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Abstract

In this paper, a sensor data validation/reconstruction methodology applicable to water networks and its implementation by means
of a software tool, are presented. The aim is to guarantee that the sensor data are reliable and complete in case that sensor faults
occur. The availability of such dataset is of paramount importance in order to successfully use the sensor data for further tasks
e.g. water billing, network efficiency assessment, leak localisation and real-time operational control. The methodology presented
here is based on a sequence of tests and on the combined use of spatial models (SM) and time series models (TSM) applied to the
sensors used for real-time monitoring and control of the water network. Spatial models take advantage of the physical relations
between different system variables (e.g. flow and level sensors in hydraulic systems) while time series models take advantage
of the temporal redundancy of the measured variables (here by means of a Holt-Winters (HW) time series model). First, the data
validation approach, based on several tests of different complexity, is described to detect potential invalid or missing data. Then, the
reconstruction process is based on a set of spatial and time series models used to reconstruct the missing/invalid data with the model
estimation providing the best fit. A software tool implementing the proposed data validation and reconstruction methodology is
also described. Finally, results obtained applying the proposed methodology to a real case study based on the Catalonia regional
water network is used to illustrate its performance.

Keywords: Sensor Data Validation/Reconstruction, Fault Isolation, Model-Based Fault Diagnosis, Time Series

1. Introduction

Critical Infrastructure Systems (CIS), including water, gas or electricity networks, are complex large-scale systems
geographically distributed and decentralized with a hierarchical structure. These systems require highly sophisticated
supervisory and real-time control schemes, to ensure high performance achievement and maintenance when conditions
are non-favourable [1, 2] due to e.g. sensor and actuator malfunctions (faults). Regarding the measurements in water
systems, the commonly measured hydraulic and quality variables include water flow rate in links, pressure in nodes,
water level in tanks, pH, conductivity and turbidity, as well as disinfectant and pollutant concentrations. For each
measurement obtained from a sensor, the data (signals) are usually represented in the form of one dimensional time
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series. Each sensor measures a physical quantity and converts it into a signal that can be read by the appropriate
instrumentation. Then, the measuring system converts the sensor signals into values aiming to represent a certain
real physical quantity. These values, known as raw data, need to be validated before further use in order to assure
the reliability of the results derived from their usage. In systems like CIS, a telecontrol system is acquiring, storing
and validating data gathered from different kind of sensors every given sampling time (e.g. every few minutes) to
accurately real-time monitor the whole system. In the data acquisition process, several problems can occur, as those
related with the communication system (e.g. between sensors and data loggers or in the telecontrol system itself) or
outliers, producing lost or corrupted data which may be of great concern in order to have valid historic records. When
this is occurring, lost data should be replaced by a set of estimated data which should be representative of the data lost,
since missing data may severely jeopardise further processes needing complete datasets in order to get meaningful
conclusions/analysis. Another common problem in CIS is caused by the unreliable sensors, which may be affected
by faults e.g. offset, drift, freezing in the measurements [3, 4, 5]. These unreliable data should also be detected
and replaced by forecasted data, since it may be used for system management tasks e.g. maintenance, planning,
investment plans, billing, security and operational control [6] and system fault detection and isolation (Figure 1).
In the case of water network applications, this system fault diagnosis may include e.g. network leaks isolation, as
considered in [7, 8, 9]. However, the methodology presented here may well be applied to different applications
involving a telemeasured sensor network, such as smart buildings or environmental systems (see, e.g. [10, 11]). In
addition to the possible measurement deviations related to the sensor performance itself, the errors can also occur
due to heterogeneous reasons, e.g. sensor installation, calibration or electrical problems. Thus, it is important to
provide the data system with procedures that can detect these problems and assist the user in the monitoring and
the processing of the incoming data. The data validation is an essential step to improve data reliability. Sensor
data validation and reconciliation have been intensively addressed using least-squares approaches including Kalman
filters (see, e.g. [12, 13]). These have been also used for data forecasting, as pointed out in [14], where a review of
techniques for prediction of consumption in water and natural gas grids is presented. The basic idea of Kalman filter
based methods in data validation and reconciliation is to allow gross error detection and to provide reconstructed data
that is consistent with model/balance equations describing the system operation. The approach presented in this paper
aims to assess the validity of each single sensor measurement by means of a set of tests exploiting not only the model
equations (spatial redundancy) but also temporal redundancy, using time series models and a bank of low-level tests
(non-model based) aiming to label the data with a certain quality index. Traditionally, data validation process has been
developed by manual data analysis, performed by experienced users with the only assistance of basic data analysis and
visualisation tools [15], which significantly limits the amount of data to be validated [16] and the abnormal situations
which may be correctly detected [17]. However, the volume of real data acquired in CIS is dramatically increasing
due to the increment of automated measurement systems allowing their monitoring [18]. Also, real-time operation,
paramount in many real applications, makes human data validation even harder to pursuit. In order to cope with this
situation and increase the reliability of the data diagnosis system, automatic data validation tools have arised e.g.
NIKLAS for real and non-real time diagnosis of meteorological data [19]. Also, in [20] a data validation module is
considered in the framework of an on-line water quality fault tolerant control system. Over the last 15 years, more
and more affordable on-line sensors have become available, leading to ever increasing acceptance of on-line water
monitoring [21]. These on-line systems allow to deploy control mechanisms that are optimized for and respond to the
actual process conditions. However, on-line systems require a data validation method that is applicable to real-time
incoming data. The major difference between on-line and off-line data validation lies in the available information
and the required execution time. In contrast with the on-line execution, the off-line operation has no time restrictions
because real-time constraints do not apply, and regarding the information, the whole set of data is available. Moreover,
on-line data validation is usually required by a further real-time control system and thus the data are used for decision
support (or decision making) just after being obtained. Consequently, the on-line data validation process should have
low execution time, whereas the off-line data validation does not have this requirement.

