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Abstract. Feature selection has several potentially beneficial uses in
machine learning. Some of them are to improve the performance of the
learning method by removing noisy features, to reduce the feature set
in data collection, and to better understand the data. In this paper we
present how to use empirical alignment, a well known measure for the
fitness of kernels to data labels, to perform feature selection for sup-
port vector machines. We show that this measure improves the results
obtained with other widely used measures for feature selection (like in-
formation gain or correlation) in linearly separable problems. We also
show how alignment can be successfully used to select relevant features
in non-linearly separable problems when using support vector machines.
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1 Introduction

Feature selection has several potentially beneficial uses in machine learning.
Some of them are to improve the learning performance by removing noisy or
redundant features, to reduce the feature set in data collection or when using
the learned classifier, and to better understand the data.

According to [1], three general methods are used to perform feature selection:
wrapper, filter and embedded methods. Wrapper methods try to find a suitable
subset of features by testing them after learning. The high computational cost
of these methods (due to several runs of the learning algorithm) makes them
inapplicable to large data sets. Filter methods consist in ranking the set of fea-
tures by using a relevance measure and selecting the best ones. This process is
done before learning and they are more efficient than wrapper methods. Unfortu-
nately, most filter methods only are able to detect linear correlations of features
with data labels and are unable to find a suitable set of features for non linearly
separable problems. Finally, embedded methods are methods that take profit of
some features of the learning algorithm in order to simultaneously determine
features and classifier during the training process.



2 Neus Català, Mario Martin

In this paper we focus on the use of feature selection for support vector
machines (SVMs) which are popular and state of the art methods for learning
classifiers, but instead of modifying the SVM algorithm as some embedded meth-
ods propose, we will use the empirical kernel alignment [2] measure as a filter
measure to help the selection of relevant features. We will present three proce-
dures that use the alignment measure to perform feature selection. The first one
uses alignment to rank features and select the top ones. The second procedure
incrementally adds features that produce an increase in alignment. These two
procedures are described in section 3. In section 4 we show how these procedures
are successfully applied to linearly separable problems. The third procedure, de-
scribed in section 5, implements a decremental approach that removes features
in order to increase the alignment. We will show in section 5 that this procedure
is able to perform feature selection for nonlinear problems.

2 Previous work

One way to do feature selection for SVMs is selecting features by using filter
measures. Some empirical studies [3] [4], specially in natural language appli-
cations, show that among the best filter measures are Information Gain and
Bi-Normal Separation. However, these studies are limited to SVMs using linear
kernels because these measures are only able to capture linear relations with
labels.

On the other hand, several embedded methods have been recently proposed
for feature selection in the SVM framework. For instance, Weston et al. propose
in [5] to find via gradient descent those features which minimize the leave-one-out
error bounds that depend on the radius which includes all vectors and the margin
of the learned SVM. Guyon et al. [6] present a method named Recursive Feature
Elimination (RFE) that from the whole set of features and the learned SVM,
removes features that do not decrease the margin of the learned SVM. Finally,
other methods [7] and [8] propose different approximations to SVMs using the l0
norm. Minimizing this norm implies to minimize the number of weights different
from zero (i.e. minimize the number of features used while learning).

3 Feature Selection by using Kernel Alignment

In the following, assume that we have a sample (xi, . . . xn) of data with labels
(y1 . . . yn)′. Each label yi ∈ {+1,−1}. SVMs find the maximum margin hy-
perplane that separates data with different labels. In order to find the desired
hyperplane, SVMs only need the dot product of data in the original space or in
another space (by implicitly projecting the data in a new space and computing
the dot product there). The function used to calculate the dot products is named
the kernel function, while the squared n×n matrix with the dot product of each
pair of objects in the data set is named the matrix kernel.

The ease to separate the data depends on the kernel used. Our goal will be
to find a set features to build the kernel that eases the separation of data.
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3.1 Kernel alignment for subsets of features

A way to measure how a kernel helps to separate the data is by comparing it with
the ideal kernel T = yy′. The ideal kernel is a n × n matrix that by definition
presents Ti,j = +1 when xi and xj have the same label, and −1 otherwise.
To compare matrices we use the Frobenius product between squared matrices
〈M,N〉F , defined as 〈M,N〉F =

∑n
i,j MijNij . Thus, empirical kernel alignment

that allows us to measure the fitness of a kernel K to the set of training labels
is defined as in [2]:

A(K, T ) =
〈K, T 〉F√

〈K, K〉F 〈T, T 〉F
(1)

Alignment has a number of convenient features. It can be calculated before
learning takes place, it is sharply concentrated around its expected value (and
hence stable to different splits of the training data), and it is known to be related
with good generalization performance.

