
PHAST: Spoken Document Retrieval Based on Sequence
Alignment

Pere R. Comas
TALP Reseach Centre

Technical University of Catalonia (UPC)

pcomas@lsi.upc.edu

Jordi Turmo
TALP Reseach Centre

Technical University of Catalonia (UPC)

turmo@lsi.upc.edu

ABSTRACT
This paper presents a new approach to spoken document
information retrieval for spontaneous speech corpora. Clas-
sical approach to this problem is the use of an automatic
speech recognizer (ASR) combined with standard informa-
tion retrieval techniques, based on terms or n-grams.

However, state-of-the-art large vocabulary continuous ASRs
produce transcripts of spontaneous speech with a word er-
ror rate of 25% or higher, which is a drawback for retrieval
techniques based on terms or n-grams. In order to over-
come such a limitation, our method is based on a sequence
alignment algorithm drawn from the field of bioinformat-
ics to search “sounds like” sequences in the document col-
lection. These matching sequences are potentially misrec-
ognized words from the ASR and can be used to retrieve
relevant passages and documents from the collection. Our
approach doesn’t depend on extra information provided by
the ASR.

We have evaluated and compared our approach to others
in the state of the art in both spoken document retrieval and
spoken passage retrieval tasks. The evaluation has been per-
formed in the context of Question Answering using a corpus
of automatic transcripts from the Spanish and European
parliaments. The results show that our method outper-
forms by 10 points traditional term based search and n-gram
search on automatic transcripts.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Algorithms

Keywords
Information retrieval, Spoken document retrieval, Sponta-
neous speech retrieval, Sequence alignment, Approximate
matching, Phonetic distance

1. INTRODUCTION
Since affordable technology allows the storage of large

masses of audio media, more and more spoken document
sources become available to public access. This great body
of spoken audio recordings is mainly unaccessible without
accurate techniques of retrieval. Spoken document retrieval

(SDR) is the task of retrieving passages from collections of
spoken documents according to a user’s request or query.

Classically, the approach to SDR problem is the integra-
tion of an automatic speech recognizer (ASR) with infor-
mation retrieval (IR) technologies. The ASR produces a
transcript of the spoken documents and these new text doc-
uments are processed with standard IR algorithms.

These techniques assume the correctness of the words in
the documents and the existence of structural information
such as punctuation marks, paragraph boundaries, and capi-
talization. However, the speech recognition stage introduces
errors that challenge traditional IR algorithms.

Any ASR is limited in the size of the vocabulary it can
recognize. This vocabulary depends on the amount of au-
dio data used in its training. Therefore the ASR can not
recognize all possible words, these are the so called Out of
Vocabulary (OOV) words. The ASR transcribes the audio
corresponding to these words as other sequence words in its
closed vocabulary. Words such as proper names tend to be
OOV and this is an additional difficulty since this words
typically occur in user queries. OOV words may be very
important for some applications as we will show lately.

Recent results show that a reasonable approach to SDR
consists in taking the one-best output of ASR (i.e., the most
probable sequence of words that generates the input audio)
and performing IR on this transcript. It works reasonably
well when recognition is mostly correct and documents are
long enough to contain correctly recognized query terms.

TREC conference had a spoken document retrieval task
using a corpus composed of 550 hour of Broadcast News. In
this scenario, documents are long enough and speech clear-
ness allows accurate transcription. TREC 2000 edition con-
cluded that spoken news retrieval systems achieved almost
the same performance as traditional IR systems [4].

The Spoken Document Retrieval track in CLEF evalu-
ation campaigns uses a corpus of spontaneous speech for
cross-lingual speech retrieval (CL-SR) [22, 13]. CL-SR task
challenges the participants to work with noisy automatic
transcripts and a more general scenario than the former
TREC tracks. CL-SR corpus is composed of nearly 600
hours of spontaneous speech from interviews with Holocaust
survivors. The queries were topic descriptions consisting of
a title, a short description and a narrative passage. Top
ranked participants in CL-SR, see [2, 8, 6, 20], used a wide
range of traditional text based IR techniques. Good results
were achieved with term-based ranking schemes such Okapi
BM25 [15], Divergence From Randomness [3] and Vector
Space Models [16]. Most of the work done by the partici-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pants was focused on investigating the effects of meta-data,
hand-assigned topics, query expansion, thesauri, side collec-
tions and translation issues. Some participants used n-gram
based search instead of term search. For n-gram search, text
collection and topics are transformed into a phonetic tran-
scription, then consecutive phones are grouped into overlap-
ping n-gram sequences, and finally they are indexed. The
search consists in finding n-grams of query terms in the col-
lection. Some experiments show how phonetic forms helps
to overcome recognition errors. Some results using phonetic
n-grams are reported in [7] showing only slightly improve-
ments.

Experimental results show that the traditional approach
consisting of ASR and IR is not useful if the task requires the
retrieval of short speech segments in a domain with higher
word error rate. In this cases, other approaches to SDR have
been proposed. Most try to improve retrieval performance
using additional information specific to the ASR. For ex-
ample, Srinivasan and Petkovic [19] use an explicit model of
the ASR error typology to address the OOV problem. First,
they use two ASRs to generate a word transcript and a pho-
netic transcript of the input audio. Then they build a phone
confusion matrix that models the probability of ASR mis-
taking any phone for a different one. Finally, the retrieval
step uses a Bayesian model to estimate the probability that
the phonetic transcript of a speech segment is relevant to
the query term.

Another common approach is the use of ASR lattices to
make the system more robust to recognition errors. The lat-
tice contains all possible outputs given the audio input. For
example, experiments in [18] report an improvement of 3.4%
in F1 measure in Switchboard corpus using a combination
of word-lattices and phone-lattices as search space. The use
of word-lattices alone cannot overcome the problem of OOV
words.

