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Abstract Scientific applications can have so many parameters, possible usage sce-
narios and target architectures, that a single experiment is often not enough for an
effective analysis that gets sound understanding of their performance behavior. Dif-
ferent software and hardware settings may have a strong impact on the results, but
trying and measuring in detail even just a few possible combinations to decide which
configuration is better, rapidly floods the user with excessive amounts of informa-
tion to compare.

In this chapter we introduce a novel methodology for performance analysis based
on object tracking techniques. The most compute-intensive parts of the program
are automatically identified via cluster analysis, and then we track the evolution of
these regions across different experiments to see how the behavior of the program
changes with respect to the varying settings and over time. This methodology ad-
dresses an important problem in HPC performance analysis, where the volume of
data that can be collected expands rapidly in a potentially high dimensional space
of performance metrics, and we are able to manage this complexity and identify
coarse properties that change when parameters are varied to target tuning and more
detailed performance studies.

1 Background and motivation

The execution of a scientific code is dependent on a variety of parameters that may
have a strong impact on its performance. Some examples include the size of the
input problem, the number of processes running in parallel, the physical mapping
and sharing of the resources, the parallel programming model used, and many other

Barcelona Supercomputing Center — Polytechnic University of Catalonia — BarcelonaTech
Jordi Girona 31, 08034, Barcelona, Spain
e-mail: {gllort | harald | jgonzale | judit | jesus}@bsc.es

1



2 G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta

settings. Anticipating the impact of different configurations on the achieved perfor-
mance, work balancing or memory usage of the program is far from trivial and not
seldom leads to discover unexpected issues.

Analyzing these effects is important not only to get better understanding of the
program behavior, but also to foresee improving or degrading trends in the differ-
ent parts of the code, identify the main limiting factors, and in the end, to help the
users making the right decisions to tune the application to achieve the most perfor-
mace outcome. To this end, it is necessary to have tools to easily compare different
experiments and correlate observations between them.

In order to deal with the difficulties inherent to running, measuring and compar-
ing multiple experiments, we have designed a tool to conduct very diverse paramet-
ric and evolutionary studies, enabling to correlate performance information either
from multiple runs with different configurations, or different time intervals within
the same experiment. Our approach focuses on the computational behavior of the
most relevant code regions and shows their evolution with respect to several per-
formance metrics to explain which factors lead the different parts of the code to
improve or degrade. In this context, object tracking techniques become a natural
and intuitive way to detect the performance changes sustained by each part of the
code automatically, and represent the information in a clear and visual manner.

While previous approaches for comparing experiments or phases [17, 28, 29]
have been proposed, our work goes one step further and presents a novel technique
that does not rely on preselected metrics and profile data for static code phases,
such as routines, loops or user-defined sections. One problem of summarizing the
data at these levels is that one same section of code can exhibit behavior variations,
thus making averages will hide divergent performance trends. Our position is that
it is necessary not to consider averages, but every independent instance to detect
fine-grain structure and capture multi-modal variability.

2 Object tracking for performance analysis

Tracking techniques have been traditionally used to follow moving objects in an
image or video sequence. Practical examples include augmented reality, medical
imaging, surveillance or traffic control. A first step to these problems is to delimit
the objects of interest within the scene depicted in the image. Therefore, object
recognition algorithms (e.g. image segmentation and edge detection) will look for
appearance characteristics and distinguishing features (e.g. color, direction or shape)
that identify them. Then, consecutive frames in the sequence are compared to find
correspondences between the objects and their displacements.

Analogously, we represent different executions as images, each one picturing
the program behavior for a given configuration, and arrange them as a sequence
of images that expresses the evolution of the application behavior across experi-
ments. Code regions are drawn in the images as independent trackable objects, in
a space whose dimensions are not the actual physical dimensions of height, length
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and breadth, but performance metrics that describe how these regions behave. Move-
ments in the performance space across the images highlight changes in the applica-
tion behavior, that can be modeled into metrics to evaluate the performance trends
of the different regions of code.

This approach is useful to discover valuable performance insights about the ap-
plication response to different configurations, enabling the analyst to draw quick
conclusions on the key factors limiting performance, direct the optimization effort
and easily determine the best setup to maximize a certain performance requirement.
Throughout this chapter, we will be showing how this method applies to very diverse
cases of analysis to get better understanding of the impact of different architectures,
input problems, workloads, memory and resource sharing schemes, and levels of
scalability on several parallel programs.

2.1 Application structure characterization

Analysis tools usually display performance data to the user in the form of profiles
at the level of syntactic program structures (i.e. subroutines, loops, or user-defined
sections). This has the advantage of providing a very natural and understandable
representation, but also carries some drawbacks along. Prior knowledge of the ap-
plication may be required to determine which functions are relevant, so as to skip
too fine-grain routines that would perturb the execution due to the instrumentation
overhead. When no automatic interposition mechanisms are available [10], access
to the sources and manual modifications are needed to inject measurement probes
in these points of interest. Moreover, considering a whole routine as a single unit
of behavior can be deceitful, because different invocations may behave differently,
depending on the parameters and conditional phases leading to distinct code flows
with divergent performance. In these cases, a global average may convey the wrong
idea of a reasonable overall behavior, while specific sub-phases may be reporting
low performance and their optimization could lead to significant improvements, as
proven in [26, 27].

A different granularity to characterize the application performance is the comput-
ing regions (i.e. CPU bursts). These are defined as the sequential computations be-
tween calls to the MPI or OpenMP runtime. Delimiting these regions only requires
library interposition to instrument the parallel programming API, thus there is no
need for user intervention nor access to the sources. Each CPU burst is described by
its duration, call stack references that point to the corresponding source code, and a
vector of hardware counters metrics describing how it performed. Considering every
CPU burst rather than simple averages, we can detect variabilities across processes
and time, exposing a fine-level characterization of every code region and the nature
of their inefficiencies.

This approach is less attached to the structure of the source code, but focuses
on the performance properties of the actual computations. In [14], the authors prove
that this granularity is useful for the analysis of parallel programs, as it reflects an in-
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termediate point of view between very low level characterizations (i.e. basic blocks
or instruction-level simulators) and higher abstractions (i.e. functions, loops or user-
defined sections). Regardless of our implementation, which selects CPU bursts as
the target granularity, the technique presented would as well be applicable using
other abstractions.

2.2 Generation of tracking images

In computer vision, one or more particular objects (e.g. humans, cells or cars) are
first identified within a frame (a single picture in a video or series of images) and
then tracked as they move through a sequence of frames. Likewise, we are going
to identify the computing regions of interest and keep track on how their perfor-
mance evolves along multiple experiments. To this end, we first need to represent
the performance measurements observed in each experiment graphically, or in other
words, to capture our sequence of frames. This process consists in selecting any pair
of metrics to draw a two-dimensional space where we express the behavior of every
individual CPU burst with a point in the plane. Typically, we select Instructions per
Cycle (IPC) and Instructions Completed, which are useful to bring insight into the
overall performance: trends in Instructions Completed indicate regions with differ-
ent workloads, while IPC measures how fast the work is done. Anyhow, this process
can be applied to any arbitrary combination of metrics that may be used to describe
the CPU bursts (e.g. cache misses, floating-point operations or power consumption)
to support even more precise multi-dimensional characterizations of the data.