According to the nature of the available knowledge, different kinds of data validation approaches may be con-
sidered, with varying degrees of sophistication. In general, one may distinguish between elementary signal-based
(“low-level”) methods and model-based (“high-level”) methods (see, e.g. [6]). Elementary signal based methods use
simple heuristics and limited statistical information of a given sensor [22]. Typically, these methods are based on vali-
dating either signal values or signal variations. On the one hand, in the signal value-based approach, data are assessed
as valid or invalid according to two different thresholds (high and low) so data are assumed to be invalid when lying
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outside these threshold values. On the other hand, methods based on signal variations look for high variations (peaks
in the curve) and low variations (flat curve) in the signals. Model-based methods rely on the use of models to check the
consistency of sensor data [21]. This consistency check is based on computing the difference between the predicted
value from the model and the real value measured by the sensors. Then, this difference (known as residual) is com-
pared with a threshold value (zero in the ideal case). When the residual is bigger than the corresponding threshold,
a fault is assumed in the sensor; otherwise, the sensor is assumed to work properly. Moreover, the information of all
the available residuals and models allows performing fault isolation in order to discover the faulty sensor. Models are
usually derived using either multivariate procedures exploiting the correlation or analytical relations between several
variables, sometimes measured at different times (“temporal redundancy”) and/or locations (“spatial redundancy”).

In this paper, a methodology is developed for validation and reconstruction of sensors data in a water network,
taking into account not only spatial models (SM) but also time series models (TSM) for each flow and level meter
here. Also, internal models of every component in the local equipment units (e.g. pumps, valves, flows, levels)
are considered. SM take advantage of the relation between different variables in the system (e.g. demand, pump
flows and tank levels) while TSM take advantage of the temporal redundancy of the measured variables, by means
of Holt-Winters (HW) time series models [23]. Moreover, after the corrupted sensor data are detected, they must
be replaced by adequate estimated data using the available temporal/spatial redundancy. The methodology is mainly
applied to flow and level meters, since it exploits the temporal redundancy of flow and level data in a water network.
In this paper, an operative software tool implementing the presented methodology which is able to properly handle
raw sensor data (including storage, querying and visualization) is also presented. The proposed approach and tool are
applied to several subsystems in the Catalonia regional water network (Figure 8) using raw data collected from ATLL
Concessionària de la Generalitat de Catalunya, SA (ATLL), the company managing this water network.

The structure of the paper is as follows: In Sections 2 and 3, the methodology to validate/reconstruct the sensor
data, in order to provide a reliable dataset when faulty situations occur within the sensor set, is proposed. In Section 4,
the software tool implementing the proposed methodology is introduced. In Section 5, the application case study is
presented, based on the Catalonia regional water network. The sensors in this network measure several real magnitudes
of interest such demand and input tank flows and levels, considering real-world scenarios. Also, the corresponding
results obtained applying the proposed methodology are detailed in Section 5. Finally, conclusions of this work are
outlined in Section 6.

2. Proposed Methodology

2.1. Description
In real water networks such as the one considered here, there is usually a telemeasurement system acquiring,

