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Abstract
This paper focuses on robust fault detection for
Linear Parameter Varying (LPV) systems using a
set-membership approach. Since most of models
which represent real systems are subject to mod-
eling errors, standard fault detection (FD) LPV
methods should be extended to be robust against
model uncertainty. To solve this robust FD prob-
lem, a set-membership approach based on an in-
terval predictor is used considering a bounded de-
scription of the modeling uncertainty. Satisfac-
tory results of the proposed approach have been
obtained using several fault scenarios in the pitch
subsystem considered in the wind turbine bench-
mark introduced in IFAC SAFEPROCESS 2009.

1 Introduction
The fault diagnosis of industrial processes has become an
important topic because of its great influence on the opera-
tional control of processes. Reliable diagnosis and early de-
tection of incipient faults avoid harmful consequences. Typ-
ically, faults in sensors and actuators and the process itself
are considered. In the case of the wind turbine benchmark,
a set of pre-defined faults with different locations and types
are proposed in [1] where the dynamic change in the pitch
system is treated. The procedure of fault detection is based
either on the knowledge or on the model of the system [2].
Model-based fault detection is often necessary to obtain a
good performance in the diagnosis of faults. The methods
used in model-based diagnosis can be classified according
if they are using state observers, parity equations and pa-
rameter estimation [3]. For linear time invariant systems
(LTI), the FD task is largely solved by powerful tools. How-
ever, physical systems generally present nonlinear behav-
iors. Using LTI models in many real applications is not
sufficient for high performance design. In order to achieve
good performance while using linear like techniques, Lin-
ear Parameter Varying systems are recently received con-
siderable attention [4]. Recently, many model-based appli-
cations using such systems and the subspace identification
method were published [5]. In model-based FD, a residual
vector is used to describe the consistency check between
the predicted and the real behavior of the monitored sys-
tem. Ideally, the residuals should only be affected by the
faults. However, the presence of disturbances, noises and
modeling errors yields the residual to become non zero. To
take into account these errors, the fault detection algorithm

Figure 1: Fault diagnosis with set estimator schema

must be robust. When modeling uncertainty in a determin-
istic way, there are two robust estimation methods: the first
method is the bounded error estimation that assumes the pa-
rameters are considered time invariant and there is only an
additive error [6]. On the other hand, the second approach
is the interval predictor that takes into account the variation
of parameters and which considers additive and multiplica-
tive errors [7], [8]. Here, the interval predictor is combined
with existing nominal LPV identification presented by [9],
allowing to include robustness and minimizing false alarms
(see Fig. 1) [10]. Thus, this paper contributes with a new
set-membership estimator approach that combines the in-
terval predictor scheme with the LPV identification through
subspace methods in one step. To illustrate the methodology
proposed in this work, the pitch subsystem of wind turbine
system proposed as a benchmark in IFAC SAFEPROCESS
2009 will be used. First, this subsystem is modeled as an
LPV model using the hydraulic pressure as the scheduling
variable. On the hypothesis that damping ratio and natural
frequency have an affine variation with hydraulic pressure,
this affine LPV model is estimated by means of the subspace
LPV estimation algorithm. Second, the residue is synthe-
sized to take into account the robustness against the uncer-
tainties in the parameters. This work is organized as fol-
lows: In Section 2, the LPV subspace estimation method is
recalled. In Section 3, the interval predictor approach com-
bined with the LPV subspace method is proposed as tool
for robust fault detection. In Section 4, the modeling of the
pitch system as a LPV model is introduced. Section 5 deals
with simulation experiments that illustrate the implementa-
tion and performance of the proposed approach applied to
the robust fault detection of wind turbine pitch system. Fi-



nally, Section 6 gives some concluding remarks.

2 LPV Subspace Identification method
In the literature, there are two methods for LPV identifica-
tion: First, the ones based on global LPV estimation. Sec-
ond, the ones based on the interpolation of local models
[11], However, those approaches could lead to unstable rep-
resentations of the LPV structure while the original system
is stable [12]. That is why in this paper, we propose to
use a subspace identification algorithm proposed (see [9]
and [13]) to identify LPV systems which does not require
interpolation or identification of local models and avoid in-
stability problems.