Alignment can be used to choose the best kernel of a set of kernels [2]. We
will use this ‘a priori’ model selection procedure to find a suitable set of features
that eases the learning process. We define kernel KF from the set of features F
as the kernel matrix obtained by applying the selected kernel function on the
data represented only with features in set F .

The obvious way to use alignment for feature selection is to rank features by
their alignment. In this way, for each feature i we define F = {i} and calculate
the alignment A(KF , T ). The final set of features is built with the r top ranked
features (where r is a parameter set by the user or by model selection using a
validation set). We name this method one-shot Feature Selection by Alignment
(osFSA). However, this method does not consider relations with other features,
but only with labels. One consequence of this fact is that osFSA could end with
a set of redundant features because the addition of one feature to the set does
not consider what is already explained by other features. Another consequence
is that osFSA is not able to build sets of features for problems where non-linear
kernels are necessary (where interactions between features are crucial). In the
following section we show how to overcome the first problem. In section 5 we
show how to deal with non-linear kernels.

3.2 Incremental Alignment Feature Selection

A common way to do feature selection is starting from an initial set of features
and adding and/or removing features following a local search procedure. An effi-
cient (but not optimal) way to do that is by using a greedy procedure that begins
with the empty set of features and iteratively adds the feature which increases
the most a given target measure. We propose this method for feature selection,
where the target measure is the alignment. We name this method incremental
Feature Selection by Alignment (iFSA), and it can be used in conjunction with
the linear kernel. It has the advantage over osFSA that the final set of features
does not contain redundant features. A new feature is added when it increases
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the alignment obtained from the current set of features (that is, it ‘explains’
something new not explained by already selected features).

However, this method presents a drawback. The cost of computing the kernel
alignment is O(n2k), where n is the number of examples in the data set (n2 for
calculating the Frobenius product), and k is the cost of calculating the kernel
value for a pair of examples (in the case of the linear kernel, this cost is the
number of features m). Though this is inexpensive compared with the cost of
the learning algorithm, we have to consider that alignment has to be calculated
for each set of features to be tested.

Fortunately, the iFSA procedure we propose measures how alignment is im-
proved when adding a new feature to the set of selected features. There exists an
efficient way to compute the new kernel from the previous kernel and reducing
in this way the cost k. For the linear kernel (K1), the following equation shows
how to calculate the new kernel when adding a new feature i.

K1
F∪{i}(x, y) =

∑
j∈F∪{i}

xjyj =
∑
j∈F

xjyj + xiyi = K1
F (x, y) + xiyi (2)

In section 5, we will explain the similar trick for non linear kernels. In this
way, for the most common kernels, we can reduce to O(n2) the cost of computing
the alignment A(KF∪{i},T ) from KF . For large data sets this could still be
a problem. Fortunately, alignment is a sharply concentrated measure [2] and
could be accurately estimated from a sample of the whole training set. With
these considerations in mind, the method of incremental Feature Selection by
Alignment algorithm is detailed as follows:

Algorithm 1 Incremental Feature Selection by Alignment (iFSA)
1. C = Complete set of features
2. F= ∅
3. K1

F = 0 for all x,y
4. CurrentAlign = 0
5. repeat
6. for each i in C do
7. IncrAlign(i) = A(K1

F∪{i},T )− CurrentAlign
8. endfor
9. add = Feature i with higher IncrAlign(i)
10. if IncrAlign(add) > 0 then
11. Calculate incrementally K1

F∪{add} from K1
F

12. F= F ∪ {add}
13. C= C\{add}
14. CurrentAlign= A(K1

F , T )
15. [Optional] Remove from C features i with IncrAlign(i) < 0
16. endif
17. until IncrAlign(add) ≤ 0

The algorithm looks always for the feature which increases the most the
alignment. This feature is added to F and the procedure is repeated until no
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more features remain in the set of candidate features C that increase the align-
ment. Note that after selecting one feature, it is removed from set C along with
all features that decrease the alignment. Note also that the algorithm can be
modified to add the best k features at each iteration of the outer loop, or to
stop the feature selection when the best increment in alignment is below a user
selected threshold.

