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On the probability of planarity of a
random graph near the critical point

Marc Noy * Vlady Ravelomanana | Juanjo Rué *

Abstract

Let G(n, M) be the uniform random graph with n vertices and M edges. Erdés and Rényi

(1960) conjectured that the limiting probability

lim Pr{G(n, %) is planar}

n—o0
exists and is a constant strictly between 0 and 1. Luczak, Pittel and Wierman (1994) proved
this conjecture and Janson, Luczak, Knuth and Pittel (1993) gave lower and upper bounds
for this probability. In this paper we determine the exact limiting probability of a random
graph being planar near the critical point M = n/2. For each A, we find an exact analytic
expression for

p(A) = lim Pr {G (n, 1+ /\n_1/3)) is planar} .

n—oo
In particular, we obtain p(0) ~ 0.99780. We extend these results to classes of graphs closed
under taking minors. As an example, we show that the probability of G(n, ) being series-
parallel converges to 0.98003. For the sake of completeness and exposition we reprove in a
concise way several basic properties we need of a random graph near the critical point.

We dedicate this paper to the memory of Philippe Flajolet.

1 Introduction

The random graph model G(n, M) assigns uniform probability to graphs on n labelled vertices
with M edges. A fundamental result of Erdés and Rényi [7] is that the random graph G(n, M)
undergoes an abrupt change when M is around n/2, the value for which the average vertex degree
is equal to one. When M = ¢n/2 and ¢ < 1, almost surely the connected components are all of
order O(logn), and are either trees or unicyclic graphs. When M = ¢n/2 and ¢ > 1, almost surely
there is a unique giant component of size ©(n). We direct to reader to the reference texts [4] and
[14] for a detailed discussion of these facts.

We concentrate on the so-called critical window M = % (1+ An~1/3), where )\ is a real number,
identified by the work of Bollobés [2] [B]. Let us recall that the excess of a connected graph is the
number of edges minus the number of vertices. A connected graph is complex if it has positive
excess. As A\ — —oo, complex components disappear and only trees and unicyclic components
survive, and as A — 400, components with unbounded excess appear. A thorough analysis of
the random graph in the critical window can be found in [I3] and [I6], which constitute our basic
references.

*Departament de Matematica Aplicada II. Universitat Politécnica de Catalunya. Jordi Girona 1-3, 08034
Barcelona. Spain. marc.noy@upc.edu. Partially supported by grants MTM2011-24097 and DGR2009-SGR1040.

TLiafa Umr CNRS 7089. Université Denis Diderot. 175, Rue du Chevaleret 75013 Paris. France.
vlad@liafa. jussieu.fr.

Hnstituto de Ciencias Matemdticas. Calle Nicolds Cabrera 15, 28049 Madrid. Spain. juanjo.rue@icmat.es.
Partially supported by grants JAE-DOC (CSIC), MTM2011-22851 and SEV-2011-0087.



For each fixed A, we denote the random graph G (n, 2(1 + An~%/%)) by G()). The core C()) of
G()) is obtained by repeatedly removing all vertices of degree one from G(A). The kernel K () is
obtained from C(\) by replacing all maximal paths of vertices of degree two by single edges. The
graph G(\) satisfies almost surely several fundamental properties, that were established in [16] by
a subtle simultaneous analysis of the G(n, M) and the G(n,p) models.

1. The number of complex components is bounded.

2. Each complex component has size of order n?/3, and the largest suspended tree in each
complex component has size of order n?/3.

3. C()) has size of order n'/3 and maximum degree three, and the distance between two vertices
of degree three in C()) is of order n'/3.

4. K(A) is a cubic (3-regular) multigraph of bounded size.

The key property for us is the last one. It implies that almost surely the components of G(\) are
trees, unicyclic graphs, and those obtained from a cubic multigraph K by attaching rooted trees
to the vertices of K, and attaching ordered sequences of rooted trees to the edges of K. Some
care is needed here, since the resulting graph may not be simple, but asymptotically this can be
accounted for.

It is clear that G(\) is planar if and only if the kernel K () is planar. Then by counting
planar cubic multigraphs it is possible to estimate the probability that G(\) is planar. To this
end we use generating functions. The trees attached to K(\) are encoded by the generating
function T'(2) of rooted trees, and complex analytic methods are used to estimated the coefficients
of the corresponding series. This allows us to determine the exact probability

p(\) = Jim Pr {G (n,2(1+ An~%/?)) is planar} .
In particular, we obtain p(0) ~ 0.99780.

