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Abstract

Generative Topographic Mapping (GTM) is a latent variable model that, in its
standard version, was conceived to provide clustering and visualization of multi-
variate, real-valued, i.i.d. data. It was also extended to deal with non-i.i.d. data
such as multivariate time series in a variant called GTM Through Time (GTM-
TT), defined as a constrained Hidden Markov Model (HMM). In this technical
report, we provide the theoretical foundations of the reformulation of GTM-TT
within the Variational Bayesian framework. This approach, in its application,
should naturally handle the presence of noise in the time series, helping to avert
the problem of data overfitting.

1 Introduction

Manifold learning models attempt to describe multivariate data in terms of low-dimensional repre-
sentations, often with the goal of allowing the intuitive visualization of high-dimensional data. GTM
[1], originally defined for the clustering and visualization of i.i.d. data, is one such model that can
be ascribed to the field of Statistical Machine Learning. Its probabilistic setting eases the definition
of principled extensions, such as GTM-TT [2] for the analysis of multivariate time series, assessed
in detail in [3, 4].

One well-known potential drawback in the process of knowledge discovery from both static data
and time series is that of the presence of uninformative noise and the associated problem of data
overfitting. In its basic formulation, the GTM is trained within the Maximum Likelihood (ML)
framework using the Expectation-Maximization (EM) algorithm, and overfitting may occur unless
regularization methods are applied. In [3, 6], regularization of GTM was based on Bayesian evidence
approaches, which require a number of modelling assumptions and approximations.

An alternative for the formulation of GTM that confers the model with regularization capabilities,
while avoiding such approximations, is that of using variational techniques [7, 8]. A Variational
GTM model based on the GTM with a Gaussian Process (GP) prior outlined in [5], with added
Bayesian estimation of its parameters, was recently described in [9]. This Variational GTM was
shown to limit the negative effect of data overfitting, improving on the performance of the standard
GTM with GP prior, while retaining the data visualization capabilities of the model. In this technical
report we extend such Variational approach to the analysis of multivariate time series, defining the
theoretical foundations of a model known as Variational GTM-TT.

The remaining of this report is organized as follows: First, in section 2, an introduction to the original
GTM-TT [2] is provided. Section 3 provides a Bayesian framework for GTM-TT. This is followed,
in section 4, by the description of the proposed Variational Bayesian inference method for GTM-TT
in some detail.
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2 The Standard Generative Topographic Mapping Through Time

2.1 The GTM-TT Model

The GTM-TT was introduced in [2] as a way to extend the standard GTM [1] model for the analysis
of context-dependent data sets such as multivariate time series. GTM-TT can be seen as a GTM
model in which the latent states are linked by transition probabilities in a similar fashion to HMMs.
Therefore, GTM-TT can be understood as a topology-constrained HMM.

Assuming a sequence of N hidden states Z = {z1, 22, ..., Zn, . . ., zn } and the observed multivari-
ate time series X = {x1,X2,...,Xn, ..., XN}, the probability of the observations is given by:

X)=> p(Z,X) (1)

all Z

where p (Z, X) defines the complete-data likelihood as in HMM models [10] and takes the following
form:
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The model parameters are ® = (mw, A,Y,3) where # = {7} : m; = p (21 = j) are the initial

state probabilities, A = {a;;} : a;; = p (2, = j|#2n—1 = ©) are the transition state probabilities, and
D/2

{Y,8} : p(Xnlzn =3) = (%) exp (—g 1%, — yjHQ) are the emission probabilities, which

are controlled by spherical Gaussian distributions with common inverse variance 3 and a matrix Y

of K centroids y;, 1 < j < K.

For mathematical convenience, it is useful defining a state in the vectorial form z; ,, such that it
returns 1 if z,, is in state j, and zero otherwise. Using this notation, the initial state probabilities, the
transition state probabilities and the emission probabilities are defined as:
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Note that Eqs. 3 and 4 are multinomial distributions, while Eq. 5 defines a mixture of Gaussian
distributions in which the parameter z; ,, is a selector of these Gaussians. Thus, the log-complete-
data likelihood is defined using the above formulation as follows:
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2.2 Learning through Maximum Likelihood

Parameter estimation in GTM-TT can be accomplished by ML using the EM algorithm in a similar
fashion to HMMs [10, 11]. The following expectations (-) are estimated in the E-step:

o (j,n) B(G,n)
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where o (j,n) = p (2,|X7T) and 3 (j, n) = p (X2, |z, ) are obtained using the forward-backward
recursion algorithm. The notations X7 and X/, ; represent, in turn, the subsequences from 1 to n
and fromn + 1to N.