With the images generated, the next step is to identify the objects of interest
within them. Due to the highly iterative nature of HPC applications, many compu-
tations will be very alike in terms of the performance they achieve. In the image,
this translates as clouds of points that are close in the space, which can be grouped
into a single entity according to their similitude. Therefore, we apply density-based
cluster analysis [14, 16] in order to group similar CPU bursts with respect to the
metrics selected.

The result of this process is a scatter-plot representation of the performance
space, where the axes correspond to the metrics used to cluster the data, and all
CPU bursts that are similar with respect to these metrics get grouped into the same
object. Clusters are then intrinsically connected to the source code regions of their
belonging CPU bursts, and both terms will be indistinctly used for clarity, but this
connection is not necessarily unambiguous: a single region presenting bimodal be-
havior will result in two distinct clusters, while two different regions with similar
behavior will conform the same cluster. So in essence, what each cluster represents
is a behavioral trend, independently of the code region that exhibits it.

One question that may arise about the benefits of using these performance images
is to what extent they are better than just a straightforward profile. To dispel the
doubt, we have selected as example the BT-MZ benchmark [5], a solver for block
tri-diagonal systems that performs computations of uneven size. Table 1 shows the
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Table 1: User functions profile for BT-MZ

IPC Instructions L1 miss

x solve 2.16 43.04 M 295.92 K
y solve 2.16 43.83 M 323.07 K
z solve 2.17 46.22 M 55.63 K

Table 2: Clusters profile for BT-MZ

IPC Instructions L1 miss % Time

Region 1 2.21 19.15 M 56.45 K 36.95%
Region 2 2.13 53.46 M 266.33 K 12.28%
Region 3 2.16 42.36 M 194.32 K 12.08%
Region 4 2.12 65.79 M 363.01 K 11.43%
Region 5 2.18 33.87 M 133.19 K 11.42%
Region 6 2.11 83.27 M 494.41 K 9.68%
Region 7 2.05 101.61 M 949.55 K 4.01%
Region 8 2.10 109.46 M 115.66 K 2.13%

average IPC, total instructions and L1 misses scored by three of the main functions,
measurements obtained by instrumenting the routines at their start and end points.
From these numbers, we can easily infer that all three routines present a similar
computational behavior, with the same amount of work (Instructions) executed at
the same speed (IPC), yet they show different memory efficiency with lower L1
cache misses in the Z-direction, certainly due to the data access pattern. One could
expect this result, as these functions perform the same kind of computation over
different axes.

Figure 1 shows the performance image generated for these functions, with each
point in the plot being a single instance of invocation, and grouped in clusters with
respect to the IPC achieved and the number of instructions executed. A function-
agnostic view of the data brings new insights about the application structure:
all three functions show eight different computational behaviors with increasing
amounts of work and decreasing speed. Computations with high amount of work but
low performance are interesting to study, as well as those with the same amount of
work at different speeds, or vice-versa, as these indicate potential load-imbalances.
All eight behaviors are exhibited by all three functions, which still conveys the idea
that these functions are similar, but exposes their inner variability as they behave
more or less optimal depending on the size of the workload.

Table 2 shows the same statistics for the clusters, and now you can easily see a
large dynamic range in the metrics. Most significantly, a standard deviation of 30
M of instructions reveals a large work imbalance between all clusters, which was
masked in a traditional function-based profile. Column % Time shows the fraction
of the total execution time that these computational behaviors cover, and it is clear
that their weight is not negligible, and thus the importance of being aware of these
variabilities. This example highlights the importance of focusing on the dynamic



6 G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta

Fig. 1: Clusters for 3 main functions of BT-MZ (Class B, 4 tasks)

behavior of the regions rather than static code structures to guarantee that we detect
performance variabilities and direct the analysis towards the zones of real interest.

2.3 Tracking difficulties

The main difficulty in the use of tracking techniques arises due to abrupt object mo-
tions and noise in the images. When applied to performance analysis the problem
is the same. Even though one would normally expect the application performance
not to radically change all of a sudden, performance variations may result in large
changes of behavior, preventing us from borrowing any assumption about the clus-
ters’ position, direction or shape in the performance space.

The clustering process of a frame assigns numbers and colors to every cluster
identified. Since this is an independent, non-supervised process, the clustering of
a second, different frame does not necessarily have to result in the same number
of objects, assign the same identifiers, or exist a direct correspondence between
their numberings. Figure 2a shows the structure of the twelve most time-consuming
regions of WRF [8] ran with 128 processes. Clusters are formed according to sim-
ilarities in the achieved performance (X-axis) and number of instructions (Y-axis).
Those that stretch vertically (e.g. Region 2) denote instructions imbalance, while
those that stretch horizontally (e.g. 7 and 11) reflect IPC variations. Figure 2b shows
the structure of WRF doubling the number of cores. The number of instructions ex-
ecuted per core has reduced in inverse proportion, and so all clusters have moved
downwards the Y-axis. Intuitively, we can see that cluster 2 (yellow) turned into 3
(red). And a few clusters have slightly improved their performance (e.g. 4 and 6
moved right with higher IPC), while cluster 11 significantly degraded. But some
changes are far from evident : zooming into the boxed areas, you can see a fourth
cluster appearing. Is that the left-most cluster in the 128-task case redistributed into
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(a) 128 tasks (b) 256 tasks (c) 256 tasks normalized

Fig. 2: Structure of WRF computing bursts

the two small ones on the left of the 256-task case? Or these two come from split
parts of the two left-most clusters?

With changing scenarios that may affect the application performance, clusters
can not only move long distances or change their shape between frames, they can
also vary in density, split, or merge together. And if the configurations that differ-
entiate the experiments vary significantly, the frames to compare can be remarkably
different, which makes even more difficult to detect the interesting regions and see
how they change from one frame to the next. Although in some cases it would be
possible to determine who-is-who by visual inspection, this is not obvious in the
general case, and so the benefits of an automated mechanism able to detect abrupt
changes amongst many clusters become palpable.

The first difficulty in determining which objects within a frame correspond to
the ones in the next lies on the fact that the respective scales may be different,
so they can not be compared directly. For example in a strong-scaling case, when
the number of cores increases, the number of instructions executed per core will
decrease in proportion. A step prior to track the evolution of the objects consists in
normalizing the performance scales so that they are comparable. Such metrics that
are correlated with the number of processes of the application (e.g. Instructions) are
weighted by the number of cores, while the scale for the rest (e.g. IPC) is adjusted
to the minimum and maximum values seen along all experiments. Figure 2c shows
the 256-tasks case with the performance scales normalized. The relative distances
compared to the base 128-tasks case are kept almost constant, and the experiments
can now be easily compared.

In the next section we present a tracking algorithm that performs an automatic
correlation of equivalent code regions that are subject to performance variations
along multiple experiments. To this end, we extrapolate the concept of recogniz-
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ing moving objects in a sequence of images to the displacement of clusters within
the metrics space across experiments. Clustering the application performance can
be seen as identifying the objects of interest (regions of code with a certain behav-
ior) in a single frame. Subsequent clusterings result in a sequence of images that
can be compared to see how these objects move, shape-shift, merge or split in the
performance space, reflecting changes in the application behavior. Tracking their
evolution across experiments enables us to study the performance characteristics of
the different code regions, and to understand how the different configurations get to
influence their behavior.