This approach was initiated in the seminal paper by Flajolet, Knuth and Pittel [8], where the
authors determined the threshold for the appearance of the first cycles in G(n, M). A basic feature
in [8] is to estimate coefficients of large powers of generating functions using Cauchy integrals and
the saddle point method. This path was followed by Janson, Knuth, Luczak and Pittel [I3],
obtaining a wealth of results on G(\). Of particular importance for us is the determination
in [I3] of the limiting probability that G(A) has given excess. The approach by Luczak, Pittel
and Wierman in [I6] is more probabilistic and has as starting point the classical estimates by
Wright [19] on the number of connected graphs with fixed excess. The range of these estimates
was extended by Bollobds [2] and more recently the analysis was refined by Flajolet, Salvy and
Schaeffer [9], by giving complete asymptotic expansions in terms of the Airy function.

The paper is organized as follows. In Section [2] we present the basic lemmas needed in the
sequel. Except for the proof of Lemma [l the paper is self-contained. Lemmas [2] to |5 are proved
in [13] with a different presentation; for the sake of completeness and exposition we provide
shorter and hopefully more accessible proofs. In Section [3| we compute the number of cubic
planar multigraphs, suitably weighted, where we follow [15]. In Section {4| we compute the exact
probability that the random graph G()) is planar as a function of A. We generalize this result by
determining the probability that G(X\) belongs to a minor-closed class of graphs in several cases
of interest.

We close this introduction with a remark. The problem of 2-satisfiability presents a striking
analogy with the random graph process. Given n Boolean variables and a conjunctive formula
of M clauses, each involving two literals, the problem is to determine the probability that the
formula is satisfiable when M grows with n. The threshold has been established at M = n and
the critical window is also of width n%/3; see [5]. However the exact probability of satisfiability
when the number of clauses is n(1 + An~'/3) has not been determined, and appears to be a more
difficult problem.



2 Preliminaries

All graphs in this paper are labelled. The size of a graph is its number of vertices. A multigraph
is a graph with loops and multiple edges allowed.
We recall that the generating function T'(z) of rooted trees satisfies

T(z) = zeT®),

Using Lagrange’s inversion [10], one recovers the classical formula n"~! for the number of rooted
labelled trees.The generating function for unrooted trees is

This can be proved by integrating the relation T(z) = zU’(z), or more combinatorially using the
dissimilarity theorem for trees [17].

A graph is unicyclic if it is connected and has a unique cycle. Unicyclic graphs can be seen
as an undirected cycle of length at least three to which we attach a sequence of rooted trees.
Since the directed cycle construction corresponds algebraically to log(1/(1 — T'(z)) (see [10]), the

generating function is
1 1 T(z)?
Vi) =3 <10g o LB 2> :

Graphs all whose components are unicyclic are given by the exponential formula:
e~ T(2)/2-T(2)?/4

1-T(z)

V) =

The following result, which is fundamental for us, is proved in [16, Theorem 4] by a careful
analysis of the structure of complex components in G(\). We say that a property P holds asymp-
totically almost surely (a.a.s.) in G(n, M) if the probability that P is satisfied tends to one as
n — oo. Recall that G(A) = G (n, 2(1 + An~1/3)).

Lemma 1. For each A, the kernel of G(\) is a.a.s. a cubic multigraph.

Given a cubic multigraph M with a loops, b double edges and c triple edges, define its weight as
w(M) =27%27b67¢,

This weight (called the compensation factor in [I3]), has the following explanation. When we
substitute edges of the kernel by sequences of rooted trees, a loop has two possible orientations
that give raise to the same graph. A double (triple) edge can be permuted in two (six) ways,
again producing the same graph. From now on, all multigraphs we consider are weighted, so that
we omit the qualifier. The following lemma is proved in [I3] using a combination of guessing and
recurrence relations. The next proof is already contained in [4, Chap. 2].

Lemma 2. The number E, of cubic multigraphs with 2r vertices is equal to

(6r)!

