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Spurious ambiguity is the phenomenon whereby distincvdgans in grammar may assign the same
structural reading, resulting in redundancy in the paraeckespace and inefficiency in parsing. Un-
derstanding the problem depends on identifying the esdentithematical structure of derivations.
This is trivial in the case of context free grammar, wherethiese structures are ordered trees; in the
case of type logical categorial grammar, the parse strestare proof nets. However, with respect
to multiplicatives intrinsic proof nets have not yet beewegi for displacement calculus, and proof
nets for additives, which have applications to polymorphiare not easy to characterise. Here we
approach multiplicative-additive spurious ambiguity bgans of the proof-theoretic technique of
focalisation.

1 Introduction

In context free grammar (CFG) sequential rewriting deroreg exhibit spurious ambiguity: distinct
rewriting derivations may correspond to the same parsetsiiel(tree) and the same structural rea&ing.
In this case it is transparent to develop parsing algoritammsding spurious ambiguity by reference to
parse trees. In categorial grammar (CG) the problem is mdotes The Cut-free Lambek sequent proof
search space is finite, but involves a combinatorial expfosf spuriously ambiguous sequential proofs.
This can be understood, analogously to CFG, as inessenlt@akeorderings, which we parallelise in
underlying geometric parse structures which are (planagfmets.

The planarity of Lambek proof nets reflects that the fornmalis continuous or concatenative. But
the challenge of natural grammar is discontinuity or appiadisplacement, whereby there is syntac-
tic/semantic mismatch, or elements appearing out of pldeace the subsumption of Lambek calculus
by displacement calculu3 including intercalation as well as concatenation [17].

Proof nets folD must be partially non-planar; steps towards intrinsicecirress criteria for displace-
ment proof nets are made in [5] and [13]. Additive proof nets @nsidered in_[7] and [1]. However,
even in the case of Lambek calculus, parsing by referenastriasic criteria [14], [[18], appendix B, is
not more efficient than parsing by reference to extrinsiteda of normalised sequent calculls [6]. In
its turn, on the other hand, normalisation does not extequdduct left rules and product unit left rules
nor to additives. The focalisation ofl[2] is a methodologydmay between proof nets and normalisation.
Here we apply the focusing discipline to the parsing as disluof D with additives.

In [4] multifocusing is defined for unit-free MAL4,providing canonical sequent proofs; an eventual
goal would be to formulate multifocusing for multiplicaghadditive categorial logic and for categorial

1Research partially supported by SGR2014-890 (MACDA) of@emeralitat de Catalunya and MINECO project APCOM
(TIN2014-57226-P), and by an ICREA Académia 2012 to GM.AKsato three anonymous WoF reviewers for comments and
suggestions, and to lliano Cervesato for editorial attentAll errors are our own.

2Here we include units, which are linguistically relevant.
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logic generally. In this respect the present paper reptesenintermediate step. Note that|[19] devel-
ops focusing for Lambek calculus with additives, but not d@placement logic, for which we show
completeness of focusing here.

1.1 Spuriousambiguity in CFG

Consider the following production rules:

S—QPVP
QP—QCN
VP— TV N

These generate the following sequential rewriting deivest

S—QPVP—QCNVP-QCNTVN
S5 QPVP-QPTVN-QCNTVN

These sequential rewriting derivations correspond to déneesparellelised parse structure:

S
QP/ \VP
VRN RN
Q CN TV N

And they correspond to the same structural reading; seqlieadvriting hasspurious ambiguity

1.2 Spuriousambiguity in CG

Lambek calculus is a logic of strings with the operatiorof concatenation. Recall the definitions of
types, configurations and sequents in the Lambek calt¢u[dg], in terms of a set”? of primitive types
(the original Lambek calculus did not include the produdt)un

(1) Types F = P F|F|F\F | FeF
Configurations ¢ = N|.7,0
Sequents > = 0=%
Lambek calculus types have the following interpretation:
([C/B]] = {si| Vs, €[[B]],si+s2 € [[C]]}
[[A\C]] = {s|Vsi€[[A],sit+s € [[C]]}
[AeB]] = {sit+s|s1€ [[A]] & s € [[B]]}
The logical rules of. are as follows:
r=A AC)=D ATl =C

L -
A(r,A\C) =D M= A\C

r=B AC)=D F,B:>C/R
A(C/B,I') =D r=C/B
A(A,B) =D N=A T2=8B
o oR

A(AeB) = D 1,2 = AeB
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N=N S=S N= N S=S
N=N N,N\S=S L\L N,N\S=S R
N, (N\S)/N,N=S R N\S= N\S S=S
(N\S)/N,N = N\S S= S/L CN=CN S/(N\S),N\S=S ]
CN=-CN S/(N\S),(N\S)/N,N =S . N=N (S/(N\S))/CN,CN,N\S=-S .
(S/(N\S))/CN,CN, (N\S)/N,N =S (S/(N\S))/CN,CN, (N\S)/N,N =S

Figure 1: Spurious ambiguity

SO /. CN. /. N.
Figure 2: Proof net

Even amongst Cut-free proofs there is spurious ambigudgsicler for example the sequential deriva-
tions of Figurd 1. These have the same parallelised parssiste (proof net) of Figurel 2.

Lambek proof structures are planar graphs which must gatestain global and local properties to
be correct as proofs (proof nets). Proof nets provide a geanperspective on derivational equivalence.
Alternatively we may identify the same algebraic parsecttme (Curry-Howard term):

((XQXen) AX((XTvXn) X))

But Lambek calculus is continuous (planarity). A major sssssue in grammar is discontinuity, hence
the displacement calculus.

