⋃

l∈L S
l.
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We use the following standard notation. For a nonempty proper subset F ⊆ V ,

γ(F ) = {a = (u, v) ∈ A | u, v ∈ F}, set of arcs with both vertices in F ,

δ+(F ) = {a = (u, v) ∈ A | (u ∈ F, v /∈ F )}, set of arcs that start in F and end out of it,

δ−(F ) = {a = (u, v) ∈ A | (u /∈ F, v ∈ F )}, set of arcs that start out of F and end in it.

Finally, for each H ⊆ A we de�ne y(H) as
∑
a∈H

ya.

In the CUARP, we impose that for any carrier l ∈ L, each l-required arc a ∈ Rl

is served by carrier l. Instead, an l-shared arc a ∈ Sl can be served either by carrier
l or by a di�erent carrier h ∈ I l, or not served at all. A customer a ∈ D o�ers a
non-negative amount of money ra in exchange of service. Carrier l collects the revenue
ra for each l-required arc a ∈ Rl as well as for each served l-shared arc a ∈ Sl, even if
it is served by a di�erent carrier h ∈ I l. If carrier h serves an l-shared arc a ∈ Sl, it
collects the non-negative side payment ga from carrier l. Therefore, the side payment
ga is added to the pro�t of carrier h and subtracted from the pro�t of carrier l. If an
l-shared arc a ∈ Sl is not served by any carrier, then the revenue ra is not collected
by carrier l, and carrier l gives no side payment ga to any other carrier. However, in
this case carrier l has to pay the penalty φa. All routes start and end at the depot of
their associated carrier. While carriers with a non-empty required set must certainly
perform a route, it is possible for a carrier with empty required set to perform no route.
If performed, the route of such a carrier will only serve shared arcs. Carrier l pays a
cost ca each time arc a ∈ A is traversed in its route. The total pro�t of carrier l ∈ L is
the di�erence between its total income and its total costs and side payments, including
penalties. The aim of the CUARP is to maximize the total pro�t of the coalition of
carriers.

3.1 Formulations

To formulate the CUARP we de�ne the following two sets of decision variables, which
identify the arcs that are served and traversed by each carrier l ∈ L.

For each a ∈ A, let

yla =

{
1 if a is served by vehicle l,

0 otherwise.

xla = number of times vehicle l traverses a.

Associated with a solution (xla, y
l
a) we de�ne the following functions for each carrier
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l ∈ L:

C l
1 =

∑
a∈A

cax
l
a, total traveling cost for carrier l,

C l
2 =

∑
a∈Sl

φa(1− yla), total penalty payed by carrier l,

C l = C l
1 + C l

2, total cost for carrier l,

P l
1 =

∑
a∈Dl

ray
l
a +

∑
a∈Sl

[
(ra − ga)

∑
i∈Il

yia

]
, pro�t collected by carrier l from l-demand customers,

P l
2 =

∑
i∈Il

(∑
a∈Si

gay
l
a

)
, total side payments collected by carrier l from other carriers,

P l = P l
1 + P l

2 − C l, total pro�t of carrier l.

Furthermore, the set of constraints (C) models the collaboration agreement among
carriers:

(C)



xl(δ+(u)) = xl(δ−(u)) l ∈ L, u ∈ V (1)

xl(δ+(vl)) ≥ 1 l ∈ L with Rl 6= ∅ (2)

xl(δ+(vl)) ≥ yla l ∈ L with Rl = ∅, a ∈ S (3)

xl(δ+(F )) ≥ yla l ∈ L, F ⊂ V \ {vl}, a ∈ γ(F ) (4)

yla = 1, a ∈ Rl, l ∈ L (5)∑
l∈L

yla ≤ 1 a ∈ S (6)

yla ≤ xla a ∈ A, l ∈ L. (7)

Flow-in �ow-out constraints (1) guarantee the symmetry of the vertices, because the
number of incoming arcs must be equal to the number of outgoing arcs. Constraints (2)
and (3) guarantee that the carriers routes start from their depots. While (2) imposes
a route to any carrier l ∈ L with non-empty required set, constraints (3) only impose a
route to carriers with empty required sets who serve some shared arc. Constraints (4)
guarantee that the route of each carrier is connected. Given a subset F ⊂ V \{vl}, if an
arc a ∈ γ(F ) is served, then some arc b ∈ δ+(F ) must be traversed at least once. Hence,
each carrier travels a connected route because if it serves some arc from a subset of arcs
which does not contain the depot then it has to leave the subset. Note, however, that
Constraints (4) do not prevent subtours containing no served arc. Since such subtours
produce no pro�t, they will never appear in any optimal solution. Constraints (4),
together with constraints (1)-(3), also guarantee that each carrier route ends at its
depot. Constraints (5) force carrier l to serve all l-required arcs, whereas inequalities
(6) ensure that l-shared arcs are served by at most one carrier. Finally, inequalities (7)
impose that all arcs served by a given carrier are traversed by that carrier.
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We introduce now the mathematical programming formulation for the CUARP,
where we maximize the total pro�t of the coalition of carriers:

zc = max
∑
l∈L

P l (8)

(C) (9)

xla ∈ Z+, a ∈ A, l ∈ L; yla ∈ {0, 1}, a ∈ D, l ∈ L. (10)

Remark 3.1 In the CUARP carriers exchange side payments corresponding

to shared arcs served by carriers di�erent from the ones they are assigned

to. This means that if, for a given arc a ∈ Sl, some carrier i ∈ I l takes ga for
serving l-shared arc a, then carrier l takes ra− ga. Thus, the pro�t collected
by all carriers is:

∑
l∈L

(
P l
1 + P l

2

)
−C l =

∑
l∈L

(∑
a∈Dl

ray
l
a +

∑
a∈Sl

[
(ra − ga)

∑
i∈Il

yia

]
+
∑
i∈Il

∑
a∈Si

gay
l
a

)
−
∑
l∈L

C l =

∑
l∈L

(∑
a∈Dl

ray
l
a +

∑
a∈Sl

ra
∑
i∈Il

yia − C l

)
where the last equality follows as the following two sums cancel out since:∑

l∈L

∑
a∈Sl

ga
∑
i∈Il

yia =
∑
l∈L

∑
i∈Il

∑
a∈Si

gay
l
a.