B =—2
(3r)128762

Proof. A cubic multigraph can be modeled as a pairing of darts (half-edges), 3 for each vertex,
with a total of 6r darts. The number of such pairings is (67)!/((3r)!237). However, we have to
divide by the number 62" of ways of permuting each of the 2r triples of darts. The weight takes
care exactly of the number of times a cubic multigraph is produced in this process. O

The next result is essentially proved in [I3] using several algebraic manipulations. Here we
present a concise proof. We denote by [2"]A(z) the coefficient of 2™ in the power series A(z).



Lemma 3. The number g(n, M,r) of simple graphs with n vertices, M edges and cubic kernel of
size 21 satisfies
U@E)" M ey B TR

g(n,M,T) <n! [Zn] (n—M+T')' ‘ (27.)' (1_T(z))3T

and
Uz)n M vz Er T(2)*

m—M+n) S )N -TE)3

Proof. Such a graph is the union of a set of s unrooted trees, a set of unicyclic graphs, and a cubic
multigraph K with a rooted tree attached to each vertex of K and a sequence (possibly empty)
of rooted trees attached to each edge of K. Let us see first that s = n — M + r. Indeed, the final
excess of edges over vertices must be M — n. Each tree component contributes with excess —1,
each unicyclic component with excess 0, and K (together with the attached trees) with excess r.
Hence M —n=—s+r.

The first two factors U(2)"~ M+ /(n—M+r)! and e *) on the right-hand side of the inequalities
encode the set of trees and unicyclic components. The last part encodes the kernel K. It has 2r
vertices and is labelled, hence the factor F,/(2r)!; the weighting guarantees that each graph
contributing towards g(n, M, r) is counted exactly once. The trees attached to the 2r vertices give
a factor T(2)?". The sequences of trees attached to the 3r edges give each a factor 1/(1 — T'(2)).
However, this allows for the empty sequence and the resulting graph may not be simple, so we get
only an upper bound. To guarantee that the final graph is simple we take sequences of length at
least two, encoded by T'(2)?/(1 —T(z)) (length one is enough for multiple edges of K, but length
two is needed for loops). Since this misses some graphs, we get a lower bound. O

gln, M,r) > n![z"]

The following technical result is essentially Lemma 3 from [I3]. We reprove it here for com-
pleteness in a simplified version tailored to our needs (see also the proof of Theorem 5 in [§]).

Lemma 4. Let M = %(1+ An~1/3). Then for any fized a and integer v > 0 we have

n! U(z)n=M+r T(z)e

((1?4)) [="] (n—M+7r)(1-T(z))3

eV = VoA (3r+ 1)) (1 +0 (Xl» (1)

nl/3

1/12

uniformly for |\| < n'/'2, where

A (;32/3>\)’€
Ay, \) = > 2 :
BN/ = RIT ((y + 1 - 2Kk)/3)

(2)

Proof. The proof is based on relating the left-hand side of Equation to the integral represen-
tation of A(y,\) defined in [13} Equation(10.7)]:

1
A - 1-y K(As)
(y,A) 57 /Hs e ds,
where K (], s) is the polynomial
2 2¢ — 3 2 3
O W g GRS

6 3 2 6

and IT is a path in the complex plane that consists of the following three straight line segments:

—e T3¢ for —oo <t < —2,
s(t)=4 l4itsinn/3, for—2<t<+2,
etm/3 ¢, for+2 <t < 4oo.

The constant term in the left-hand side of is estimated using Stirling’s formula, getting

n! 1 n—M+r g A4
— /2 —X°/6+3/4—n 1 .
((3)) (n—M +r)! T O nl/3 )
M




The coefficient of [z"] in Equation is estimated by means of a contour integral around z = 0,
using the expressions of U(z) and V(z) in terms of T'(z):

1 <T<z>_T<z>2)nM+r T(2)t e TO2TCER g

2mi 2 (1 —T(z))3r+1/2  zntl”

u

We make the change of variable u = T'(z), whose inverse is z = ue™, and we obtain

2]V17n7r6n N du
£ = nh(u) 22 4

2 f{g (W e 4)
where the integrand is split into a smooth function

ua(2u _ u2)re—u/2—u2/4
g(u) = (1— w172

and a large power involving

M 1
—u—1—logu—(1—")log———.
h(u) =u ogu ( n) Ogl—(u—l)z

The contour path in Equation (4] should be such that |u] < 1. As remarked in [I3] (see also [g]),
the function h(u) satisfies h(1) = h’(1) = 0. Moreover, precisely at the critical value M = n/2 we
also have h”(1) = 0. This triple zero shows up in the procedure used in [I3] when estimating
for large n by means of the saddle-point method. Notice that h(u) is singular at u = 1, due to the
singularity at z = e~ of T'(2).