2 D with additives, DA

In this section we present displacement calcidysand a displacement logibA comprisingD with
additives. AlthougtD is indeed a conservative extensionLgfwe think of it not just as aextensiorof
Lambek calculus but asgeneralisation because it involves a whole new machinery of sequent eadcul
to deal with discontinuity. Displacement calculus is atogfidiscontinuous strings — strings punctuated
by aseparatorl and subject to operations of append and plug; see HigurelRhe definition of types
and their sorts, configurations and their sorts, and segukmithe displacement calculus with additives:
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a + B a ! 4
— Xk
a B P
a B y
appencH-: Li,Lj — Li+j plug xk: Li+1,Lj — Li+j

Figure 3: Append and plug

(2) Types Zi = Fiyj/F
Fj = Fi\TFis
c%ﬂ = %.jj
Fo = |
Fiv1 o= i) 1<k<i+l
Fi = FiakFiyj 1<k<i+l
35”]‘ = %Jrl@kﬁj 1<k<i+1
F o=
F = Fi&T
Fi = FioF

SortsA=thei st. Ac .%
For examples(St1N)1T2N = s(St1N) 11N = 2 wheresN = sS= 0

Configurations ¢ = N| 2,0
s 1| % | Fis0{O:...: 0}
i0's
For example, there is the configurati@®f;N)T2N{N,1:St;N,S},1,)N,1

Sorts0 = |0|1
For examples(St1N)T2N{N,1:StN,S},1,N,1=3

Sequentz ::= 0 = Ast. sO =sA

The figureﬂ> of a typeA s defined by:

. A if sSA=0
A=< A{l:...:1} ifsA>0
N——
sAl's
Whererl is a configuration of soitandAy, ...,4A; are configurations, theld M ® (A; @ ... 4)) is the

result of replacing the successive 1'diby A, ..., A; respectively.
WhereA is a configuration of soiit> 0 andl" is a configuration, th&th metalinguistic wrag\ | I,
1<k<i,is given by
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B) AlkMFN=¢gfA®(1:...:1:T:1:...:1)
k—11s i—k1's
i.e. Al is the configuration resulting from replacing bythe kth separator in\.
In broad terms, syntactical interpretation of displacenwafculus is as follows:

([C/B]] = {s1i|Vs€[[B]],s1+% € [[C]]}

[A\C]] = {s|Vsi € [A]l,s+s € [[C]]}

[AeB]] = {si+s|s€[[Al] & s € [[B]]}
[ = {0}

[[CB]] = {s1| Vs € [[B]],s1xks2 € [[C]]}

[ALCY = {s| Vs € [[Al],s1xks € [C]]}

[[AokB]] = {sixk%|s€[[A] & s € [[B]]}
[ = {1

The logical rules of the displacement calculus with addgiare as follows, whee([") abbreviates
DT @A ... 4A)):

r=B AC)=D ) rg8=c
A(C/B,T) =D Tz C/B
r=A AC)=D Ar=c
\L \R
AN AC) = D M= A\C
AR B)=D , i»A B
AReB) =D [1,72 = AeB
AN) = A R
A<I§>:>AIL A=

r=B AC)=D g8 ==C
bk ———1R
ACTB|) =D [ = CHB

AR B)=D =A T;=8B

Okl OkR
A(AGKB) = D F1lklM2 = AckB

r=A A<8>:>D . ﬁ]kI’:C
ATRARG =D T= Al

A(L) = A IR

A(f?>;»AJL 1=
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r(A)=c rNB)=C

T oc o T oc

Mr=A =8
= A&B

&R

rA)=C r(B)=C

oL
r(AeB) =C

Mr=A =8
— Ry —F®
M= A®B M= A®B

The continuous multiplicative§/, \, e, 1} of Lambek (1958[11]; 1988[10]), are the basic means
of categorial (sub)categorization. The directional dons over,/, and under,\, are exemplified by
assignments such #se: N/CN for the manN andsings N\ S for John singsS, andloves (N\S)/N for
John loves MaryS. Hence, forthe man

Ro

CN=CN N=N
N/CN,N = N

And for John singsandJohn loves Mary

N =N S=S L
\L N =N N,N\S:>SL
N, (N\S)/N,N=S

N= N S=S
N,N\S=-S

The continuous produat is exemplified by a ‘small clause’ assignment sucltassiders(N\S)/
(Ne(CN/CN)) for John considers Mary socialis.

CN=CN CN=-CN
CN/CN,CN= CN
N=N CN/CN= CN/CN R N=N S= S\L
N,CN/CN = Ne(CN/CN) N,N\S=S .
N, (N\S)/(Ne(CN/CN)),N,CN/CN = S

Of course this use of product is not essential: we could jesvell have used(N\S)/(CN/CN))/N
since in general we have bo#fy (CeB) = (A/B)/C (currying) and(A/B)/C = A/(CeB) (uncurrying).
The discontinuous multiplicativels', |, ©, J}, the displacement connectives, of Morrill and Valentin

(2010[16]), Morrill et al. (2011[117]), are defined in relatito intercalation. When the value of tkeub-
script is one it may be omitted, i.e. it defaults to one. Qinfxation, or extractiont, is exemplified by

a discontinuous idiom assignmagivest1+thet-cold+shoulder (N\S)TN for Mary gives the man the
cold shoulderS

CN=CN N= N L N =N S=S
N/CN,CN=-N N,N\S=S

N, (N\S)tN{N/CN,CN} = S
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Infixation, |, and extraction together are exemplified by a quantifiegagsénteveryone(StN)| S
simulating Montague’s S14 quantifying in:

..,N,...=S
R id
...,1L...=StN S:>Su_
.,(SIN)JS... =S

Circumfixation and discontinuous produgt, are illustrated in an assignment to a relative pronoun
that (CN\CN)/((StN)®l) allowing both peripheral and medial extractidiat John likesCN\CN and
that John saw todayCN\CN:

N,(N\S)/N,N = S
N, (N\S)/N,1 = S{N = |
N, (N\S)/N = (SIN)el R CN\CN = CN\CN
(CN\CN)/((SIN)®I),N, (N\S)/N = CN\CN

IL

N.(N\S/NN.S\S=S
N, (N\S)/N,1,9\S= SIN [ o
N, (N\S)/N,S\S= (SIN)cl ” CN\CN => CN\CN

(CN\CN)/((StN)®I1),N,(N\S)/N,S\S=- CN\CN

The additive conjunction and disjunctiof&, @} of Lambek (1961[9]), Morrill (1990[15]), and
Kanazawa (1992[8]), capture polymorphism. For exampleatiditive conjunction & can be used for
rice:N&CN as inrice grows Sandthe rice growsS.