Hence, the objective function (8) can be reformulated as:

max
∑
l∈L

(∑
a∈Dl

ray
l
a +

∑
a∈Sl

ra
∑
i∈Il

yia − C l

)
. (11)

Therefore, the optimal solution to a CUARP instance is independent of the

side payments ga, a ∈ S, since (11) does not depend on the side payments

ga, a ∈ S, and the domain (1)-(7) is independent of the side payments as

well. Thus, we have that an optimal solution to a CUARP instance with

side payments ga, a ∈ S is also optimal to a CUARP instance with side

payments g′a, a ∈ S, if all other data remain unchanged.

In the CUARP we can force carriers not to collaborate by adding a constraint that
prevents carrier l from serving arcs outside its demand set:

yia = 0, a ∈ Sl, i ∈ I l.
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We de�ne the CUARP without collaboration, that we denote as n-CUARP, as the
problem obtained by simply adding the above constraints to the CUARP formulation:

znc = max
∑
l∈L

P l (12)

(C) (13)

yia = 0 a ∈ Sl, i ∈ I l (14)

xla ∈ Z+, a ∈ A, l ∈ L; y l
a ∈ {0, 1}, a ∈ D, l ∈ L. (15)

Observe that the CUARP does not guarantee any pro�t balance among carriers,
possibly limiting the interest for carriers to collaborate. Let us consider, for example,
the case of a carrier that has an associated customer that generates little pro�t be-
cause it is not very conveniently located. If the carrier decides to share this customer,
the customer might be end up being served by another carrier, for which it is more
conveniently located. However, the carrier that decided to share it may simply loose
the little pro�t of the shared customer without gaining anything. In the CUARP the
largest carriers will tend to bene�t from collaboration more than the small ones.

Below we introduce a variant of the CUARP, that we call the t-CUARP, in which a
minimum pro�t threshold tl is guaranteed for any carrier l ∈ L. Each carrier may set
the threshold to avoid reducing its pro�t because of collaboration. The threshold for
carrier l might be set to be its pro�t in the n-CUARP. The resulting formulation for
the t-CUARP is:

zt = max
∑
l∈L

P l (16)

(C) (17)

P l ≥ tl l ∈ L (18)

xla ∈ Z+, a ∈ A, l ∈ L; y l
a ∈ {0, 1}, a ∈ D, l ∈ L. (19)

In the t-CUARP we maximize the total pro�t of the carriers coalition (16) as long
as the pro�t of each carrier is not smaller than its threshold (see (18)). In contrast to
the CUARP, introducing pro�t thresholds in the t-CUARP gives to side payments ga a
central role, since constraints (18) depend on their values. Indeed, it may now happen
that a solution which is feasible for the CUARP is no longer feasible for the t-CUARP,
because the amount of side payments from a carrier to the others may cause its pro�t
to fall below the given threshold.

We illustrate the behaviour of the di�erent models on an example.

Example 3.1 In Figure 1(a) a small instance is shown. We consider a graph with 4
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(a) Instance graph (b) n-CUARP solutions

(c) CUARP solutions (d) t-CUARP solutions

Figure 1: Example

vertices {1, 2, 3, 4}, whose arcs are partitioned as follows:

R1 = {(1, 2)} R2 = {(2, 1)}
S1 = {(1, 3); (3, 2); (3, 4)} S2 = {(2, 3); (3, 1); (4, 3)}.

We have only two depots in 1 and 2, respectively. Penalties are set to 1 for each shared
arc. Each arc in Figure 1(a) has a label with two numbers, the �rst one is the traversing
cost and the second one is the pro�t for serving it. We set the following side payments
for serving shared arcs as follows:

g(2,3) = g(3,1) = g(4,3) = g(3,4) = 1, g(1,3) = g(3,2) = 4.

In Figure 1(b) we represent the solutions of the CUARP without collaboration.
Carrier 1 serves its required customer (1, 2) in the route 1�2�1, with a pro�t of 4, and
pays the penalty for its unserved shared arcs (1, 3), (3, 2) and (3, 4) with a total penalty
of 3. Carrier 2 serves its required customer (2, 1) in the route 2�1�2, with a pro�t of
4, and pays the penalty for its unserved shared arcs (2, 3), (3, 1) and (4, 3) with a total
penalty of 3. The total pro�t for the coalition of carriers 1 and 2 is 2. In Figure 1(c)
the solutions of the CUARP are shown. The route of carrier 1 is 1�2�3�1. Its pro�t is
P 1 = 0. Similarly, the route of carrier 2 is 2�1�3�2, with a pro�t P 2 = 12. Thus, the
collaboration between the carriers leads to a total pro�t of 12, with a pro�t increase of
83.33% with respect to the solution of the CUARP without collaboration. Note that the
pro�t is totally gained by carrier 2, while carrier 1 has a null pro�t (P 1 = 0, P 2 = 12).
This allocation of the pro�t in the coalition of carriers is due to the side payments
exchanges between carriers. According to this, carrier 1 has no incentive to collaborate
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with carrier 2, as this would result in a pro�t decrease for carrier 1. Observe that
the CUARP solution shown in Figure 1(c) is not feasible for the t-CUARP instance
with pro�t thresholds set to the individual pro�ts of the n-CUARP (i.e. t1 = t2 = 1).
Figure 1(d) shows the optimal routes for this t-CUARP instance, which are 1�2�1 and
2�1�3�2, for carriers 1 and 2, respectively. As in the n-CUARP solution, carrier 1 only
serves its required arc but no shared arc. On the contrary, carrier 2 serves not only its
required arc, but also the 1-shared arcs (1, 3) and (3, 2), as in the CUARP solution.
Less shared arcs are served with respect to the CUARP. Now, the pro�t of carriers 1
and 2 are P 1 = 3 and P 2 = 4, respectively. Hence, the total pro�t of the two carriers is
equal to 7 which means a pro�t improvement of 71.43% with respect to the n-CUARP
and a decrease of 41.66% with respect to the CUARP solution. However, the pro�t
coming from collaboration is shared between carriers in a fairer way because of the
pro�t thresholds. In Table 1 we summarize pro�t sharing for the di�erent models in
the Example 3.1.