In this paper we present a different method for speech re-
trieval. With this approach, we try to overcome drawbacks
such as OOV words and specific ASR dependency with an
algorithm that requires no training data. Briefly, after trans-
forming the transcribed text into a phonetic transcription
using a text-to-speech tool, we use a measure of phonetic
similarity to find regions in the data of high phonetic resem-
blance with the query terms. These regions are candidates
to contain terms even if the words are misrecognized, and
standard IR techniques can be applied to rank the spoken
documents. This search can be done in a reasonable efficient
time using an approach similar to the search of patterns in
DNA sequences. We call this method PHonetic Alignment
Search Tool (PHAST).

The rest of this paper is organized as follows. Section 2
introduces some background concepts about algorithms rel-
evant to our work. Section 3 describes PHAST and Section
4 discusses experimental setting and compares the results
achieved by PHAST and state-of-the-art approaches. Fi-
nally, Section 5 concludes the paper.

2. BACKGROUND
We are interested in building an IR engine for a factual

Question Answering system over spoken documents. Ques-
tion Answering (QA) is the task of finding exact answers
to questions formulated in natural language in a document
collection. In factual QA, the answer is a named entity (e.g.
a proper noun, a date, a measure). Factual QA is specially

concerned with OOV words since most of named entities
tend to be out of the vocabulary.

In the traditional approach to QA, a first step involves the
retrieval of documents or passages potentially containing the
answer to a question. In further steps the exact answer is
extracted using a wide range of linguistically motivated algo-
rithms. These steps are computationally expensive. There-
fore the IR step acts as a filter reducing the document col-
lection to a smaller search space. The very same task can
be performed over a collection of spoken documents.

For simplicity, the following sections briefly describe some
concepts relevant to our word and related to QA and ASR
technologies.

2.1 Automatic Speech Recognition
We access to spoken documents using an ASR. Given an

acoustic signal the ASR searches for the most likely word
sequence that could produce the signal. The ASR uses two
statistical models for this task: an acoustic model, which
relates signal and phones, and a language model, which es-
timates the probability of a certaint sequence of words.

Generally, ASR performance may vary depending on con-
ditions. For open-domain spontaneous-speech speaker-inde-
pendent recognition, Word Error Rate (WER) greater than
25% is expected. ASR may produce three kinds of transcrip-
tion errors: some spoken words are missing in the transcript,
some spurious words are added to the transcript, or some
spoken words are transcribed as another words. These prob-
lems often occur together: because ASR systems try to map
sounds into words, ASR recognition errors generally lead to
mapping sounds into incorrect words with phonetic similar-
ity to correct words.

Figure 1 shows manual and automatic transcript for three
spoken utterances. A first problem is that correctly tran-
scribing a word becomes more difficult when the word is un-
frequent (i.e., it has small probability). A second problem is
OOV words, all those words not belonging to the language
model will never appear in the transcript. Proper names
suffer from this problem as exemplifies the third sentence in
Figure 1. In this sentence, the word “UNIX” is misrecog-
nized as “unique set”. This is due to the fact that “UNIX” is
pronounced as [juniks]1 while “unique set” is [juniksEt]. The
only difference is that the automatic transcript contains two
extra phones. Experience shows that most of the missing
or misrecognized words are content-bearing words such as
“UNIX”, which may be crucial for accurate retrieval. Spu-
rious words added by the ASR tend to be common words
with little influence in retrieval [20].

Our approach for IR relies on this phonetic likeliness be-
tween misrecognitions and the actual spoken words to set
an approximated matching between them. This likeliness
is due to the ASR architecture and not to a specific ASR
model, and is also valid for OOV words.

2.2 Retrieval in QA
Information retrieval module is one of the main steps in

QA. The set of retrieved documents/passages must contain
the answer to the question. This means that retrieval needs
a recall high enough to guarantee the presence of the answer.

1In this paper we have used the international phonetic al-
phabet (IPA) notation for phonetic transcriptions within
brackets.
http://www.arts.gla.ac.uk/IPA/

http://www.arts.gla.ac.uk/IPA/

1M: “The pattern frequency relevance rate indicates the ratio
of relevant documents. . . ”
1A: “the putt and frequency illustrating the case the ratio of
relevant documents. . . ”
2M: “Documents must be separated into relevant documents
and irrelevant documents by a manual process, which is very
time consuming.”
2A: “documents must be separated into relevant documents
and in relevant document by a manual process witches’ of
very time consuming”
3M: “The host system it is a UNIX Sun workstation”
3A: “that of system it is a unique set some workstation”

Figure 1: Examples of manual (M) and automatic
(A) transcripts

It is also desirable to achieve precision enough to reduce
computational overhead on further steps.

This section describes the baseline retrieval algorithm we
have used for our experiments in document and passage re-
trieval (cf., Section 4). The reason by which we have selected
this algorithm among others is that empirical studies show
how this algorithm achieves better results for QA than tra-
ditional document ranking schemes [14].

Given a sequence of keywords S = [k1, k2, . . . , kn] sorted
according to priority, the algorithm transforms the sequence
into boolean queries to be sent to the IR engine in an iter-
ative process. The first m keywords in the sequence define
the query (k1 ∧ k2 ∧ . . .∧ km) and are sent to the IR engine.
Also, a word distance threshold t is set in order to produce
passages of high keyword density. If the number of returned
passages or documents is above or below some fixed thresh-
olds rMax and rMin, new keywords may be added/dropped
from the query and it is sent to the IR engine again.

Figure 2 is an example of passage retrieval. It shows sen-
tence 2M from Figure 1 and a query containing the keywords
“relevant”, “document”, and “process”.

The distance between consecutive keywords within a pas-
sage must be smaller than t words. A passage is formed in a
segment with high keyword density (i.e., a segment contain-
ing all keywords where two consecutive keyword occurrences
are separated by at most t words). Note that first occurrence
of “documents” is too far from “relevant” to belong to the
passage.

Parameters rMax, rMin and t may be tuned to the doc-
ument collection and system characteristics (see [14] for fur-
ther details). With this dynamic query adjustment, an un-
ordered set of relevant passages or documents is generated.
The complete set can be subsequently processed to extract
any possible answer, task which is not of the scope of this
paper. In section 4, this algorithm is referred to as DQ.