2.1 Problem formulation
In the model used in identification in [9], the system ma-
trices depend linearly on the time varying scheduling vector
as follows:

xk+1 =

m∑

i=1

µ
(i)
k (A(i)xk + B(i)uk + K(i)ek) (1)

yk = Cxk + Duk + ek (2)

with xk ∈ Rn, uk ∈ Rr, yk ∈ Rl are the state, input and
output vectors and ek denotes the zero mean white innova-
tion process and m is the number of local model or schedul-
ing parameters:

µk =
[
1, µ

(2)
k , ..., µm

k ]
T

Eqs.(1) and (2) can be written in the predictor form:

xk+1 =
m∑

i=1

µ
(i)
k (Ã(i)xk + B̃(i)uk + K(i)yk) (3)

with
Ã(i) = A(i) − K(i)C

B̃(i) = B(i) − K(i)D

2.2 Assumptions and notation
Defining zk =

[
uT

k , yT
k

]T and using a data window of
length p to define the following vector:

z̄p
k =




zk

zk+1

.

.

.
zk+p−1




and introducing the matrix obtained using the Kronecker
product ⊗:

Pp/k = µk+p−1 ⊗ .... ⊗ µk ⊗ Ir+l

we can define

Np
k =




pp/k . . . 0
. pp−1/k+1

. .

. .
0 p1/k+p−1




Now, by defining the matrices U , Y and Z :

U = [up+1 , ..., uN ] (4)

Y = [yp+1 , ..., yN ] (5)

Z = [Np
1 z̄p

1 , ..., Np
N−p+1z̄

p
N−p+1

]
(6)

the controllability matrix can be expressed as:

κp = [lp , ..., l1]

with
l1 =

[
B̄(1) , ..., B̄(m)

]

and
lj =

[
Ã(1)lj−1 , ..., Ã(m)lj−1

]

If the matrix
[
ZT , UT

]
has full row rank, the matrix

Cκp and D can be estimated by solving the following linear
regression problem [14]:

min
Cκp,D

∥Y − CκpZ − DU∥2
F (7)

where ∥∥F represents the Frobenius norm. This problem
can be solved by using traditional least square methods as
in the case of LTI identification for time varying systems.
Moreover, the observability matrix for the first model is cal-
culated as follows:

Γp =




C

CÃ(1)

.

.

.

C(Ã(1))
p−1




with

κ̄k
p = [φp−1,k+1

⌣

Bk, ..., φ1,k+p−1

⌣

Bk+p−2,
⌣

Bk+p−1]

and
⌣

Bk = [B̃, Kk]

Then, Eq.(3) can be transformed into:

xk+p = φp,kxk + κ̄k
p z̄p

k

xk+p = φp,kxk + κpNp
k z̄p

k

where
φp,k = ÃK+p−1...Ãk+1Ãk

If the system (3) is uniformly exponentially stable the ap-
proximation error can be made arbitrarily small then:

xk+p ≈ κpNp
k z̄p

k

To calculate the observability matrix Γp times the state X ,
we first calculate the matrix Γpκp:

Γpκp =




Clp Clp−1 . . Cl1
0 CA(1)lp−1 . . CÃ(1)l1
. .
. .

0 C(Ã(1))
p−1

l1




Then, using the following Singular Value Decomposition
(SVD):

Γ̂pκpZ = [ υ υσ⊥ ]

[ ∑
n 0

0
∑

][
V
V⊥

]



the state is estimated by:
⌢

X =
∑

n

V

Finally, C and D matrix are estimated using output equa-
tion (2) and A and B are estimated using the state equation
(1). This algorithm can be summarized as follows [9]:

• Create the matrices U , Y and Z using (4),(5) and (6),
• Solve the linear problems given in (7) ,
• Construct Γp times the state X ,
• Estimate the state sequence,
• With the estimated state, use the linear relations to ob-

tain the system matrices.

