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Abstract

We propose to represent classified datasets as a feature graph storing dif-
ferent graphical models and attributes for each feature. This graph allows us
to render each feature according to its own characteristics. In addition, we
show that various features of the graph storing volume information at differ-
ent resolution levels can be rendered together using a view-aligned splatting
method. Moreover, we propose a 2D kernel function for splats that is easy
to tune and generates smaller footprints that reduce the render time. Our
algorithm provides images with less blur. It enhances the boundary of the
features while avoiding the subdivision of homogeneous regions of the vol-
ume.

1 Introduction
In scientific visualization, there is a growing interest for the visual and semantic
quality of the rendered images and for the interfaces through which users specify
the set of visualization parameters [vW05]. Classification has been recognized
[Pa01] as one of the major issues in visualization. It is indeed an important step of
data exploration, because it is used to determine which materials are at every sam-
pled position. However, the visualization problems do not finish once a dataset
has been classified. On the contrary, a true talent of graphical design and skills in
illustration are necessary to obtain meaningful images of a pre-classified dataset,
images that emphasize relevant focused structures while keeping some details of
the context surrounding elements. This is precisely one of the current problems
of visualization: the design of the images is delegated to users of visualization
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applications, scientists and physicians who, generally, do not have the required
graphical skills for it, and, moreover are overwhelmed by the complexity of the
interfaces. This is why many efforts are now being done to provide visualiza-
tion software with mechanisms that ease or automatize the computation of ren-
dering parameters such as cameras [BE06], transparency [GDF03] and sparsness
[VKG05] of different features. On a large extent, these techniques rely on a previ-
ous step of classification and segmentation of the different features of the dataset.

Depending on the methods chosen to render classified datasets, it may be
necessary to design data structures that provide a direct access to the graphical
model of each feature. Examples of such structures are the lists of voxels used
in two-level rendering (RenderLists [HMBG01] and objects sets [HBH03]) and
the run-length encoding the feature identifiers of the voxels for multimodal ren-
dering [FPT06]. More complex topological representations of datasets based on
their skeleton have also been proposed for animation [CSW+03]. However, all
these structures represent the same volumetric information for all the features.
Other structures such as octrees [WG94] support different levels of resolution,
but, since they are based on a spatial subdivision of space, they are not convenient
to separate segmented structures.

In this paper, we propose to represent datasets as a graph of features provid-
ing direct access to each feature. The features can be represented with a different
model and at a different resolution level. Thus, they can be rendered separately
according to their own characteristics. When different features are rendered to-
gether, two main problems must be solved: occlusion and transition between fea-
tures. In this paper, we address the rendering of features represented by voxels at
different resolutions. We use a view-aligned splatting algorithm capable of han-
dling voxels of different sizes. In addition, we propose to compute the voxels splat
using as kernel function a beta function that is easy to tune and generates smaller
footprints that reduce the render time. Our algorithm provides images with less
blur. It enhances the boundary of the features while avoiding the subdivision of
homogeneous regions of the volume.

2 Related work

Data structures for the representation of classified datasets
Most spatial decomposition data structures used in volume rendering, such as
pyramids [LH91], octrees [DKC00] and BSP trees [LMK03], have been designed
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to provide space leaping mechanisms and to compress volume data. However, less
bibliography address the problem of representing segmented and pre-classified or
tagged data. Tiede et al. [TSH98] propose to use together with the original voxel
model an additional volume containing an identifier (ID) of the region to which
each voxel belongs. The drawback of this approach is that it does not provide a
direct access to the features. Ferré et al. [FPT06] partially solve this problem by
using a run-length codification of the voxels identifiers which can be used to skip
non selected features during rendering. A direct representation of the features are
the RenderLists [HBH03]) used for two-level rendering. This structure stores lists
of voxels of all the features for each slice of the volume. It supports only dis-
joint features of the same resolution. An alternative idea is to partition the voxel
model into sub-models, hence preserving the spatial ordering of the voxels inside
the sub-models. Specifically, Li et al [LMK03] use disjoint boxes to ease depth
sorting. Puig et al. [PTN00] support overlapping voxel sub-models, because these
sub-models are organized in a graph that drives the data traversal. This graph rep-
resents the limbs and joints of the cerebral vascular structure that are supposed
to be disjoint so that each voxel sub-model masks the overlapping ones. Finally,
for volume animation and deformation, Singh et al. [SSC03] and later Walton et
al. [WJ06] represent topological skeletons of the human body that associate voxel
sub-models to each segment of the skeleton. All these approaches represent dis-
joint features, with the same resolution. Our goal is provide a structure capable of
handling non-disjoint features, each of them with its own convenient resolution.