3. OUR RETRIEVAL APPROACH
This section shows how an approximated search based on

phonetic similarity can be efficiently implemented using a
sequence alignment algorithm drawn from the field of bioin-
formatics.

The recent sequencing of a large number of genomes has
greatly stimulated the development of computational meth-
ods for the identification of patterns in biological sequences.
Hence a family of pattern-matching algorithms for sequence
comparison (sequence homology of proteins) in large data-

bases has recently been developed. The most succeeding
algorithm in the field is called BLAST (Basic Local Align-
ment Search Tool) [1]. BLAST employs a measure based
on well-defined mutation scores to find regions of local sim-
ilarity in protein sequences. BLAST is a simple and robust
algorithm that can be applied in a variety of contexts2.

Following the approach of BLAST, we have implemented
PHAST, an IR-engine over large phonetic sequences based
on the same principles. Our hypothesis is that it is possible
to find the best matchings of the keywords by searching for
small contiguous substrings of phones (hooks) in the tran-
script, extending them and computing its relevancy.

PHAST algorithm has some advantageous properties for
dealing with SDR: finds approximated matchings with in-
dependence of sub-word length, it can easily split/merge se-
quences, and no training data is required. In PHAST, this
process is language independent given an appropriated set
of phones.

Algorithm 1 shows a general view of PHAST scheme. It
is a two-step process: First, term frequency is calculated
using phonetic similarity, and second, a standard document
ranking process takes place.

Algorithm 1

PHAST algorithm
Parameter: D, collection of phonetically transcribed doc-
uments
Parameter: KW, set of phonetically transcribed key-
words

1: for all d ∈ D, w ∈ KW do
2: while h = detectionφ(w, d) do
3: s = extensionϕ(w, h)
4: if relevant(s, h) then
5: update tf(w, d)
6: end if
7: end while
8: end for
9: Rank collection D

The input data is a collection of documents transcribed
into phonetic sequences D, and a set of keywords phoneti-
cally transcribed KW. There are three important functions
to describe in this algorithm.

• detectionφ(w, d) is a function that detects hooks within
document d considering keyword w. Different func-
tions φ can be used to detect hooks as will be discussed
in Section 3.1.1.

• extensionϕ(w, d, h) is a function that extends hook h
and computes an accurate similarity score s between
keyword w and document d around h. Different func-
tions ϕ can be used as will be discussed in Section
3.1.2.

• relevant(s, h) judges how this occurrence of w at h
with score s is relevant enough for term frequency. It
triggers an update procedure relative to the document
ranking process to be used. This will be discussed in
Section 3.1.3.

2http://www.ncbi.nlm.nih.gov/BLAST/

http://www.ncbi.nlm.nih.gov/BLAST/

Keywords: relevant, documents, process

. . . documents must be separated into

Passagez }| {
relevant documents and irrelevant documents by a manual process, which is a very . . .| {z }

distance>t

| {z }
distance<t

Figure 2: Example of passage building

Reference transcript:
“The host system it is a UNIX Sun workstation”
Automatic transcript:
“that of system it is a unique set some workstation”

junik ← detectionφ
. . . Dæt 2B sIst@m It Iz @ junik sEt s2m w@UrksteIS@n. . .

junik s s2n ← extensionϕ

Figure 3: Search of term “UNIX-Sun”

Finally documents in D are ordered according to a ranking
measure.

Figure 3 shows an example of how functions detectionφ
and extensionϕ are used. Document d is the sentence 3A
from Figure 1, which has been transcribed to a sequence
of phones. The query word w is the term “UNIX-Sun”,
which is transcribed as [juniks s2n]. Term w exists in the
manual transcript 3M but not in the automatic transcript
3A. In the first step, detectionφ finds hook [junik] related
to [juniks s2n]. In the second step, extensionϕ extends the
hook by matching the rest of [juniks s2n] with the phones
surrounding [junik] in the sentence.

The following sections discuss in detail first and second
steps.

3.1 Keyword search
The following sections describe the three functions detectionφ,

extensionϕ and relevant.

3.1.1 Detection of Hooks
In order to efficiently detect the occurrences of a pho-

netic sequence a in a phonetic sequence b, detectionφ(a, b)
is sequentially computed over the corpora. Function φ has
been implemented following an approach similar to the one
presented by Altschul [1].

Given a set of phonetically transcribed keywords, a de-
terministic finite automaton [5] DFAk is automatically built
for each keyword k in order to recognize all its possible sub-
strings of n phones.

For instance, given n = 3 and the keyword “alignment”,
which is phonetically transcribed as [@laInmInt], there are
seven phonetic substrings of length three (3-grams): @la, laI,
aIn, Inm, nmI, mIn and Int. One DFA is automatically built
to recognize all seven 3-grams at once. Table 1 shows the
transition table of this DFA.

Using these DFAs, the collection is scanned once to search
for all the hooks. When a hook is found, a process for ex-
tending it is executed. This process is described in the fol-
lowing section.

3.1.2 Extension of Hooks
After a hook is found, PHAST uses ϕ to extend each hook

State @ a I l m n t *
0 15 6 10 4 3 1 0 0
1 15 6 10 4 2 1 0 0
2 15 6 13 4 3 1 0 0
3 15 6 19 4 3 1 0 0
4 15 5 10 4 3 1 0 0
5 15 6 18 4 3 1 0 0
6 15 6 7 4 3 1 0 0
7 15 6 10 4 3 8 0 0

+8 15 6 10 4 12 1 9 0
+9 15 6 10 4 3 1 0 0
10 15 6 10 4 3 11 0 0
11 15 6 10 4 12 1 9 0

+12 15 6 13 4 3 1 0 0
+13 15 6 10 4 3 14 0 0
+14 15 6 10 4 12 1 9 0

15 15 6 10 16 3 1 0 0
16 15 17 10 4 3 1 0 0

+17 15 6 18 4 3 1 0 0
+18 15 6 10 4 3 8 0 0

19 15 6 10 4 3 14 0 0

Table 1: Transition table of a DFA recognizing all
the 3-grams in [@laInmInt]. Final states are marked
with ‘+’. Initial state is 0

h and to compute its score value s. Following the approach
of Altschul we have taken the edit distance (Levenshtein
distance [12]) as ϕ function. Recent works have successfully
used edit distance as a measure of phonetic similarity.