Let v =n~/3, and let o be the positive solution to

A=at—a.

This choice is necessary in order to get precise bounds for the tail estimates that appear using
the saddle-point method. Following the proof of [13, Lemma 3], we evaluate on the path
u = e (@T¥ where ¢ runs from —mn'/3 to 7nt/3. That is,

1/3

Fra—i [T g a

u —nl/3

The main contribution to the value of this integral comes from the vicinity of £ = 0. The magnitude
of e"®) depends on the real part Rh(u). Observe that Rh(e™(*+)¥) decreases as [t| increases,
and that [e™(")| has its maximum on the circle u = e~ (®+®)" when t = 0. We write s = o + it.
Analyzing nh(e™*"), we have

53 Ns?

nh(e™®") = ) + N +O((Ns* + s),

uniformly in any region such that |sv| < log2. For the function g(u), we have

—sv _ ,—2sv\"
g (e—su) — (26 € )

—sva—e Y [2—eT2V /4 1/2—3r _—3/4
- e—sy)3T_1/2 e = (sv) e (1+O(sv)).

If f(u) = g(u)e™™ is the integrand of , we have
e—)\3/6f(e—su) _ 6—3/4V1/2—3r81—(3r+1/2)eK()\,s) (1 + O(SV) 4 O()\QSQV) =+ O(S4U))

when s = O(n'/1?). Finally,

e—A/6 du - 3
o ff(“)* — 673/41/3/273TA(3T+ %’)\) +O(Vo/273r€7/\ /6)\37‘/2+1/4)7
e u

where the error term has been derived from those already in [I3]. The proof of the lemma is
completed by multiplying and , and canceling equal terms. O



It is important to notice that in the previous lemma the final asymptotic estimate does not
depend on the choice of a. The next result is a direct consequence and can be found as Formula
(13.17) in [13].

Lemma 5. The limiting probability that the random graph G(\) has a cubic kernel of size 2r is
equal to
V2me, A(3r+ 3,0,
where e, = E,./(2r)! and A(y, \) is as in the previous lemma.
In particular, for A =0 the limiting probability is

() “a

Proof. Using the notation of Lemma [3] the probability for a given n is by definition
g(n, M, 7)

(&)

Lemma [3] gives upper and lower bounds for this probability, and Using Lemma[4] we see that both

bounds agree in the limit and are equal to
E,
(2r)!

thus proving the result. A key point is that the discrepancy between the factors T'(z)?" and T'(z2)5"
in the bounds for g(n, M, r) does not affect the limiting value of the probability. O

V2rAGBr + 3, \),

Notice that if we replace the e, by the numbers g, arising by counting planar cubic multigraphs,
we obtain immediately the probability that G()) has a cubic planar kernel of size 2r. Since G(\)
is planar if and only if its kernel is planar, we can use this fact to compute the probability of G(\)
being planar. But first we must compute g,..

3 Planar cubic multigraphs

In this section we compute the numbers G, of cubic planar multigraphs of size 2r. The associated
generating function has been obtained recently by Kang and Luczak [I5] (generalizing the enu-
meration of simple cubic graphs in [I]), but their derivation contains some minor errors. They do
not affect the correctness of [I5], since the asymptotic estimates needed by the authors are still
valid. However, for the computations that follow we need the exact values. The next result is
from [15], with the corrections mentioned below. All multigraphs are weighted as in the previous
section.

Lemma 6. Let G1(z) be the generating function of connected cubic planar multigraphs. Then G1(z)
is determined by the following system of equations:

3de;12(2) — D(z)+C(2)

B(2) _ %Q(D(z) +0(2) + %

C(z) = S(z)+ P(2) + H(z) + B(z)

D(z) = Biz)Q

S(2) = CEP-CESE

P(2) — 20()+ %zQC(z)z +Z

20+ C(2)H(z) = u(2)(1 —2u(2)) —u(2)(1 - u(2))?
22(C(2) + 1) = u(2)(1—u(2))®



The generating functions B(z), C(z), D(z), S(z), P(z) and H(z) correspond to distinct fami-
lies of edge-rooted cubic planar graphs, and u(z) is an algebraic function related to the enumeration
of 3-connected cubic planar graphs (dually, 3-connected triangulations).