Table 1: Summary of Example 3.1
carrier n-CUARP CUARP t-CUARP

1 1 0 3
2 1 12 4

It may be expected that, in the t-CUARP, a higher value of the side payments
results in an increase in the number of arcs served by the coalition. In the following
example, we illustrate a counter-intuitive behaviour of the model.

Example 3.2 In this example we illustrate the di�erence between the CUARP and
the t-CUARP and the e�ect of side payments in the t-CUARP. Consider a CUARP
instance de�ned on the same directed graph of Example 3.1 with the same two carriers
and the same sets of required and shared arcs for each carrier. Suppose φa = 0 for all
a ∈ D, with the following values for the pro�ts and costs: r12 = r21 = 6; r13 = r32 = 4;
r23 = r31 = r34 = r43 = 1; c12 = c21 = 1; c13 = c32 = c23 = c31 = 3; c34 = c43 = 10.
In the optimal n-CUARP solution carrier 1 serves its required customer (1,2) in the
route 1-2-1, with a pro�t of 4. Similarly, carrier 2 serves its required customer (2,1) in
the route 2-1-2, with a pro�t of 4. When collaboration is allowed, in the optimal
CUARP solution the routes for carriers 1 and 2 become 1-2-1 and 2-1-3-2, respectively.
If we set ga = βra for all a ∈ D with β = 1, we have the following distribution of
pro�ts: Carrier 1 gains P 1 = 4 and Carrier 2 P 2 = 7. If we set β = 0.5, pro�ts become
P 1 = 8 and P 2 = 3. When we consider the t-CUARP with pro�t thresholds
set on the individual pro�ts of the n-CUARP, with t4 = t2 = 4, we observe that the
solution with β = 1 is still feasible, while that with β = 0.5 is no longer feasible for
the t-CUARP. For the case β = 0.5, the optimal t-CUARP solution keeps unchanged
the route of carrier 2 and assigns to carrier 1 the route 1-2-3-1. Hence, the total pro�t
of carrier 1 is P 1 = 4 and that of carrier 2 is P 2 = 4. Comparing the t-CUARP
solutions with β = 1 and β = 0.5 we note that in the former case 2 shared arcs are
served while in the latter 4 shared arcs are served. Counter-intuitively, the percentage
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of shared arcs increases when decreasing β. In Table 2 we summarize pro�t sharing
for the di�erent models in the Example 3.2.

Table 2: Summary of Example 3.2
β independent β = 1 β = 0.5

carrier n-CUARP CUARP t-CUARP CUARP t-CUARP
1 4 4 4 8 4
2 4 7 7 3 4

4 Theoretical results

In this section we present some theoretical results for the CUARP.

4.1 Reduction to other problems and complexity

We analyze two particular cases of the CUARP with one single carrier:

• If the shared set S is empty, then D = R and, thus, the single carrier CUARP
reduces to the Directed RPP (DRPP). Since the DRPP is known to be NP-Hard
(see Lenstra and Rinnooy Kan [27]), also the CUARP is.

• If the required set R is empty, then D = S and, thus, the single carrier CUARP
reduces to the DPRPP. Since the DPRPP is NP-hard (see Archetti et al. [7]),
this is an alternative proof that CUARP is NP-Hard.

Thus, we can reduce the single carrier CUARP to other problems by changing the size
of the shared and required sets. At one extreme, with no shared arcs, we have the
DRPP, whereas on the other one, with no required arc, we have the DPRPP.

4.2 Impact of collaboration on pro�t

Remark 4.1 Let I be a CUARP instance and zc, znc be the CUARP optimal value

and the n-CUARP optimal value over I, respectively. Then, znc ≤ zc.

This result holds trivially, since any feasible solution to the n-CUARP is a CUARP
feasible solution.
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Remark 4.2 Let I1, I2 be two CUARP instances and zc1, zc2 their CUARP optimal

values. Suppose these instances di�er only because the shared set of the �rst one is

contained in the shared set of the second one and vice versa for the required sets.

Then, zc1 ≤ zc2.

This result holds trivially, since any feasible solution for I1 is a feasible solution for I2.
We may say that the attractiveness of collaboration increases by increasing the shared
arcs or by decreasing the required arcs.

Remark 4.3 Let I be a CUARP instance, and let zt, znc be, respectively, the optimal
t-CUARP and n-CUARP values over I, when the t-CUARP thresholds tl, l ∈ L, are
set to the carriers pro�ts of the n-CUARP. Then, znc ≤ zt .

The above result follows, since for instance I the optimal solution to the n-CUARP is
also feasible for the t-CUARP with the given threshold values.

Proposition 4.1 Let zc and znc denote the optimal values of the CUARP and the n-
CUARP over a given instance I, respectively. There exists no �nite upper bound for

the pro�t increase ratio zc
znc

.

Proof: Consider a CUARP instance de�ned on the same directed graph of Example
3.1 with the same two carriers and the same sets of required and shared arcs for each
carrier. Let K > 0 and ε > 0 be two given values and suppose ca = K, for all a ∈ A,
and φa = ε, ga = K, for all a ∈ D. Let us also suppose the pro�ts are the following:
r12 = r21 = 2K + 4ε; r13 = r31 = r23 = r32 = 2K − ε; r34 = r43 = K.

For this instance, in the optimal n-CUARP solution carrier 1 serves its required
customer (1, 2) in the route 1�2�1, with a pro�t of 4ε, and pays the penalty for all its
unserved shared arcs (1,3), (3,2) and (3,4) with a total penalty of 3ε. Similarly, in the
optimal n-CUARP solution, carrier 2 serves its required customer (2, 1) in the route
2�1�2, with a pro�t of 4ε, and pays the penalty for all its unserved shared arcs (2,3),
(3,1) and (4,3) with a total penalty of 3ε. Hence, for this instance znc = 2ε.

When collaboration is applied, in the optimal CUARP solution carrier 1 serves its
required customer (1, 2) and the 2-shared customers (2, 3) and (3, 1) in route 1�2�3�1,
whereas carrier 2 serves its required customer (2,1) and the 1-shared customers (1, 3)
and (3, 2) in route 2-1-3-2. Demand customers (3,4) and (4,3) remain unserved. The
pro�t of both carrier 1 and carrier 2 is, thus, (K + 4ε) + (K −K) + (K −K) + (2K −
ε−K) + (2K − ε−K)− ε = 3K + ε. Hence, for this instance zc = 6K + 2ε.

