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Abstract: We present a theoretical study on coherent extreme ultraviolet
(XUV) attosecond pulse amplification mediated by nonlinearparametric
enhanced forward scattering occurring in the interaction of a strong fem-
tosecond infrared (IR) laser pulse combined with a weak attosecond XUV
pulse train with an atom. We predict large amplification of XUV radiation
when the IR strong pulse and the XUV weak pulse are optimally phased.
We study high-order harmonic processes (HHG) in He, He+ and Ne++, and
show how although the HHG yield is largely affected by the particular atom
used as target, nonlinear parametric XUV amplification is only weakly
affected. We conclude that XUV nonlinear parametric attosecond pulse
amplification can be most efficiently observed by using atomswith a high
ionization potential and that the nonlinear amplification is robust at high
photon energies where HHG is not efficient, such as in thewater-window
spectral region.
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1. Introduction

The simultaneous illumination of atoms with an intense infrared (IR) pulse and a weak extreme
ultraviolet (XUV) pulse has been suggested as a means for table-top coherent XUV radia-
tion sources with shaped attosecond pulses [1, 2] and with high photon energies via selective
yield enhancement [3] in high-order harmonic generation (HHG) processes. The effect of XUV
radiation combined with intense IR pulses on the HHG spectrum has been theoretically and
experimentally investigated by several authors [5–9].

By using the strong field approximation (SFA) [4] it was shownin [3] that the HHG en-
ergy yield can be enhanced in a particular region of the spectrum when a weak XUV pulse
is correctly phased and combined with the IR intense pulse producing high-harmonics. The
theory predicted large enhancement for single 200 as pulsescentered around 11 nm (113 eV).
The enhancement effect is due to enhanced XUV nonlinear parametric forward scattering pro-
cesses from the non-stationary electronic wave packet promoted by the intense IR driving field.
Parametric amplification of attosecond pulse trains at 11 nmhas recently been corroborated
experimentally [7]. The measurements suggest that amplification takes place only if the seed
pulse train is perfectly phased to the driving laser pulse inthe amplifier, as predicted by the
theory in [3].

In the present study we address the interaction of atoms withdifferent ionization potentials,
such as He, He+ and Ne++, with an intense infrared (IR) laser pulse combined with a weak
extreme ultraviolet (XUV) pulse train. We investigate HHG processes together with nonlinear
parametric amplification of the XUV pulse trains by performing a detailed study of the SFA
theory in both the region around 100 eV and thewater-windowregion around 300 eV. The later
is specially relevant for x-ray spectroscopy techniques inmedical and biological sciences. As
it will be shown, we observe how although the HHG yield is largely affected by the particular
ionization potential of the atom, stimulated processes from nonlinear parametric interactions are
only weakly affected. Nonlinear parametric amplification is therefore easily observed in atoms
of a high ionization potential such as He+ and Ne++. Furthermore, our simulations predict that
XUV nonlinear parametric pulse amplification can be efficiently produced in thewater-window
spectral region, where the efficiency of HHG is poor.

2. Numerical simulations

The theoretical model that we consider is based on the single-atom response calculated by
solving the Schrödinger equation in the strong field approximation (SFA) in the nonadiabatic
form, so that the full electric field of the laser pulse is usedto calculate the nonlinear dipole
moment, which in the saddle-point approximation can be written as [4]

x(t) = i
∫ t

0
dt′

(

π
ε + i(t− t ′)/2

)3/2

×d∗

x [pst(t, t
′)−A(t)]e−iSst(t,t′)dx[pst(t, t

′)−A(t ′)]E(t ′)+ c.c. (1)

The driving laser field in our study is composed of a strong femtosecond IR pulseEIR(t) and
a weak attosecond XUV pulse trainEXUV(t), so thatE(t) = EIR(t)+EXUV(t), and we have
considered the dipole matrix element of hydrogenlike atomsfor transitions to and from the

continuumd(k) = i(27/2I5/4
p /π)(k/(k2+2Ip)

3).
We specifically study the response of He (Ip = 24.59 eV), He+ (Ip = 54.42 eV) and Ne++ (Ip