recording and validating data gathered from different kind of sensors at each sample time to accurately real-time
monitor the whole network [6]. As discussed in the introduction, in this data acquisition process, problems in the
communication system (e.g. between sensors and data loggers) or in the telemeasurement system itself (e.g. sensors
may be affected by e.g. offset, drift or freezing faults), often arise and produce data loss, which may be of great
concern in order to have valid historic records. These unreliable data should be detected and replaced by estimated
data before they can be used for system management tasks such as maintenance, planning, billing and operational
control, as depicted in the procedure in Figure 1. The input to this procedure is the raw data yraw gathered from
the sensors. The process is divided in two different stages: the first stage is related with the data validation, while
the second stage addresses the reconstruction of invalid/missing data, before the data are stored in an operational
database (DB) for further use. At the first stage (data validation, detailed in Figure 2), if the datum yraw(k) at a certain
sample time k is validated, flag v is set to 1 and datum yval(k) = yraw(k) is stored in the aforementioned operational
DB as validated data. Conversely, if the datum yraw(k) is invalidated, flag v is set to 0 and the datum reconstruction
process (second stage) is started, in order to provide a reconstructed estimation yrec(k) of the invalid/missing data
yraw(k) to be stored in the DB. The whole procedure is further detailed in Algorithm 1 for the data validation stage
and in Algorithm 2 for the data reconstruction stage. Here, communication and sensor faults are considered as faults
affecting the telemeasurement system and the sensors, respectively, and the data detection/reconstruction procedure is
used as a prefilter to estimate the invalid/missing data when these type of faults are occurring.

As discussed in the introduction, different types of data detection methods with distinct degrees of complexity may
be considered according to the available system knowledge. This is the approach that the proposed methodology here
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Figure 1. Raw data validation/reconstruction procedure

will follow. Generally, two types of methods are considered, one for elementary ‘low-level’ signal-based methods and
another for ‘high-level’ model-based methods. The first type uses simple heuristics and limited statistical information
from the sensors [22] [15] and is typically based on checking either signal values or variations, whilst the second type
uses models for consistency-checking of the sensor data [21].

2.2. Validation Tests

The data detection process presented is inspired by the Spanish AENOR-UNE norm 500540 developed for data
validation in meteorological stations [6]. The methodology presented here applies a set of consecutive detection tests
to a given dataset (Figure 2), to finally assign a certain quality level q depending on the number of tests passed. Also,
the corresponding tests passed are characterized by a validation vector l, as shown in Figure 2. If the datum yraw(k) at
a certain sample time k is voided at any validation level, flag v is set to 0 and the datum reconstruction process (second
stage) is started. Conversely, if the datum yraw(k) pass all the validation levels, flag v is set to 1 and the data are
validated (i.e. yval(k) = yraw(k)). In the latter situation i.e. validated datum yraw(k), q(k) = 6 and l(k) = [1, 1, 1, 1, 1, 1].

The validation tests include a set of ’low-level’ tests (Levels 0 to 3, included) which check elementary signal prop-
erties, and a set of ’high-level’ tests (Level 4 and Level 5), which rely on the use of models to check the consistency
of the sensor data. The latter models are also used in the reconstruction stage of the potentially invalidated data, as
explained in Section 3.3. As introduced in the last paragraph, if any of the validation tests in Figure 2 is not satisfied,
v = 0. The validation procedure is also detailed in Algorithm 1.
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Figure 2. Data Validation Tests

An explanation of the test applied to each level is given next:
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• Level 0: This level, also called communications level, checks whether the data are properly recorded at a regular
sample rate by the acquisition system. If this is not fulfilled, there is some communication problem involving
e.g. the data transmission from the ground sensors to the operational database. Hence, this level allows detecting
problems in the data acquisition or communication system, which is one of the most common faults affecting
telemeasurement systems, as the one considered here.

• Level 1: This level, also called physical range level, checks whether the data are within the physical range of
the sensor acquiring the corresponding measurement. The expected range of the measurements may be obtained
from e.g. sensor specifications or historical records of the data.

• Level 2: This level, also called trend level, checks whether the data derivative i.e. the magnitude change of
the data among consecutive sample times, are within their expected rate. This allows detecting unexpected and
possibly undesired sudden changes in the data, e.g. in a water network, tank water level sensors measurements
cannot change more than several centimeters per minute.

• Level 3: This level, also called equipment state level, allows to check the consistency of the variables in a given
equipment unit i.e. sensor or actuator. For example, in a water network system, in a pipe with a valve and a
flow meter installed, there is a relation between the valve state and the flow meter reading.

• Level 4: This level, also called spatial consistency level, checks the consistency of the data collected by a
certain sensor with its SM [24], i.e. the correlation between data coming from spatially-related sensors. This
SM is obtained from the physical relations among these variables. In hydraulic systems, this relation is generally
obtained from the mass balance model of the element relating the different measured variables involved.

• Level 5: This level, also called time series consistency level, checks for temporal consistency of a given sensor
measurement, by means of a TSM obtained from sensor historical records under faultless assumption ([6]). A
common method for time series signal forecasting is the HW approach ([23], [25]) because of its simplicity and
low computational and storage requirements. In contrast to spatial consistency level, time series consistency
level only uses information of the considered sensor without needing additional information (e.g. network
topology or extra measurements from the system) to perform the validation, which makes it convenient when
there is no such additional information available or the sensors needed by the corresponding spatial consistency
level are unreliable. At this level, the analysis of the historic measurement records of a certain sensor are used
to obtain the corresponding HW TSM sensor model and to validate the current data acquired by this element.