Splatting tagged volumes
One of major advantages of splatting is that reduces significantly aliasing because
of the smooth kernels decay [Wes89]. Unfortunately, this smooth decay and the
kernels’ overlapping at the edges produce blurred boundaries. Several methods
have been proposed to overcome this drawback. Mueller et al. [MMC99] use
of a post-shade scheme instead of the traditional pre-shaded approach. However,
generally, post-shading has a higher cost than pre-shading because it projects a
larger number of voxels and performs shader more times per voxel. Huang et
al. [HCS98] employ different kernels depending on the proximity of voxels to
edges and the strength of those edges. This method is effective for iso-surface
edges, but not for micro-edges within the iso-range. Meredith and Ma [MM01]
use a multiresolution octree. For each node, they choose the coarser resolution
and check if its corresponding splat size on screen is below a given threshold.
If it is greater than the threshold, they descend to a finer resolution. This way,
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they avoid both aliasing and blurring by choosing the largest splats whenever it is
possible without blur. Birkfellner et al. [Ba05] use smaller kernels to minimize
the blurring artifacts, and displace stochastically the voxels positions to avoid that
the splats follow aligned patterns.

In addition, in the visualization of tagged volumes the determination of ID
boundaries at subvoxels resolution causes aliasing effects. Both problems have
been addressed in the bibliography in the context of ray-casting [TSH98] [KCOY03]
and texture mapping [VHN+05]. Mueller et al. [MLK03] do not work explicitly
with tagged volumes, but they identify voxels of the different regions of inter-
est (ROI) of a dataset and migrate their density range to private intervals. They
apply intensity-flipping at the transition between features achieving a smooth de-
cay at the boundaries. However, this approach is hard to extend to tagged data,
segmented using more criteria than the property range only.

Finally, for perspective projections, Mueller et al.[MMI+98] propose to use
different kernel sizes according to the distance to reduce perspective aliasing.
Zwicker et al. [ZPvBG01] apply elliptical weighted average non uniform ker-
nels to provide different footprints and low-pass levels depending on the distance
from the observer.

In our approach, features are represented at a convenient resolution. Specifi-
cally, we represent surface features, i.e features representing regions boundaries
at a higher resolution than internal regions. Thus the boundary splats are naturally
smaller than the others, which reduces blurring. Moreover, our model handles
various levels of resolution for each feature. Therefore, if a feature is far from
the viewer or it is out of the user focus, a coarser resolution is used and it is ren-
dered blurry. On the contrary, higher resolution are used for focused features.
This reduces the aliasing of perspective projection and provides focus+context
visualizations.

3 The Multi-resolution Feature Graph

Definition
Our model represents classified voxel models. The classification can be done
according to nc different non-exclusive criteria that can be expressed as boolean
conditions. Therefore, after classification, for each voxel v, we have a set of nc
boolean values (labels) ri(v), i = [1..nc] that indicate if the voxel fulfils or not
each boolean expression. As an example, if the classification criteria are: bone,
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fat, arm, leg and toe, a voxel of the toe bone will have the following labels (1, 0,
0, 1, 1), as it also belongs to the leg.

The voxel model can be clustered into different sets according to any combi-
nation of these labels. Although the theoretical number of clusters is 2nc, in fact,
many of them are empty because all the combinations are not possible. In our
example, possible clusters are: “bone”, “bones and toe”, “fat and arm” , but the
cluster “bone and fat” is empty. We define the concept of feature as a non-empty
cluster. More precisely, a feature ( f ) is a set of values for a subset of the boolean
expressions used in the classification such that at least one voxel of the model
fulfills these expressions. We can associate to any feature the set of voxels of the
volume that have the same label values. Then, sets of voxels of a feature can be
totally or partially included into sets of voxels of other features. In our example,
the set of voxels of the feature “bone and toe” is totally included in the set of
voxels of features “bone” “toe”.