The process is as follows: when a hook h is found, the
edit distance is calculated between the query term w and a
subsequence of the document d around the position where
h was found. This yields an score for the similarity of this
occurrence of w in d.

Given two sequences a and b of lengths n and m, the edit
distance algorithm can be computed by means of a dynamic
programming algorithm as follows. In a first step, a distance
matrix D is computed. D[i, j] holds the minimal distance
between the prefixes of lengths i and j of sequences a and
b, respectively. Initially, the first row and first column of
the matrix are filled with a multiple of the indel cost. Then
each new element in D is calculated recursively for longer
substrings

D[i, j] =min(D[i− 1, j − 1] + δ(ai, bj),

D[i− 1, j] + δ(ai,−),

D[i, j − 1] + δ(−, bj))

where δ(x, y) is the cost of substitute symbol x for sym-

bol y, δ(ai,−) states the cost of deleting symbol ai. The
complexity of building this matrix is O(m · n).

In a second step, the optimal alignment is retrieved from
D. It starts at D[n,m] and tracks back the high-scoring
path until D[0, 0] is reached. The next entry of D after the
current one depends on the choice made in the first step. As
a result, D[n,m] is the total similarity score ∆(a, b). The
complexity of the reconstruction step is O(m+ n).

The similarity function ∆

PHAST finds optimal alignment of sequences of phonemes
using the edit distance with a phonetically motivated cost
function.

Phonetic similarity functions have been used in other do-
mains of research with success (e.g., identification of con-
fusable drug names, dialectometry, spelling correction). A
survey on phonetic similarity functions can be found in [9].
Kondrak [10, 11] proposes a flexible and mathematically
sound approach. This approach uses the edit distance with
two straightforward modifications of the original algorithm.
The first one is the use of two new operations: compres-
sion and expansion. The second one is the use of a modified
reconstruction step that allows global and semi-local align-
ment. These modifications are described below.

• Compression/expansion: Two contiguous symbols of
one string may correspond to a single symbol of the
other string. Compression and expansion are the same
operation from a computational point of view. Com-
pression allows better detection of phenomenons like
consonant merging (e.g. [c] sounds like the pair [tS]
rather than [t] or [S] alone).

• Semi-local alignment: As descrived before, we have
seen that the reconstruction step of the edit distance
starts in D[n,m] and builds the best global alignment
of a and b. If we try to align a short sequence (a
keyword) with a longer sequence (a paragraph or sen-
tence), we don’t want to scatter the keyword across
multiple words even if it involves no substitutions (we
will have always a big amount of indels in this scenario)
since it won’t make sense from an empirical point of
view. The effect of the alignment is depicted in Fig-
ure 4. The “semi-local” alignment has a better scoring
around [gwIst] than the traditional “global” alignment
around [lINgwIst], but it is prefearable to keep the key-
word phones together having the most of indels after
or before the keyword. Although similarity between [f]
and [l] is greater than [f] and [g], semi-local alignment
gets a better score since it penalizes the four indels
at [INgw] because they are within the match of [fIst].
Therefore semi-local alignment is biased towards keep-
ing together keyword phones. This behavior may be
achieved modifying the initialization and reconstruc-
tion steps as described in [11].

Kondrak also proposes a metric for measure inter-phone-
me similarity based on multi-valuated features with salience
coefficients. Each phoneme is described from a physical
point of view with multi-valuated features (e.g. articulatory
point, roundness, etc.).

Tables 2 and 3 show the phones and features used by our
system. The number enclosed in parenthesis is the numerical
value of the feature. These features and values are based on

Global alignment
f - - - - I s t - - -
l I N g w I s t I k s

Semi-local alignment
- - - f - I s t - - -
l I N g w I s t I k s

Figure 4: How global and semi-local affects the
alignment of the phonetic transcription of words
“fist” and “linguistics”

Ph. SRL Place High Back
a + - - velar (0.6) low (0.0) front (1.0)
A + - + velar (0.6) low (0.0) back (0.0)
6 ++ - velar (0.6) low (0.0) back (0.0)
æ + - - velar (0.6) low (0.0) front (1.0)
e + - - palatal (0.7) mid (0.5) front (1.0)
E + - - palatal (0.7) mid (0.5) front (1.0)
i + - + palatal (0.7) high (1.0) front (1.0)
I + - - palatal (0.7) high (1.0) front (1.0)
o ++ - velar (0.6) mid (0.5) back (0.0)
O +++ velar (0.6) mid (0.5) back (0.0)
2 + - - velar (0.6) mid (0.5) back (0.0)
u +++ velar (0.6) high (1.0) back (0.0)
U ++ - velar (0.6) high (1.0) back (0.0)
@ + - - velar (0.6) mid (0.5) mid (0.5)
j - - - velar (0.6) high (1.0) front (1.0)
w - + - velar (0.6) high (1.0) back (0.0)

Table 2: Features for vowels. S, R and L stands for
Syllabic, Round and Long, respectively

those used in [11] and enhanced to deal with extra sounds
from Spanish and Catalan languages. Table 4 shows the
salience of the features used in our system, which are the
same as in [11].

The δ(x, y) function used by Kondrak is the following3:

δ(ai,−) = k1

δ(ai, bj) = k2 − δ′(ai, bj)− V (ai)− V (bj)

δ(aiai+i, bj) = k3 − δ′(ai, bj)− δ′(ai+1, bj)−
V (bj)−max(V (ai), V (ai+1))

V (ai) =

0 if ai is a consonant
k4 otherwise

δ′(ai, bj) =
X

f∈features

diff(ai, bj , f) · salience(f)

where k1 is the cost of deleting a symbol, k2 is the base
score when matching two equal symbols, k3 is the base score
when compressing two symbols into one, and k4 is a penalty
for matching vowels with consonants.