2.4 Implementation details

The current implementation uses the Extrae tracing toolkit [2] to automatically in-
strument MPI and/or OpenMP codes through library preloading techniques. For
each entry and exit point of the parallel runtime, the tool writes a per-thread times-
tamped event trace, and collects hardware counters data through PAPI [9], and
source code references by using libunwind [4] to walk the call stack and GNU
binutils [3] to fetch human-readable debugging information from the binary. In our
experiments, the size of the traces generated ranged from tens of MB to tens of GB.

The clustering tool extracts the CPU bursts data comprised in the trace and runs
a basic DBSCAN algorithm to identify the main computing trends. In this process,
bursts with very short duration are considered negligible and discarded, so as to
avoid the high cost of processing many small points. In [14], the authors prove that
one can discard up to 80% of the data, while preserving the 99% of the computa-
tion representativity. This clustering tool can process up to 100K points under 1-2
minutes.

As reported in the literature, tracing tools already scale to hundreds of thousands
of cores [13], and parallel density-based algorithms are able to manage millions of
points [24]. Once the data has been reduced to representative clusters in the per-
formance image, the tracking algorithm presented next works with a very reduced
number of objects, enabling low response times from few seconds to few minutes,
and so the technique presented, relying on large-scale tracing and clustering tools,
is perfectly applicable with large volumes of data and totally scalable.

3 The tracking algorithm

The objective of this algorithm is to automatically correlate equivalent computa-
tional components that are subject to performance variations, tracking how they
move along a sequence of images that represent the application’s performance be-
havior. Let A and B be two images, as depicted in Figure 3, where n and m objects
are respectively detected, say A = {A1,A2, ...,An} and B = {B1,B2, ...,Bm}. The ob-
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Fig. 3: Tracking scheme

jective is to find the maximum number of relations k, so that exists a k-partition
P = {P1, ...,Pk} of A, and a k-partition Q = {Q1, ...,Qk} of B, that fulfill the condi-
tion:

∀i : 1≤ i≤ k : Pi ≡ Qi

Where the optimal k is bounded above by the image with the fewer number of ob-
jects detected, i.e. min(n,m), and the equivalence relation Pi ≡ Qi is the assumption
that objects in partition Pi correspond to those in partition Qi.

In order to determine whether two clusters are equivalent, there are three princi-
pal properties of the computations that can be considered: the position in the perfor-
mance image, the position in the source code, and the position in the execution trace.
Based on these characteristics, we define five complementary heuristics to evaluate
the clusters equivalences that are detailed in the next section.

3.1 The tracking heuristics

Recalling the difficulties to apply tracking on performance data that we previously
discussed in Section 2.3, deciding whether two clusters from different experiments
represent the same computational behavior requires to consider several character-
istics of the computations. In our implementation, each characteristic is evaluated
with a different heuristic. Applying just a single heuristic is generally not enough,
because as we will discuss throughout this section, most of the characteristics in-
spected are to some extent ambiguous and do not allow to perfectly differentiate
between the objects. Moreover, not all the information required to apply all the
heuristics is always present (that depends on the system and the amount of infor-
mation collected during the instrumentation phase). Therefore, we employ multiple
heuristics and combine their results to decide the equivalences between all objects.
Each heuristic focuses on a particular characteristic of the computations:

• Distance of the movement. Clusters can move in any direction of the space as a
consequence of performance variations, but in the general case, these will man-
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ifest as smooth, directed transitions rather than swift leaps. For example, if we
keep increasing the size of the workload, we can expect the total number of in-
structions executed in all computations to increase as well, and make certain
assumptions on the directions of the movements.

• SPMDiness. In SPMD applications, all processes must be executing the same
code phase simultaneously. If two different clusters happen at the same time,
since the application is SPMD they can not refer to different code phases, and so
they must be the same code phase that is presenting multi-modal behavior.

• Call stack references. Call stack information links every CPU burst in a cluster
to the function, file and line in the source code where it is executed. Different
clusters can not be the equivalent if the computations that form them do not
share any call stack reference to the same point in the source code.

• Clusters density. If there are performance variabilities that make the clusters split,
there must be a combination of the split clusters so that the sum the computations
that form each cluster equals the total number of computations that form the
equivalent unsplit cluster in the previous experiment.

• Chronological sequence. Two experiments running the same program will show
the same time-ordered sequence of computations, so those that appear in the
same order of occurrence must be equivalent.

The following Sections 3.1.1 to 3.1.5 describe each of the heuristics in more
detail. Then in Section 3.2 we explain how the information provided by the different
heuristics is combined to maximize the number of objects successfully tracked.

3.1.1 Distance of the movement

This heuristic takes a pair of images and performs a cross-classification of every
computing burst from the first into the latter, and vice versa. The classification is
based on a nearest-neighbor criteria, so that all points will get classified to the near-
est counterpart cluster. This can be seen as projecting each object from one image
to the next, and see which object in the second image is closer.

The idea that lies behind supports on the fact that the behavior of a parallel ap-
plication will not radically change along images, and so the objects displacements
will generally be short. This assumes a certain ordering in the pairs of images that
are compared, as the more different they are, the more difficult becomes to find
correspondences. However, for the majority of analyses an implicit order emerges.
Consider again the previous example where we doubled from 128 to 256 the number
of cores in WRF (see Figures 2a and 2c). The general structure for both experiments
hardly differs, with very slight movements.

There are situations where a cluster may split into two or more. For example,
when new zones of imbalance appear and separate one region into several distinct
performance behaviors. This case can be seen in Figure 4, where region A4 shifts to
two behaviors, namely B4 and B11. Also, there are cases where clusters can move a
long way in the space, which is the case of regions 11 and 12 in Figure 2a to regions
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

B1 B2 B3 B4 B5 B6 . . . B10 B11 B12

A1 100% 0 0 0 0 0 0 0 0
A2 0 0 100% 0 0 0 0 0 0
A3 0 99% 0 0 0 0 1% 0 0
A4 0 0 0 34% 0 0 0 65% 0
A5 0 0 0 0 100% 0 0 0 0
A6 0 0 0 0 0 100% 0 0 0
...
A11 0 0 0 0 0 0 0 0 100%
A12 0 0 0 0 0 0 0 0 100%



Fig. 4: Cross-classification between WRF-128 and WRF-256

12 and 15 in Figure 2c, respectively. In these situations, cross-classification based
on distance is likely not to assign the points to the correct cluster (both get assigned
to 12 because 15 is too far away, which illustrates a mapping error), but we can then
use the next heuristics to discern whether those regions are the same or not.

3.1.2 SPMDiness

This heuristic exploits the SPMD structure of the applications to match computing
regions that happen simultaneously in different processes. Assuming this execution
model, all processors are expected to be executing the same phase of code at a
time. In this case, if multiple processes are executing different types of computations
concurrently, they are likely to refer to the same code region, although there might
be performance variations that make them shift apart (e.g. the application presents
work imbalance).

Figure 5a shows a detailed view of the temporal sequence of clusters at the be-
ginning of one iteration of WRF 128-tasks. All processes (Y-axis) execute the same
computations over time (X-axis). The same pattern can be seen in Figure 5b for
the 256-tasks case, meaning that the code phases and the order in which they get
executed are the same in both runs. However, in this case some processes are under-
going duration imbalances and execute longer computations, shown as stride lines
with distinct colors. The new behavior is identified as a different cluster, but these
are actually the same computing phases and can be linked together.