3. Model-based Data Validation/Reconstruction Levels

3.1. Models for Data Validation/Reconstruction

Model-based data validation/reconstruction relies on using models that exploit the temporal or spatial redundancy
existing among the sensors. On the one hand, SM takes advantage of the relation between different variables physically
related within the system. In water networks, this relation is generally obtained from the mass balance relating the
different measured variables involved in a particular hydraulic element. For example, in a water tank (see Figure 3)
the corresponding SM level estimation may be stated

x̂S M(k) = x(k − 1) +
∆t
A

(qin(k − 1) − qout(k − 1)), (1)

where x̂S M is the spatial model tank level estimation, x is the measured tank level, qin is the incoming tank flow, qout

is the outcoming tank flow and ∆t is the sampling time, respectively. Estimation of other variables (e.g. q̂in, q̂out) may
be obtained in a similar manner.

Real elements include uncertainty (e.g. due to noise, inaccuracy of the model, etc.) which may lead to the non-
satisfaction of the mass balance in the element considered. Hence, consistency of the data collected by a certain sensor
with its SM [24] (i.e. the correlation between data coming from spatially-related sensors) should take this uncertainty
into account.
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Figure 3. Single tank system schematics with single input and single demand

Alternatively, TSM takes advantage of the temporal redundancy of the measured variables. A wide used method
for time series modelling because of its simplicity, low computational and storage requirements and ease of automa-
tion, is the HW approach [25]. This method, which was originally created for sales demand forecasting, has been
used in a broad range of applications since its appearance. Exponential methods are first introduced in [26], where
decreasing series of exponential weights are used. In [25], the former method is extended to include trend and season-
ality terms. In [27, 28] multiple (i.e. double and triple) seasonality is explored, expanding the initial single seasonality
expression of the former HW method, designed to cope with the sales demands monthly variations across a year
period. Further alternative approaches to exponential smoothing forecasting may be found in [29] and [30]. Some
issues of interest regarding its performance include the effect of the outliers in the forecasting, the consideration of
the aforementioned different seasonal periods which may characterise the corresponding time series data sequence to
be modelled (e.g. sales demands, water demands) or the consideration of prediction intervals which may provide re-
liability to the forecast. Regarding outliers, which may be produced by unexpected component behaviors (e.g. sensor
malfunctions) these may degrade the performance of the HW method if not accommodated. In [31], this problem is
considered and a robust version of the HW method against the outliers is presented, by recursively filtering their effect
in the data main stream and applying the standard HW approach to the obtained filtered data. The latter approach
is also considered here to provide robustness against the outliers. Moreover, there are different versions of the HW
method e.g. additive or damped trend, additive or multiplicative seasonality, single or multiple seasonality [23]. Here,
good performance has been attained with the additive single seasonality version, which estimated value is obtained
for a forecasting horizon `

x̂TS M(k) = R̄(k − `) + `Ḡ(k − `) + S̄ (k − L), (2)

where R̄ is the level estimation removing seasonality,

R̄(k − `) =α
(
x(k − `) − S̄ (k − ` − L)

)
+ (1 − α)

(
R̄(k − ` − 1)

+Ḡ(k − ` − 1)
)
,

(3)

Ḡ is the trend estimation,

Ḡ(k − `) =β
(
R̄(k − `) − R̄(k − ` − 1)

)
+ (1 − β) Ḡ(k − ` − 1),

(4)
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7S¯is the seasonal component estimation, 

S̄ (k − `) =γ
(
x(k − `) − R̄(k − `)

)
+ (1 − γ) S̄ (k − ` − L),

(5)

and L is the season (daily) periodicity, α, β and γ are the HW parameters (level, trend and season smoothing factors,
respectively), x is the measured value and x̂TS M is the TSM estimated value. The parameters α, β and γ are in the
interval [0, 1] and can be estimated from historical data using the least-squares approach. Hence, analysing the historic
records of a certain sensor, a HW TSM model can be obtained and used to estimate missing data of this element when
a fault is affecting its readings.