= 63.45 eV) to an IR intense pulse combined with a weak XUV pulse. The IR field consists on a
10 fs laser pulse with a Gaussian temporal profile, carrier-envelope phase 0◦, central wavelength
of 800 nm, which produces high-order harmonics with a photonenergy cutoff at≈ 150−400



eV depending on the atom and the IR peak intensity considered. The XUV field consists on a
10 fs envelope train of Gaussian 200 as pulses, delayed by half IR period, with carrier-envelope
phase 0◦ and with a central wavelength well in the plateau of the generated HHG spectrum.
We compute and compare the results in two different spectralregions: first we analyze the
amplification of a XUV pulse train with central wavelength of11 nm sent to the atomic gas
target in combination with an IR pulse of 7× 1014 W/cm2 peak intensity, which results in
a HHG cutoff at≈ 150− 200 eV, depending on the atom considered. We then perform the
simulations for a XUV pulse train with central wavelength of≈ 4 nm and an IR pulse of
1.6× 1015 W/cm2, which results in a cutoff at≈ 340− 390 eV, well in thewater-window
region (2.3 – 4.6 nm). Figure 1 shows the main results from thenumerical simulations in the
two different regions. In all the calculations the value of the XUV pulse peak intensityIXUV is
given byIIR/1012, with IIR being the IR pulse peak intensity.
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Fig. 1. (a1)–(a3) and (b1)–(b3): Energy enhancement of the HHG spectra caused by a 11
nm (a1)–(a3) and 4.13 nm (b1)–(b3) attosecond pulse trains for He (a1) and (b1), He+ (a2)
and (b2) and Ne++ (a3) and (b3), as a function of the delay between the IR and theXUV
pulse train. (a4) and (b4): Spectra obtained by consideringthe combination of the IR 800
nm femtosecond strong pulse and the XUV weak pulse train for a11 nm (a4) and a 4.13
nm (b4) pulse seed in the case of He, He+ and Ne++, as indicated.

Figures 1(a1)–1(a3) show the enhancement as a function of the time delay between the IR
pulse and the XUV pulse train. The energy enhancement plotted in Figs. 1(a1)–1(a3) is defined
as the ratio between the spectral energy obtained by using the combined IR+XUV pulses and
the spectral energy obtained by using only the IR laser pulse, integrated in the region of the
corresponding XUV spectral bandwidth. In the case of He+ and Ne++ (Figs. 1(a2) and 1(a3),
respectively) the behavior is similar to the one described in [3], which was observed for cal-
culations assuming a single attosecond XUV pulse: the enhancement follows the shape of the
IR electric field, so that there is a maximum enhancement at the delays that coincide with the



relative maxima (positive and negative) of the IR field carrier. In the case of He [Fig. 1(a1)]
we observe fast oscillations that have a period coinciding with the XUV period, a behavior that
was also reported in [3] for weak values on the XUV peak pulse intensity. This behavior is due
to interference between the HHG signal and the amplified XUV signal, as it is clear if we look
at the spectra shown in Fig. 1(a4). Indeed, in the case of He, as it is shown by the green full line
in Fig. 1(a4) – and as it will be further commented below –, theyield from HHG is comparable
to the amplified signal from the XUV pulse train, and hence oscillations from the interference
of the two signals are present in the enhancement versus delay plot [Fig. 1(a1)]. In the case of
He+ and Ne++, however, the HHG yield is very low compared to the amplified XUV signal,
and therefore no fast oscillations are produced by interference [Figs. 1(a2) and 1(a3)].

It is worth noting that, as shown in Fig. 1(a4), the HHG yield is largely affected by the ion-
ization potential of the atom. The HHG yield decreases by roughly 10 orders of magnitude in
the case He+ (54.42 eV) and Ne++ (63.45 eV) as compared to the case of He (24.59 eV). How-
ever, parametric XUV amplification is only weakly affected,decreasing by roughly 2 orders
of magnitude [see Fig. 1(a4)]. This makes higher ionizationpotential atoms most optimal to
observe the nonlinear parametric amplification phenomena,with enhancement factors as high
as 105 for the parameter values used in the present simulations [see Figs. 1(a2) and 1(a3)].