Therefore, the pro�t increase ratio is zc
znc

= 6K+2ε
2ε

, which tends to ∞ either when
K →∞ or when ε→ 0. �
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Observe that the optimal solution of the CUARP instance built in the above proof
is also feasible for the t-CUARP when the threshold of each carrier is set to its pro�t
without collaboration, i.e., t1 = t2 = ε. Therefore the following result also holds:

Corollary 4.2 Let zt and znc denote the optimal values of the t-CUARP and the n-
CUARP over a given instance I, respectively. There exists no �nite upper bound for

the pro�t increase ratio zt
znc

.

4.3 Game theory results

We introduce here some basic concepts and de�nitions of cooperative game theory
(see Driessen [15] for a comprehensive survey), and relate them to the CUARP. A
cooperative game consists of a �nite number n of players and a characteristic function.
Players can form di�erent coalitions in order to achieve a better result in the game. The
coalition of all players is called grand coalition. The characteristic function v : 2n → R
is a function from the set of all possible coalitions of players to a set of payments such
that v(∅) = 0. Each coalition is associated with a payment and each player has its own
share of payment. In general, there are many di�erent payments allocations suitable
as solutions for a cooperative game. Hence, a key concept in cooperative game theory
is the core, which is formed by those payments allocations y1, . . . yn that satisfy the
following conditions: ∑

j∈S

yj ≥ V (S), with S ⊂ N,∑
j∈N

yj = V (N).

The former conditions prevent players from colluding to form a subcoalition in order
to gain more. In the case S = {j}, the condition ensures that each player receives at
least what he could get on his own, and is called individual rationality condition. The
latter condition implies that the allocations y1, . . . yn split the total value gained by the
grand coalition. This condition is called budget balance or e�ciency condition. Given
the above two conditions, no player has an advantage by leaving the grand coalition
and the pro�t allocation is called stable.

We consider now a cooperative game based on the CUARP, using its mixed integer
programming formulation as characteristic function, as suggested by Gothe et al. in
[23]. Carriers play the role of game players. The CUARP and the t-CUARP allocate
pro�t to the players. Both pro�t allocations ful�ll the budget balance/e�ciency con-
dition because the sum of the pro�ts of the carriers equals the maximum attainable
pro�t of the whole coalition. However, the CUARP breaks the individual rationality
condition because it may happen that a carrier gains more on its own without collabo-
rating, as in Example 3.1. On the other hand, the t-CUARP with the n-CUARP pro�ts
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as thresholds ful�lls the individual rationality condition. Hence, the solution of the 2
carrier t-CUARP belongs to the core of the game when we set the n-CUARP pro�ts as
thresholds. In this case, the core is always non empty if the instance is feasible. In con-
trast, we cannot assure that the solutions of the t-CUARP with more than 2 carriers or
with general thresholds belong to the core of the game. Even if the thresholds are set
to the value of individual pro�t without collaboration, 2 or more carriers may collude
to achieve a greater pro�t than that of the grand coalition. We might ensure that the
t-CUARP pro�t allocation belongs to the core of the game, by adding a new set of
constraints to the t-CUARP, imposing for each subset of carriers a minimum pro�t of
at least its CUARP pro�t. However, adding this new set of constraints may cause the
instance to become infeasible and the core of the cooperative game be empty. In a set
of experiments this is what happened. Either the core was empty or the solution was
identical to the solution without collaboration. Hence, we solved the t-CUARP adding
only individual thresholds which are those that directly matter to the carriers.

5 The branch-and-cut algorithm

Inequalities (4) impose the connectivity of the route associated with each carrier with
its depot. As the number of such constraints is exponential in the number of vertices in
the input graph, |V |, we use a separation procedure that allows us to incorporate them
in the formulation only when needed. Next, we describe the separation algorithm that
we used for the exact solution of the CUARP and of the t-CUARP. The separation
procedure uses as input vectors x̂ = (x̂l)l∈L ∈ R|A|×|L| and ŷ = (ŷl)l∈L ∈ R|A|×|L|

satisfying constraints (1)�(3) and (5)-(7). The output of the algorithm will indicate
whether or not there exists some inequality (4) violated by x̂ and ŷ. In this case
the algorithm will return one such inequality, i.e. the index of a carrier l ∈ L, a set
F ⊂ V \{vl} and an arc a ∈ γ(F ) such that the corresponding constraint (4) is violated
by x̂ and ŷ.

For each carrier l ∈ L, let Gl(x̂l) = (V x̂l , Ax̂l) denote the support graph of x̂l,
with Ax̂l = {a ∈ A | x̂la > 0}, and V x̂l = V (Ax̂l) the subset of vertices incident with
some arc of Ax̂l . To separate inequalities (4), associated with a given carrier l ∈ L,
we consider the support graph Gl(x̂l). If G(x̂l) is not connected, then each connected
component with vertex set C ⊆ V x̂l \ {vl} such that ŷ(γ(C))>0 de�nes a violated
constraint (4) for carrier l, since x̂l(δ+(C)) = 0 and ŷla > 0, for some a ∈ γ(C). If
G(x̂l) is connected, we compute the tree of min-cuts T l(x̂) relative to the capacities
vector x̂l (see, for instance, [22, 24]). Then, we use an adaptation of the algorithm of
Belenguer and Benavent [10]. For each min-cut δ+(F ), vl /∈ F , represented in T l(x̂),
we identify the arc â ∈ γ(F ) of maximum value, i.e. â ∈ arg max{ŷla | a ∈ γ(F )}.
Now, if x̂l(δ+(F )) < ŷlâ, the connectivity constraint (4) associated with l, F and â
is violated by x̂l and ŷl. The above separation is exact and similar to the procedure
used by other authors to separate connectivity constraints similar to (4) for other arc
routing problems [11, 3, 4, 13].

16



The computational complexity of the above algorithm is dominated by that of the
algorithm to obtain the min-cut tree associated with each carrier, which is O(|V |4) as
pointed out in [22] and in [24].