The corrections with respect to [15] are the following. In the first equation a term —722/24
has been removed. In the second and sixth equations we have replaced a term 2%/4 by z2/2. In
the fourth equation we have removed a term —z2/16. For the combinatorial interpretation of the
various generating functions and the proof of the former equations we refer to [I5]. Notice that
eliminating u(z) from the last two equations we obtain a relation between C(z) and H(z). This
relation can be used to obtain a single equation satisfied by C(z), eliminating from the remaining
equations. We reproduce it here in case the reader wishes to check our computations.

1048576 2° 4 1034496 2* — 55296 22 + (9437184 25 + 6731264 2* — 1677312 22 + 55296) C+
(37748736 26 + 18925312 2% — 7913472 22 + 470016) C?+
88080384 2% + 30127104 2* — 16687104 2% + 1622016) C3+
2132120576 2% 429935360 2% — 19138560 22 + 2928640) C*+
(132120576 25 + 19314176 2* — 12429312 22 + 2981888) C°+
(88080384 26 + 8112384 2% — 4300800 2% + 1720320) C®+
37748736 25 4 2097152 2% — 614400 22 + 524288) C"+
9437184 2% + 262144 z* 4 65536) C® 4 1048576 C?2° = 0.

The first terms are 25 59 11339
_ 2 o 4 e 6 - 8 ce
Cla)=2"+ g+ o+ e+

This allows us to compute B(z), D(z), S(z), P(z) and H(z), hence also G1(z). The first coefficients
of G1(z) are as follows.

5 e 54 121 1591 g
Gile) =0 + 6% T8 Tamat T

Using the set construction, the generating function G(z) for cubic planar multigraphs is then

T 217 T 1152% Tso0ad” T 7962624 ° ’

5) 385 83933 35002561
G(Z _eGl(z)_ZG 22 e 46 28 . (5)

where G, is the number of planar cubic multigraphs with 27 vertices. This coincides with the gen-
erating function for all cubic (non-necessarily planar) multigraphs up to the coefficient of z4. The
first discrepancy is in the coefficient of 2. The difference between the coefficients is 1/72 = 10/6!,
corresponding to the 10 possible ways of labelling K3 3, the unique non-planar cubic multigraph
on six vertices.

4 Probability of planarity and generalizations

Let G be a graph with a cubic kernel K. Then clearly G is planar if and only if K is planar,
and we can compute the probability that G(n, M) is planar by counting over all possible planar
kernels.

Theorem 7. Let g,.(2r)! be the number of cubic planar multigraphs with 2r vertices. Then the
limiting probability that the random graph G(n, M = 5 (1 + An~1/3)) is planar is

A) =) Varg ABr+ 5.
r>0

In particular, the limiting probability that G(n, 5 ) is planar is

0=-25(5) v

r>0

~ 0.99780.




Proof. The same analysis as in Sectionshows that v/2m g, A(3r+ 1, \) is the probability that the
kernel is planar and has 2r vertices. Summing over all possible r, we get the desired result. O

As already mentioned, Erdés and Rényi [7] conjectured that p(0) exists and 0 < p(0) < 1. This
was proved in [16], showing that p(\) exists for all A and that 0 < p(A) < 1. The bounds in [13]
for p(0) are

0.98707 < p(0) < 0.99977,

obtained by considering connected cubic multigraphs with at most six vertices. We remark that
Stepanov [18] showed that p(A) < 1 for A < 0 (without actually establishing the existence of the
limiting probability). The function p()) is plotted in Figure 1. As expected, p(A) is close to 1 when
A — —o0 and close to 0 when A\ — oo. For instance, p(—3) ~ 1 —1.02-10~7 and p(5) ~ 4.9-10~".