The application SPMDiness is evaluated with the technique presented in [15].
The algorithm takes as input the sequence of clusters for every task of the applica-
tion, and performs a Multiple Sequence Alignment (MSA). Clusters from different
tasks that fall into the same position of the globally aligned sequence are those that
get executed simultaneously, and we use this information to mark them as equiv-
alent. If the application follows a programming model that may result in different
processes running different parts of the code at the same time (e.g. task-based par-
allelism), this heuristic alone may lead to inconclusive decisions.
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(a) SPMD computations for WRF-128

(b) SPMD computations for WRF-256

Fig. 5: Correlations from SPMDiness heuristic for WRF

3.1.3 Call stack references

This heuristic prunes the search space by discarding matchings between regions
that do not have call stack references in common. Call stack information points to
the function, file and source code line where the CPU burst starts, linking them to
specific points of code. If two clusters from two different frames do not share code
references, they are certainly not equivalent.

Table 3 illustrates a subset of the relations that can be outlined between regions
from their code references. The reason why some relations are ambiguous is because
the clustering process groups computations based on their similarity with respect
to the selected metrics to generate the performance images, so it is possible that
different points of code behave the same and get grouped under the same cluster.
Also, if a single code region presents multi-modal behaviors, it will appear as part
of multiple clusters. This information alone is insufficient to discriminate more, but
effectively reduces the combinatorial explosion.

3.1.4 Clusters density

This heuristic is applicable when comparing experiments that have computed the
same number of CPU bursts. In those cases, the aggregate of computations of all
the clusters in each performance image will be the same. If the points distribution
in the performance space does not change between experiments, the densities of the
clusters will also be the same. When a cluster splits, two or more sub-clusters will



Studying Performance Changes with Tracking Analysis 13

Table 3: Correlations from call stack heuristic for WRF

128 tasks Callstack references 256 tasks

Region 1 4939 (module comm dm.f90) Region 1

Region 2
Region 5 6474 (module comm dm.f90)

Region 3
Region 5
Region 13

Region 3 6060 (module comm dm.f90) Region 2

Region 4 2472 (module comm dm.f90) Region 4
Region 11

Region 7 5734 (module comm dm.f90)
6275 (module comm dm.f90)

Region 7
Region 11 Region 12
Region 12 Region 15

Fig. 6: Correlations from clusters density heuristic. The aggregate density of the
split clusters on the right is lower or equal than the merged clusters on the left.

have formed, and the sum of their densities will equal the density of the original
super-cluster that contained them all, as illustrated in Figure 6.

This problem can be formulated as a variant of the 0/1 knapsack problem [18]:
given a cluster i in the experiment A with a certain density D(Ai), find the combina-
tion of sub-clusters in the second experiment B that maximizes the sum of their den-
sities D(Bsum) =D(B1)+D(B2)+ ...+D(BN) so that the aggregate density D(Bsum)
is lower or equal than the limit density D(Ai).

3.1.5 Chronological sequence

This heuristic assumes that the program execution order will not change between
experiments, and so the sequence of computing bursts over time will preserve the
same chronological order. If the execution flow of the program varies between ex-
periments (e.g. the program is dependent on the input data set, and triggers different
algorithms optimized for specific data sets), then this heuristic is not applicable.



14 G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta

(a) Sequence of computations in two different experiments

(b) Aligned subsequences between selected pivots, given that cluster 1 and 4 in the first sequence
correspond to 2 and 3 in the second. Attending to their chronological order all clusters that fall the
same column would be equivalent.

Fig. 7: Correlations from chronological sequence heuristic

When the execution order is preserved, it is possible to determine equivalent code
regions by looking into the position where the computations appear in the execution
sequence and matching those in the same position.

The sequence alignment technique referred in [15] is applied now on two ex-
periments, and we then compare the order of occurrence of the computations. For
example, consider an experiment that executes a loop comprising 4 computing re-
gions with different performance behavior, and so these get classified in 4 different
clusters. The top timeline in Figure 7a depicts 2 iterations of this loop, with each
computation colored according to the cluster to whom it belongs. A second experi-
ment that uses more processes and a bigger problem size results in shorter computa-
tions and more iterations of the loop, as illustrated in the bottom timeline in Figure
7a.

As we have discussed earlier in Section 2.3, the clustering process applied to dif-
ferent experiments can result in different clusters, hence having the same clusters
colors or identifiers does not necessarily imply that they represent the same com-
puting region, and so these sequences can not be compared directly. However, if we
could guarantee some correspondences between clusters, for example, that regions
1 and 4 in the top experiment correspond to 2 and 3 in the second, then we can
split the sequences between this points and align all the resulting subsequences, as
shown in Figure 7b. Now if we only pay attention to the order of occurrence of the
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computations, all those that appear in the same column are equivalent with respect
to their chronological order.

In order to decide which are the points to split the sequences, this heuristic uses
the matchings discovered so far by the previous heuristics to establish pivots in both
sequences, and align the subsequences with respect to these points of reference to
discover new matchings.

3.2 Combining tracking heuristics

Build upon the combination of these five heuristics, the tracking algorithm proceeds
as follows to determine a global matching between all clusters. Every heuristic is
applied separately and reports one or more correlation matrices representing rela-
tions between objects. Depending on the heuristic, what these matrices express is
different. Figure 4 shows the correlations computed by the density heuristic for ex-
periments WRF-128 (A) and WRF-256 (B). In this case, it indicates the percentage
of computations that conform object Ai for which object B j is closer. As you can
see, there are cases where one object is close enough to two others or more, so it is
not immediate to determine the appropriate correspondences when the objects are
moving arbitrarily around the performance space. For the SPMDiness heuristic one
correlation matrix per frame is built, each expressing the probability of two differ-
ent computations to be executed at the same time by different processes within the
same experiment. The call stack heuristic calculates the percentage of computations
that are part of object Ai whose call stack references point to the same source code
than those of object B j. The density heuristic represents groups of clusters that have
the same aggregate density. Lastly, the chronological sequence heuristic reflects the
percentage of times where computations Ai and B j happen in the same order of oc-
currence. In all cases, non-zero cells evince that a given pair of objects are the same
with a certain probability, according to that heuristic. Occurrences with a very small
probability (5% by default) are neglected as outliers.

Since every heuristic considers different properties of the objects, there might be
contradictions on the correspondences found, and the results have to be combined to
complement the correspondences that a given heuristic might fail to discern. To this
end, a combination algorithm extracts from each correlation matrix a set of rules
in the form Ai ≡ B j expressing which objects between two frames are equivalent,
and reduces the rules applying a series of union and intersection operations. The
union operation computes a logical OR and can be seen as complementing the re-
sults of different heuristics (e.g. one heuristic finds that A1 ≡ B1, and another finds
that A1 ≡ B2, so we add up the results and consider that A1 ≡ B1∪B2). In this case,
an equivalence between two objects is kept always that at least one heuristic con-
firms it. The intersection operation computes the logical AND, and can be seen as the
agreement between heuristics (e.g. in the previous example, there is no valid corre-
spondence for A1 because the heuristics did not agree). In this case, an equivalence
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betwen two objects is kept only if all the heuristics find that same correspondence,
or discarded otherwise.

The first rules to take into account are always those found by distance, because
the information required to compute the distances between objects is always present
in the frames. Then the resulting rules are united with those found by SPMDiness.
For example, if the first finds that the nearest object for A5 is B5, and the latter finds
that B5 and B13 always happen simultaneously, all objects merge into a more general
relation A5 ≡ B5∪B13. The call stack and density rules are then intersected to prune
incorrect relations that may appear due to mapping errors in the former heuristics.
For example, all related clusters must share the same references to the source code,
so we discard those not having any in common.