6 Data generation and computational results

We present in this section the numerical results obtained on a series of computational
experiments. Programs were coded in Java using CPLEX 12.5 library (64 bit) for the
solution of the mixed integer problems. Default parameters were used. All tests were
run on a HP Z400 Workstation, 64 bit, 3.33 GHz, 12.0 RAM. Since there are no
available CUARP benchmark instances, we generated instances from the 118 PRPP
benchmark instances used in [5]. These PRPP instances were derived from well-known
RPP instances, which are divided in �ve groups. The �rst group contains two data
sets, A and B, obtained from the Albaida Spain Graph (see Corberán and Sanchis [14]).
The second group contains the 24 instances (labeled P) of Christo�des et al. [12]. The
last three groups contain instances from Hertz et al. [25]: 36 instances with vertices
of degree 4 and RPP disconnected required edge sets (labeled D), 36 grid instances
(labeled G), and 20 randomly generated instances (labeled R). Below we explain how
the remaining data of the instances were de�ned. First, the original undirected graph
is transformed in a directed graph in the following way.

• All arcs are de�ned from edges of the original graph (see [5]).

� Each original edge is transformed in two arcs with probability 0.1, and in
one single arc with probability 0.9. In the latter case, the direction of the
arc is randomly chosen with equal probability.

� Arcs inherit their costs from the original edges. When two arcs are generated
from the same edge, both arcs have the same cost.

• If needed, when all original edges have been considered, additional arcs are de�ned
to guarantee that the resulting graph is strongly connected.

� For each pair of vertices, u, v ∈ V , for which the directed graph de�ned
earlier contains no path from u to v, we de�ne a non-demand arc (u, v) and
assign to it the cost of the shortest path in the undirected graph connecting
u and v.

• Demand arcs are selected starting from the required edges of [5], as follows:

� If the original edge is a demand edge that has been transformed in two arcs,
both transformed arcs become demand arcs with probability 0.15. Other-
wise, one transformed arc is randomly selected as demand arc while the
other one becomes non-demand.
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� If the original edge is a demand edge that has been transformed in one single
arc, the transformed arc becomes a demand arc.

� If the original edge is non-demand the transformed arc(s) is(are) non-demand.

• The pro�t of each demand arc a ∈ D is de�ned as ra = 2be, where be is the pro�t
of the undirected edge in the corresponding PRPP instance [5]. If e is a required
edge of the RPP instance, be is a number randomly generated from an integer
uniform distribution in the range [ce, 3ce]. Otherwise, be = 0.

• The side payment of each demand arc a ∈ D, ga, is set to a fraction β of its
pro�t, i.e., ga = βra. For each instance, we use two values for β, namely 0.5 and
1.

To de�ne the demand sets, we denote by Puv the shortest path from u to v in the
directed graph and by c(Puv) its cost. Then, we de�ne the following auxiliary set for
each carrier l ∈ L:

D̄l = {a ∈ D|wa ≤ 0.75 ∧ c(Pvlu) ≤ c(Pviu), for all i ∈ I l},

where u denotes the end-vertex of arc a closest to vl and wa a random number in [0, 1]
associated with arc a. Since the sets D̄l are not necessarily disjoint for di�erent carriers
the demand sets are �nally de�ned as

D1 = D̄1, Dl = D̄l \

(
l−1⋃
k=1

D̄k

)
, l ∈ {2, . . . , |L|},

Broadly speaking, we assign demand arcs to the carrier with smallest distance from/to
its depot with a probability of 75%. Moreover, if through this procedure a required arc
belongs to more than one D̄l set, then it is assigned to the required set of the smallest
index carrier, among the ones whose D̄l sets contain the arc.
To divide each carrier demand set into shared and required sets, �rstly, we list all
demand arcs for each carrier according to their distance from the depot. Then, the
less distant arcs form the required set while the remaining ones the shared set. Shared
and required sets are de�ned to ensure that at least a percentage p of the demand arcs
are shared. We �x p equal to 50%. We denote with M the vertex most distant from
vertex 1, and with m the vertex whose distance from 1 is the median of all distances
from 1 to v ∈ V .

We set the same penalty value for all the shared arcs associated with the same
carrier. For each carrier l ∈ L, this penalty is set to the average pro�t loss per unserved
l-shared arc. That is, for l ∈ L, a ∈ Sl,

φa =

max

{
0,

⌊∑
a∈Sl

ra−ca
|Sl|

⌋}
if Sl is not empty,

0 otherwise.
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The minimum threshold values tl, l ∈ L, are given by the pro�ts of the n-CUARP.
The instances are available at the following link: http://or-brescia.unibs.it/

instances.

Table 3 summarizes information on the instances, which have been grouped accord-
ing to their characteristics and to their sizes. These instances were generated with 2
depots located at v1 = 1 and v2 = M . Columns under #inst. and #vertices give,
respectively, the number of instances in the group and the number of vertices of the
instances in the group. Columns under |R1| and |R2| give the number of 1-required and
2-required arcs, respectively. Similarly, columns under |S1| and |S2| give the number
of 1-shared and 2-shared arcs.

Table 3: Instance summary
#inst. #vertices |R1| |R2| |S1| |S2|

AA 1 102 48 34 48 35

AB 1 90 50 23 50 23

P 24 7-50 0-48 2-46 1-48 3-47

D16 9 16 5-8 7-10 5-8 8-11

D36 9 36 15-21 16-21 15-21 17-21

D64 9 64 32-41 20-32 33-42 21-33

D100 9 100 48-67 32-50 49-67 33-50

G16 9 16 0-3 0-3 1-4 1-3

G36 9 36 1-9 3-11 1-9 3-12

G64 9 64 2-13 6-21 3-14 6-22

G100 9 100 8-29 11-32 8-29 12-33

R20 5 20 10-23 5-15 10-24 6-16

R30 5 30 19-37 14-25 19-37 14-26

R40 5 40 25-56 16-47 26-57 17-48

R50 5 50 33-57 26-56 33-58 26-56

Table 4 summarizes the information on the values of the parameters that have been
used and the number of tested instances in each case. The complete set of instances
consists of 971 instances.