The scoring function

The edit distance described above provides a scoring pro-
cedure for extension of hooks. The greater the edit distance
between a keyword and an extension of a hook, the lower
the score value.

3δ(x, y) function is symmetric. For the sake of simplicity,
just one direction is presented.

Ph. VNRLT Manner Place
b + - - - - stop (1.0) bilabial (1.0)
B + - - - - fricative (0.8) bilabial (1.0)
c - - - - - stop (1.0) palatal (0.7)
d + - - - - stop (1.0) alveolar (0.85)
D + - - - - fricative (0.8) dental (0.9)
f - - - - - fricative (0.8) labiodental (0.95)
g + - - - - stop (1.0) velar (0.6)
h - - - - - fricative (0.8) glottal (0.1)
k - - - - - stop (1.0) velar (0.6)
l + - - + - approx. (0.6) alveolar (0.85)
L + - - - - approx. (0.6) palatal (0.7)
m ++ - - - stop (1.0) bilabial (1.0)
n ++ - - - stop (1.0) alveolar (0.85)
N ++ - - - stop (1.0) velar (0.6)
ñ ++ - - - approx. (0.6) palatal (0.7)
p - - - - - stop (1.0) bilabial (1.0)
r + - + - + fricative (0.8) alveloar (0.85)
ô + - + - - approx. (0.6) retroflex (0.8)
s - - - - - fricative (0.8) alveolar (0.85)
S - - - - - affricate (0.9) alveolar (0.85)
t - - - - - stop (1.0) alveolar (0.85)
T - - - - - fricative (0.8) dental (0.9)
x - - - - - fricative (0.8) velar (0.6)
z + - - - - fricative (0.8) alveolar (0.85)
Z + - - - - affricate (0.9) alveolar (0.85)

Table 3: Features for consonants. V, N, R, L and T
stands for Voice, Nasal, Retroflex, Lateral and Trill,
respectively

Feature Salience Feature Salience
Syllabic 5 Nasal 10
Round 5 Retroflex 10
Long 1 Lateral 10
High 5 Trill 10
Back 5 Place 40
Voice 10 Manner 50

Table 4: Features and their salience.

This score is a bounded integer value. Its boundaries
depend on the length of the sequences. In order to know
when an extension of a hook exactly matches the keyword,
it is necessary to normalize the score values. Given two se-
quences a and b of lengths n and m, with m longer than n,
the following normalization rule has been used:

|∆(a, b)| = ∆(a, b)
∆(a,a)
n
· length(a, b)

where length(a, b) is the length of the best matching be-
tween a and b. For example, the lengths of both best matches
in examples from Figure 4 are 8 and 5. The normalized val-
ues are between 0 and 1. The final score value s for the
extension of a hook h and a keyword w is |∆(w, h)|.

3.1.3 Updating Term Frequency
In traditional term-based IR the score is binary. Each

term occurrence scores 1. Therefore, the measure of term
frequency (tf) is a particular case of our setting where all
the matchings are perfect. We have devised three methods
to compute term frequency with non-integer scores. For a
given matching score s, tf can be updated with:

1. tf = tf + s

2. tf =

tf + 1 if s > t
tf + 0 if s ≤ t

3. tf =

tf + s if s > t
tf + 0 if s ≤ t

given a fixed threshold t.
For example, if two occurrences of a certain word w are

found in document d with scores 0.55 and 0.8 respectively,
and t is 0.7, term frequency tfw,D is 1.3, 1 and 0.8 respec-
tively for the three methods. The motivation for setting a
threshold to filter out some of the matchings is that in some
cases the process of similarity detection for a word w will
output far more hooks than occurrences of w in the original
speech. This specially occurs with words containing very
common syllables that will produce a lot of noisy matchings
with low similarity score. Initial experiments have shown
that the third approach achieves better results. This is why
this approach has been used in our experiments (cf. Section
4).

3.2 Document Ranking
The first step of PHAST finds all the occurrences of the

keywords in the document collection. Each occurrence has
a score s between 0 and 1 rating its confidence, and a term
frequency is calculated for each keyword. The second step
of PHAST uses these term frequencies to create the output
of the algorithm.

Most of the state-of-the-art ranking functions can be used
to build the document list in this step. The only condition
is that these functions can deal with non-integer values as
term frequency.

We have tested several different ranking functions in the
next section, including the DQ algorithm for passage re-
trieval described in Section 2.2.

4. EXPERIMENTAL RESULTS
This section presents the results of our experiments. We

have conducted experiments using a set of 76 queries over
more than 50.000 words of automatically transcribed speeches
from the European and Spanish parliaments. All the data
is in Spanish. Further details about the data can be found
in Section 4.1.

The experiments have been done in the general framework
of a Question Answering task as described in Section 4.2.

4.1 Evaluation Data Set
For a proper evaluation of IR for QA we need a corpus of

spontaneous speech documents with both manual and auto-
matic transcripts. The CLEF CL-SR corpus lacks of manual
transcripts and it can be used only within the CLEF CL-SR
task evaluation.

We have used a new corpus provided by TALP Research
Center within the framework of TC-STAR project4. It con-
sists of transcripts from European Parliamentary Plenary
Sessions (EPPS) mixed with Spanish Parliamentary Session
(PARL). Manual reference transcript is over 50.000 words
long, corresponding to nearly four hours of speech. Auto-
matic transcript has been done by a large vocabulary con-
tinuous speech recognizer with an average word error rate
of 26.6%. The automatic transcript contains about 53.000

4http://www.talp.upc.edu
http://www.tc-star.org

http://www.talp.upc.edu
http://www.tc-star.org

words. Both manual and automatic data have been manu-
ally segmented into 224 documents, each one containing a
complete intervention from one person. The average doc-
ument length is 239 words. Lately, the transcripts have
been transcribed into phones using an in-house rule-based
system (this task is fairly easy for the Spanish language,
even proper nouns). All the phonetic information was en-
coded using SAMPA [21], a computer readable version of
the IPA alphabet that uses one readable ascii character for
each sound.