We represent the features and the inclusion relationship as a graph. Specifi-
cally, the Feature Graph is a directed acyclic graph such that each node represents
a feature and each arc represents the relationship of inclusion of the correspond-
ing sets of voxels. The direction of the arcs goes from the larger to the smaller
included feature. The entry point to the graph is a feature ( fall) that includes all
the features that do not have an ancestor. The leaf nodes of the graph correspond
to features that do not include any other feature. Each feature of the graph has
its own optical properties used for rendering. Finally, in order to provide a direct
index to the feature nodes of the graph model, we use a Feature Hash Table.

Sets of voxels
We define the set of voxels of a feature as SOV ( fi). Since the SOV of the leave
nodes are disjoint and are totally included in the SOV of their ancestors, in order
to avoid redundancies, we only store SOV s in the leaf nodes of the graph. Then,
the SOV of an intermediate feature can be obtained by recursively traversing its
descendant nodes down to the leaves. Voxels of the SOV s can be represented either
as submodels of voxels or voxels lists. In the former case, although the SOV s are
disjoint, their bounding box can overlap. We assign a zero value to the voxels
of a submodel that do not belong to the feature, so that a voxel has a non-zero
value in only one unique leave SOV . This way, spatial ordering inside SOV s is
preserved. This representation is convenient if the voxels distribution is compact.
In the second case, the access to the voxels of a feature is direct, it is not necessary
to traverse its submodel and check for the property value. It is convenient when
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Figure 1: The Feature Graph that provides direct access to the data models associated to each
feature, which can be at stored at different resolutions.

the features are sparse and spread in the volume. As a drawback, it is necessary
to store the voxels coordinates and there is no spatial ordering inside the SOV .
Accordingly, we choose the type of SOV representation according to the spatial
distribution of the feature and to the rendering algorithm.

The homogeneous regions of a SOV can also be compacted using different
voxel sizes. When SOV s are implemented as subvoxel models, this is done using
an octree of each submodel. Alternatively, the list of voxels stores only the black
nodes of the octree with their associated size. Furthermore, since the SOV s can be
stored in different files, efficient out-of-core traversal strategies can be applied.

Multiresolution
Because of its hierarchical nature, and because it clusterizes the voxels, the Fea-
ture Graph can handle multiresolution representations of the voxel model. To do
so, we only need to compute the sets of labels at coarser levels of representations
of the voxel model. It should be noted that some clusters that were non-empty
at the higher resolution can become empty at a lower resolution. Therefore, not
all the features of the higher resolution level exist at lower levels. Consequently,
some features can be leaves at a resolution and intermediate nodes at another res-
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olution. Accordingly to our policy of avoiding redundancies, we store the SOV s
only at the leaves of each resolution level. At rendering time, when a resolu-
tion level of a feature is required, the feature node that have the closest level of
resolution in the selected hierarchy feature is visualized.

Finally, each graph feature could be represented by different models, such as
a surface model extracted from a SOV and stored as a polygon list. A generic
multiresolution Feature Graph is shown in Figure 1.

4 Graph Construction
The construction of the Features Graph takes as input the set of voxels, labeled
according to the nc criteria. It is composed of 3 steps: (a) the clustering of the
voxels into sets of voxels with identical labels, (b) the derivation of the features
hierarchy -creation of the nodes and arcs of the Feature Graph-, and (c) a recursive
compression through the graph hierarchy to obtain multiresolution sets. Figure 2
shows the schema of this construction process.

The clusters computed in the first step are actually the SOV s of the leave fea-
tures of the graph at the highest resolution. To compute them, we traverse the
labeled voxel model using the set of labels of each voxel as a hash code of the
Feature Hash Table. Each voxel is added to the SOV indexed by its hash code. At
this point of the process, the SOV s are represented as lists of voxels. Once they are
filled, we are able to compute their bounding box and to create a voxel submodel
for each of them. These voxel submodels are compressed as octrees. Then, either
the octrees are used directly to represent the SOV s or they are traversed to create
a new list-based representation of the SOV s with voxels of various sizes.