In the case of a very small p, we have in general a biased
estimate. However, when the bias is too large, it will be a
problem. That is why a large p would be chosen. In the
case of a very large p, this method suffers from the curse
of dimensionality [13] and the number of rows of Z grows
exponentially with the size of the past window. In fact, the
number of rows is given by:

ρZ = (r + ℓ)
∑p

j=1
mj

To overcome this drawback, the kernel method will be
introduced in the next subsection [15].

2.3 Kernel method
The equation (7) has a unique solution if the matrix[

ZT UT
]

has full row rank and is given by:
[

Ĉκp D̂
]

= Y
[

ZT UT
]
(

[
Z
U

][
ZT UT

]
)−1

When this is not the case, that will occurs when p is large,
the solution is computed by using the SVD of the matrix:

[
Z
U

]
= [ υ υ⊥ ]

[ ∑
m 0

0 0

] [
V T

V T
⊥

]

Then, the solution of the minimum norm is given by:
[

Ĉκp D̂
]

= Y V
∑−1

m
υT

To avoid computations in a large dimensional space, the
minimum norm results in:

min
α

∥α∥2
F (8)

with
Y − α

[
ZT Z + UT U

]
= 0

where α are the Lagrange multipliers and
[
ZT Z + UT U

]
is referred as the kernel matrix.
The matrix Γ times the state X can be constructed as fol-
lows:

ΓκpZ =




α
p∑

j=1

(Z1,j)
T
Z1,j

α
p∑

j=2

(Z2,j)
T
Z1,j

.

.

.

α
p∑

j=p

(Zp,j)
T
Z1,j




(9)

with

(Zi,j)T Z1,j = (
p−j∏
v=0

µT
Ñ+v+j−i

µÑ+v+j−1)(z
T
Ñ+j−i

zÑ+j−1)

ZT Z =
p∑

j=1

(Z1,j)Z1,j

(10)
Finally, the estimate sequence is obtained by solving the
original SVD problem.

The kernel method can be summarized as follows [9]:
• Create the matrices UT U using (4) and ZT Z and

(Zi,j)T (Zi,j) using (10),
• Solve the linear problem given in (8),
• Construct Γ times the state X using (9)and (10),
• Estimate the state sequence,
• With the estimated state, use the linear relation to ob-

tain the system matrices.

3 Interval predictor approach
To add robustness to the LPV subspace identification ap-
proach presented in the previous section, it will be combined
with the interval predictor approach [16]. The interval pre-
dictor approach is an extension of classical system identifi-
cation methods in order to provide the nominal model plus
the uncertainty bounds for parameters guaranteeing that all
collected data from the system in non-faulty scenarios will
be included in the model prediction interval. This approach
considers separately the additive and multiplicative uncer-
tainties. Additive uncertainty is taken into account in the
additive error term e(k) and modeling uncertainty is con-
sidered to be located in the parameters that are represented
by a nominal value plus some uncertainty set around. In the
literature, there are many approximation of the set uncertain
parameter Θ. In our case, this set is described by a zonotope
[10] :

Θ = θ0 ⊕ HBn = {θ0 + Hz : z ∈ Bn} (11)

where: θ0 is the nominal model (here obtained with the
identification approach, H is matrix uncertainty shape, Bn

is a unitary box composed of n unitary (B = [−1, 1]) inter-
val vectors and ⊕ denotes the Minkowski sum. A particu-
lar case of the parameter set is used that corresponds to the
case where the parameter set Θ is bounded by an interval
box [17]:

Θ = [θ1, θ1] × ...[θi, θi] × ...[θnθ
, θnθ

] (12)

where θi = θ0
i − λi and θi = θ0

i + λi with λi ≥ 0 and
i = 1, ..., nθ. In particular, the interval box can be viewed as
a zonotope with center θ0 and H equal to an nθ×nθ diagonal
matrix:

θ0 = (
θ1 + θ1

2
,
θ2 + θ2

2
, ...,

θn + θn

2
) (13)

H = diag(λ1, λ2, ..., λn) (14)

For every output, a model can be extracted in the following
regressor form:

y(k) = φ(k)θ(k) + e(k) (15)

where



• φ(k) is the regressor vector of dimension 1× nθ which
can contain any function of inputs u(k) and outputs
y(k).