3.2. Data Validation

On the one hand, the test check for the so-called ’low-level’ tests are straightforward, since they rely on basic
signal-based heuristics. On the other hand, the ’high-level’ model-based tests rely on checking for consistency by
means of the residuals ri(k), obtained from the difference between the system measurements and the corresponding
SM or TSM estimations, expressed in input-output regressor form

ri(k) = xi(k) − x̂i(k) = xi(k) − φT
i (k)θi, (6)

where θi are the nominal parameters obtained using a training dataset, xi is the sensor measurement, x̂i is the model
prediction and φi(k) is the regressor vector of dimensions nθi × 1 including inputs (ui(k), ui(k − 1), ui(k − 2), ...) and
outputs (yi(k), yi(k−1), yi(k−2), ...). The particular models used to compute the prediction x̂i at instant k depend on the
validation level considered (i.e. model-based level 4 or 5 in Figure 2, respectively), and are introduced in Section 3.3.
Considering the uncertainty (e.g. modelling errors, noise), the detection test involves checking the condition

|ri(k)| < τi, (7)

where τi is the detection threshold. The detection threshold can be determined using statistical methods [32] or set-
membership approaches [33]. In the case of statistical methods, the noise is assumed to follow a normal distribution
with known mean value µi and standard deviation σi [34]. Then, the threshold of the i-th residual can be determined
as follows: τi = µi + 3σi, including the 99.7 % of the values of a normal distribution according to the 3-sigma rule.
Alternatively, when using a set-membership approach the noise is assumed to be unknown but bounded, with a priori
known bound. Then, the threshold can be obtained by propagating the uncertainty to the residual computation [33].
Using either one or the other approach, the threshold in (7) is determined to include the values of the whole residual
distribution in the faultless situation and hence, it may be used for fault detection purposes. This threshold is also
useful to provide prediction interval bounds for the data forecasting process, so test condition (7) can be equivalently
expressed as follows

xi(k) ∈ [x̂i(k), ¯̂xi(k)], (8)

where ¯̂xi(k) = x̂i(k) + τi and x̂i(k) = x̂i(k) − τi, respectively. Condition (8) applies both to SM (1) and TSM (2)
models. These interval bounds (8) consider the corresponding model behavior under faultless conditions including
the uncertainty effect, as introduced in the residual bound condition (7). Hence, these bounds could alternatively be
used in the data validation process, in order to decide whether a data sample at time instant k is reliable. The whole
data validation process is detailed in Algorithm 1.
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3.3. Data Reconstruction

As introduced in Section 2, when a fault is detected at the validation stage and the corresponding data are voided,
a reconstruction process is started until the sensor data are validated again. The output of the data validation process
(Figure 1) is used to identify the invalidated data that should be reconstructed. SM, related with Level 4 in Figure 2,
and TSM, related with Level 5 in Figure 2, are used for this purpose, depending on the performance of each model.
This data reconstruction process is detailed in Algorithm 2. The performance of each model is measured by the Mean
Squared Error (MSE), evaluated in a moving horizon window

MS E(k) =
1
m

k∑
j=k−m

e( j)2, (9)

where m is the number of data samples considered in the window, e( j) = x( j) − x̂( j) is the error at instant j, x( j) is
the measured value at instant j, x̂( j) is the estimated value by the model (SM or TSM, respectively) at instant j and
k is the actual time instant. The model having best MSE index before the fault occurs (i.e. when the data validation
process is not satisfactory) is used to produce the reconstructed sensor signal.

In order to produce the forecasted signal, it is desirable to use measured data instead of estimated data, to avoid
model uncertainty effects in the forecasted value. This calls for the computation of x̂i(k)|` using (2) with ` , 1 when
possible and the usage of the different models obtained in a gain-scheduling fashion when e.g. the data are invalidated
for more than a single time instant. HW TSM models may obtain forecasted values for different prediction horizons `
by design, if forecasted value at time k in (2) is rewritten as follows

x̂TS M(k)|` = R̄(k) + `Ḡ(k) + S̄ (k − L + `), (10)

Then, measured values may be used to produce the TSM forecasted signal within a complete season (day) L
without using old forecasted values. In order to achieve this, the complete set of models (i.e. the models for each step
within the complete season L) must be obtained at the calibration stage under faultless assumption, i.e. a HW TSM
model [α`, β`, γ`] may be obtained for ` = 1, · · · , L.

Similar procedure may be used in the same case study for alternative applications not related with data valida-
tion/reconstruction, as e.g. consumer demand prediction, in order to forecast water network user behavior beforehand.
HW TSM models are specially suited to this end, since they were created in order to predict market product sales evo-
lution according to consumer periodical behaviors [25], and user water consumption in district metered areas have a
similar behavior.

4. Software Framework

The architecture of the software framework implemented is depicted in Figure 4. There are two main components:
the Data Management Web application and the Validation and Reconstruction tool1.

On the one hand, the Data Management component is a web application focused on collecting and serving time
series data, i.e. observations coming from any kind of sensor. It allows authorized users to upload new data, download
historical data and visualize data from anywhere using a device with a browser and Internet connection. Thus, this
web-based data repository is highly available and provides a solution to the data-driven users to keep centralized data
from different projects and sources. It also avoids typical datasets-usage related drawbacks e.g. data loss, sparse and
duplicated data locations and emails with large datasets between project members.

On the other hand, the Validation and Reconstruction component allows users to apply the methodologies de-
scribed in Sections 2 and 3 on data provided by the Data Management web application.