For the query set, we have built 76 natural language ques-
tions answerable within our collection. The questions are
factoid (the answer is a proper noun) although this is not
relevant for retrieval step. The following samples exemplify
the questions we have:

Question 031:
“¿Cuando se empezaron a abrir embajadas españolas en los
páıses de la ampliación al Centro y Este de Europa?”

[“When where opened the first Spanish embassies in coun-
tries within the East an Center enlargement area?”]

Question 057:
“¿Quien es el presidente de la comisión de relaciones exter-
nas del senado mexicano?”

[“Who is the president of the foreign affairs committee of
the Mexican senate?”]

To access a document collection via a keyword-based en-
gine, we need to extract keywords from this question. This
process is a crucial step, since a bad selection may leave the
answers out of reach.

Extraction of keywords from question is done by using lin-
guistic tools such as a part of speech tagger, a chunk parser
or a named entity recognizer, and a set of heuristic rules (see
[14]). A priority value is assigned to every non-stop word
from the question. The higher the priority value, the more
important the word is considered (more discriminant). For
example, proper names, words within quotations and ad-
jectives are usually more discriminant than verbs or single
nouns. This selection is useful for both passage and docu-
ment retrieval.

The keywords ranked according priority for questions 031
and 057 are the following:

Question 031: Europa (8), embajadas (7), españolas (7),
Centro (7), Este (7), páıses (4), ampliación (4), empezaron
(3),abrir (3).

Question 057: Mexicano (8), relaciones (7), externas (7),
senado (7), presidente (4), comisión (4).

Keywords were phonetically transcribed using the same
method than the corpus.

4.2 Experimental Setting
We expect the correct answer to be contained in one or

more of the documents or passages returned by the IR engine
(we will call them gold documents/passages).

This is why the evaluation procedure consists in checking
the cases in which the IR engine is able to return at least
one gold document/passage for each query among the top
ranked ones. In this setting we are not judging the rele-
vance of the documents to a certain topic described by a
query but just that the answer can be found in the docu-

ment. It is not crucial to have the gold document in the first
place since all will be automatically processed by other mod-
ules with semantic awareness and the ranking itself becomes
irrelevant. We measure the performance with the number
of queries returning gold documents/passages over the total
number of queries. This may be interpreted as both preci-
sion and recall measures. No operations of query expansion
or relevance feedback are carried over the data. Note that
the transcript may not actually contain the answer since it
can be misrecognized. The evaluation checks if the original
audio recording contains the answer in the same segment
corresponding to IR’s output.

The setting for both document retrieval and passage re-
trieval tasks are described as follows.

4.2.1 Document Retrieval
We have used the dynamic query adjustment described

in Section 2.2 (DQ) as a baseline system for document re-
trieval. DQ can be used in both reference and automatic
transcripts. Using the manual reference corpus, it fixes a
theoretical upper bound limit to what could you get with
automatic transcripts. Using the automatic transcripts it
shows the performance fall-out due to ASR action. DQ al-
gorithm is implemented using Lucene search engine5.

We have set up four systems for term detection in auto-
matic transcripts: word-based index (WORD), 3-grams of
characters (3GCH), 3-grams of phones (3GPH) and PHAST.
The four systems have been tested with three families of
rank functions: Okapi BM25 (BM25), divergence from ran-
domness (DFR) and vector space models (VSM).

A 5-fold cross-validation evaluation has been conducted.
For each fold the full question set has been randomly splitted
into two subsets: a development set of 25 questions and
a test set of 51 questions. For each fold the best set of
parameters has been selected and the same setting has been
applied to the test set. The best results for all the systems
with each ranking function are reported in Section 4.3.

The rest of this section describes the parameters selected
for each ranking function.

BM25 For terms ti and document d, the BM25 weighting
formula used is the following:

weight(ti, d) = log
N − dfi + 0.5

dfi + 0.5
·

tfi,d · (k + 1)

tfi,d + k ·
“

(1− b) + b · length(d)
avgl

”
where N is the number of documents in the collection
and dfi is the number of documents in which term ti
occurs, length(d) is the word length of document d
and avgl is the average document length in the whole
collection. k and b are two constants to be tuned for
a particular collection: k modifies the effect of term
frequency and b modifies the effect of document length.
The best values results are achieved with k in the range
[0, 1] and very small values of b in [0, 0.1].

Vector Space Model: We have tested several combina-
tions to find the best weighting scheme for VSM. Em-
ploying the notation used in SMART [17] to describe

5http://lucene.apache.org

http://lucene.apache.org

Okapi BM25 Vector Space Models Divergence from Rand.
System P1 P3 P5 P1 P3 P5 P1 P3 P5

DQref 84.21%
WORDref 43.92% 57.25% 65.10% 36.86% 52.15% 60.39% 45.88% 59.60% 67.45%
PHAST 48.62% 71.37% 75.29% 31.37% 56.47% 65.47% 46.67% 67.06% 72.15%
3GCH 16.47% 52.94% 65.10% 8.84% 34.50% 50.19% 10.98% 46.67% 59.29%
3GPH 23.53% 47.45% 58.82% 8.62% 30.58% 44.31% 13.72% 41.96% 56.07%
DQauto 57.89%
WORDauto 38.03% 51.37% 54.50% 31.37% 49.02% 54.90% 36.46% 52.94% 56.07%

Table 5: Results of document retrieval. In bold the highest precision for each system

the combined schemes, the best scheme for term weight-
ing has been nsn (see section 4.3) for almost all folds
and all systems. That means that each term has been
weighted according squared inverse of document fre-
quency

weightnsn(ti) = tfi ·
„

log
N

dfi

«2

.