In the second step of the process we construct the graph. First, we create the
leave nodes and we associate to them the computed SOV s. Next, we derive the
graph hierarchy through an iterative process based on boolean operations between
the feature labels. This process recursively creates common ancestor nodes for
all the nodes that share a bit of their hash code. When the hierarchy is built, the
Feature Hash Table is updated to reference to new created nodes. At the end of the
process, if the graph is composed of various disconnected hierarchies, we create
the feature ( fall) as the common root.

Finally, we compute the sets of voxels at coarser levels of representations of
the original voxel model and repeat the clustering process for larger voxels. Then,
the SOV s computed with these coarser clusters of voxels are distributed through
the graph hierarchy and attached to the corresponding nodes. Thus, each node can
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contain different resolution level SOV s.

5 View-aligned splatting of the Feature Graph
Rendering the Feature Graph depends on how the SOV s are represented, as voxel
sub-models or lists. In this paper, we focus on the second representation. Since
lists do not preserve spatial ordering, we have chosen the view aligned splatting
approach that transforms and inserts orderly the voxels in view-aligned buckets.

Graph traversal
The input of the rendering is a set of feature keys that have to be rendered called
user query. In addition, user can specify the resolution at which the selected
features need to be rendered, or this resolution can be computed automatically
depending on the ratio pixel/voxel of the projection and the feature’s distance to
the camera view reference point.

The feature keys of the user query are used to access the Feature Hash Table
in order to fetch the selected nodes of the graph. The SOV s to be rendered are
obtained by recursively traversing the selected features and their descendants. At
each feature node of the graph, the selected resolution level is checked against the
node resolution level. If the resolution level of the node is the same or higher than
the desired one, the voxels of the SOV associated to the node are view transformed
and inserted into the sheet buffers. In the opposite case, the node descendants are
recursively visited and the same procedure is applied again. The optical properties
applied for a SOV are inherited from the selected ancestor feature node. Besides,
as all of voxels of a SOV share optical properties, they are set once at the beginning
of each SOV traversal. Then, we iterate on the voxels of the SOV and we fill the
sheet-buckets corresponding to the different voxel locations. Each voxel contribu-
tion to the volume rendering integral is defined by a set of kernel sections that fall
within a set of cutting planes (sheet-buckets). A different set of kernel sections is
computed for each footprint size defined by each resolution value. Pre-integrated
kernel sections are used for fast rasterization and each sheet-bucket position stores
the corresponding kernel index. At the end of the selected features traversal, the
composition of all sheets or buckets in FTB order is performed.
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Splatting kernels
The kernel function used for splatting is usually based on the Normal distribution.
However, we have found that this function is highly sensitive to changes in the
visual parameters. The ratio pixel-voxel in zooming views, the shading function
used, the optical properties of the feature and the opacity required define the final
size of the footprint to keep continuity between neighbor voxels. For instance,
holes may appear when voxel’s opacity decreases, requiring changes in the foot-
print size. These effects are specially noticeable at the boundary between features
in tagged volume visualizations. We propose to use a Beta function as the generic
footprint function, which improves the rendering performance using smaller foot-
prints and that is easier to tune under visual changes.

The Beta-function lets controlling separately the openness, height and width
of the curve. The general Beta-function is Beta(x,a,b) = xa(1− x)b, where the
parameters a and b control the shape of the curve in range [0,1]. Hence, scaling
the range and giving identical values to a and b, we can obtain the set of symmetric
curves showed in Figure 3. This figure shows that it is possible to force the curve’s
width (i.e. [−5..5]) while controlling the curve’s shape: lower a,b values produce
curves more opened.

Beta(x,a,b) = kscalexa(1− x)b (1)

Figure 4 shows that we can use a smaller footprint based on beta distribution
to obtain a splat similar to a normal distribution based footprint.

Image-aligned splatting slices the interpolation kernels by a series of cutting
planes aligned parallel to image plane. The kernel sections share the same weight
distribution but they have different radius depending on the cutting plane. We use
a kernel base distribuiton and a scaling factor as [MC98] to obtain them. Figure 5
shows a single kernel composed of seven stacked section footprints.