N=N
— &L, N/CN,CN,N\S= S
N&CN= N S=S &L,
\L  N/CN,N&CN,N\S=S
N&CN,N\S=S

The additive disjunction® can be used fois: (N\S)/(N@®(CN/CN)) as inTully is Cicera S and
Tully is humanistS

N=N CN/CN= CN/CN
ORy SRy
N = N@&(CN/CN) N\S= N\S . CN/CN = N@®(CN/CN) N\S=-N\S L
(N\S)/(N®(CN/CN)),N = N\S (N\S)/(N®&(CN/CN)),CN/CN = N\S
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3 Focalisation for DA

In focalisation situated (antecedent, inpUtsuccedent, output) non-atomic types are classified as of
negative (asynchronous) or positive (synchronqaarity according as their rule is reversible or not;
situated atoms are positive or negative according to thes. T he table below summarizes the notational
convention on formulaB, Q, M andN:

input | output
sync. Q P
async.| M N

The grammar of these types polarised with respect to inpdtoamput occurrences is as follows;
Q andP denote synchronous formulas in input and output positiepeetively, whereaM andN de-
note asynchronous formulas in input and output positiopeetsvely (in the nonatomic case we will
abbreviate thudeft sync., right synch., left async., and right async.

(4) Positive output P = AtT | AeB° |I° | AOKB° | J° | A®B°
Positive input  Q := At |C/B*|A\C* |C1«B*| AlkC*® | A&B*
Negative output N = At~ |C/B° | A\C° | C1«B°| AlkC° | A&B°
Negative input M = At" |AeB* |I°*| AokB® | J* | ADB®

Notice that ifP occurs in the antecedent then this occurrende isfnegative, and so forth.

There are alternating phases of don't-care nondeterrtinigigative rule application, and positive
rule application locking on téocalisedformulas.

Given a sequent with no occurrences of negative formulaschooses a positive formula as principal
formula (which is boxed; we say it is focalised) and applissop search to its subformulas while these
remain positive. When one finds a negative formula or a liténgertible rules are applied in a don't
care nondeterminitic fashion until no longer possible, wheaother positive formula is chosen, and so
on.

A sequent is either unfocused and as before, or else focusktas exactly one type boxed. The
focalised logical rules are given in Figuifgs 4-11 includ®grry-Howard categorial semantic labelling.
Occurrences oP, Q,M andN are supposed not to be focalised, which means that theiligedeoccur-
rencemustbe signalled with a box. By contrast, occurrences@,C may be focalised or not.

4 Completeness of focalisation for DA

We shall be dealing with three systems: the displacemenulcsl DA with sequents notatefl = A,
theweakly focalisedlisplacement calculus with additivB#\¢. with sequents notatei—>/A, and the
strongly focaliseddisplacement calculus with additiv®A gy with sequents notatel—-A. Sequents
of both DAoc and DA, may contain at most one focalised formula, possiblyWhen aDAjq: se-
guent is notated—>,A < foc, it means that the sequent possibly contains a (unigquoalied formula.
Otherwise A—> A means that the sequent does not contain a focus.

In this section we prove the strong focalisation properttiie displacement calculus with additives
DA.

The focalisation property for Linear Logic was discovergd2]. In this paper we follow the proof
idea from [12], which we adapt to the intuitionistic non-aontative cas®A with twin multiplicative
modes of combination, the continuous (concatenation) hadliscontinuous (intercalation) products.
The proof relies heavily on the Cut-elimination property ¥eeakly focalisedDA which is proved in
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A:x =Cix . rB:y=Cix
M= A\C:Axx M= C/B:Ayx
A(ﬁ:x,ﬁ:y} =D:w

ol
A(AeB:2) = D: w{mz/x, bz/y}

AN = A

— 1L
A(l:x) =A@

K):x|kF:>C:x R F]kﬁsy:C:x
M= AKC:AXY “ M= CtB:Ayx

A(K):x\kﬁsw =D:w
AAGKB: 2) = D: w{mz/x, bz/y}

Al) = A

—
A(T:x) =A@

Figure 4: Asynchronous multiplicative rules

N=A¢p I =By
M= A&B: (o, y)

F(K):X> =Cix1 F(ﬁ:y} =Cix2 L
@
M{ADB:2) = C:z— X.X1,Y-X2

Figure 5: Asynchronous additive rules

37
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r=[Ple A(@:Z>:>D:w\l_ r=[Ple AM:2=Dw \w
A(F,:y> = D:w{(y 9)/z} A(F,:y> = Diw{(y 9)/z}

r=N:¢@ A(@;z>:>D;w . M= N:@ A(M\:z>:>D:w
AT NGl = Diofya)yz ANy = Doly9)/2)

\L

r=[Ply A<@:z>:>D:w/L =Ny A(@:z>:>D:w
A(: x,I) = D:w{(xy)/z} A(:x,r> = D:w{(xy)/z}
F:@:w A<mzz>:>D:w M= M:y A(W:z>:D:w

A(: X,y = D:w{(xy)/z} A<: X,y = D:w{(xy)/z}

Figure 6: Left synchronous continuous multiplicative sule

/L

/L

F:E:qo A(@:z>:>D:w F:>®:q0 A<mzz>:>D:w
L kL
AT IPUQLY) = Dio(y@)/z AFWPLM ) = D:w{(y 9)/2
r=N:o A(@:z>:>D:w n = N:gp A(V:z}:D:w L
ACK(NIQEY) = Doly @)z AT KNMEy) = Diaf(y 9)/2)
r=[Ply A(@:z>:>D:w M= Ny A(@:z>:>D:w
kL kL
A[QIPEXKT) = D oo{ (x ) /2} A{QUN|XIKT) = D: w{(x ¥)/2)
r:>®Zl,U A(V:z}:D:w . M= N:y A<m:2>:>D:w .