1Both software tools are proprietary software.
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Figure 4. Software architecture diagram

4.1. Data Management Web Application
This module provides a user-friendly tool allowing to import and export data so that stored data are available to

registered users with read permissions on the dataset. This point is important in order to respect existing confidential
agreements: a user must have explicit permission on a dataset to be able to access or visualize it. Only the dataset’s
owner and the administrator can grant read permissions.

People working with data usually need to collect and prepare the raw data, e.g. remove outliers and fill missing
data, before being able to apply further analysis e.g. statistical, exploratory or even to focus on the real objective of
working with the corresponding data. These sort of tasks are time-consuming: there are many situations when the first
two steps introduced take the 80 % of the whole data treatment process time. Thus, this tool provides three services
in order to focus the efforts on the data themselves and not on how to collect, obtain and prepare them. These services
are the following: the data import service, the data export service and the visualization service.

The data import service handles the data ingestion from different file formats (e.g. CSV, Excel, Access). An
import wizard allows the user to specify the input data format, allowing the data to be loaded into the database after
being specified. The data export service handles the data extraction. The user can specify the time period to export
and the output file format. The current version of the tool allows to download data in CSV, Excel and SAC format2.
Finally, the data visualization service provides a tool to visually explore the collected data. Hence, the user can plot
multiple signals (e.g. time series) to do some exploratory analysis before downloading and to select only the relevant
data. The visualization tool allows zooming and panning the time series.

This web application is implemented in two layers, a back-end (server layer) that handles the data storage and
access with an underlaying data model, and a front-end (visual layer) to provide a friendly web-based user interface
to interact with the three services described before. The back-end is developed with the Django3 web framework
connected to a database based on PostgreSQL. The front-end is implemented in HTML and JavaScript (see Figure 5).
The Import and Export modules handle the operations of saving and querying data against the PostgreSQL Database
server.

4.2. Validation and Reconstruction Matlab Tool
The Validation and Reconstruction methodologies, detailed in Sections 2 and 3, are summed up in Algorithm 1

and Algorithm 2, respectively. These methodologies are implemented in a software tool developed in Matlab. Matlab

2SAC format is a binary Mat-file containing a defined data structure.
3Django is a free open source web framework. Its primary goal is to facilitate the creation of complex, database-driven websites.

9



10

Figure 5. Data Management Web Application screenshot

10



11

is a widely used numerical computing and programming platform in many research institutions and industrial enter-
prises, which makes it a convenient prototyping and development framework. This tool includes a Graphical User
Interface (GUI) to configure different modules and to run the validation and reconstruction processes with the config-
ured settings (Figure 6). This GUI is composed by six panels. Following the numeration in the figure, each panel has
the following purpose:

1. Input data. The user can select the .mat file path in SAC format and load the data into the tool.
2. Signals list. This panel shows the listing of the signals loaded in the previous panel.
3. Fault generator. This module provides a fault generator framework in order to simulate different types of fault,

thus the user can apply a fault to the selected signals. The faults available are: freezing, offset, drift, noise and
communication.

4. Data ranges. This panel allows the user to indicate the season periodicity L (cycle time) of the TSM. For
instance, if a signal shows a daily pattern, the cycle time is 24 hours (86400 seconds). The user can also define
the number of identification and validation cycles. The rest of the data will be used as testing dataset.

5. Tests and Models. This panel lists the tests and the models available. Here, the user can select the tests to apply
and configure the required parameters, depending on the models and tests selected.

6. Output and Reporting. In this panel, the user can enter the path where the results will be recorded and select
the reporting options.

Algorithm 1 Data validation
Require: yraw(k)

v(k) = 1; # Initialise v(k)
q(k) = 0; # Initialise q(k)
for all Validation levels n = 0, · · · , 5 do

Check validation level test n;
if Validation test n passed then

ln(k) = 1; # Set level n as passed
q(k) = q(k) + 1; # Increase quality level of datum yraw(k)

else
ln(k) = 0; # Set level n as not passed
v(k) = 0; # Void datum yraw(k)

end if
end for
if v(k) = 1 then

yval(k) = yraw(k); # Datum yraw(k) is validated
else

yval(k) = []; # Datum yraw(k) is voided
end if
return v(k), l(k), q(k), yval(k)

The input dataset selected in the Input data panel (Figure 6) is divided in three different subsets (i.e. calibration,
validation and testing) in order to calibrate and validate the models and parameters, and check the sensors’ raw data,
respectively. The use of different data subsets allows the analysis and validation of how these models will generalize to
an independent dataset. Calibration and validation subsets are assumed to be faultless, whilst testing dataset includes
the faulty scenario to be diagnosed. The different subset ranges are defined by the user according to the parameters
entered in the Data ranges panel (Figure 6).