• θ(k) ∈ Θ is the parameter vector of dimension nθ×1.

• Θ is the set that bounds parameter values.

• e(k) is the additive error bounded by a constant where
|e(k)| ≤ σ.

In the interval predictor approach, the set of uncertain pa-
rameters Θ should be obtained such that all measured data
in fault-free scenario will be covered by the interval pre-
dicted output.

y(k) ∈ [ŷ(k) − σ, ŷ(k) + σ] (16)

where

ŷ(k) = ŷ0(k) − ∥φ(k)H∥1 (17)

ŷ(k) = ŷ0(k) + ∥φ(k)H∥1 (18)

and ŷ0(k) is the model output prediction with nominal pa-
rameters with θ0 =[θ1, θ2, ..., θnθ

]T obtained using the LPV
identification algorithm:

ŷ0(k) = φ(k)θ0(k) (19)

Then, fault detection will be based on checking if (16)
is satisfied. In case that, it is not satisfied a fault can be
indicated. Otherwise, nothing can be said.

4 Case study: wind turbine benchmark
system

In this work, a specific variable speed turbine is considered.
It is a three blade horizontal axis turbine with a full con-
verter. The energy conversion from wind energy to mechan-
ical energy can be controlled by changing the aerodynamics
of the turbine by pitching the blades or by controlling the
rotational speed of the turbine relative to the wind speed.
The mechanical energy is converted to electrical energy by
a generator fully coupled to a converter. Between the ro-
tor and the generator, a drive train is used to increase the
rotational speed from the rotor to the generator [18]. This
model can be decomposed into submodels: Aerodynamic,
Pitch, Drive train and Generator [19] [20]. In this paper,
we focus on faults in the pitch subsystem as explained in the
following subsection.

4.1 Pitch system model
In the wind turbine benchmark model, the hydraulic pitch
is a piston servo mechanism which can be modeled by a
second order transfer function [21] [1]:

β(s)

βr(s)
=

ω2
n

s2 + 2ζωns + ω2
n

(20)

Notice that βr refers to reference values of pitch angles.
The pitch model can be written in the following state space:

{
ẋ1 = x2

ẋ2 = −2ξwnx2 − wn
2x1 + wn

2u
(21)

with
x1 = β, x2 = β̇, u = βr

which can be discretised using an Euler approximation.
Then, the following system is obtained:

{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(22)

with

A =

[
1 Te

−Tew
2
n −2Teξwn + 1

]

B =

[
0

Tew
2
n

]

C = [ 1 0 ]

4.2 LPV Pitch system model
The pitch parameters wn and ξ are variable with hydraulic
pressure P [1] [22]. Then, the pitch model can be written
as the following LPV model according to [23] using P as
the scheduling variable ϑ :

{
x(k + 1) = A(ϑ)x(k) + B(ϑ)u(k)

y(k) = Cx(k)
(23)

with

A(ϑ) =

[
1 Te

−Tew
2
n(P ) −2Teξ(P )wn(P ) + 1

]

B =

[
0

Tew
2
n(P )

]

y(k) = x1(k) = β(k)

4.3 Regressor form pitch system model
The pitch model can be transformed to the following regres-
sion form [24]:

y(k) = φ(k)θ(k) (24)

where, φ(k) is the regressor vector which can contain any
function of inputs u(k) and outputs y(k). θ(k) ∈ Θ is the
parameter vector. Θ is the set that bounds parameter values.

