Concept sense disambiguation in concept maps using WordNet

(Technical Report)

Alfredo Simón¹, Luigi Ceccaroni² and Alejandro Rosete¹

¹Centro de Estudios de Ingeniería de Sistemas (CEIS) Instituto Superior Politécnico "José Antonio Echeverría" Ave. 114, No. 11901, Marianao, C. Habana, Cuba {asimon, rosete}@ceis.cujae.edu.cu

² Departament de Llenguatges i Sistemes Informàtics (LSI), Universitat Politècnica de Catalunya (UPC), Campus Nord, Edif. Omega, C. Jordi Girona, 1-3, 08034 Barcelona, Spain luigi@lsi.upc.edu

Abstract. In this report an unsupervised and knowledge-based algorithm for concept sense disambiguation in concept maps is proposed. Concept maps are graphical tools for organizing and representing knowledge, based on concepts and labeled interconnections among them, forming propositions. The disambiguation process is carried combining Magnini's domain, context information and the gloss. It's supported in the Spanish WordNet lexical database and the lexical relations *hypernyms-hyponyms, meronyms-holonyms* and *instance*.

Keywords: concept maps, concept sense disambiguation, Magnini's domain and WordNet

1 Concept maps

CMs are a graphically rich technique for organizing and representing knowledge that emerged within the pedagogical science. They were proposed by Novak et al. [3], who defined them as a "technique that simultaneously represents a strategy of learning, a method to grasp the most significant aspect of a topic and a schematic resource included in one structure of propositions". They include concepts, linkingwords (that specify the relationship between concepts) and propositions (that contain two or more concepts connected using linking words to form a meaningful statement). Fig. 1 shows an example of CM that describes the nitrogen cycle. As it can be observed, CMs are a kind of semantic network, but one that is more flexible and informal, oriented to be used and interpreted by humans.

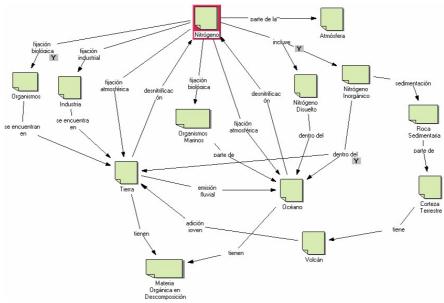


Fig 1. Concept map of the nitrogen cycle

2 WordNet

WordNet is a lexical knowledge created at the University of Princeton [2], whose basic structure is the *synset*, composed by a set of words related by *synonym*, an *identifier*, a *gloss* (description of meaning) and tagged with some domains, such as: Medical, Sport and Geology. The *synsets* are distributed in form of a semantic net and interconnected among themselves by several types of lexical relations, such as: *hyperonyms*, *hyponyms*, *meronyms*, *holonyms*, *antonym*, *role*, *instante* and *causes*. The *synset* also defines the meanings and the sense of a word, and its can be found in one or various *synsets*, when the polysemy take place. WordNet is one of the most extensively used lexical knowledge based in natural language processing campus and it can be used as an ontology if its lexical links are interpreted according to a formal semantics [1].

3 Algorithm

Input: PL.

Output: synset associated to each concept in the CM

Variables: c_i is a concept; s_{ij} is a synset of c_i and S(C) is a set of s_{ij} for a set of concepts C; D_{mc} is a set of domain of the CM; $Context_{mc}(c_i, r)$ is a set of concepts inside the context in the CM created using c_i as center and including all concepts in a radio r (arcs between two concept); $Context_{wn}(s_{ij})$ is a context in WordNet in witch s_{ij}

is a center and include all path former by *hyperonyms, meronyms* and *instance* relations between s_{ij} and some synsets of the concepts include in $Context_{mc}$ $(c_i, r); l$ the length of this path (arcs between two synsets) and α the quantity of concept in $Context_{mc}(c_i, r)$ that have any s_{ij} in this path.