A(:x\kl'>:>D:w{(x Y)/z} A(:x\kl'> = D:w{(xy)/z}

Figure 7: Left synchronous discontinuous multiplicativées



Morrill and Valentin

o]

X)) =Cix - F(WT:X>:>C:X
1

r{Q&B|2) = C:x{mz/x} I'(: 2) = C: x{mz/x}

K

&L

y)y = Cix I'(WT:y>:>C:X

&L,
r(A&M}:2) = C:x{maz/y)

I
I'(: 2) = C: x{mez/y}

Figure 8: Left synchronous additive rules

ol

&L,

ri=[Pfo F2:>:Lp.R =[Ple =Ny
F1,F2=[PiePs]: (¢, ) M1,72=[PeNJ (9, y)

=N =[Py FM=N:g T=Nxy

R *R
2= NePE(gg)  Tul2=[NeNf(@w)

——— IR
A=[1]0

Figure 9: Right synchronous continuous multiplicativeesul

F1:>:q0 r2:>:w®R r=[Ple Ta=Ny

k OkR
M1lkl2 = [PiokPe ) (¢, W) M1l 2 = [PokN] (¢, @)

M=Ng T=[Ply M=N:g T2=Nay

kR ®
M1kl 2 = [NoP (9, ¢) MMz = [NiON | (@, )

kR

———JR
1=[J3]0

Figure 10: Right synchronous discontinuous multiplicatiules

——— &Ry Ry
M= |PaBlng r=[NeBlne

SR ORy
M= |AaPl iy M= |ADN 12y

Figure 11: Right synchronous additive rules

39
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the appendix. In our presentation of focalisation we hawed®d thereactrules of [2] and[[3], and use
instead a simpler, box, notation suitable for non-comniuitgt

DAFqc is @ subsystem ddAyc. DAfoc has the focusing rulgecand Cut rulep-Cut;, p-Cut, n-Cut
and n—Cuth shown in[5), and the synchronous and asynchronous rulpkgésl before, which are read
as allowing in synchronous rules the occurrence of asymclu® formulas, and in asynchronous rules
as allowing arbitrary sequents with possibly one focaligmdhula. DAgo. has the focusing rules but
not the Cut rules, and the synchronous and asynchronous didplayed before, which are such that
focalised sequents cannot contain any complex asynchsoimoonulas, whereas sequents with at least
one complex asynchronous formula cannot contain a fockftsenula. Hence, strongly focalised proof
search operates in alternating asynchronous and syncaly@itases. The weakly focalised calculus
DA+ is an intermediate logic which we use to prove the comple®oéDAF, for DA.

5) A<@>:>W'°‘ foc A:>—W|E
A(8>:>WA A=,P

foc

r:@ A(ﬁ>:wc <O foc o-Cut =N < foc A(>:>WC c
- -Cu
A(T')=uC < foc ! A(T')=uC < foc PE
r—.Pofoc A(P)=,C r—wN  A(N)=,C < foc
n-Cuy n-Cub
A(M)=uC < foc A(M=uC < foc

4.1 Embedding of DA into DA¢oc

The identity axiom we consider fdDA and for bothDA:,. and DAk is restricted to atomic types;
recalling that atomic types are classified into positives it and negative biast:
(6) If PeAtt, P—/P]and P={P]
If Qe At",[Q=wQ and Q[=Q
In fact, the Identity rule holds of any type A. It has the feliog formulation in the sequent calculi
considered here:

K=A in DA

The ldentity axiom for arbitrary types is also known BEta-expansion Eta-expansion is easy to
prove in bothDA andDA;q, but the same is not the case f@Ar,.. This is the reason to consider what
we have called weak focalisation, which helps us to proveathip this crucial property for the proof of
strong focalisation.

Theorem 4.1 (Embedding oDA into DA¢oc) For any configuratiomA and type A, we have thatf = A
thenA—,A.

Proof. We proceed by induction on the length of the derivatio8f proofs. In the following lines,
we apply the induction hypothesis (i.h.) for each premisBAfrules (with the exception of the Identity
rule and the right rules of units):

- Identity axiom:

3|f it is convenient, we may drop the subscripts.
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ﬁﬁ@ i:>WN

foc
- Cut rule: just applyn-Cut
- Units
—— IR
—— IR N—=
O A= e —Wmfoc
——JR
—JR 11— J
(10775 ~ foc

Left unit rules apply as in the case DA.

- Left discontinuous product: directly translates.
- Right discontinuous product. There are caBgskP., N1OkN2, NOKP andPogN. We show one repre-

sentative example:
I:WN
A=P T=N A—syP BN = [Po]

OkR ~s

AT = PoWN M=uN Al N = PON]
Al =/ PON]
KM= PoN] .

A |k [—wPOKN

- Left discontinuousfy rule (the left rule for)k is entirely similar). Like in the case for the right discon-
tinuous productoi rule, we only show one representative example:

P=fp] NN
k

NP ||k P=uN AN)=,A
r=pP AN)=A n-Cut
ANDP[) = A e A(NTP | P)=wA n-Cu

ANTP [T ==wA

AN A

- Right discontinuougy rule (the right discontinuous rule fgg is entirely similar):

n-Cub

AR =B Al A=,B
(1) ——mHR ~» ——— 1R
A= BTWA A=, BT\A
- Product and implicative continuous rules. These folloe #ame pattern as the discontinuous case.
We interchange the metalinguisteth intercalation|x with the metalinguistic concatenation ’,’, and we

interchangesy, 1« and|k with e, /, and\ respectively.
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Concerning additives, conjunction Right translates diyeand we consider then conjunction Left
(disjunction is symmetric):

12) AP)=C oL P&M=yP A(P)=,C cut
A(P&M) = C A(P&M)—,C -

where by Eta expansion and application of therule, we haveP&m:mP. O

4.2 Embedding of DA¢qc into DAFec

Theorem 4.2 (Embedding ofDA¢.c into DAEy:) For any configurationA and type A, we have that if
A=, A with one focalised formula and no asynchronous formulaiopence, thel\—>A with the same
formula focalised. Ih—-,,A with no focalised formula and with at least one asynchrafoumula, then
A=A,

Proof. We proceed by induction on the size DA sequent. We consider Cut-fre®A;; proofs
which match the sequents of this theorem. If the last ruledgchl (i.e., it is not an instance of tliec
rule) the i.h. applies directly and we gbAr,c proofs of the same end-sequent. Now, let us suppose
that the last rule is not logical, i.e. it is an instance of fiberule. Let us suppose that the end sequent
A=, Ais a synchronous sequent. Suppose for example that théstedtdbrmula is in the succedent:

(13) A—w(P]

foc

The sequend&:m@ arises from a synchronous rule to which we can apply i.h.uksuppose now that
the end-sequent contains at least one asynchronous foriivalaee three cases which are illustrative:

(14) a. AAGKB)=u[P]

b. A(Q)=wBhA

c. A(Q)=wA&B
We have by Eta expansion thabB— |AckB|. We apply to this sequent the invertibe left rule,
whenceﬁ]k§:>. In casel[(14a), we have the following proofl\¢o:

K B=wAB| ARGB)=[P]
(15) A(K | B)==y|P] f
AK | B)=uP >

p-Cuy

4For a given typeA, the sizeof A, |A|, is the number of connectives L By recursion on configurations we have:

IA] == 0
|R,A| = |Al+]|A]forsA=0
L4 == |4l
sA
|A{Dy: - Bsal| = \A|+_21\Ai|
=

Moreover, we have:
Q] —whl = 18(3)—wAl
|A==u[ P] = [A=uP|



Morrill and Valentin 43

To the abovéA ¢ proof we apply Cut-elimination and we get the Cut-fi&,c end-sequen( A |k§
—=wP. We have\A(A]k§>:>WP\ < ]A<A®k§>:>WP] We can apply then i.h. and we derive the
provable DA gy sequentA(fﬂk )=—P to which we can apply the lefty rule. We have obtained

A(AGxB)==P. In the same way, we have t \kﬁ:m,vB. Thus, in case{14b), we have the
following proof in DAfqc:
%
A<@> —wBNA  |BNA||k A=\B

16 A[Q) K R—uB
A(Q) [ A=B

As before, we apply Cut-elimination to the above proof. Wetlge Cut-freeDA¢qc end- sequerﬂs(@) |kﬂ>
—uB. It has size less thdm<6>:>WBTkA\ We can apply i.h. and we get tlB#\ .. provable sequent
<f§>|k A =B to which we apply thegy right rule.

In case[(T#c):

a7 A<@> — W A&B
A(G)=>,A&B

p-Cug

foc

foc

by applying thefoc rule and the invertibility of & we get the provabl®A+ sequents&<6>:>WA
andA(Q)=-B. These sequents have smaller size thaQ))—-A&B. The aforementioned sequents
have a Cut-free proof iDAsc. We apply i.h. and we ge!l(6>:>A andA<6>:>B. We apply the &
right rule inDAgq, and we geﬂ<6>:>A& B. O

By this theorem we obtain the completeness of strong fca#is.

5 Example

We can have coordinate unlike types with nominal and adg@atiomplementation as:
(18) [Tully]+is+[[Cicero+and+humanist]] : Sf
Lexical lookup of types yields:

(19) [MNt(s(m)) : b], M((()IgN1(s(g))\Sf)/(3aNab(3g(CNg/CN)) :
AAAB(Pres(A— C.[B=C];D.((D AE[E=B]J) B))), [[MVgNt(s(g)) : 007,
WY fva((W(((()Na\Sf)/(IbNbp3Ig(CNg/CNg))\((HNa\SH)\[ ] (((()Na\Sf)/
(3bNb3g(CNg/CN))\(ONa\ST)))/B(((()Na\Sf)/(3bNbp3Ig(CNg/CNg))\(ONa\SH))) :
AFAGAHAI((GH) ) A((F H) 1)],8¥n(CNn/CNn) : "AJAK](J K) A (teetotal K)]]] = Sf

The bracket modalitie§ and[]~tmark as syntactic domains subjects and coordinate stagctuich are
weak and strong islands respectively. The quantifiers asddider structure mark agreement features
such as third person singular for any gendeiigoil he normal modality] marks semantic intensionality
and @ marks rigid designator semantic intensionality. The eXanmas positive and negative additive
disjunction so that the derivation in Figuies 1216 illatds both synchronous and asynchronous focus-
ing additives. This delivers the correct semanti¢Bres[t = c|) A (Pres("humanist })].
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CNA = CNA = CNA ]
CNA/CNA|CNA = CNA .
Vn(CNn/CNn) ,CNA = CNA .
[Vn(CNn/CNn) |,CNA = CNA
CVn(CNn/CNn) = | CNA/CNA R Nt(s(m)) = Nt(s(m))
OVN(CNn/CNn) = |3g(CNg/CNg) R INt(s(m))] = [ ()Nt(s(m)) Sf| = Sf
OVn(CNn/CNn) = | 3bNb®3g(CNg/CNg) R [Nt(s(m))],| ONt(s(m))\Sf| = Sf L
[Nt(s(m))],| (()Nt(s(m))\Sf)/(IbNbs3Ig(CNg/CNQ)) |, O¥Yn(CNn/CNn) = Sf /b
()Nt(s(m)), (()Nt(s(m))\Sf)/(3bNbp3Ig(CNg/CNg)),0vn(CNn/CNn) = Sf
(()Nt(s(m))\Sf)/(3bNbd3Ig(CNg/CNQ)),00vN(CNr/CNn) = ()Nt(s(m))\Sf
OVN(CNI/CNRY = (((Nt(s(m))\S )/(3bNb=3g(CNg/CNg))\ () NE(S(m))\S )

Ovn(CNr/CNn) = B(((()Nt(s(m))\Sf)/(3bNbo3g(CNg/CNg))\(ONt(s(m))\Sf))
@

Figure 12: Coordination of unlike types, Part |

Ni(S(A)) | = Ni(s(A))
vON(s() | = NH(SA)
WygNt(s(g)) | = Nt(S(A) NS(m) = NHSm)
WYgNi(s(g)) = [3bNb] g NS = [ ONt(s(m) [st] = st
WYgNt(s(g)) = |3bNbe3g(CNg/CNg INKSm)L [ ONUSMNST] = ST
INt(s(m))].] ()Nt(s(m))\Sf)/(3bNb3g(CNg/CNg)) | mygNt(s(g)) = Sf
(Nt(s(m)), ()Nt(s(m))\Sf)/(IbNbH3g(CNg/CNg)), BygNt(s(g)) = Sf
(ONH(S(m)\S )/ (SoNB: Jo(CNG/CNG), BVON(s() = ONUSMNST |
WygNt(s(g) = ((()Nt(s(m))\Sf)/(3bNbB3g(CNg/CNG))\(()Nt(S(m))\S )
(