We search for correspondences between objects reciprocally, this is to say, com-
paring frame A with B and vice versa, extracting a final set of rules that correlate the
objects between both frames. When the information available leads the heuristics to
not be able to clearly distinguish one region from another, the regions in doubt are
grouped together, resulting in wide relations of multiple objects. The chronological
sequence heuristic is finally used to refine the results, splitting wide relations into
more specific ones.

The analysis is repeated for every pair of consecutive frames, obtaining in the
end k tracked regions, relations of objects that are equivalent along the whole se-
quence of images. Additionally, the tool generates plots describing the evolution of
each tracked region. Next section gives an overview of the results of the tracking
algorithm.

3.3 Tracking results

In this section we present the results of the tracking algorithm, following on from
the WRF example used to guide the explanation of the technique through the former
sections. For the two configurations presented, runs with 128 and 256 tasks, we will
conduct a brief scalability study to explain how the tracking results yield practical
insights that help in understanding and improving the code.

First, the tool reconstructs the input images for the tracking algorithm with all
objects identifiers renamed, so that all equivalent regions keep the same numbering
and color. The whole sequence of images can be displayed in a simple animation, or
in a single plot showing the trajectory that every different object follows, so that is
very easy to identify variations in the performance space, as shown in Figure 8 (in
logarithmic scale for better readability, refer to Figure 2 for the real scales).

Here we can observe two main trends: clusters whose shape hardly varies be-
tween experiments (e.g. Regions 1 to 3), and those that become more distorted when
the scale increases (e.g. Regions 4, 5 and 7). Focusing on the latter which are most
affected by the scale, the developers made an effort to balance the amount of work,
as they appear as flat clusters with low variation in the instructions axis. However,
they present large IPC variability that increases at higher scale. In the 256-tasks case
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Fig. 8: Trajectories of clusters from WRF-128 to WRF-256

Regions 4, 5 and 7, that cover altogether the 30% of the total time, split into new
zones of imbalance on their left with lower performance. Clusters becoming more
disperse indicate an increasing problem of time imbalance.

Amongst the regions that do not deteriorate due to the scale increase, Region 2
stands out for covering all alone the 15% of the execution time, and exhibiting an
elongated cluster in the Y-axis that reflects large instructions imbalance, within a
dynamic range that doubles from 1.5e9 for the 128-tasks case (top), and 8e8 for
the 256-tasks case (bottom). Despite the IPC variability partially compensates the
instructions imbalance and the performance is maintained at scale, this region was
already inefficient from the start.

In addition, the tool presents the evolution of every computing region from the
first scenario to the last, with respect to the metrics selected to generate the images.
Figure 9a shows a trend chart displaying the evolution in IPC for the 128 and 256-
tasks runs of WRF. For better readability, only the most significant regions and
those with higher IPC variations (above 3%) are depicted. While there is a slight
improvement for regions 4, 6 and 7 under 4%, regions 10 to 12 present a sharp
decline up to 20%. Regions 1 to 3 remain constant, yet is important to remark that
being the most important computations covering 50% of the total time, these are
also the ones achieving lower IPC around 0.70. Figure 9b shows the evolution in
the number of instructions for the regions that execute the most, as the percentage
over the 128-tasks base case. When the number of cores increases, so does the total
number of instructions, revealing code replication below 8% in all regions of the
program, which is reasonable but warns us about an increasingly detrimental effect
at higher scales, in particular for regions 3 and 10.

For a production class application with a long-term development, a brief analysis
of the clusters trajectories and the metrics trends has quickly diagnosed several per-
formance weaknesses and potential problems at higher scales. In general, the infor-
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(a) IPC evolution (b) Instructions evolution

Fig. 9: Performance trends for WRF code regions

mation presented allows to perform parametric studies on the influence of different
configurations, as well as to study the evolution of a single experiment over time,
enabling an intuitive analysis that gets straight to the points of interest and their ma-
jor causes of inefficiency. Having call stack references associated to every cluster,
it is possible to connect the observed performance artifacts to specific points in the
code and extract useful recommendations on which way to direct the optimization
process.

4 Cases of study

The aim of this section is to demonstrate the added value of using tracking, where
the importance lays on understanding how and why the performance of the appli-
cation changes along multiple experiments. We want to highlight the versatility of
the technique for a variety of parametric studies, tossing ideas about the kind of
cases of study that could be interesting for the analyst. To this end, we have se-
lected configurations that would produce unpredictable sets of clusters and arbitrary
displacements to prove the algorithm working under stress. Moreover, we present a
real-case study to show that this technique can be useful to provide valuable insights
to the users and successfully lead to improvements in their codes.
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Table 4: Summary of experiments

Application Input images Tracked regions Coverage

Gadget 2 8 88%
QuantumE 2 6 66%
WRF 2 12 100%
Gromacs 3 5 100%
CGPOP 4 2 66%
NAS BT 4 6 100%
OpenMX 7 7 100%
Hydro 8 3 100%
MR-Genesis 12 2 100%
NAS FT 15 2 100%
Gromacs 20 4 80%

Therefore, a variety of proxy and production codes from different fields such as
astrophysics, molecular dynamics and meteorology; were run in MareNostrum II,
MareNostrum III and MinoTauro [1]. MareNostrum II is a cluster of 2,560 nodes,
each containing 2 IBM PowerPC 970MP 2-Core at 2.3 GHz with 8 GB of RAM.
MareNostrum III comprises 3,028 nodes, each containing 2 Intel SandyBridge-EP
E5-2670 8-Core at 2.6 GHz with 32 GB of RAM. MinoTauro comprises 126 nodes,
each containing 2 Intel Xeon E5649 6-Core at 2.53 GHz with 24 GB of RAM.

Table 4 illustrates the ability of the algorithm to identify and keep track of the
different computing regions in 11 studies. The objects detected are automatically
reduced to the ones considered more relevant, those that represent a high percent-
age of the total application time, usually above 5-10%. Coverage is calculated as
the percentage of objects tracked with respect to the maximum number of identifi-
able objects in the input images. 100% in coverage denotes that the algorithm has
been able to find unambiguous correspondences between all the objects. Values be-
low the optimal reflect that there were nearby objects in the input images that the
tracking heuristics could not distinguish as separate individuals with the information
available, grouping them as a single entity. On average, the algorithm successfully
discriminates 90% of the objects. The following sections present seven case studies
in more detail.

4.1 Studying the scalability of the computing regions

The objective of this experiment is to conduct a real-case study of the scalability
of the computing regions of an application. The selected code is OpenMX [6], a
software package designed for the realization of large-scale ab initio calculations.
To this end, we run OpenMX v3.6p1 in MareNostrum III increasing the number of
MPI tasks from 64 to 512 using a single OpenMP thread per task.
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(a) Application scalability (b) Computations scalability

Fig. 10: Scalability of OpenMX

As we are running a strong-scale test (fixed-size problem on a varying number of
processors), the application would ideally see the execution time reduced inversely
proportional to the number of processors used. However, multiplying by 8 the num-
ber of tasks, the speedup achieved in a single time-step is lower than 2. In terms of
work executed, the total number of instructions should have got evenly distributed
amongst all processes, and thus remain constant when the scale increases. Withal,
Figure 10a shows the total number of instructions increasing by 100% from the 64
to the 512-tasks case, which is far from the ideal scaling and too significant to be
due to a problem of code replication. Applying tracking, we can now break-down
this aggregate for the whole program and study the evolution of the relevant code
regions per separate, to understand which parts prevent the application from scaling
better.