Divergence From Randomness: The best weighting mod-
els for PHAST and some of the other systems for DFR
has been I(n)LH2 and I(n)LH1 in all folds. That
means that term frequency in a document is modelled
with the Bayes’ Rule, all the terms are considered as
independent, uses the Laplace model of aftereffect and
it is normalized by document length assuming a de-
creasing density function for the terms for H2. In H1
a constant density function is assumed

weightI(n)L(ti, d) =
tfne

1 + tfne
· log2

N + 1

dfi + 0.5

H1) tfne = tfi,d ·
avgl

length(d)

H2) tfne = tfi,d · log2

„
1 +

avgl

length(d)

«
.

Models I(F)LH1 and I(F)LH2 have been the best in
some of the other systems. See [3] for further explana-
tions on DFR models.

For PHAST there are also two tunable parameters. A
threshold r described in Section 3.2 and a substring length
n described in Section 3.1.1. We have fixed r = 0.80 and
n = 4 for both passage and document retrieval experiments.

4.2.2 Passage Retrieval
For passage retrieval we have the same baseline system

DQ as in document retrieval. In this scenario the system
output a set of passages with high keyword density rather
than full documents. Two or more passages may belong to
the same document.

We have set up PHAST for term detection in automatic
transcriptions using the same dynamic query adjustment
than in DQ. In this scenario we consider the scores as de-
scribed in Section 3.2. Just the ones above a fixed threshold
are taken as a hit for the purpose of building passages. The
process of adding/dropping keywords in DQ is exactly the
same.

4.3 Results

4.3.1 Document Retrieval
Table 5 shows the results of the crossvalidation. The base-

line system DQ has been used with reference manual tran-
scripts (DQref) and with automatic transcripts (DQauto).
Also traditional word-based retrieval has been tested over
reference and automatic transcripts as WORDref and WORDauto

respectively.
We have used precision at x as evaluation measure. It is

defined as the number of queries returning a gold document
within the top x results of the ranking. As we have noted
in Section 2.2, the baseline systems doesn’t return a ranked
list of documents but an unordered set of documents judged
relevant. DQref returned an average of 3.78 documents per
query and DQauto returned an average of 5.71. Therefore
we have chosen precision at 3 (P3) and precision at 5 (P5)
as our main evaluation measure. We also provide P1 for
the sake of completeness. In this setting precision and recall
measures are equivalent since we are interested in how many
times the engine is able to return a gold document in the
top 3 or 5 results.

For each system we include the average cross-validation
P1, P3 and P5 for the three weighting schemes and five sys-
tems. The results are discussed in terms of P5 for an easier
comparison with DQ. Similar conclusions may be achieved
with P3.

Precision loss between DQref and DQauto is 26.3%, this
is due solely to the effect of ASR transcript. For WORDref ,
the best result is 67.45%, 16.5 points behind DQref . With
automatic transcripts WORDauto loses 21.3% with respect
to WORDref , this loss is comparable to the 26.3% for DQ.
The best result of WORDref (at P5) is still worse than
DQauto, these results support what stated in Section 2.2:
better results in QA-oriented retrieval would be achieved
with DQ rather than traditional ranking techniques.

The family of n-gram systems outperforms WORDauto

and DQauto by almost 10 points, but they are still 2 points
behind WORDref and 19 behind DQref . In terms of P1
and P3, n-gram scores are behind WORDauto ones.

PHAST outperforms DQauto in 18.7 points and it is be-
hind DQref by 10.5. In P3, PHAST has still the best perfor-
mance overall, 15.5 points behind DQref . PHAST also out-
performs 3GCH by 10 points, 3GPH by 17 and WORDref

by 7.8.
From our point of view, PHAST better than to WORD

and 3Gx approaches in two aspects. When the ASR mis-
recognizes one of the keywords (e.g., a proper name) it is
impossible for WORD to find this term, and this informa-
tion is lost. Thus, PHAST outperforms WORD in term

matching capabilities allowing an approximate matching of
terms; it can be seen as a raising in coverage. The n-gram
approach also improves the coverage and allows approximate
matching but it has no control of the n-grams distribution
over the text, so it lacks of a higher precision (3Gx only out-
performs WORD at P5). PHAST provides a more precise
and meaningful term detection.

4.3.2 Passage Retrieval
We have also experimented with passage retrieval using

the dynamic query algorithm described in Section 2.2 in
combination with PHAST.

Table 6 shows the results of our experiments. Three sys-
tems have been examined: DQref is the baseline algorithm
over manual reference transcripts, DQauto is over automatic
transcripts, and DQPHAST is the same baseline using PHAST
algorithm for term detection. In this scenario we have tested
if at least one of the returned passages contains the answer.

Minimum number of passages threshold, rMin, and max-
imum threshold, rMax, have been fixed to 1 and 100 re-
spectively. This setting has been used in all systems. Recall
measures the number of queries with correct answer in the
passages returned. Precision measures the number of times
that the correct answer is present in the passages if any is
returned.

There is a loss of 40 points between automatic and man-
ual transcripts in precision and recall. However, in average,
DQref has returned 3.78 passages per query while DQauto

has returned 5.71. In automatic transcripts DQauto obtains
worse results even returning more passages than in refer-
ence transcripts. We think that this is due to the fact that
DQauto is dropping more keywords (it uses an average of 2.2
per query) to build the passages than DQref (which uses an
average of 2.9). Since a substantial number of content words
are illtranscribed, it is easier to find a passage containing n
keywords than containing n+ 1. In fact, DQauto outputs a
passage built around just one keyword (i.e., all occurrences
of the keyword) in 24 queries, while DQref does it in 10
queries.

This results show how term detection is decisive for pas-
sage building. The difference between DQauto and DQref

in passage retrieval is 40% while it is “only” 29% in docu-
ment retrieval. Passage retrieval is adding a new constraint
to the task of document retrieval: now the keywords must
be close together to be retrieved. Therefore, any transcript
error changing a keyword in the transcript may prevent the
formation of a passage. Because of its lack of redundancy,
passage retrieval is less robust than document retrieval.

DQPHAST returns an average of 3.80 passages, almost the
same than DQref , using 2.69 keywords. It surpasses DQauto

by 18% in precision and 17% in recall, taking an intermedi-
ate place between DQauto and DQref . The difference among
DQPHAST , DQauto and DQref in passage retrieval is simi-
lar to the difference among PHAST, DQauto and DQref in
document retrieval.