WvgNt(s(g)) = B(((()Nt(s(m))\Sf)/(3bNbo3g(CNg/CNg))\(ONt(S(m))\ST))
@

\_/\_/

HmR

Figure 13: Coordination of unlike types, Part Il
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Nt(s(m)) = Nt(s(m)) R
N2 = N2 Nt(s(m)) = | 3gNt(s(g))
N2 > [Gana Nism)] = [0saNise)] | [T = S
N2 = |JaNap3g(CNg/CNg) R INt(s(m))],| ()JgNt(s(g))\Sf| = Sf . \
[Nt(s(m))],| ({)FgNt(s(g))\Sf)/(3aNas3g(CNg/CNg) | N2 = Sf mL /
[Nt(s(m))],| B((()3gNt(s(g))\Sf)/(FaNabIg(CNg/CNQ)) ||N2 = Sf L
[Nt(s(m))], B((()3gNt(s(g))\Sf)/(3aNabIg(CNg/CNg))),3bNb = St
(Nt(s(m)), B((()IgNt(s(g))\S)/(FaNap3g(CNg/CNg))),FbNb = St
©)
Figure 14: Coordination of unlike types, Part IlI
CN1= CN1 = CN1 ]
CN1/CN1CN1 = CN1 R
CN1/CN1 = CN1/CN1 R
CN1/CN1 = | (CN1/CNI)L(CNI1\CNI) " Nt(s(m)) = Nt(s(m)) =
CN1/CN1 = |39((CNg/CNgLI(CNG\CNg)) R Nt(s(m)) = |3gNt(s(g)) OR
CN1/CN1 = |3g((CNg/CNgL(CNG\CNQg)) [Nt(s(m))] = | ()3gNt(s(g)) Sf| = Sf
CN1/CN1 = |JaNab(3g((CNg/CNgU(CNG\CNg)—I) R [Nt(s(m))],| ()IgNt(s(g))\Sf| = Sf

INt(s(m))],| (()3gNt(s(g))\Sf)/(FaNad (3g((CNg/CNgL(CNG\CNg)) 1)) | CNI/CN1 = St al
[Nt(s(m))],| B((()3gNt(s(g))\Sf)/(FaNap3g((CNg/CNg)) |, CNJ/CN1 = Sf
0

[Nt(s(m))], B((()JgNt(s(g))\Sf)/(FaNas3g(CNg/CNQ))),F9(CNg/CNg) = Sf

(Nt(s(m)), B((()3gNt(s(g))\Sf)/(FaNab3g(CNg/CNg)), Ig(CNg/CNg) = Sf
@

Figure 15: Coordination of unlike types, Part IV



°o o [ v
S
(YNt(s(m)), m((()IgNt(s(g))\Sf)/(JaNaIg(CNg/CNg))),IbNbeIg(CNg/CNg) = Sf BNt(s(m)) | = Ni(s
\R
B((()JgNt Sf)/(3aNap3Ig(CNg/CN ,3bNbs3g(CNg/CN Nt Sf ENt(s Nt Sf Sf
(()3gNt(s(9))\Sf)/(FaNas3g(CNG/CNG)) GCNG/CNG ~ ONUSm)\ST - (MY - [sf] =
W((()3gNi(s(9))\ST)/(FaNas3g(CN/CNG) = ((NI(s(m)\S1)/(3bNb33g(CNg/CN) [WNt(s(m))J.| ONt(s(m)\S ] = ST

\L
[th(S(m))Ll((<>39Nt(S(9))\Sf)/(HaNaﬁBHg(CNQ/CNg))%‘ ((OINt(s(m))\Sf)/(3bNbe3g(CNg/CNg))\ (()Nt(s(m))\Sf) ‘ = Sf

I
[mN(s(m))], B((()3gNt(s(0))\S)/(3aNas3g(CNG/CN)), | [~X(((ONt(s(m))\S )/(3bNb3g(CNG/CNG))\(ONKSm)\ST) | = Sf -
@ [mN(s(m))], () 3gNt(s(0))\ST)/(3aNas T CNG/CN). [ -1~ ((((NE(s(m))\S )/ (3bNB3g(CNG/CNG))\(ONtS(m)\S ) ] = S N
o [mNt(s(m))]. B((()3gNt(s(g))\S )/ (3aNa=3g(CNg/CNg)), [YgNt(s(g)).
(((()N(s(m))\S)/(3bNbx3g(CNG/CNg)))\ (ONt(s(m))\S )\ |1 ((({INE(s(m))\S )/ (3bNb=3g(CNG/CNG))\ (ONH(Sm)\S ) || = Sf

[ENt(s(m))], B(()IgNt(s(9))\ST)/(3aNap3g(CNg/CNg)), [[MYgNt(s(g)),

((((ONt(s(m))\S)/(IbNb53g(CNg/CNg))\ (ONE(S(m)\SH)\[| 7]~ ((()Nt(s(m))\S )/ (3bNb2Ig(CNg/CNg))\ (()Nt(s(m))\S)))/M((((INt(s(m))\S 1)/ (3bNb2Ig(CNg/CNG))\((Nt(s(m))\Sf)) |

OVn(CNn/CNn)|] = Sf

[MNt(s(m))], B((()IgNt(s(g))\SF)/(FaNabIg(CNg/CNg))), [[MYgNL(s(g)),
‘ va((M(((()Na\Sf)/(3bNb3g(CNg/CNg))\(()Na\Sf)\[ | *((({)Na\Sf)/(3bNb3g(CNg/CNg))\(()Na\Sf)))/m((((Na\Sf)/(3bNboIg(CNg/CNg)\ (()Na\Sf))) ‘
OvVn(CNn/CNn)J] = Sf
[ENt(s(m))], B(()IgNt(s(9))\SF)/(3aNap3g(CNg/CNg)), [[MYgNY(s(g)),
‘VfVa((l(((ONa\Sf)/(HbNb@Hg(CNg/CNg)))\(<>Na\ D\ (((ONa\ST)/(3bNbIg(CNg/CNQ)))\(()Na\S1))) /m(((()Na\S)/(3bNbs3g(CNg/CNg)\ ()Na\S 1)) ‘
OVn(CNn/CNn)|] = Sf

[ENt(s(m))], B(()IgNt(s(9))\SF)/(3aNap3g(CNg/CNg)), [[MYgNY(s(g)),
| W 1va((W(((()Na\S f)/(3bNbs3g(CNG/CNG))\ (ONa\S )\ [ X((()Na\ST)/(FbNb33g(CNG/CNG))\ ((INa\ST))/m((((Na\S f)/(3bNb=3g(CNG/CN))\ (INa\ST)) |
OVn(CNn/CNn)J] = Sf

vL

/L

vL

174

Buisired Joj Buisnao) v
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Appendix: Cut Elimination

We prove this by induction on the complexitst, h) of top-most instances @ut, whered is the sizB of

the cut formula andh is the length of the derivation the last rule of which is the @ile. There are four
cases to consider: Cut with axiom in the minor premise, Cth axiom in the major premise, principal
Cuts, and permutation conversions. In each case, the critypdé the Cut is reduced. In order to save
space, we will not be exhaustive showing all the cases beaaasy follow the same pattern. In particu-
lar, for any synchronous logical rule there are always f@ases to consider corresponding to the polarity
of the subformulas. Here, and in the following, we will shomhoone representative example. Concern-
ing continuous and discontinuous formulas, we will showydhke discontinuous cases (discontinuous
connectives are less known than the continuous ones of élive [phmbek Calculus). For the continuous
instances, the reader has only to interchange the metaistigwrap|x with the meta-linguistic concate-
nation’,’, ®k with e, Ty with / and |« with \. The units cases (principal case and permutation conversio
cases) are completely trivial.