In addition, an alpha-blend operator is used to compose the kernel sections
that fall within the same sheet-bucket, instead the the add operator proposed in
[MC98]. This alpha composition provides a smoother color transitions between
overlapped kernel sections. Figure 5 illustrates the smooth interfaces between
different optical properties and resolutions.
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6 Simulations
The proposed Feature Graph model has been tested with two real datasets. All the
tests were run on an AMD 64 3200+ with 1MB of RAM and an NVidia GeForce
6600 256MB. The datasets are tagged volumes with different material properties
for each label. They are tested on our software platform Hipo [CPT06].

The resulting images of these simulations are placed in the Table 1. The first
column shows the pictures of rendering the Feature Graph with all the sets of vox-
els at a resolution of 2563 using an emission+absorption shading model (emabs).
In contrast, the second column shows renderings of the Feature Graph at different
resolutions and different shading models according to a Focus+Context schema.
The focus is rendered at the original 2563 resolution while the context is sub-
sampled at coarser resolutions (up to 1283). Even more, the surface of what we
focus on, is rendered using a Lambert shading model while all the rest is rendered
following the emabs model. Besides, the second row of each dataset contains a
zoomed view of it.

The first model contains the classical engine block dataset, with a geometry
of 256x256x152. The first column shows that beta footprints and αComposition
provide smooth images with good visual quality even at zoomed views. The ratio
pixels/voxel is 1.42 in the upper row, and 4.93 in the second row. In this case, the
Feature Graph has been used to access directly to the voxels of the two selected
features and render each one with different transfer functions. The last column
shows how the Feature Graph can be used to obtain Focus+Context images. The
focus -in blue color- is rendered using a Lambert shading model in its surface to
enhance its edges, while the context -in red color- is rendered at a low resolution.
The second dataset is the computer tomography of a frog, with a geometry of
256x236x72. In this case the ratio pixels/voxels of the first column is 1.74 in
its upper row and 3.86 in the last row. The last column also has Focus+Context
images where the focus is the nervous and venous systems and the rest of the frog
body is the context environment.

Finally, Figure 6 shows a comparison of the engine block dataset rendered us-
ing the Beta footprints or the usual Normal distribution based footprints. The vi-
sual quality is equivalent, although beta footprints are smaller. As a consequence,
in the example, the execution is twice faster when using beta footprints.
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7 Conclusions and future work
We have proposed to represent classified datasets as a feature graph. Our data
structure represents each feature at its own convenient level of resolution. More-
over, it can handle multiresolution representation. We have shown how to render
the graph using a view-aligned splatting method. To do so, we have proposed a
2D kernel function for splats that is easy to tune and generates smaller footprints
that reduce the render time.

Our graph can be extended in many ways. First, we want to explore how
to render it with other algorithms than view-aligned splatting. Storing the SOV s
of the features as 3D textures seems a promising way to render the model using
hardware-driven texture mapping or ray-casting. In addition, we want to add other
geometric models to the features, as for instance a polygonal model of the surfaces
extracted in a pre-process. This way, we would be able to render some features
as surfaces and other as volumes. Again, depth sorting problems and transition
artifacts between the different geometrical model will need to be solved. Finally,
we would like to assign levels of importance to the features, that combined with
their degree of focus would provide better automatic means of selecting for each
feature its convenient graphical model, resolution and optical properties.
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Figure 3: Beta D. with different exponent values.
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Figure 4: Splats: [top row] The 256 pixels beta-footprint (a) requires a 26.8% smaller footprint
than the 350 pixels gauss-footprint (b); [bottom row] The same images but filtered to highlight
the values even when they become close to zero. They reveal that the gauss-footprint has more
extension to fall to almost zero than the beta-footprint.
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Figure 5: Stacked set of different beta-footprints corresponding to a single kernel and a graph
displaying the footprint’s weights along the central footprint.

Figure 6: Interface of two resolutions: [left] six voxels at resolution 1 (the first four in red color
and the last two in cyan color) [right] one voxel at resolution 2 (red) and two voxels at resolution
1 (cyan).

18



Figure 7: Beta and Gauss footprints used with real datasets: the image rendered using 25x25
pixel beta footprints [left] has mainly the same appearance than the one rendered using 35x35
pixel gauss footprints [right], but requires half the time to be rendered.
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Single res. - emabs Multi.res. - emabs & lambert
Engine dataset

Frog dataset

Table 1 - Two real datasets rendered using the Feature Graph, the Beta footprint and the αComposition
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