Procedure:

- 1: All s_{ij} of each $c_i \in CM$ are identified in WN;
- 2: Two lists are created: CD (concepts with only one synset) and CND (concepts with more than one synset);
- 3: The CM domains are identified and stored in D_{mc}. The domains with major occurrence in the synsets of the concepts (more than 45 %) and the domains of the *principal-concept* of the CM are selected;
- 4: i = 1;
- 5: For each $c_i \in CND$
- 6: Disambiguation by domain. c_i is disambiguate if:
 - a. have only one s_{ij} tagged with at least one domain of D_{mc} ;
 - b. have any s_{ij} tagged with child domain of some domain of D_{mc} ;
 - c. have any s_{ij} tagged with a domain that shares the same immediate ancestor that any domain of D_{mc} ;
- 7: The c_i disambiguated is adding to CD and eliminated of CND;
- 8: If CND \neq [] then r is started in 2 and the disambiguation by context is carried out:
 - a. The Context_{mc}(c_i , r) is created;
 - b. The Context_{wn}(s_{ij}) for associated to Context_{mc}(c_i , r) is created;
 - c. If the Context_{wn}(s_{ij}) isn't created them
 - r ++ and the Context_{mc}(c_i, r) is created again (go to 8.a); Else d. For each s_{ij} the weight is calculated by the expression:

$$S_{c} = \max_{s_{ij} \in S(\{c_i\})} \left\{ w \left(Context_{wn}(s_{ij}), Context_{mc}(c_i, r) \right) = \sum_{j=1}^{n} \alpha * \frac{1}{l_{j}}; \right\}$$

e. If S_c is unitary then s_{ij} is selected for concept disambiguate and c_i is add to CD and eliminated of CND; Else

If length (Context_{mc}(c_i , r)) < length (CM) then r ++ and go to 8.a; Else

If $\exists \ s' \ s'$ is an immediate common hyperonym among any $s_{ij} {\in} S_c$ and any

 $s_{kj} \in S(Contexto_{mc}(c_i,r))$ then $Sc = s_{ij}$ and go to 8.e;

- If CND ≠ [] and ∃ c_i∈CND with gloss then the disambiguation by gloss is do

 r is started in 2;
 - b. The Context_{mc}(c_i , r) is created;
 - c. The quantity of concepts present in $Context_{mc}(c_i, r)$ and in the gloss of each s_{ij} is calculated. If the result for each s_{ij} is cero then r = length(CM) and go to 9.b
- 10: The s_{ii} with best result is selected, c_i is adding to CD and eliminated of CND;

4 Experimental Results

The algorithm presented was proven with a total of 31 polysemic concepts organized in four CMs of Environment Domain. CMs selected should be well constructed, theoretically and have significant amount of concepts with synset in WN and of their more than one synset. They were revised by an expert in this domain. In Tables 1-3 the results of all tests is showed.

Concept Maps	Concepts	Links	Concepts in WN	Polysemic concepts	Synset* concept	Domains
Nitrógeno	13	22	9	5	3.8	14
Geología	12	13	12	3	5	10
Plantas	16	17	16	10	3.1	22
Agua	21	21	21	13	3.53	24
Total:	62	73	58	31	3.85	17.5

Table 1. Characteristics of CMs tested.

Table 2. Concepts disambiguation by domain and context results.

CMs/Heur	Precision		Recall		Coverage	
istics	Domain	Context	Domain	Context	Domain	Context
Nitrógeno	0.500	0.666	0.300	0.400	0.600	0.600
Geología	0.833	0.666	0.833	0.666	1	1
Plantas	0.937	1	0.750	0.600	0.800	0.600
Agua	0.750	0.937	0.346	0.750	0.461	0.800
Ave.	0.755	0.817	0.557	0.604	0.715	0.750

Table 3. Concepts sense disambiguation results (Integrations of domain, context and gloss).

Concept Maps	Precision	Recall	Coverage
Nitrógeno	0.660	0.400	0.600
Geología	0.833	0.833	1
Plantas	1	0.800	0.800
Agua	0.954	0.807	0.846
Ave.	0.861	0.710	0.811

References

- Gangemi, A., Navigli, R. and Velardi, P.: The OntoWordNet Project: extension and axiomatization of conceptual relations in WordNet. On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, LNCS 2888, Spinger-Berlang (2003) 820-838.
- [2] Miller G.A, Beckwidth, R., Fellbaum, C., Gross, D., and Miller, K.J.: Introduction to WordNet: An On-line Lexical Database. In Proceedings of the International Journal of Lexicography (five papers) Vol 3, No.4 (1990) 235-244.
- [3] Novak, J. y Gowin, D.: Learning how to learn, Cambridge Press. New Cork (1984)