Table 4: Number of instances for each combination of parameters

Location of depots CUARP n-CUARP

CUARP with t-CUARP

di�erent proportions β

of shared/required arcs 0.5 1

v1 = 1, v2 = M 118 118 27 (G16) 118 118

v1 = 1, v2 = m 118 118

v1 = 1, v2 = m, v3 = M 118 118

A �rst set of experiments was run on the set of instances with two carriers, i.e.
L = {1, 2}, with depots v1 and v2 located at vertices 1 and M , respectively. The
results for the CUARP are summarized in Table 5. Columns under CUARP and n-
CUARP give the average net pro�t of carriers for the CUARP and the n-CUARP,
respectively. Columns under #S1 and #S2 give the average number of shared arcs
served by each carrier, while the column under %serv. gives the average percentage
of shared arcs served in total (100#S1+#S2

|S1|+|S1| ). Columns under #S12 and #S21 give,
respectively, the average number of 1-shared arcs which are served by carrier 2, and
vice versa. The column under %exc. gives the average percentage of arcs exchanged
between carriers (i.e. the average percentage of shared arcs that are served by a carrier
di�erent from the one they are assigned to, 100#S12+#S21

#S1+#S2
). Column under increase

gives the average percentage pro�t increase due to collaboration (100| zc− znc
zc
|). Finally,

the last column under time gives the average computing times in seconds.
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The results of Table 5 illustrate the positive e�ect of the carriers collaboration.
The average percentages %serv. and %exc. range in [67.0, 100.0] and in [41.0, 76.7],
respectively. This means that there is a reasonable percentage of shared arcs served
and exchanged between carriers. The average percentage pro�t increase of CUARP
with respect to n-CUARP ranges in [0.7, 41.1]. In general, the average CPU time
required to solve small instances, such as those of P, D16, D36, G16, R20, R30, R40
groups, is less than 1 second. Solving the remaining instances required a little bit more
computational e�ort, which pushed the CPU time up to a max of 158.0 seconds. The
average CPU time is equal to 8.3 seconds. In Tables 6 and 7 we summarize the
results for the t-CUARP, with β = 0.5 and β = 1, respectively. We tested separately
the instances with these two di�erent values of β, which a�ect the side payments and,
thus, the pro�t threshold constraints. In these tables we have the additional columns
increase1 and increase2 that show the pro�t increase for carrier 1 and 2. Comparing
the results in Tables 6 and 7 with those in Table 5 we note that the average pro�t
increase due to collaboration is smaller in t-CUARP than in CUARP. Instead, the
average percentage %serv. may even increase as, for example, for the instances in the
D100 group in both cases with β = 0.5 or β = 1. The CPU times for the t-CUARP
are comparable to those of the CUARP. We note that in some groups of instances
the t-CUARP value is smaller when β = 1 than when β = 0.5. For instance, in
P %serv. increases from 90.5 (for β = 0.5) to 91.1 (for β = 1). Still the value of
CUARP is greater for β = 0.5 (392.8) than for β = 1 (379.2). This t-CUARP behavior
was explained in Remark 3.1 and illustrated in Example 3.2. Table 8 shows the
characteristics of the instances that are obtained when displacing the depot of the
second carrier (v2) from vertex M to vertex m. Due to how sets Sl and Rl are de�ned
when generating the instances, by displacing v2 the average number of shared arcs
increases and the average number of required arcs decreases. Table 9 summarizes the
results with this new set of instances. Obviously, results in Table 9 cannot be
compared with those in the previous tables, since we deal with completely di�erent
instances. The CPU times required to solve these new instances are comparable to
those required for solving the instances in Table 3. Below we describe the results
obtained in the experiments with CUARP and 3 depots, located in vertices 1, m and
M , respectively. We have been able to solve all 118 instances. In Tables 10 and 11
we introduced additional columns to deal with 3 depots. In particular, columns under
|R3|, |S3| of Table 10 give the number of 3-required and 3-shared arcs, respectively.
In Table 11 columns under #S and #Sexc give, respectively, the average number of
shared arcs served and the average number of shared arcs exchanged. In Table 11 we
note that the range of the average percentage of served shared arcs (%serv.) and the
average percentage of exchanged shared arcs and (%exc.) is [35.0, 58.5] and [26.4, 46.5],
respectively. Moreover, the average percentage pro�t increase ranges in [0.0, 16.8].
However, comparing these results with those for the CUARP with 2 depots given in
Table 5, we note that increasing the number of carriers from 2 to 3 does not necessarily
increase the pro�t. As an example, for the G16 instances, when adding a new depot,
increase decreases from 21.5% to 16.8%. The computing times to solve instances with
3 carriers are similar to those required for the instances with 2 carriers. Finally, in
order to test the behaviour of the model with di�erent proportions of shared/required
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sets, some additional computational experiments were run. For these experiments we
used the instances in G16 with depot located in 1 and in M . Firstly, we restricted the
shared sets ensuring that at least 25% of the demand arcs belong to them. Then we
enlarge them, ensuring that at least 75% of the demand arcs to be shared. Finally, we
set them all as shared arcs. We performed 27 additional computational experiments.
In Table 12 we show the pro�ts for each case and each instance. Under columns n-
CUARP, CUARP-25, CUARP, CUARP-75, CUARP-100 we give the optimal values
for n-CUARP, CUARP with 25% of arcs shared, CUARP, CUARP with 75% and
100% of arcs shared, respectively. We note that pro�t does not decrease when we
increase the number of arcs in the shared sets. This is consistent with Remark 4.2. We
can conclude that the attractiveness of collaboration increases when we increase the
number of shared arcs.

Table 5: Results for CUARP
n-CUARP CUARP #S1 #S2 #S12 #S21 %serv. %exc. increase time

AA 14442.0 24509.0 41.0 41.0 28.0 34.0 98.8 75.6 41.1 46.2

AB 1411.0 17911.0 26.0 47.0 16.0 40.0 100.0 76.7 92.1 21.2

P 379.2 392.9 13.4 12.9 8.3 7.6 90.5 54.7 4.0 0.4

D16 1211.8 1220.9 5.9 7.0 3.8 3.4 79.5 56.1 0.8 0.1

D36 2443.9 2460.6 17.1 15.9 9.1 8.3 90.8 52.7 0.7 0.4

D64 3582.6 3616.6 33.3 27.4 15.6 17.2 94.3 53.8 1.1 2.8

D100 4810.6 4873.2 42.7 54.0 22.4 35.8 97.5 60.2 1.5 14.6

G16 10.3 13.0 1.2 2.7 0.6 1.1 94.4 42.5 21.5 0.1

G36 42.8 51.0 4.8 8.0 2.3 3.0 100.0 41.0 16.0 1.4

G64 87.6 103.7 13.0 11.3 8.2 5.3 100.0 54.1 15.9 9.7

G100 139.9 170.8 21.9 18.0 12.4 9.9 100.0 54.9 18.7 70.3

R20 52221.8 53101.8 12.2 7.4 4.2 4.8 72.5 46.0 2.3 0.1

R30 67804.2 69230.2 15.6 15.2 6.0 9.8 62.8 52.2 2.0 0.3

R40 86734.0 90811.8 21.8 31.8 9.2 20.2 73.1 56.6 19.8 0.6

R50 91811.4 96350.4 28.6 33.8 15.4 21.4 67.0 58.1 9.8 1.1

max 100.0 100.0 92.1 158.0
average 89.5 53.1 9.2 8.3

Table 6: Results for t-CUARP, β = 0.5
n-CUARP CUARP #S1 #S2 #S12 #S21 %serv. %exc. increase1 increase2 increase time