In order to test the methods proposed, the next section details the perfor-
mance of osFSA and iFSA in two problems that are usually solved by using
linear kernels.

4 Evaluation on linearly separable data

For the first experiments, we selected two data sets from text categorization,
where the number of features is very large. Text Categorization is the task of
assigning textual documents to one or more predefined categories based on their
content. Usually, each document is represented as a vector of words where each
word corresponds to a feature. The value or weight of a feature symbolize how
it is representative of the document content.

The first data set is the TechTC-1001 data collection. The second data set is
the well known benchmark on text categorization 20 Newsgroups2.

4.1 TechTC-100 data set

This data set consists in 100 subsets of 150 documents each one. Each subset
contains examples of two different categories which have to be separated by the
learning mechanism. We have selected this collection because previous work [4]
shows that feature selection is useful in this data set.

The set of documents was preprocessed in the following way: a) stop words
were removed from texts, b) Porter stemmer was used to reduce the number
of words, c) words appearing in less than 3 documents were removed, and d)
each document was represented by the tf-idf weighting procedure (which is the
standard in text categorization).

Forman [3] has compared different metrics in text categorization and has
found Information Gain (IG) and Bi-normal Separation (BNS) to be the best
metrics for filter feature selection. [4] confirms the same results in the TechTC-100
data set, finding that there are no significative differences between the two cited
methods. Thus, in order to test the methods we propose, we will compare their
results with the ones obtained by using IG for ranking features.

Each experiment was repeated 5 times for each set of documents, and the
results were averaged. At each experiment, the set of documents was randomly
partitioned in 5 subsets of the same length. One subset (validation set) was
reserved for tuning the learning parameters. The other 4 subsets were used in a
4-fold cross-validation scheme: 3 subsets for training and 1 for testing the SVM
learned with those parameters that give best results on the validation set.
1 Available at http://techtc.cs.technion.ac.il/techtc100/techtc100.html
2 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20
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Accuracy N.Features

no FS 76.01 -
IG 80.05 65.43

iFSA 82.87 49.71
osFSA 80.74 64.02

Table 1. Averaged accuracy on the
test set and number of features
selected for the 100 problems of
TechTC-100.

no FS IG iFSA osFSA

no FS 0 30 23 29
IG 70 0 6 33

iFSA 77 93 0 91
osFSA 71 66 7 0

Table 2. Number of problems of TechTC-
100 on which the method of the row obtained
a better accuracy on the test set than the
method of the column.

The parameters to tune are the number of features to keep (r) and the C
parameter of the SVM (the trade-off between training error and margin). Note
that the first features selected by iFSA are those which increase the most the
alignment, while the last features selected scarcely increase the alignment. Note
also that a low increment in alignment can be too low to be significative (and
adding those features could drop performance on the test set). Thus, the true
relevant features could be only the first r features selected by iFSA and not all
the ones selected. Since the number of possible r values is relatively high, we
tested only 16 possible values. The r values tested were selected by running the
iFSA procedure while storing the increment in alignment each feature produces,
the iteration at which each feature was selected, and the final alignment obtained.
Then, we chose the first features that accumulate the 85% of the final alignment
(the size of this set is r1). Later we chose the first features that ‘explain’ a 86% of
the final alignment (the size of this set is r2), and so on until we finally selected
the set of features that explain the 100% of the final alignment (size r16). We
finally chose the C and r parameters in a standard grid model selection way
on the validation set. The C values tested were {101, 102 . . . 107}. In the case of
IG and osFSA, the number of features and the C value chosen were also those
yielding a better accuracy on the validation set. The C and r values tested for
these methods are the same ones that were tested in iFSA.

Results averaged for the 100 sets of documents are reported in tables 1 and 2
(where no FS stands for ‘no feature selection performed’). These tables show that
the iFSA procedure helps the most in increasing the accuracy for the TechTC-100
data set, returning in addition the smaller feature set. In particular, better results
over osFSA are explained because iFSA does not select redundant features.
Tables also show that osFSA is also a slightly better procedure than Information
Gain for feature selection.