Besides planar graphs, one can consider other classes of graphs. Let G be a class of graphs
closed under taking minors, that is, if H is a minor of G and G € G, then H € G. If Hy,--- | Hy,
are the excluded minors of G, then we write G = Ex(H;, ..., Hy). (By the celebrated theorem of
Robertson and Seymour, the number of excluded minors is finite, but we do not need this deep
result here). The following result generalizes the previous theorem.

Theorem 8. Let G = Ex(Hy,...,Hy) and assume all the H; are 3-connected. Let hy.(2r)! be the
number of cubic multigraphs in G with 2r vertices. Then the limiting probability that the random
graph G(n, M = 2(1+ An~1/3)) is in G is

pg(N\) = V2rhe A(3r + 5, 0).

r>0

n

In particular, the limiting probability that G(n, %) is in G is
2 [4\" 7!
pg(o) = Z \/g <3> hrw~
r>0

0 <pg()\) < 1.

Moreover, for each \ we have

Proof. 1f all the H; are 3-connected, then clearly a graph is in G if and only its kernel is in G. The
probability pg(A) is then computed as in Theorem [7} It is positive since G contains all trees and
unicyclic graphs, which contribute with positive probability (although tending to 0 as A — 00).
To prove that it is less than one, let ¢ be the largest size of the excluded minors H;. By splitting
vertices it is easy to construct cubic graphs containing Ky as a minor, hence G(\) contains K11
as a minor with positive probability (alternatively, see the argument at the end of [16]). It follows
that 1 —pg(A\) > 0. O

In some cases of interest we are able to compute the numbers h, explicitly. Let G = Ex(K}) be
the class of series-parallel graphs. The same system of equations as in Lemma [f] holds for series-
parallel graphs with the difference that now H(z) = 0 (this is due to the fact that there are no
3-connected series-parallel graphs). The generating function for cubic series-parallel multigraphs
can be computed as

5 337 55565 . 15517345
< -1 22 4 6 8 ..
Gop2) =14 972"+ 17557 + 59004° T 7062624 7

For instance, [2%](G(z) — Gsp(2)) = 34, corresponding to the fact that K is the only cubic
multigraph with 4 vertices which is not series-parallel. The limiting probability that G(n, §) is
series-parallel is

Psp(0) = 0.98003.
See Figure 1 for a plot of pgp(A).
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Figure 1: The probability of G(A) being planar and of being series-parallel are both plotted for
A € [=1..4]. The function on top corresponds to the planar case.

The class Ex(Ky4, K2 3) of outerplanar graphs does not fall directly under this scheme, since
K5 3 is not 3-connected, but adapting the equations in Lemma |§| (in particular the parallel de-
composition encoded by P(z)) it is possible to enumerate exactly cubic outerplanar multigraphs.
The first terms in the generating function are

5 337 55565 14853793
- 1y 22 290 4 99909 g 1R099II0 g
Coul2) =1+ 572+ 1952 % * So0u * T 7062024
The first discrepancy with Ggp(2) is at 28, corresponding to the graph Kj 3 with either a loop or
a double edge attached at the vertices of degree two. The probability of being outerplanar is

Pout (O) =~ 0.97979.

We do not plot poys(A) in Figure 1 since it is too close to pgp(A) to see a clear distinction.

As another example, consider excluding K3 3. Since the only 3-connected non-planar graph
in Ex(K33) is K5, which is not cubic, the limiting probability of being in this class is exactly
the same as of being planar, although Ex(K33) is exponentially larger than the class of planar
graphs [I1]. But excluding the graph K 3+ 3, obtained by adding one edge to K3 3, does increase the
probability, since K3 3 is in the class and is cubic and non-planar (the probability is computable
since the 3-connected graphs in Ex(Kj3) are known [I1]). Other classes such as Ex(K5 — €) or
Ex(K3 x K3) can be analyzed too using the results from [12].

It would be interesting to compute the probability that G(A) has genus g. For this we need to
count cubic multigraphs of genus g (orientable or not). We only know how to do this for g = 0,
the reason being that a 3-connected planar graph has a unique embedding in the sphere. This is
not at all true in positive genus. It is true though that almost all 3-connected graphs of genus g
have a unique embedding in the surface of genus g (see [6]). This could be the starting point for
the enumeration, by counting first 3-connected maps of genus g (a map is a graph equipped with
a 2-cell embedding). But this is not enough here, since we need the ezact numbers of graphs.
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