Once all the required parameters are set by the user the process may be started, which will sequentially apply the
presented methodology to the data. This process is divided in three different stages, namely Calibration, Validation
and Reconstruction, respectively. First, the Calibration stage is executed using the calibration and validation datasets
in order to learn and estimate the parameters required by the tests and the models to be applied (see Sections 2 and
3). Once the models and the tests are calibrated, the Validation stage runs the sequence of tests in order to validate the

11
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Algorithm 2 Data reconstruction
Require: yraw(k), v(k)

if v(k) = 0 then
Compute MS ES M(k) and MS ETS M(k); # Evaluate MS E for each model
if MS ES M(k) < MS ETS M(k) then

yrec(k) = x̂S M(k); # Reconstructed datum yraw(k) is given by SM estimation
else

yrec(k) = x̂TS M(k); # Reconstructed datum yraw(k) is given by TSM estimation
end if

else
yrec(k) = []; # If datum yraw(k) is validated, no reconstruction is needed

end if
return yrec(k)

Figure 6. Validation and Reconstruction Matlab Tool
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testing dataset (see Section 2). Each test applied labels each datum yraw(k) with a flag (l in Figure 2 and Algorithm 1)
to indicate whether the test has been fulfilled. Finally, in the Reconstruction stage (see Section 3.3), the model with
best performance (i.e. lowest MSE) is selected in order to replace the invalidated datum at the Validation stage (datum
with v = 0 in Figure 2 and Algorithm 1) by its corresponding reconstructed estimation. In Figure 7, the data flow
between these three stages is presented.

Figure 7. Validation and Reconstruction data flow diagram

5. Case Study: Catalonia Regional Water Network

5.1. Description

The Catalonia regional water network managed by ATLL company (Figure 8) supplies water to the metropolitan
area of Barcelona. Most of the population of the region (approximately 4.5 million people) is concentrated in this
area. This network transports the drinking water from the main water treatment plants (ETAPs), which take the water
from two different rivers (Llobregat and Ter), towards the main storing and buffer tanks of 116 different municipalities
in the Barcelona metropolitan area, using about 1045 km of pipes of up to 3 m diameter. The network is composed
by 170 storage tanks, 67 pumps and 212 demand sectors, and is monitored using more than 200 flow meters and 115
tank level sensors by means of a SCADA system with 10 minutes sample time.

5.2. Results

In this section, some results obtained with the methodology introduced here are presented, using the tool intro-
duced in Section 4. These results are based on a variety of real situations in order to show the performance of the
methodology and the tool presented. The dataset used to obtain these results is the network’s raw data collected by
ATLL company, including flow meter measurements, level meter measurements, valve positions and communication
system alarms.

In Figure 9, the first fault scenario considered is shown. The top plot shows the measured signal (solid black line)
gathered from the flow meter D6FT00204 CI, with a time range from 3rd to 8th of January 2014. On the one hand,
the pattern of the measured signal for days 4th, 6th and 7th of January, respectively, present a similar behavior, with
around 300 m3/h peak. On the other hand, the pattern of the measured signal on January the 5th presents negative
pumping flows, which should be corrected. This change in the pattern is detected by the physical range test (Level 1

13
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Figure 8. ATLL’s Catalonia Regional Water Network
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Figure 9. Results of the validation and reconstruction methodology, flow meter D6FT00204 CI

in Figure 2). The detection is indicated by the flags in the bottom plot in Figure 9: if the test flag is set to zero (Valid
state) the datum pass the test; if it is set to one (Invalid state) the datum is invalidated. Using these flags, it may
be noted how negative flows are detected e.g. at the beginning of days 4th, 5th and 6th of January, although their
magnitude are too low to make them visible in the top plot in Figure 9. The top plot in the latter figure also shows
the SM (dashed red line) and the HW TSM (dashed cyan line) estimations. The invalid observations are replaced by
estimations (magenta dots) obtained from the model having the best performance according to their MSE (middle plot
in Figure 9), as introduced in Section 3.3.

Figure 10 presents a different scenario, where the measured flow signal E6FT00102 CI exhibits a peak of high
magnitude on the fifth day of January 2014. In contrast to the previous scenario, in the current scenario there is only
the TSM model available, since no SM model can be obtained due to the topological configuration of the network.
However, validation and reconstruction can also be performed since TSM only needs historical records from the single
sensor under study to operate, i.e. does not need additional data gathered by other related sensors as is the case with
SM models. The peak appearing in the top plot in Figure 10 is detected by the physical range test and the trend
test, respectively (Level 1 and Level 2 in Figure 2). The detection is indicated in the bottom plot in Figure 10, and
reconstructed by the HW TSM model (magenta dots, top plot in Figure 10).