4.2 20 Newsgroups

The experiments described in this section show the performance of feature se-
lection by alignment in data sets with an unbalanced proportion of positive and
negative examples.

The data set selected for this experiment consists in a collection of documents
from 20 usenet news groups. For each group there were collected 1000 documents.
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400 training 1000 training

Data set no FS IG iFSA osFSA no FS IG FSA osFSA

alt.atheism 4.78 4.94 4.92 5.01 4.25 4.68 4.44 4.66
comp.graphics 4.58 5.00 4.76 4.80 4.18 4.60 4.42 4.50
comp.os.ms-windows.misc 4.33 4.58 4.54 4.57 4.04 4.59 4.40 4.49
comp.sys.ibm.pc.hardware 4.66 4.91 4.84 4.92 4.34 4.85 4.70 4.82
comp.sys.mac.hardware 5.00 4.92 4.45 4.79 3.76 4.07 3.78 3.91
comp.windows.x 5.01 4.76 4.37 4.72 3.86 4.13 3.81 4.15
misc.forsale 4.98 4.64 4.32 4.59 4.07 4.25 4.09 4.15
rec.autos 5.00 4.26 3.93 4.00 3.31 3.61 3.54 3.59
rec.motorcycles 5.01 2.45 2.14 2.30 2.73 2.30 2.21 2.28
rec.sport.baseball 5.01 4.17 3.82 4.09 2.87 3.36 3.24 3.38
rec.sport.hockey 5.01 3.46 3.11 3.47 2.04 2.49 2.16 2.53
sci.crypt 5.00 3.22 2.90 3.11 2.41 2.51 2.14 2.36
sci.electronics 5.01 5.07 4.98 5.09 4.43 4.69 4.56 4.84
sci.med 5.01 4.47 4.30 4.45 3.61 3.74 3.78 3.72
sci.space 5.02 4.23 3.98 4.31 2.93 3.40 3.20 3.48
soc.religion.christian 5.00 4.68 4.25 4.77 3.39 4.22 3.97 4.28
talk.politics.guns 5.01 4.80 4.57 4.65 3.61 4.06 3.95 4.14
talk.politics.mideast 5.02 3.56 3.24 3.57 2.25 2.39 2.25 2.35
talk.politics.misc 5.01 4.93 4.89 4.93 4.29 4.75 4.60 4.69
talk.religion.misc 5.02 5.20 5.01 5.06 4.88 5.14 5.01 5.10

Average 4.92 4.41 4.17 4.36 3.56 3.89 3.71 3.87

Table 3. Error in test set for the 20 Newsgroups benchmark data set.

Some references [9] [3] [4] show that feature selection does not work in this data
set in terms of increasing the accuracy.

The experiment consisted in learning 20 support vector machines, one for
each newsgroup, that separates the newsgroup from all the others. Note that in
this case, for each positive example we have 19 negative examples. In order to
deal with unbalanced data sets, we used a modified version of alignment [10] in
which labels to calculate the ideal kernel are changed from +1 to +1/m and from
−1 to −1/n, where m and n are the number of positive and negative examples
respectively. The learning of the SVM is done with the original set of labels.

We performed experiments on two different sizes of the training set: 400
examples (20 positive and 380 negative), and 1000 examples (50 positive and 950
negative). For each experiment we randomly selected 8 disjoint sets of examples
as training sets. Selection of the parameters for the SVM were obtained by
following the procedure described for the Technion data set. The averaged errors
on the test set are shown in table 3. As in the previous section, we also report
for comparison the performance of IG on the same data set.

Results show again that iFSA widely outperforms IG for the two sizes of
training sets. Results also show that osFSA has a slightly better performance
than IG. Finally, experiments show that FS helps to improve accuracy in the
smaller training set.
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5 Evaluation on Non Linearly separable data

The previous section shows the ability of feature selection by alignment to deal
with linearly separable data. Most of the measures for ranking features (f.i.
correlation and information gain), only consider linear relations between features.
One of the main advantages of feature selection by alignment is that it is able
to deal also with problems where features have a non linear relation with labels.

However, the incremental algorithms we have described in section 3 are not
able to learn such set of features. Assume a typical nonlinear interaction between
features, for instance, that feature i is relevant for the problem only when feature
j is also present. In the case that neither i nor j were in the initial set of features,
the algorithm will never add them. It will not add feature j because it only
increases the alignment when i is present (and it is not the case). It will not add
feature i for the symmetrical reason.