In particular
φ(k) = [ y(k − 2) y(k − 1) u(k − 2)]

θ = [ θ1 θ2 θ3]
T

θ1 = (−T 2
e w2

n + (2wnξTe − 1))

θ2 = −2wnξTe + 2

θ3 = T 2
e w2

n

5 Results
The pitch systems, which in this case are hydraulic, could
be affected by faults in any of the three blades. The con-
sidered faults in the hydraulic system can result in changed
dynamics due to a drop in the main line pressure. This dy-
namic change induces a change in the system parameters:
the damping ratio between 0.6 rad/s and 0.9 rad/s and the
frequency between 3.42 rad/s and 11.11 rad/s according
to [23]. In this work, a fault detection subspace estimator
is designed to determine the presence of a fault. To distin-
guish between fault and modeling errors, an interval predic-
tor approach is applied and a residual generation is used for
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Figure 2: Upper (red line) and lower (blue line) bounds

deciding if there is a fault. To illustrate the performance of
this robust fault detection approach:: ξ ∈[ 0.6 0.63 ] and
wn ∈[ 10.34 11.11 ] are considered. Then, a parameter
set Θ is bounded by an interval box:

Θ = [θ1, θ1] × [θ2, θ2] × [θ3, θ3] (25)

and for i = 1, · · · , 3

λi = (
θi − θi

2
) (26)

θ0
i = (

θi + θi

2
) (27)

using equations (17) and (18), the output bounds are calcu-
lated to be used in fault detection test which are given in
Fig. 2.ŷ0(k) is obtained by the use of the identification ap-
proach described in Section 2. To validate this algorithm
two cases are used:
- Case 1: In this case, the pressure varies after time 10000s
while parameters vary in the interval of parametric uncer-
tainties, that is, damping ratio varies between 0.6 rad/s
and 0.63 rad/s and the frequency between 10.34 rad/s
and 11.11 rad/s. These parameters are presented respec-
tively in Figures. 3 and 4. The pitch angle in this case is
given in Fig. 5 altogether with the prediction intervals.
For fault detection, the residual signal, based on the com-
parison between the measured pitch angle and the estimated
one at each sampling instance, is calculated and it is shown
in Fig. 6. For fault decision, a fault indicator signal is used
and the decision is taken in function of this indicator. If
the actual angle is not within the predicted interval given in
Eq.(16), the fault indicator is equal to 1 and the system is
faulty. Otherwise, it is equal to 0 and the system is fault-
free. The fault indicator signal given in Fig. 7 shows that
there is no fault despite the pressure variation. The parame-
ters variation is considered as a modeling error.
- Case 2: In this case, the pressure P varies between time
t = 10000s and t = 17000s outside its nominal value. In
this time interval, the damping ratio varies between 0.63
rad/s and 0.72 rad/s and the frequency varies between
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Figure 3: Damping ratio in non-faulty case
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Figure 4: Frequency in non-faulty case
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Figure 7: Fault indicator in non-faulty case
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Figure 8: Damping ratio in faulty case
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Figure 9: Frequency in faulty case

8.03 rad/s and 10.34 rad/s. On the other hand, the damp-
ing ratio varies between 0.6 rad/s and 0.63 rad/s and the
natural frequency varies between 10.34 rad/s and 11.11
rad/s outside as shown in Figures 8 and 9. In this case,
the pitch angle is given in Fig. 10, while the residual and
fault indicator signals are presented in Fig. 11 and Fig. 12,
respectively.

Fig. 12 shows that the fault indicator signal changes its
signature between time 10000s and 17000s which induce
that the parameters vary larger than the modeling range due
to actuator fault in wind turbine benchmark system between
instants t = 10000s and 17000s.

6 Conclusions
The proposed approach is based on an LPV estimation ap-
proach to generate a residual as the difference between the
real and the nominal behavior of the monitored system.
When a fault occurs, this residual goes out of the inter-
val which represents the uncertainty bounds in non faulty
case. These bounds are generated by means of an inter-
val predictor approach that adds robustness to this fault de-
tection method, by means of propagating the parameter un-
certainty to the residual or predicted output. The proposed



1.6608 1.6608 1.6608 1.6608 1.6608 1.6608 1.6608

x 10
4

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

Time(s)

pi
tc

h 
an

gl
e 

in
 fa

ul
ty

 c
as

e

Mesaured
Max 
Min 

Figure 10: Pitch angle in faulty case
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approach is illustrated by implementing a robust fault de-
tection scheme for a pitch subsystem of the wind turbine
benchmark. Simulations show satisfactory fault detection
performance despite model uncertainties.
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51:1144 Ű 1150., 2006.