The input to the tracking algorithm is the collection of images that depict the
performance of each individual experiment. Unlike in other experiments where the
images are two-dimensional (Instructions and IPC), in this case we used the metric
L1 data cache misses as a third dimension to cluster the data, which results in a
more precise characterization of the relevant computational behaviors. Figure 11a
shows the result of the tracking algorithm applied to the sequence of experiments
from 64 to 512 tasks (only 6 out of 7 depicted due to space constraints, and plotted
in 2D in the Instructions and IPC axes for clarity).

A quick glance at the evolution of the main behaviors reveals two main issues:
First, most regions progress vertically downwards the Y-axis (instructions decrease),
as one would expect for a strong-scaling case. Figure 11b shows the trajectories that
follow the different regions from one experiment to the next, represented by their
centroids. It is easy to see that regions 3, 6 and 7 do not move, meaning that they
perform constant work despite the scale, as if they were ran in a weak-scaling mode.
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(a) Sequence of output images from the tracking algorithm

(b) Trajectories of clusters from 64 to 512-tasks runs

Fig. 11: Tracking results for OpenMX

Figure 10b shows the ratio of surplus work executed per region with respect to
the ideal case where all regions scaled perfectly. In the 512-tasks case, regions 3, 6
and 7 which should have seen reduced their work by a factor of 8, actually execute
7.5 times more work than the expected. With this progression, these three regions
that represented altogether the 20% of the iteration time in the 64-tasks case, now
dominate the iteration representing the 65% of the total time, and have become the
main bottlenecks to the computation scalability. Namely, these correspond to the
computing phases starting at lines 289, 589 and 129 of routine Set XC Grid. Here,
the programmer has put effort to use shared memory programming, but has not taken
advantage of distributing the workload amongst processes. Likely, the developers
considered more efficient to replicate this code to avoid the cost of communications,
which may be worthwhile at small scales, but the increasing costs do not pay off
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at larger scales. These observations were reported to the developers, suggesting to
study the feasibility of partitioning the work so as to fully exploit the distributed
resources.

The second important observation is that most behaviors grow more and more
disperse. In particular, it is the regions that scale better the ones that present more
variability, namely 1, 2 and 4. The parallel efficiency [11] of these regions decreases
from 0.80 in the 64-tasks case to 0.60 in the 512-tasks case, meaning that the 40%
of resources are wasted due to time imbalances, where some processes have to
wait for others to finish their work, and such imbalance gets absorbed in subse-
quent synchronizations. These correspond to the computing phases starting at lines
732 of Krylov Col, 256 of Set Hamiltonian, and 288 of Set Density Grid. In this
case, a second precise recommendation could be made to the user to study the load-
balancing characteristics of these particular regions.

As a final remark, the detected hazards could have been inferred just from the
first three frames in the sequence, and so our technique can be used with few cores
to anticipate problems at higher scales, saving on time and resources.

4.2 Studying the impact of multi-core sharing

MR-Genesis [22] employs a finite volume approach in order to evolve the Rela-
tivistic Euler equations combined with a Constrained Transport scheme to account
for the divergence free evolution of the dynamically included magnetic field. MR-
Genesis was run in MinoTauro using 12 processes, changing the maximum number
of processes allowed per node from 1 to 12. Being 12 the number of available cores
per node in MinoTauro, the configuration for the first experiment corresponds to
12 different nodes running a single process each, and a single full node for the last
experiment, with all the intermediate cases also tested. The objective is to study the
effect of memory bandwidth and caches contention on the application performance
when sharing resources.

Figure 12a shows the result of the tracking algorithm applied to the sequence
of experiments from 1 to 12 processes per node, which reveals two main comput-
ing phases with analogous behavior. Since it is only the physical mapping of pro-
cesses what changes, the total number of instructions executed remains constant in
all trials. However, as nodes get more populated, the achieved performance of the
application decreases. Up to the 66% of the node occupation (8 tasks per node) the
IPC presents a slight reduction under 1.5% from one experiment to the next, but
starts presenting sharper drops beyond this point, with an 8.5% loss when an addi-
tional process is collocated in the node. Overall, the achieved IPC degrades a total
of 17.5% when the node is full.

Figure 12b correlates all performance metrics for Region 1. The Y-axis reflects
the percentage of variation of each metric with respect to its maximum value for all
trials. The number of L2 cache misses grows inversely to the IPC degradation rate,
and the TLB misses also increase as the node gets more populated.
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(a) Clusters trajectories mapping from 1 to 12
processes per node

(b) Region 1 evolution

Fig. 12: Tracking results for MR-Genesis

In this case, a fair trade-off between maximum utilization of the resources and
the application performance is met at two-thirds of the node occupation.

4.3 Studying the impact of the program block size

HYDRO [20] is a proxy benchmark that solves a large scale structure and galaxy
formation problem using a rectangular 2D space domain split in blocks. HYDRO
was run in MinoTauro, and the sequence of images in this case is built doubling
the block size from 8 to 1024 Kb. The objective of this experiment is to determine
which is the best setting for a particular parameter of the program to minimize the
execution time.

Figure 13a shows the evolution of the three main computing phases of the appli-
cation, which actually refer to the same source code region with tri-modal behavior.
The trajectories reflect the number of instructions initially decreasing for all three
regions with drops from 1% to 3% up to a block size of 32 (movement downwards
the Y-axis), and keeps steady beyond this point. IPC also decreases with a total de-
viation of 5% for Region 1, and 10% for Regions 2 and 3, all presenting a sharp
dip when the block size increases from 64 to 128 (movement leftwards the X-axis).
At this point, the number of L1 data cache misses rockets 40% more, as shown in
Figure 13b.

Using small block sizes the application gets more blocks to compute, which en-
tails executing more control instructions. Since the blocks are bi-dimensional and
store 8-bytes elements, when the block size is set to 64 the limit of the L1 cache is
reached, which is 32 KB. With bigger sizes, the block does not fit in the cache, and
so the miss rate increases to the detriment of IPC.
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(a) Clusters trajectories doubling the block size
from 8 to 1024 KB
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(b) Region 1 evolution

Fig. 13: Tracking results for Hydro

Correlating the evolution of all metrics, the point where highest performance
and lowest workload and cache misses converge is at a block size of 16, which
results in the fastest execution of all proposed setups, so this one would be the most
recommendable to minimize the response time.

4.4 Studying the impact of the problem input size

The NAS Parallel Benchmarks [5] are a small set of programs designed to assess the
performance of parallel supercomputers. In this experiment we evaluate version 2.3
of the BT solver with increasing problem sizes. Problem sizes are predefined and
indicated as different classes, where Class W corresponds to a small workstation
problem size, and A, B and C correspond to standard test problems with a 4X size
increase going from one class to the next. For all classes, BT was run in MareNos-
trum II with 16 processes.