Note that feature selection in nonlinear cases could be solved by explicitly
projecting the data in the feature space induced by the kernel. However, the
dimension of this space does not grow linearly with the number of input features.
Moreover, for some kernels (like RBF kernels) the explicit travel to the feature
space is not possible.

Fortunately, there is an efficient way of using alignment for non-linear kernels
to select relevant features. Instead of starting from the empty set of features and
adding new features while alignment is increased, we will start from the whole set
of features and iteratively remove features when that increases the alignment.
Note that features with beneficial nonlinear relations with other features will
be preserved. In the case described above, j will not be removed, because i
is present and it would decrease the alignment. Feature i will not be removed
for the symmetrical reason. But features with no relevant relation (linear or not
linear) with labels will be removed. We name this procedure decremental Feature
Selection by Alignment (dFSA) and it is described in detail in the following:

Algorithm 2 Decremental Feature Selection by Alignment (dFSA)
1. F= Complete set of features
2. Calculate K1

F for all x,y
3. CurrentAlign = A(KF ,T )
4. repeat
5. for each i in F do
6. DecrAlign(i) = CurrentAlign - A(KF\{i}, T )
7. endfor
8. out = Feature i with lower DecrAlign(i)
9. if DecrAlign(out) ≤ 0 then
10. Calculate K1

F\{out} from K1
F

11. F= F\{out}
12. CurrentAlign= A(KF , T )
13. [Optional] Remove from F features i with DecrAlign(i) > 0
14. endif
15. until DecrAlign(out) > 0



Feature Selection in SVM by Alignment 9

Training Recall N. of feats Exact Sol.

50 99.40 6.38 38.60
100 100.00 2.40 95.90
150 100.00 2.00 100.00

Table 4. First experiment on non linear data. See details in text.

As in the case of the incremental algorithm, we can speed up the computation
of the kernel. The linear kernel when one feature is removed is calculated as
follows:

K1
F\{i}(x, y) = K1

F (x, y)− xiyi (3)

This efficient computation is useful for calculating polynomial kernels of de-
gree d when removing one feature.

Kd
F\{i}(x, y) = (1 + K1

F (x, y)− xiyi)d (4)

Or in the case of using RBF kernels, storing matrix d:

dF (x, y) =
∑
i∈F

(xi − yi)2 (5)

and thus,

KF\{i}(x, y) = e−γ(dF (x,y)−(xi−yi)
2) (6)

In order to show the ability of the proposed method to deal with nonlinear
problems, we selected two artificial data sets described in [5] and [8].

5.1 Weston et al. dataset

In the first data set, 52 variables are available and only the first two are relevant.
A precise description of these synthetic data can be found in [5]. The set has
the same number of positive and negative examples. If the label of the example
is -1, then {x1, x2} are drawn with equal probability from N({− 3

4 ,−3}, I) or
N({ 3

4 , 3}, I). If the label is +1, {x1, x2} are drawn with equal probability from
N({3,−3}, I) or N({−3, 3}, I). Features x3 to x52 are noise N(0, 20). The data
set contains 10,000 examples generated in this way. This problem can be solved
by using a quadratic polynomial kernel, but not by a linear kernel.

The dFSA algorithm has been tested on different sizes of the training set
which has been normalized to get zero mean and unit standard deviation. The
examples not used for training are used for testing and are normalized according
to the same normalization parameters. The algorithm stops automatically when
no further features can be removed and the resulting set of features is exam-
ined. No validation set was required. We collected the number of times that the
relevant features were selected (Recall), the number of features in the final set,
and the percentage of cases in which the outcome was exactly the set of relevant
features {x1, x2}. We performed 500 experiments for each size of the training
set. The averaged the results are shown in table 4.
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f1(1) f2(3) Sp 0.97 (10) Sp 0.95 (14) Sp 0.00 (20)

Train. Recall N.feats Recall N.feats Recall N.feats Recall N.feats Recall N.feats