Proof. -1d cases:

P—=[P] A(P)=,B foc
(20)
A(I_3>>:>WB < foc

p-Cuty ~ A(ﬁ>:>WB<>foc

A—,N < foc :>WN

A(N)=yB ¢ foc
The attentive reader may have wondered whether the folipldrcase could arise:

o G0 r@=a
r(Q)=A

If Qwere a primitive type, andl” were not the empty context, we would have then a Cut-freenvadde
sequent. For example, if the right premise of the Cut rul@Il) (vere the derivable sequepig\s=-s,

we would have then as conclusion:

(22) [9],d\s=s
Since the primitive type in the antecedent is focalised, there is no possibility lypg the\ left rule,
which is a synchronous rule that needs that its active faartmube focalised. Principal cases:

p-Cuy, ~ A(N)=,B o foc

n-Cut

o foc cases:

A:>W‘ :
————foc A=[P] T(P)==wAO foc
(23) A=,P M(PF)=wA < foc ~ p-Cut,
n-Cu M (A)=-wA < foc
I (A)=wA < foc

5The size of/A| is the number of connectives appearinghin
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A(N])=wA
(24) A—=N M(N)=,A
M{A)y=wA
e logical connectives:
Al Pi==P; © foc M=ufP]  Ta(Ps)=wA L
(25) A upo P O foo Mo PPy kM 1) = wA ~
[ (AT 1) =>wA © foc PrCut

f
oc  A=N F(N)=A .y
n-Cut [ () =wA

APl=P> O foc  To(B)==wA

M=/ P1] M2 (A[kPr)==wA © foc

M2(AT 1) =wA < foc
The case of is entirely similar to thefy case.
The case of is entirely similar to thefy case.

n-Cut

p-Cut

M=>y[P]  Dy=—uN M(PN)=,A O foc

okR OkL
(26)  AqlkAp=>w POKN M (PEORN)=,A < foc ~
1l (PON)=>w .U
I <A1|kA2> — WA O foc

M=[P] T(P|kN)=yAO foc

-Cut
Ap=>N [ (AgN)=>wA © foc . bp !
n-Cu
(A1 |kA2)==wA < foc
A—,Q < foc A=A foc R I'<@> —wB oL
(27) A—,Q&A < foc M| Q&A =B c
-Cu
I {Ay=—,B < foc p-Cub
A—=-Q < foc r<@> —,B
p-Cut
I (A)=—wB < foc
A=s,M O foc  A=,A < foc R M (M)=—>uB 2L
(28) A—wM&A O foc r(MeA)—8
-Cu
I (A)=—wB < foc p-CUb

A=—M & foc  (M)=>,B
I (A)=wB < foc
- Left commutativep-Cutconversions:

n-Cut
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A Q)=wN ¢
(29) A(Q)=—N o r<>:>wc ~

F(B(0))—wC PCUt

A(@):WN F<>:>WC
rAQ))=nC
MA(Q)=uC

A(R m:@
(30) A A@kB>:>W® [ (P)==uC © foc o
[ (A(ADB))=—uC © foc Pt

p-Cut

foc

AR B)==wP] T (P)==,C ¢ foc
F(A(K|B))==C © foc
®
M (A(AGKB))=-C < foc

p-Cuy

AR B)=wN < foc L
(31) AAGKB)—wN O foc  T{N)=uC e
-Cu
M (A(AGB))==-C < foc Pt

AMEEB)=WNOfoc (N )=uC -
(A(E [ B))==uC © foc Pt
M (D (AE) ) —wC O foc ¥

Fi=ufPi] o Ng)=uN "
k

(32) Mo NitwPy |kl 1)==wN e(>:>wC p-Cub, M
O 2( NutkPL [k 1)) =>uC

F1<>:>WN G)() ==wC
F1—u[P] 0( 2 (No))—C

p-Cug

kL
O(M2( NaTkPa k1)) ==wC
(K)=[P] r(B)=[p]
(33) [ (AGB)=y| P] @ A(P)=,C ¢ foc ~

p-Cut
Al (ADB))=-,C < foc
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M(A)=[P] A(P)=,C ¢ foc cu M(B)==yP| A(P)=,C foc cu
-Cu -Cu
A(T(R))=,C © foc Pt AT (B))==,C © foc ] Pt
@
AT (ADB))==,C < foc
F(ﬁ>:>WN < foc F(§>:>WN < foc L
>
(34) [ (AGB)—wN < foc AN p=C - ~
-Cu
AT (A3B))=,C < foc piu
F(ﬁ>:>WN < foc A<>:>WC c F<§>:>WN < foc A<>:>WC c
-Cu -Cu
A(F(ﬁ>>:>wc<>foc Pt A<F<§>>:>WC0foc L Pt
7
AT (A3B))=-,C < foc
- Right commutativgp-Cutconversions (unordered multiple distinguished occumsrare separated
by semicolons):
rFQ)— a—fP] TRQ)—ue
C p' Ul
(35) A= [P]  T(P;Q) =>WC - F<A;@>=>WC
3) p-Cug foc
M{4; Q)=wC M{A; Q)=uC
M) — A= [P] T(P)=
3) TR P o) et
- - e p-Cut; B L foc
M{Ay=P, M{AY=wP,
F<ﬁ>]kﬂ>:>WB<>focTR A==y[P] T(P)kA=>,B o foc cut
-Cu
(B7) A=[P] T (P)=>uBNA < foc kC L (A A==,B © foc . Pt
-Cu
[ (A)=yBHA © foc Pt [ (A)—wBlA © foc
%
F<>|kA:>WB A—,N © foc F(>]kﬂ>:>WB
38 TR — p-Cu
(38) A=—,N < foc |'<>:>WBT|<A ~ I {A)|xk A=,B <© foc
p-Cub k
[ (A)y=BTA © foc M (A)=wBMA < foc
M(P; R B)=uC © foc A==[P] T(F;&|B)==yC < foc
Okl = p-Cut,
(39) A=[P]  (P;AiB)=>4C © foc o M(A; K| B)==,C © foc ]
-Cu ®
[ (A; AokB)=,C < foc Pt [ (A; AokB)==,C < foc “
_)
F(; A|B)=uC - A—>,N © foc F(;ﬁ\kﬁ>z>wc cu,
k — p-Cu
(40) A=—,N < foc r(;A@k§>:>Wc c ~ (4, A|k§>:>WC O foc
-Cu
M (A; AOkB)=,C © foc Pt [ (B; A0KB)==C < foc
r— e<ﬁ§;_F>>>:>WcT ]
k
(41) A:NE O( P21kPy |kr;ﬁ>:WC ~
p-Cut