[7] D. Efimov, L. Fridman, T. Raissi, A. Zolghadri, and
R. Seydou. Interval estimation for lpv systems apply-
ing high order sliding mode techniques. Automatica,
48:2365–2371, 2012.

[8] D. Efimov, T. Raissi, and A. Zolghadri. Control of
nonlinear and lpv systems: interval observer-based
framework. IEEE Transactions on Automatic Control.,
2013.

[9] J. Van Willem and M Verhagen. Subspace identifica-
tion of bilinear and lpv systems for open-and closed-
loop data. Automatica, 45:371–381, 2009.

[10] J. Blesa, V. Puig, J Romera, and J Saludes. Fault di-
agnosis of wind turbines using a set-membership ap-
proach. In the 18th IFAC world congress, Milano,
Italy, 2011.

[11] H. Tanaka, Y Ohta, and Y Okimura. A local approach
to lpv-identification of a twin rotor mimo system. In in
proceedings of the 47th IEEE Conference on Decision
and Control Cancun, Mexico, 2008.

[12] R. Toth, F. Felici, P. Heuberger, and P Van den Hof.
Discrete time lpv i/o and state-space representations,
differences of behavior and pitfalls of interpolation.
In in proceedings of the European Control Conference
(ECC), Kos, Greece, 2007.

[13] J. Van Willem and M Verhagen. Subspace identifica-
tion of mimo lpv systems: the pbsid approach. In in
Proceedings of the 47th IEEE Conference on Decision
and Control Cancun, Mexico, 2008.



[14] P. Gebraad, J. Van Wingerden, G. Van der Veen, and
M Verhaegen. Lpv subspace identification using a
novel nuclear norm regularization method. In Ameri-
can Control Conference on O’Farrell Street, San Fran-
cisco, CA, USA, 2011.

[15] V. Verdult and M Verhaegen. Kernel methods for sub-
space identification of multivariable lpv and bilinear
systems. Automatica, 41:1557–1565, 2005.

[16] J. Blesa, V. Puig, and J Saludes. Identification for pas-
sive robust fault detection using zonotope based set
membership appraches. International journal of adap-
tive control and signal processing, 25:788–812, 2011.

[17] P. Puig, V. Quevedo, T. Escobet, F. Nejjari, and
S De las Heras. Passive robust fault detection of dy-
namic processes using interval models. IEEE Transac-
tions on Control Systems Technology, 16:1083 –1089,
2008.

[18] B. Boussaid, C. Aubrun, and M.N Abdelkrim. Set-
point reconfiguration approach for the ftc of wind tur-
bines. In the 18th World Congress of the International
Federation of Automatic Control (IFAC), Milano, Italy,
2011.

[19] B. Boussaid, C. Aubrun, and M.N Abdelkrim. Two-
level active fault tolerant control approach. In The
Eighth International Multi-Conference on Systems,
Signals Devices (SSD’11),Sousse, Tunisia, 2011.

[20] B. Boussaid, C. Aubrun, and M.N Abdelkrim. Active
fault tolerant approach for wind turbines. In The In-
ternational Conference on Communications, Comput-
ing and Control Applications (CCCA’11), Hammamet,
Tunisia, 2011.

[21] P. Odgaard, J. Stoustrup, and M Kinnaert. Fault toler-
ant control of wind turbines-a benchmark model. IEEE
Transactions on control systems Technology, 21:1168–
1182, 2013.

[22] P. Odgaard and J Stoustrup. Results of a wind tur-
bine fdi competition. In 8th IFAC symposium on
fault detection ,supervision and safety of technical pro-
cesses,Mexico, 2012.

[23] C. Sloth, T. Esbensen, and J Stoustrup. Robust and
fault tolerant linear parameter varying control of wind
turbines. Mechatronics, 21:645–659, 2011.

[24] H. Chouiref, B. Boussaid, M.N Abdelkrim, V. Puig,
and C Aubrun. Lpv model-based fault detection:
Application to wind turbine benchmark. In Interna-
tional conference on electrical sciences and technolo-
gies (cistem’14), Tunis, 2014.