5. CONCLUSIONS
In this paper we have presented a novel approach to spo-

ken document retrieval. We can overcome part of automatic
speech recognition errors using a sound measure of phonetic
similarity and a fast search algorithm based on phonetic
sequence alignment. This algorithm can be used in com-
bination with traditional document ranking models. We

System Precision Recall Passages

DQref 86.56% 76.31% 3.78
DQPHAST 64.61% 55.26% 3.80
DQauto 46.77% 38.15% 5.71

Table 6: Results of passage retrieval. Showing preci-
sion, recall and average number of passages returned
per query

have tested Okapi BM25, divergence from randomness and
vector space models for spoken document retrieval, and an
algorithm for spoken document passage retrieval. The re-
sults show similar improvement in passage retrieval and in
document retrieval. Our approach significantly outperforms
other systems in 18 and 10 points respectively.

We think that both results in passage retrieval and in doc-
ument retrieval show that SDR based on phonetic sequence
alignment is a very promising technique and may be easily
applied to other languages.

Acknowledgements
This work has been partially funded by European Commis-
sion and the Spanish Ministry of Science and Technology.

6. REFERENCES
[1] S. Altschul, W. Gish, W. Miller, E. W. Meyers, and

D. J. Lipman. Basic local alignment search tool.
Journal of Molecular Biology, 215:403–410, 1990.

[2] M. Alzghool and D. Inkpen. University of Ottawa’s
participation in the CL-SR task at CLEF 2006. In
Proceedings of the CLEF 2006 Workshop on
Cross-Language Information Retrieval and Evaluation,
2006.

[3] G. Amati and C. V. Rijsbergen. Probabilistic models
of information retrieval based on measuring the
divergence from randomness. ACM Transactions on
Information Systems (TOIS), 20(4):357–389, 2002.

[4] J. Garofolo, G. Auzanne, and E. Voorhees. The TREC
spoken document retrieval track: A success story.
Proceedings of the Recherche d’Informations Assiste
par Ordinateur: ContentBased Multimedia
Information Access Conference, 2000.

[5] J. Hopcroft and J. Ullman. Introduction to Automata
Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

[6] D. Inkpen, M. Alzghool, and A. Islam. Using various
indexing schemes and multiple translations in the
CL-SR task at CLEF 2005. In Proceedings of CLEF
2005, Lecture Notes in Computer Science 4022,
Springer-Verlag, 2006.

[7] D. Inkpen, M. Alzghool, G. Jones, and D. Oard.
Investigating cross-language speech retrieval for a
spontaneous conversational speech collection. In
HLT-NAACL, 2006.

[8] G. Jones, K. Zhang, and A. Lam-Adesina. Dublin city
university at CLEF 2006: Cross-language speech
retrieval (CL-SR) experiments. In Proceedings of the
CLEF 2006 Workshop on Cross-Language Information
Retrieval and Evaluation, 2006.

[9] B. Kessler. Phonetic comparison algorithms.
Transactions of the Philological Society, 103:243–260,
2005.

[10] G. Kondrak. A new algorithm for the alignment of
phonetic sequences. Proceedings of the First Meeting
of the North American Chapter of the Association for
Computational Linguistics, pages 288–295, 2000.

[11] G. Kondrak. Algorithms for Language Reconstruction.
PhD thesis, University of Toronto, 2002.

[12] V. Levenshtein. Binary codes capable of correcting
deletions, insertions and reversals. Soviet
Physics-Docklandy, 10:707–710, 1966.

[13] D. Oard, J. Wang, G. Jones, R. White, P. Pecina,
D. Soergel, X. Huang, and I. Shafran. Overview of the
CLEF-2006 cross-language speech retrieval track.
Proceedings of the CLEF 2006 Workshop on
Cross-Language Information Retrieval and Evaluation,
2006.

[14] M. Paşca. High-performance, open-domain question
answering from large text collections. PhD thesis,
Southern Methodist University, Dallas, TX, 2001.

[15] S. Robertson, S. Walker, K. Spärck-Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
TREC-3. In D. Harman, editor, Overview of the Third
Text REtrieval Conference (TREC-3). Gaithersburd,
MD: NIST, 1995.

[16] G. Salton, editor. Automatic text processing.
Addison-Wesley Longman Publishing Co., Inc., 1988.

[17] G. Salton and C. Buckley. Term weighting approaches
in automatic text retrieval. Technical report, Cornell
University, 1987.

[18] M. Saraclar and R. Sproat. Lattice-based search for
spoken utterance retrieval. In HLT-NAACL, 2004.

[19] S. Srinivasan and D. Petkovic. Phonetic confusion
matrix based spoken document retrieval. In SIGIR,
2000.

[20] J. Wang and D. Oard. CLEF-2005 CL-SR at
maryland: Document and query expansion using side
collections and thesauri. In Proceedings of the CLEF
2005 Workshop on Cross-Language Information
Retrieval and Evaluation, 2005.

[21] J. Wells. SAMPA computer readable phonetic
alphabet. In D. Gibbon, R. Moore, and R. Winski,
editors, Handbook of Standards and Resources for
Spoken Language Systems. Berlin and New York:
Mouton de Gruyter, 1997.

[22] R. White, D. Oard, G. Jones, D. Soergel, and
X. Huang. Overview of the CLEF-2005 cross-language
speech retrieval track. Proceedings of the CLEF 2005
Workshop on Cross-Language Information Retrieval
and Evaluation, 2005.

	Introduction
	Background
	Automatic Speech Recognition
	Retrieval in QA

	Our Retrieval Approach
	Keyword search
	Detection of Hooks
	Extension of Hooks
	Updating Term Frequency

	Document Ranking

	Experimental Results
	Evaluation Data Set
	Experimental Setting
	Document Retrieval
	Passage Retrieval

	Results
	Document Retrieval
	Passage Retrieval

	Conclusions
	References