Figure 14 shows the trajectories of the clusters through classes W to C. The
starting experiment corresponds to Class W, which can be located at the bottom
part of the plot. Class W presents large variability in IPC, which is depicted with
the elongated clusters in the X-axis. As the experiments move forward, all clusters
move to the top-left part of the plot. This transition shows a large dynamic increase
of two orders of magnitude in the number of instructions from Class W to Class C.
Also, clusters become more compact, indicating a reduction in the IPC variability
except for Region 2, which corresponds to the Gaussian elimination performed in
routines [x|y|z] solve cell.

In contrast, the achieved performance in all code regions degrades as the size of
the problem increases. Figure 15a shows there are two decreasing trends for the IPC.
For regions 1, 2, 4 and 5, a sharp loss ranging from 40% to 65% happens as soon as
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Fig. 14: Trajectories of clusters through BT experiments

(a) Evolution of IPC (b) Evolution of L2 Cache Misses

Fig. 15: Performance trends for NAS BT code regions

we move from Class W to A and then stabilizes, while for regions 3 and 6 the IPC
keeps decreasing and does not stabilize until Class B. Correlating the evolution of
all available metrics, we can see that this IPC degradation can be explained due to
an increase in the L2 data cache misses, as shown in Figure 15b.

4.5 Studying the impact of different hardware and compilers

In this experiment we are going to stress the performance variations in the applica-
tion changing the machine where it is executed and also changing from a generic to
an architecture specific compiler. This test shows that even in very different scenar-
ios that may result in large performance variations, the tracking algorithm is able to
follow the evolution of the clusters.



26 G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta

Table 5: CGPOP performance results

MareNostrum II MinoTauro

gfortran xlf gfortran ifort

Region 1 IPC 0.25 0.16 0.42 0.30
Instructions 6.8M 4.3M 5M 3.5M
Duration 12.09s 12.11s 4.82s 4.68s

Region 2 IPC 0.25 0.16 0.50 0.36
Instructions 4.5M 3M 3.3M 2.3M
Duration 2.13s 2.14s 0.71s 0.69s

Fig. 16: Trajectories of clusters through CGPOP experiments: (A) MareNostrum
GNU (B) MareNostrum IBM XL (C) MinoTauro GNU (D) MinoTauro Intel.

CGPOP [7] is a proxy application of the Parallel Ocean Program [19]. POP simu-
lates the global climate model and is a component of the Community Earth System
Model. CGPOP was run with 128 processors both in MareNostrum II and Mino-
Tauro, and compiled with GNU Fortran 4.1.2 (gfortran) and IBM XL Fortran 12.1
(xlf) in MareNostrum, and GNU Fortran 4.4.4 and Intel Fortran 12.0.4 (ifort) in
MinoTauro. In all cases, the application was compiled with an aggressive optimiza-
tion flag (-O3) and debug (-g).

Figure 16 shows the trajectories that follow the two main computing behaviors
with respect to the number of instructions, which are subdivided into several regions
due to differences in the achieved IPC. In MareNostrum, when the application is
compiled with xlf (see 16b) all computations see the number of instructions signif-
icantly reduced (36% and 33%, respectively) compared to using gfortran (see 16a),
but the IPC degrades practically in the same proportion and the overall execution
time remains almost constant. The situation in MinoTauro is very similar (see 16c
and 16d), with an overall improvement in terms of less instructions executed and
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Fig. 17: Trajectories of clusters through HACC weak scale experiments

higher IPC achieved, yet the same degradation effect when changing compilers can
be easily identified.

Changing the platform also alters the behavior of code, as can be seen for Re-
gion 2 in MareNostrum which splits into Regions 2 and 3 in MinoTauro, no matter
the compiler used. They all refer to the same point in the code, but it now presents
two distinct behaviors. The tracking algorithm automatically identifies and groups
together those regions that are equivalent despite the performance variations, as il-
lustrated by the bounding boxes, and then numerically calculates their evolution
along experiments. Table 5 summarizes the averages for IPC and instructions for
both tracked regions, and their elapsed execution time.

In this case, the specialized compilers xlf and ifort attain a reduction of 36% and
30% of the number of instructions with respect to gfortran in both machines, but at
the expense of an average IPC loss of 36% in MareNostrum and 28% in MinoTauro.
Likely, they reduced index arithmetic but the performance did not change much
because the computation is still memory bound. The integer instructions saved were
likely traded for idle issue slots while waiting for the memory hierarchy, leading to
negligible variations in the execution times lower than ±0.03%.

4.6 Studying the effect of optimal and non-optimal grid geometries

HACC (Hardware/Hybrid Accelerated Cosmology Code) is a framework that melds
particle and grid methods to satisfy the requirements of cosmological surveys, ex-



28 G. Llort, H. Servat, J. Gonzalez, J. Gimenez, and J. Labarta

Fig. 18: Average instructions executed per computing region in HACC

Fig. 19: Average IPC achieved per computing region in HACC

ploiting hybrid and accelerator-based architectures with millions of cores, including
CPU/GPU, multi/many-core, and Blue Gene systems. HACC is designed to scale
weakly by dividing the working data set in cubes. In this experiment we stressed the
application setting different geometries other than a perfect cube, in order to see how
much is the performance affected. The program was run in MareNostrum III, dou-
bling the number of tasks from 16 to 1024 tasks, as well as the size of the problem,
with 1 single MPI task per node (so neither multi-core nor memory caches sharing),
using the Intel MPI message passing library, and without support for threads.

Figure 17 shows the trajectories of the main computing regions of HACC. Here
we can observe zigzag movements back and forth: as we increase the number of
tasks (and so the size of the problem in proportion), all regions move upward (more
instructions executed) and rightward (more IPC achieved). However, when the num-
ber of tasks is cubic (i.e. 64 and 512 tasks), the regions move back in the opposite
direction (down and left; meaning less instructions executed and less IPC achieved).
Figures 18 and 19 show this effect more clearly. Figure 18 shows the amount of in-
structions executed per region across experiments. The lower workload is found at
experiments 3 and 6 (the cubic cases with 64 and 512 tasks). Correlating with Figure
19, these two experiments are also the ones achieving lower IPC.
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(a) 64 tasks

(b) 256 tasks

(c) 512 tasks

Fig. 20: Histograms of durations for computing region 1 in HACC

The differences in the number of instructions can be explained due to the work
distribution scheme: when the number of tasks is not cubic there is extra work to dis-
tribute among the available tasks. Although the IPC achieved also becomes higher,
the increase in performance does not compensate for the increase of work, and the
computation time becomes higher in the uneven cases. This can be seen in Figure
20, that compares the computation times for the main computing region of the pro-
gram (Region 1) in the cubic runs (64 and 512 tasks), and an uneven intermediate
case (256 tasks). In these histograms, the rows represent processes and the columns
are bins of computation durations increasing from left to right, and the colors repre-
sent the time spent on a particular bin, ranging from green (low time) to blue (high
time). In the cubic cases (see Figures 20a and 20c), the computing times are very
similar in the range of 310 to 323 ms, but in the 256 tasks case (see Figure 20b), all
computations are shifted to the right, having increased their times ranging from 323
to 343 ms.

Even though the overall performance of the computations is better in the cubic
cases, we can also observe that the time to solution degrades as we increase the scale.
Comparing the two cubic cases with 64 and 512 tasks, we see that the percentage of
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Fig. 21: Memory bandwidth consumed by the main computing regions of LULESH
with increasing levels of interference

time spent in computations decreases from 60 to 45%, and so the communications
start to dominate the execution time. Analyzing the trace, the time spent in MPI Wait
calls increases from 30 to 50% because of the serializations in the program caused
by a pipelined communication pattern, where some processes can not progress until
they have received messages they are waiting on. One recommendation that could
be given in this case to improve the scalability of the program is to change the com-
munication pattern so as to overlap communications with computations, reducing
the serializations.