AA 14442.0 18722.0 42.0 39.0 23.0 28.0 97.6 63.0 22.9 30.3 10.5 58.9

AB 1411.0 11946.0 45.0 26.0 19.0 24.0 97.3 60.6 88.2 107.0 39.4 47.9

P 379.2 392.8 12.3 14.0 7.6 8.0 90.5 53.2 4.0 4.1 3.9 0.5

D16 1211.8 1220.4 5.0 7.9 3.2 3.8 79.5 53.1 0.9 0.7 0.7 0.2

D36 2443.9 2460.6 15.2 17.7 9.4 10.4 90.5 59.6 0.9 0.7 0.7 0.6

D64 3582.6 3616.6 31.0 29.9 16.6 20.6 94.5 61.0 1.0 1.2 1.1 9.3

D100 4810.6 4873.2 48.3 48.7 29.1 37.0 97.9 68.2 2.8 0.8 1.5 21.3

G16 10.3 12.2 1.4 2.4 0.6 0.9 94.4 32.0 18.9 5.7 14.3 0.1

G36 42.8 48.9 3.2 9.4 1.0 3.1 98.4 28.6 9.9 17.4 10.8 1.6

G64 87.6 99.7 12.2 12.1 6.4 4.3 100.0 46.6 12.8 20.6 12.8 11.2

G100 139.9 169.0 21.7 18.2 12.6 10.2 100.0 56.2 16.8 16.7 17.2 76.5

R20 52221.8 53061.8 11.6 8.0 4.6 5.8 72.5 50.7 2.1 3.4 2.1 0.2

R30 67804.2 69230.2 18.0 12.8 6.8 8.2 62.8 46.1 1.2 2.4 2.0 0.4

R40 86734.0 90539.0 24.0 29.6 14.6 23.4 73.1 71.8 4.3 7.7 19.5 0.9

R50 91811.4 96350.4 31.0 31.4 18.2 21.8 67.0 62.8 7.0 10.9 9.8 1.9

max 100.0 100.0 88.2 107.0 85.7 158.0
average 89.3 52.6 7.3 7.9 7.1 10.4
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Table 7: Results for t-CUARP, β = 1
n-CUARP CUARP #S1 #S2 #S12 #S21 %serv. %exc. increase1 increase2 increase time

AA 14442.0 24509.0 41.0 41.0 28.0 34.0 98.8 75.6 41.1 37.8 41.1 18.0

AB 1411.0 17911.0 26.0 47.0 16.0 40.0 100.0 76.7 92.1 106.7 77.3 13.3

P 379.2 392.5 12.2 14.1 6.9 7.5 91.1 44.0 5.3 2.3 3.5 0.7

D16 1211.8 1219.6 5.7 7.2 3.1 3.0 79.5 46.1 0.6 1.0 0.6 0.3

D36 2443.9 2460.3 14.0 19.0 8.3 10.6 90.8 56.7 0.6 0.9 0.7 0.9

D64 3582.6 3616.6 30.7 30.1 15.9 20.1 94.3 59.3 1.1 0.9 1.1 11.0

D100 4810.6 4873.2 52.4 44.4 29.0 32.8 97.7 63.8 1.6 1.8 1.5 23.3

G16 10.3 11.8 1.8 2.1 0.7 0.7 94.4 30.2 24.2 7.9 12.0 0.2

G36 42.8 44.9 5.4 7.2 1.7 1.6 98.4 21.4 11.1 1.2 4.3 2.3

G64 87.6 96.3 10.6 13.8 4.7 4.2 100.0 36.5 9.1 9.6 9.1 15.4

G100 139.9 155.0 19.7 20.2 9.9 9.6 100.0 48.0 10.9 9.4 11.0 100.2

R20 52221.8 53061.8 12.2 7.4 5.0 5.6 72.5 52.9 1.8 4.4 2.2 0.2

R30 67804.2 69190.2 15.4 15.4 6.8 10.8 62.8 56.1 2.5 1.8 1.9 0.8

R40 86734.0 90539.0 29.0 24.6 15.2 19.0 73.1 62.8 21.0 2.7 19.5 1.1

R50 91811.4 96350.4 32.2 30.2 19.0 21.4 67.0 64.3 11.2 8.9 9.8 2.1

max 100.0 80.0 100.0 106.7 85.7 291.9
average 89.5 47.9 8.3 4.9 6.2 12.3

Table 8: Instance summary after moving depots
#inst. #vertices |R1| |R2| |S1| |S2|

AA 1 102 31 49 31 49

AB 1 90 28 45 28 45

P 24 7-50 1-57 2-49 2-57 2-49

D16 9 16 5-9 6-11 6-9 7-11

D36 9 36 16-22 12-22 16-22 12-22

D64 9 64 26-42 22-39 26-42 22-40

D100 9 100 42-50 50-55 42-40 51-56

G16 9 16 0-2 0-4 1-3 0-4

G36 9 36 2-7 3-12 2-8 3-12

G64 9 64 4-20 6-17 5-21 6-17

G100 9 100 8-27 9-31 9-27 10-31

R20 5 20 8-20 8-20 8-20 9-20

R30 5 30 18-30 14-30 19-30 15-31

R40 5 40 18-67 22-48 19-68 23-48

R50 5 50 31-48 35-66 31-49 35-66

Table 9: Results for CUARP after moving depots
n-CUARP CUARP #S1 #S2 #S12 #S21 %serv. %exc. increase time