An additional scenario is presented in Figure 11. Here, the network topological configuration allows a SM model
to be obtained, using the spatial relation of the sensors involved as presented in Section 3.1. The top plot in Figure 11
shows the measured flow signal D6FT00204 CI (solid black line). This scenario exhibits a communication fault
affecting only the sensor under study for a period of three days, between t = 880 h and t = 952 h. The measured data
when the fault is occurring are also available (Original data, dash-dotted line in Figure 11) and are used to check the
performance of the data reconstruction model utilised. Also, the threshold boundaries in (7) for each model are also
depicted (red and blue dotted lines for SM and TSM, respectively). The communication problem is detected by the
Level 0 test in Figure 2 and the missing data over the faulty period are reconstructed by the model exhibiting the best
performance according to their MSE (bottom subplot in Figure 11), i.e. the TSM model in this particular case.

In Figure 12, a scenario involving the flow meter E6FT00502 CI is presented. In this case, a general communi-
cation fault affects all the sensors, a common situation occurring in actual water monitoring systems when e.g. the
concentrator (a device collecting data from sensors installed in a particular zone) drops. Similarly as in the scenario
in Figure 11, a SM model is available using the corresponding spatially related sensors data. However, in this partic-
ular case the rest of the sensors involved in the SM model (i.e. flow meter E6FT00502 CI in Figure 12, flow meter
D6FT00201 CI in Figure 13) are all affected by the same communication fault, hence they are not available for data
reconstruction after the communication fault occurs and, consequently, the SM model can not be considered in this
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Figure 10. Results of the validation and reconstruction methodology on the flow meter E6FT00102 CI
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Figure 11. Results of the validation and reconstruction methodology, flow meter D6FT00204 CI

case due to the lack of information. Again, the only available model for reconstruction is the TSM (similarly as in the
scenario in Figure 10) which is finally used for the missing data reconstruction in the scenario considered in Figure 12,
based on the limited available information in this particular case.

Finally, two different scenarios involving the flow meter E6FT00502 CI are considered. On the one hand, in
the scenario in Figure 14, a communication fault affecting the corresponding flow meter is presented, which does
not transmit data in one day period (from t = 1024 h to t = 1048 h). In this particular case, the communication
fault only affects the latter sensor, hence the corresponding SM is available because the spatially related sensors (e.g.
D6FT00201 CI) are not affected by this fault. In this scenario, the SM model is used for missing data reconstruction,
since it performs better than the corresponding HW TSM model (bottom subplot in Figure 14). It may be noted
that the use of the SM assumes that the model input sensor measurement is faultless when the SM is used for data
reconstruction. This may be assured since the input model integrity is checked by the methodology presented here at
its corresponding stage and, if not verified, the validation test at this stage is not fulfilled.

On the other hand, an offset fault of magnitude 25 % full scale affecting the flow meter E6FT00502 CI, also
common in this kind of sensors, is presented in Figure 15, lasting for three days (from t = 1024 h to t = 1096 h).
As in the previous scenario, the SM model performs better than HW TSM before the fault is produced (see Figure 15
bottom subplot) and hence it is used for invalid data estimation. In this particular scenario, it may be noted how the
measured signal is out of the SM threshold boundaries (red dotted line) for the whole fault scenario, whilst it remains
bounded by the HW TSM threshold boundaries (blue dotted line) for part of the first day after the fault is produced.
This behavior is due to the adaptation of the HW TSM to the input signal, as its estimation depends on the historic
records of the measurements, as detailed in Section 3.1. Hence, it should be considered that, when used for data
validation, the prognosis derived from the application of the time series consistency test will expire after a certain
time after the fault is produced, when using measurement historic records.

6. Conclusions

In this paper, a data validation and reconstruction methodology is introduced to overcome the sensor problems
arising in CIS, such as water networks. The validation strategy is based on a set of data quality tests that allow
to detect potentially erroneous data. Then, a reconstruction scheme is defined using SM and TSM to provide an
estimation based on the model having the best fit, also providing prediction intervals for the forecasted reconstructed
data. In addition, a software tool is described to provide a homogeneous and accessible database by a user-friendly
interface, and to apply the methodology presented here. Finally, some results obtained using data from a real network
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Figure 12. Results of the validation and reconstruction methodology, flow meter E6FT00502 CI
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Figure 13. Results of the validation and reconstruction methodology, flow meter D6FT00201 CI
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Figure 14. Results of the validation and reconstruction methodology on the flow meter E6FT00502 CI
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Figure 15. Results of the validation and reconstruction methodology on the flow meter E6FT00502 CI
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located in the Catalonia area are presented using the software described, showing the ability of the methodology to
detect and reconstruct anomalous data. In future steps of this work, the proposed methodology and tool are going to be
applied to the whole Catalonia Regional network, since in the latter network not only the hydraulic sensors considered
here are monitored, but also e.g. the water quality sensors.
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