25 100.00 4.46 92.67 9.29 90.87 17.42 91.87 17.93 91.05 18.21
50 100.00 1.45 98.00 7.16 92.51 16.13 93.17 17.87 98.90 19.78
75 100.00 1.12 99.07 4.02 95.10 15.62 94.64 17.55 98.15 19.63
100 100.00 1.03 100.00 3.26 95.56 14.50 94.84 16.99 98.45 19.69
200 100.00 1.03 100.00 3.03 98.49 11.54 95.37 15.82 99.85 19.97
250 100.00 1.00 100.00 3.01 99.28 10.30 97.19 15.02 99.85 19.97
300 100.00 1.00 100.00 3.00 100.00 10.06 97.88 15.07 99.80 19.96

Table 5. Recall and number of features collected for different kinds of polynomials. f1

is polynomial x1, f2 is polynomial x1x2 + x3. The other columns refer to polynomials
with different degree of sparseness in coefficients. The numbers between parenthesis
are the average number of relevant features for each kind of polynomial.

The table shows that the algorithm is able to remove noisy features even
with small training sets. With only 50 examples, dFSA removes 44 from 50
noisy features. With 100 examples the procedure almost always finds the exact
solution. In [5] similar results were obtained.

5.2 Sparse polynomial functions

We will use sparse quadratic polynomial functions to show the ability of dFSA
for selecting features when using non-linear kernels. A polynomial with some zero
coefficients (a sparse polynomial) defines a non-linear problem where only those
features that are present in terms of the polynomial with non-zero coefficients
are relevant. This experiment has been previously described in [8]. However,
we make the problem somehow more difficult by extending the initial set of
features to 20 instead of 10. Note that polynomial kernels of degree 2 with an
input space of 20 dimension induce a feature space with 230 dimensions. We
considered polynomials y = sign(x1), y = sign(x1x2 + x3), and polynomials
with sparseness 0.99, 0.97, 0.95 and 0. A given percentage of sparseness implies
that that percentage of terms have zero coefficients while the other terms have a
random coefficient from {+1,−1}. In all these cases, the algorithm should select
those features of the input space that appear in terms with non zero coefficients.

For each case, we randomly built 100 polynomials. For each polynomial we
created 1.000 training points with 20 features with values randomly chosen in
N(0, 1). The label for each point was assigned by the sign of the evaluation of
the polynomial function for the point.

Instead of selecting the best r number of features to keep as we done in the
linear experiments, we measured at each iteration of dFSA if the removal of
features decrease the accuracy in a validation set, and stop in that case. In our
experiments, we used a validation set of 100 examples.

The results of our experiments in terms of the features selected are shown in
table 5. Figure 1 shows the error on 500 test examples for the SVMs trained with
the selected features for different sizes of the training set. Results on polynomials
with very sparse coefficients show that the dFSA is able to largely improve
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Fig. 1. Error in test set for different kinds of polynomials and different training sets.
Each figure shows results for one kind of polynomial. The dashed red lines show the
error of SVMs without feature selection. The blue solid lines show the error with dFSA.

accuracy of SVMs when there is a large amount of noise. In addition, in cases
where there are no noisy features, the algorithm does not show a noticeable
worse performance when compared with SVMs using all features. When using
10 features, similar results that those reported in [8] were obtained.

6 Conclusions

In this paper we have presented three procedures using alignment as a filter
measure to perform feature selection for SVMs. On one hand, these procedures
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have the advantages of filter methods over wrapped methods like performing the
selection before learning takes place (and thus, saving computational resources).
On the other hand, these methods allow for using standard implementations of
SVMs instead of using modified versions of them as some embedded methods
propose. The methods presented show these advantages while overcoming the
usual drawback of filter measures of being unable to deal with nonlinear prob-
lems. Finally, we have shown that even in linear problems, these methods show
better results than state of the art filter measures for text categorization tasks.

However, these methods present two main problems. The first one is that
though theoretically, feature selection stops when no increase in alignment is
achieved by adding a new feature, we have found in the experiments that stop-
ping earlier returns better results. This fact is explained because the last fea-
tures to be included present too low increment in alignment to be statistically
significative. The second problem is that for very large data sets, the cost of cal-
culating the alignment O(n2) can be too high. We plan to solve these problems
by studying bounds on the convergence of alignment that [2] shows to be sharply
concentrate. These bounds could help in both, to determine when increment in
alignment is statistically significative, and to determine how many examples of
the training set are needed to accurately estimate the alignment (instead of using
the whole training set and thus reducing the cost of computing the alignment).
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