4.7 Studying the effects of memory congestion

LULESH is a shock hydro mini-app. While designed to test many machine and
hardware features in particular it stresses compiler vectorization and OpenMP over-
heads. LULESH performs a hydrodynamics stencil calculation using both MPI and
OpenMP to achieve parallelism. In general the compute performance properties of
LULESH are more interesting than messaging as on a typical modern machine only
about 10% of the runtime is spent in communication.

In this experiment we measure how sensitive are the computations of this pro-
gram to memory congestion. To do so, we interfere the execution collocating grem-
lin processes [12] in the same nodes where the application is running, constantly
consuming a large amount of memory bandwidth by contaminating the L3 shared
memory cache. One gremlin is activated at a time every few seconds across the ex-
ecution. So the application starts running clean, then it is interfered by one gremlin
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Fig. 22: Trajectories of clusters through LULESH experiments (from bottom to top,
0 to 6 gremlins per socket)

after a while, then by a second gremlin and so on until a maximum of 6 gremlins per
socket and node are interfering. Every single gremlin consumes an average memory
bandwidth of 600 Mb/s. The bandwidth has been approximated with the follow-
ing formula: BW = (L3miss ∗Lsize)/Tburst ; where L3miss is the number of misses in
the last level cache, and so is the number of times that data is fetched from the main
memory; Lsize is the size of the cache line, and Tburst is the duration of the computing
region.

Figure 21 shows the average bandwidth consumed by the different computing
regions of LULESH with increasing number of gremlins. As the reader can see,
each new gremlin increases the average bandwidth consumed by the application
due to the extra memory accesses needed to cope with the higher number of cache
misses.

Figure 22 shows the trajectories of the main 4 computing regions of LULESH
with respect to the IPC achieved (X-axis) and the number of L3 misses (Y-axis).
All regions move upwards (meaning that the number of L3 cache misses increase
with the number of interfering gremlins), and also move leftwards (meaning that
all regions loose performance with higher levels of interference). Region 3 (red)
is the one that moves further in both axes, which means that is the computation
most affected by the interferences, and corresponds to the computations performed
at the CommMonoQ routine. This routine copies data from several structures with
a non-consecutive stride, making more misses because the application is not taking
advantage of the temporal data locality.
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5 Related work

Our work draws inspiration from a motion detection algorithm of moving biolog-
ical objects that are similar but non-homogeneous [23]. They apply multi-feature
contour segmentation and flux tensors for identifying the boundaries of biological
objects and the detection of deformable motion and complex behaviors (e.g. cell
crawling or division) along a time-lapse collection of images.

In a broader sense, object tracking is applied in the context of applications
that require to associate target objects in consecutive frames to detect how they
move around the scene. Practical applications include: automated surveillance, ges-
ture recognition, traffic monitoring or path planning and obstacle avoidance. [30]
presents an extensive review of the state-of-the-art of tracking methods, and dis-
cusses related issues including the use of appropriate image features, motion models
and object recognition.

ETRUSCA [25] is a post-mortem performance tool that includes a jitter reduc-
tion analysis that attempted to relate the clusters found in one time interval with the
clusters found in the next interval. Selecting a representative process in each inter-
val, they would minimize the data captured. Our approach does not look for repre-
sentative processes, but representative behaviors for all computing phases within all
processors, and track how they change not only across time intervals, but also across
experiments with different configurations.

Multi-experimental analysis has been approached by several performance analy-
sis tools. SCALASCA [29] includes a tool called performance algebra that can be
used to merge, subtract, and average the data from different experiments and view
the results as a single derived experiment. PerfExplorer [17] supports data mining
analyses on multi-experiment parallel performance profiles. Its capabilities include
general statistical analysis of performance data, dimension reduction, clustering and
correlation of performance data, and multi-experiment data query and management.
TAU [28] incorporates the concept of phase profiling for the study of the evolution
within a single experiment. This is an approach to profiling that measures perfor-
mance relative to a phase of execution, having its entry and exit marked by the user.
HPCToolkit [21] merges profile data from multiple performance experiments into a
database file and perform various statistical and comparative analyses.

While they compute averages for predefined metrics and fixed phases such as
functions, iterations or sections marked beforehand, we report arbitrary metrics at
the level of computing regions. By doing so, we abstract the structure of the appli-
cation to the behavior of its computing phases, taking into account the performance
measurements of every single computation rather than profiled averages that may
hinder their actual behavior.

The fundamental difference that distinguishes our approach from the previous
ones is that we do not merely report the outcome of different experiments together.
We automatically determine the regions of interest and track their evolution along
multiple executions. To this end, we translate performance data from different ex-
ecution scenarios into a sequence of images, detect structure in each image and
automatically correlate them.
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6 Closing remarks

In this chapter we have demonstrated that it is possible to draw an analogy be-
tween tracking techniques applied to the automatic detection of an object’s motility,
and the performance analysis of a parallel application’s evolution along multiple
execution scenarios. This approach mimics the common phase structure of a track-
ing algorithm, including the generation of a sequence of images, object recognition
within each frame and motion analysis across scenes.

Different scenarios are represented as a sequence of performance images that
expresses the evolution of the application either along different experiments with
changing configurations, or along time intervals within the same experiment. Com-
puting regions of the application are represented as objects in these images, de-
scribed by how they behave in terms of selected performance metrics. Then, we find
a correspondence between objects along the whole sequence of images, keeping
track of their possible motions and structural changes due to performance varia-
tions. To this end, we use a variety of heuristics that take into account different
characteristics of the computing regions: the distances in the performance space, the
SPMDiness of the application, the code region they refer to, the clusters densities
and the chronological sequence. Combining their use, we are able to automatically
identify the global evolution of the main computational behaviors and illustrate their
performance trends.

Our technique offers a different viewpoint to the task of analysis that is more
agnostic of the syntax of the code, but brings into focus the main performance char-
acteristics of the program and the nature of their inefficiencies, enabling the identi-
fication of the most appropriate solution for the bottlenecks observed. Then, these
observations can be correlated with the source code, to know which sections ex-
hibit a given behavior. There are two remarkable benefits to this approach. First, the
same solution can be applied to multiple code sections that present the same defi-
ciency, without having to reappraise the same problems repeatedly. Second, we are
able to detect multi-modal behavior and variations along time and processors, two
important effects often masked by profiling tools. In this way, a single code section
undergoing performance variabilities will be expressed as divergent behaviors that
can be studied separately, revealing more room for improvement.

All in all, this work presents a versatile tool applicable in very varied scenarios,
enabling the analyst to study the impact of virtually any configuration on the appli-
cation performance without prior knowledge of the program; compare and correlate
performance data between experiments; determine the best setup to meet specific
performance requirements; and ultimately helps to gain better understanding of the
application behavior, much beyond what can be learned from a single experiment.

This work opens up interesting lines of future research. On one hand, predic-
tive models could be built next that would enable us to foresee the performance of
experiments beyond the sample space. On the other hand, further on-line integra-
tion could be developed, in order to analyze the evolution over time of adaptative
applications automatically.
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