AA 23570.0 23596.0 36.0 43.0 24.0 18.0 98.8 53.2 0.1 13.9

AB 17657.0 17693.0 39.0 34.0 26.0 15.0 100.0 56.2 0.2 10.0

P 380.3 390.9 11.2 14.5 6.6 7.3 91.8 54.7 4.3 0.3

D16 1221.2 1225.6 5.9 6.0 4.3 2.6 73.7 57.2 0.0 0.1

D36 1929.8 2072.8 19.7 12.2 10.6 7.0 87.9 54.5 0.1 0.6

D64 3622.3 3654.8 28.7 31.7 15.2 18.4 94.0 55.9 0.0 2.8

D100 5058.0 5106.2 39.6 55.4 24.8 30.2 94.9 58.0 0.0 14.5

G16 9.8 13.1 1.0 2.9 0.4 1.3 92.2 39.0 0.2 0.1

G36 38.7 45.9 4.7 7.8 3.0 3.9 100.0 54.9 0.2 1.8

G64 86.6 102.2 13.4 10.8 6.7 5.4 100.0 50.5 0.2 9.6

G100 147.0 167.6 20.1 20.2 10.8 10.4 100.0 52.3 0.2 103.8

R20 52781.8 53861.2 10.6 7.4 5.2 4.4 66.6 53.7 0.0 0.1

R30 63098.6 64668.2 13.8 20.2 8.4 11.4 68.5 56.2 0.0 0.2

R40 81383.0 83126.0 21.0 29.8 11.0 17.2 67.4 54.6 0.0 0.8

R50 82934.0 88777.4 30.8 36.8 16.6 15.6 71.4 48.2 0.2 1.5

max 100.0 88.9 0.9 185.1
average 88.6 53.3 0.1 10.5

Table 10: Instance summary with 3 depots
#inst. #vertices |R1| |R2| |R3| |S1| |S2| |S3|

AA 1 102 40 22 17 41 23 17

AB 1 90 46 11 17 46 12 17

P 24 7-50 1-43 1-42 0-22 2-44 1-42 1-23

D16 9 16 2-5 6-10 1-5 2-6 6-11 2-6

D36 9 36 10-18 10-16 7-11 11-18 10-16 7-12

D64 9 64 27-40 8-22 12-18 27-41 9-23 13-18

D100 9 100 36-61 13-40 19-29 36-62 13-40 20-29

G16 9 16 0-3 0-2 0-2 1-3 1-2 0-2

G36 9 36 1-8 2-10 1-6 1-8 2-10 1-6

G64 9 64 2-13 4-14 2-11 2-13 5-15 2-11

G100 9 100 6-23 7-24 5-14 6-24 8-24 5-14

R20 5 20 6-23 3-24 3-14 6-24 4-24 4-14

R30 5 30 6-40 2-24 3-15 6-40 3-24 415

R40 5 40 6-48 2-31 3-27 6-48 3-31 4-415

R50 5 50 6-53 2-44 3-28 6-54 3-45 4-415
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Table 11: Results for CUARP with 3 depots
n-CUARP CUARP #S #Sexc %serv. %exc. increase time

AA 25481.0 25513.0 42.0 16.0 51.9 38.1 0.1 41.8

AB 20898.0 20930.0 44.0 19.0 58.7 43.2 0.2 36.7

P 433.8 445.6 14.3 5.4 46.3 39.2 3.9 1.0

D16 1379.2 1388.1 7.7 3.1 46.5 41.2 0.7 0.1

D36 2661.4 2681.4 17.3 7.2 47.4 41.8 1.0 1.0

D64 4068.2 4015.3 36.8 13.6 57.2 36.9 0.6 9.3

D100 5387.2 5438.0 54.6 18.3 54.7 33.7 1.1 55.5

G16 15.6 18.0 2.9 1.3 66.7 42.8 16.8 0.1

G36 52.4 61.3 6.6 1.9 54.5 26.4 15.5 3.7

G64 111.8 121.7 12.2 4.4 49.4 35.2 6.9 24.6

G100 171.6 191.7 21.4 6.7 50.1 28.7 11.3 248.1

R20 60528.6 60537.8 15.4 5.6 58.5 33.0 0.0 0.2

R30 88964.0 88986.0 16.4 5.2 35.0 30.8 0.0 0.5

R40 115561.6 115582.8 34.6 13.8 45.9 35.9 0.0 1.4

R50 128557.6 128587.0 40.4 18.4 43.0 46.5 0.0 3.2

max 100.0 100.0 80.0 546.3
average 50.6 36.7 4.9 27.2

Table 12: CUARP G16 results with increasing size of shared sets
n-CUARP CUARP-25 CUARP CUARP-75 CUARP-100

G0 1 1 1 1 2

G1 3 6 6 6 15

G2 4 6 6 6 8

G3 14 17 17 17 27

G4 10 13 13 13 25

G5 11 14 14 14 30

G6 23 28 28 34 47

G7 13 15 17 17 28

G8 14 14 15 19 31

23



7 Conclusions

In this paper, we have introduced two variants of the Collaboration Uncapacitated Arc
Routing Problem. This is a pro�table arc routing problem with multiple depots, where
carriers may collaborate to improve the pro�t gained. An integer linear programming
formulation with binary and integer variables has been presented, as well as a branch-
and-cut algorithm. In the CUARP the goal is the maximization of the total pro�t
of the coalition. The pro�t gained by the coalition of carriers never decreases with
respect to the case without collaboration. Individual carriers, however, may lose pro�t
in the collaboration scheme modeled by the CUARP. For this reason, we considered
a variant where carriers may set thresholds on the pro�t gained in the collaborative
scheme. This variant allocates the pro�t gained by the coalition in a more balanced
way. Interestingly, we analyzed the cooperative game associated with the CUARP and
noted that in the case of two carriers the t-CUARP pro�t allocation is stable because
it belongs to the core of the game. Moreover, collaboration may produce an arbitrary
large increase of the pro�t. A set of benchmark instances were generated and the
results of extensive computational experiments presented and analyzed.

For future research, attention should be focused on the extension of the models pro-
posed to include real-life features of the problem such as time and capacity constraints.
Another direction concerns the design of heuristic algorithms for the solution of large
instances.
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