O Pa1wPy |« 8)=>uC
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A=[P] O(F;P)=uC

-Cut
r— OF A=
k
O PakP ;) =C
M(P)=uAofoc [(P)=,B foc
&R
(42) A—>[P] M(P)=,A&B ¢ foc cu ~
-Cu
[ (A)=>wA&B © foc Pt
A—WP] T (P)=—,Afoc cut A—[P] T(P)—B o foc cut
-Cu -Cu
I (A)=wA < foc Pt F<A>:>WB<>foc&R Pt
[ (A)=>wA&B O foc
r(N)=uwA F(>:>WB&R
(43) AN © foc r(N])=wa&B . ~
-Cu
M (A)=wA&B < foc p-Cub
A=—N < foc F(>:>WA c A=—=N < foc F():WB
I (A)=wA < foc I (A)=wB < foc aR
I (A)=wA&B < foc

- Left commutativen-Cutconversions:

:>WP n-Cug
-Cu

r<A<6>>:»Wc ' r<A<6> —cr

AR B)=P < foc ]
(45) A(AGDKB)==,P © foc K M(P)=uC .

M {A(AGKB))==,C < foc -t

ARB)=wP O foc T (F)=C
n-Cut

A(R | B))=>,C © foc ]
®
M (A(AGB))==-,C < foc

ARWE) =N
(46) DADBI—wN < T[(N)=uC o foc o
n_
M {A(AGKB))==,,C < foc ue
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ARB)=wN [ (N)=,C < foc
— n-Cub
MA(K[B))==C © foc ]
M (B (AOEB) —uC O foc
M1=[PL] r2(>:>WPT ]
k
47) o NPy 1) =>wP O(P)=C ~
n-Cuy
O(M2( NP1 ["1)) =>uC
F1<>:>WP O(F)=C cut
n-Cug
M1=[PL] @<r2<>>:>wc "
k
O > (NeTuPy T 1)) =
M(R)=wPofoc [(B)=,P < foc
oL
(48) M (ACB)=yP © foc A(P)=,C © foc o
n-Cu
AT (ATB)) = C © foc '
[(R)=wPOfoc  A(P)=uC M[(B)=wPofoc A(P)=,C
— n-Cut n-Cut;
AT (K))==,C © foc AT (B))==,C ¢ foc ]
AT (ADB))=,C < foc N
M(A)=wN T (B)==uN
(49) [ (ASB)=—,N v A(N)=,C © foc . ~
n_
AT (AB))=,C < foc ue
M(A)=wN  A(N)=,C ¢ foc MB)=wN A(N)=,C o foc
— n-Cub n-Cub
AT (K))==,C ¢ foc AT (B))==4C < foc ]
Al (A3B))==,,C < foc N
- Right commutativen-Cutconversions:
F(W;@>:>wcf A=—N F(W;@):WC n-Cub
oC -
(50) A— N M[(N; Q)=C ~ F(A;@>=>WC
n-Cub foc
r(0; Q)=uC [0 Q)—uC
r(ﬁ>:>@f A=uyN  T(N)=/P] cut
oC n-Cu
(61) A=uN  T(N)=P ~ r(8)=u[P]
n-Cub —  —foc

M {A)=P r{A)=wP

53
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M(P) | A=B

A—,P <O foc

MA focusing for Parsing

M(P)|«A=B

K — n-Cut
(52) A=y P O foc  T(P)=,BhA new M (A) |« A=,B © foc
[ (A)=,BHA < foc [ (A)=,B A < foc
F(ﬁﬂkﬁ:mB < foc A=—=N F(I_3>>\kﬂ>:>WB < foc
(53) A=>yN T (P)==uBA O foc o ~ (A A =,B © foc nCub
[ (&)= B A © foc nCub [ {A)—BTA O foc
M(P; A B)=uC A=wP Ofoc  T(P;AB)=uC
(54) AP O foc  T(PATE) —we & ~ [ (0; A [«B)—uC < foc ncut
[ (A; AoxB)=-,C < foc nCut I (A; AokB)=,C < foc ok
F(W;ﬁ|k§>:>wc < foc A=—yN F(W; ﬁ|k§>:>wc <& foc
(55) A=>yN T (N;A0kB)=>,C < foc ek ~ (A A B)==uC © foc nCub
I (A; AokB)=,C < foc nCub I (A; AokB)=—,C < foc o
r— O(Ps; N)—C L
(56) A==yN O PPy |« N)=uC ~
n-Cub
O( Po 1Py | 8)=>uC
A=N OB N)=,C
F:> @(E);M:WC - nCu
O( PPy | 8)=>uC
MP)=—.A T (P)=.B
(57) A=>,,P © foc M(P)=—,A&B it ~
[ (A)=wA&B < foc
A=—,P T(F)=,A A=s>,P Ofoc  T(P)=,B
n-Cug n-Cuf
M (A)=—=wA < foc M (A)=—wB < foc 4R
I (A)=wA&B < foc
F(W>:>WA < foc F(W>:>WB < foc
(58) A=—yN M(N)=,A&B ¢ foc U R
[ (A)=—wA&B < foc
A= N [ (N)==,A O foc Cu A=>wN  T[(N)=,B o foc Cub
M (Ay=—yA < foc r(Ay=—B < foc aR
I (A)=wA&B < foc

This completes the proof.]
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