The behavior that we observe for XUV amplification around 120eV is robust when we in-
crease the peak intensity of the IR laser pulse and the central photon energy of the XUV pulse
train, as it is evident from the results shown in Figs. 1(b1)–1(b4). In Figs. 1(b1)–1(b3) we ob-
serve that the fast oscillations in the enhancement curve that were observed for He in the lower
energy regime [Fig. 1(a1)] are not present. This is a consequence of the larger amplification that
the XUV pulse train has experienced in this higher energy region and for the parameter values
that are here used, as it can be seen in the corresponding spectrum [green full line in Fig. 1(b4)].
Therefore, we conclude that attosecond XUV amplification can be realized at thewater-window
spectral region and that it will be most optimally observed with atoms or molecules of a high
ionization potential, such as those of He+ and Ne++.

3. Study of the different processes involved

In this section we will study the different processes that are involved in the interaction between
the atom and the combination of the IR and the XUV pulses in theframe of the SFA. The
time-dependent dipole moment in Eq. (1) can be written asx(t) = xIR(t)+ xXUV(t), with

xIR,XUV(t) = i
∫ t

0
dt′

(

π
ε + i(t− t ′)/2

)3/2

×d∗

x [pst(t, t
′)−A(t)]e−iSst(t,t′)dx[pst(t, t

′)−A(t ′)]EIR,XUV(t
′)+ c.c. (2)

We have checked numerically that the response of the atom to theEXUV(t) field alone is very
weak, so that the contribution fromxXUV(t) to the total time-dependent dipole moment can be
obviated when considering the combinedEIR(t) andEXUV(t) fields. Therefore for the parameter
values used in our studyx(t) ≈ xIR(t). In order to evaluate the different processes driving the
time-dependent dipole moment, we can write the expression for xIR(t) as

xIR(t) = i
∫ t

0
dt′

(

214(2Ip)
5

π(ε + i(t − t ′)/2)3

)1/2

×
d1(t, t ′)+d2(t, t ′)+d3(t, t ′)+d4(t, t ′)

([pst(t, t ′)−A(t)]2+2Ip)3([pst(t, t ′)−A(t ′)]2+2Ip)3 e−iSst(t,t′)EIR(t
′)

+c.c., (3)



whered1(t, t ′) = [pst(t, t ′)−AIR(t)][pst(t, t ′)−AIR(t ′)], d2(t, t ′)=−[pst(t, t ′)−AIR(t)]AXUV(t ′),
d3(t, t ′) =−AXUV(t)[pst(t, t ′)−AIR(t ′)] andd4(t, t ′) = AXUV(t)AXUV(t ′).
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Fig. 2. Spectra obtained by considering the combination of the IR 800 nm femtosecond
strong pulse and the XUV weak pulse train for a 11 nm (a1)–(a3)and a 4.13 nm (b1)–(b3)
pulse seed (red thick lines), and spectra obtained by the Fourier transform of the accelera-
tion of the time-dependent dipole moment in Eq. (3) considering the different contributions
to the dipole matrix elementdx(t, t ′), as indicated, in the case of He (a1) and (b1), He+ (a2)
and (b2) and Ne++ (a3) and (b3). The insets show the contribution ofd2(t, t ′) andd3(t, t ′)
at the central region of the plots around 115 eV (a1)–(a3) and300 eV (b1)–(b3).

The decomposition of the dipole matrix elementdx(t, t ′) in different factors gives us four
integrals that can be computed separately. Readily,d1(t, t ′) accounts for the regular HHG pro-
cesses, i.e. the spectrum that would be obtained in the absence of theEXUV field. The processes
described byd2(t, t ′) can be understood as nonlinear enhanced ionization due to the presence
of theEXUV(t ′) pulse at timet ′, followed by propagation in the continuum fromt ′ to t by the
semiclassical actionSst(t, t ′) and recombination at timet. The nonlinear parametric amplifica-
tion process is produced byd3(t, t ′), which can be read as the probability for an electron to be
ionized by the fieldEIR(t ′) at timet ′, propagated fromt ′ to t by the semiclassical actionSst(t, t ′),
and recombined back to the ground state due to the presence ofthe attosecond pulseEXUV(t) at
timet. The contribution fromd4(t, t ′) is negligible. From Eq. (3) it is evident that the strength of
the time-dependent dipole momentxIR(t) is proportional to theEIR(t) field strength, and both
thed2(t, t ′) andd3(t, t ′) factors are proportional to the vector potential of the XUV fieldAXUV.



As a consequence, the probability forEXUV(t) stimulated processes increases proportionally,
on the one hand, to theEXUV(t) field strength, and on the other hand to the value of theEIR(t)
field, which provides the energy for enhanced forward scattering of theEXUV(t) pulses.

Figure 2(a1) shows the spectrum calculated using the different contributions to the dipole
matrix element, as given by the expressions ford1(t, t ′), d2(t, t ′) andd3(t, t ′). We have here
considered the spectra resulting from the combination of the strong IR pulse (IIR = 7× 1014

W/cm2) and the 11 nm XUV weak pulse train (IXUV = 700 W/cm2) interacting with He. The
red thick line corresponds to thetotal dipole, i.e. the dipole calculated by using Eq. (1). The
contribution to the spectrum from thed1(t, t ′) factor in Eq. (3) is shown by the blue dotted
line in Fig. 2(a1). It is clear that this contribution corresponds to the HHG signal, since it
does not show any amplification due to theEXUV(t) pulse train. The contribution from the
nonlinear parametric amplification is given byd3(t, t ′). For all the parameters that we have
consideredd3(t, t ′) dominates in front ofd2(t, t ′) – see the inset in Fig. 2(a1). Figures 2(a2)
and 2(a3) show the same calculations for the case of He+ and Ne++, respectively. Clearly, the
higher ionization potential of He+ and Ne++ favors the observation of the nonlinear parametric
amplification processes, since the contribution given byd2(t, t ′) and d3(t, t ′) is only weakly
affected by the value of the ionization potential, while HHGis strongly reduced. In the case
of He+ and Ne++, we observe a weak contribution ind1(t, t ′) from theEXUV(t) pulse train.
This is shown by comparing the calculation performed withd1(t, t ′) with the one obtained by
using only the IR pulse in the total integral in Eq. (3) [blackfull-dotted line in Figs. 2(a2) and
2(a3)]. This contribution, which is only visible for the lower HHG yield produced in He+ and
Ne++, is due to the presence of theAXUV factor in the stationary canonical momentumpst in
the denominator of the dipole matrix factors in Eq. (3). The physical meaning and relevance of
this small contribution – which is negligible in the total calculation– is still under study.

In Figs. 2(b1)–2(b3) the study has been performed for the case of higher photon energies,
i.e. by considering a higher value of the IR pulse peak intensity (IIR = 1.6×1015 W/cm2) and
for a XUV pulse peak intensity such asIXUV = 1.6×103 W/cm2, which in this case is centered
at 300 eV. As it can be observed in Figs. 2(b1)–2(b3) the obtained spectra are hence well in
the water-windowregion. The results that we observe in this high photon energy region are
comparable to those obtained in the lower energy region – which have been described above–,
and the dominance ofd3(t, t ′) overd2(t, t ′) is even larger. Therefore we conclude that nonlinear
parametric amplification is highly robust at high photon energies, and that higher ionization
potentials such as those of He+ and Ne++ will favor the observation of nonlinear parametric
amplification processes.

4. Conclusions

We have performed a detailed study of strong-field mediated nonlinear parametric amplification
of attosecond XUV pulses in the frame of the SFA. The results that we present around the 11
nm region were recently corroborated experimentally [7]. Our numerical simulations show that
these nonlinear processes are robust at higher photon energies, such as in thewater-window
spectral region, and predict that x-ray amplification mightbe most optimally observed by using
gas targets with high ionization potentials, such as He+ and Ne++, so that harmonics at a certain
spectral range with high contrast can be generated comparedto the broad spectrum of He.
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