The parameters a;; and ; are estimated in the M-step as:

Tj = Yj.1 )
N
aij = % (10)
Zn:2 Pyi,n

Finally, parameters Y and ( are estimated as in the standard GTM using a GP for the mapping from
the hidden states to the data space setting a prior distribution over Y defined by:
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where y(q) is each of the row vectors (centroids) of the matrix Y and C is a matrix where each
element is a covariance function that can be defined as

2
Cij = C(u;,u;) =vexp <—|u’uj||>, i,j=1...K (12)

and where parameter v is usually fixed a priori. The « parameter controls the flexibility of the
mapping from the latent space to the data space. An extended review of covariance functions can
be found in [12]. The vector u;, j = 1... K corresponds to the state j in a latent space of usually
lower dimension than that of the data space. Thus, a topography over the states is defined by the GP
as in the standard GTM. Consequently, the updating expressions for Y and [ are as for the standard
GTM.

The parameter Y is estimated from:

(G+p7'CcHY=IX (13)

where I is the matrix of state expectations with elements (z; ,,) that were previously defined by Eq.

7, G is a diagonal matrix formed by the elements g;; = Zﬁ[ 7vj,n» and C is the matrix of covariance
functions.

The parameter [ is estimated as:

%, — y;? (14)
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3 Bayesian GTM Through Time

Although the ML framework is widely used for parameter optimization, it shows two significant
weaknesses: Its maximization process does not take into account the model complexity and it tends
to overfit the model to the training data. The complexity in GTM-TT is related to the number of
hidden states, their the degree of connectivity and the dimension of the hidden space. Usually, for
visualization purposes, the dimension of the hidden space is limited to be less or equal to three. The
number of hidden states and the maximum number of possible state transitions are strictly correlated
by a squared power. In order to avoid overfitting, researchers have commonly limited the complexity
of their models by restricting the number of possible state transitions [2] or by fixing the transition
state probabilities a priori [13]. The alternative technique of cross-validation is computationally
expensive and it could require large amounts of data to obtain low-variance estimates of the expected
test errors.

A more elegant solution to control overfitting and complexity is providing a Bayesian formulation
for the model [14, 15]. The Bayesian approach treats the parameters as unknown quantities and
provides probability distributions for their priors. Bayes’ theorem can then be used to infer the
posterior distributions over the parameters. The model parameters can thus be considered as hidden
variables and integrated out to describe the marginal likelihood as:

p(X) = / p(©)p(X|©)dO, where® = (m, A, Y, ) (15)

If an independent distribution is assumed for each parameter, then:

p(®)=p(m)p(A)p(Y)p(B) (16)

Taking into account Eqs. 1, 15 and 16, the marginal likelihood in GTM-TT can be expressed,
similarly to HMM [7], as:

p(X) = / p () / p(A) / p(Y) / () p(Z,X|m, A, Y, §) dfdYdAds  (17)

all Z

Although there are many possible prior distributions to choose from, the conjugates of the distribu-
tions defined in Egs. 3 and 4 and the GP defined in Eq. 11 are a good choice. In this way, a set of
prior distributions is defined as follows:

p(m) =Dir {m,..., 7Kk} |V) (18)

K
p(A) = HDir({Cle,...,ajK}P\) (19)
p(B) =T (Blds, sp) (20)

where Dir (-) represents the Dirichlet distribution; and I (+) is the Gamma distribution. The prior
over the parameter Y was previously defined by Eq. 11.

Unfortunately, Eq. 17 is analytically intractable. In the following section of the report, we provide
the details of its approximation using Variational inference techniques.

4 Variational Bayesian Inference for GTM-TT

4.1 The Variational Bayesian EM Algorithm

Variational inference allows approximating the marginal log-likelihood through Jensen’s inequality
as follows:
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The function F' (¢ (©,Z)) is a lower bound such that its convergence guarantees the convergence
of the marginal likelihood. The goal in variational inference is choosing a suitable form for the
density ¢ (©®,Z) in such a way that F' (¢) can be readily evaluated and yet which is sufficiently
flexible that the bound is reasonably tight. A reasonable approximation for ¢ (®,Z) is based on
the assumption that the hidden states Z and the parameters ® are independently distributed, i.e.
q(©,Z) = q(©)q(Z). Thereby, a Variational EM algorithm can be derived [7]:

VBE-Step:

0(2)"™ — argmax F ((2) .4 (@)) @)
a(2)
VBM-Step:
7(©)"" — argmax F (¢ (2)"" ,4(®)) 23)
q(®)

4.2 Variational Bayesian EM for GTM-TT
4.2.1 The VBE Step

The expression ¢ (Z) is estimated using Eq. 6 in Eq. 22, so that:
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where In Z (X) is a normalization constant that depends on X. This equation has a similar form to
Eq. 6, though it is expressed here in terms of the mean of the parameters of the model. Furthermore,
a modified forward-backward procedure [7] can be used to solve it as follows:
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where 7; and @;; are the estimated parameters; p (X, |z, = j) and p (Xp41|2n+1 = ©) are the emis-
sion probabilities calculated using the estimated parameters Y and (3; and ¢ (x,,) is the normalization
constant, which is related to the normalization constant of Eq. 24 by the expression:
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4.2.2 The VBM Step
The variational distribution ¢ (®) can be approximated to the product of the variational distribution

of each one of the parameters if they are assumed to be independent and identically distributed. If
$0, ¢ (®) is expressed as:

q(©)=q(m)q(A)q(Y)q(B) (28)

where natural choices of ¢ (7), ¢ (A), ¢ (Y) and ¢ (() are similar distributions to the priors p (7),
p(A), p(Y) and p (8), respectively. Thus,

q(m) =Dir {m,..., 7k }|D) (29)
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Now, using Egs. 29 to 32 in Eq. 23, the following expressions for the variational parameters U, A,
3., m, dg and 53 can be obtained:

v = vj+(z1) (33)
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where z,, corresponds to each row vector of Z and G, is a diagonal matrix of size K x K with
elements (z,,). The moments in the previous equations are defined as:
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Details on these calculations are provided in Appendix A.

4.3 Lower Bound Function

The lower bound function for GTM-TT is obtained through a similar procedure to the one described
in [7], although, here, we must take into account the variational distributions of the parameters Y
and . The solution for the lower bound is:

p(m) p(A)
dm + /q (A)In mdA
Y)

q(m)
p( ' p(B)
+/q(Y)lnq(Y)dY+/q(ﬁ)lnq(ﬁ)dﬂ

+ln 2 (X) @1)

F(q(©).q(2) = /q<w>ln

This equation implies that only the computation of the KL-divergence between the variational and
the prior distribution for each parameter and the normalization constant is necessary to evaluate
the lower bound function. Furthermore, the computation of the KL-divergence is straightforward
because the distributions are known.

5 Conclusions

The presence of noise is commonplace in multivariate time series. In many real applications, it may
shadow the informative patterns that might be present in the signal, making the process of knowl-
edge extraction difficult. This could entail poorer predictions over time, or more ambiguous signal
source separation and identification. For these reasons, time series analysis should benefit from the
definition of models that behave robustly in the presence of noise, preventing data overfitting. In this
report, we have laid the theoretical foundations of Variational GTM-TT, an unsupervised model with
those characteristics, capable of clustering and visualizing the underlying structure of multivariate
time series in the presence of noise.

Future research will be devoted to test the model in detail, using both artificial and real datasets of
various characteristics.
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A Computation of the Variational Parameters

Taking into account the approximation ¢ (@,Z) = ¢ (®) ¢ (Z) and the approximation of the varia-
tional distributions over the parameters in Eq. 28, the lower bound can be expressed as:

p(m)p(A)p(Y)p(B)

Flam) a8 a.0@) = [om [a@) [a0) [a) n2DEEEAE

p (Xa Z|7Ta A7Y7ﬁ)

dBdY dAdm
q(Z)

+ Y ¢(Z)ln

all path

In the following subsections we will proceed to obtain the expressions of the variational hyperpa-
rameters by taking functional derivates over F' with respect to ¢ (), ¢ (A), ¢ (Y), and ¢ (3) (Eq.
23).

A.1 Derivation of ©
The functional derivative of F with respect to ¢ () is given by:

m = lnp(ﬂ') + Z Q(Z) lnp(X, Z|7T,A,Y,5) —1Ing (71-) +c (43)

all path

where ¢ groups all constant expressions with respect to ¢ (). If this expression is equated to zero,
it yields:

(42)



hlq (77) = hlp (ﬂ-) + <lnp (Xa Z‘ﬂ-7AaY7ﬂ)>q(Z) +c (44)

Now, taking into account Egs. 2 and 3, the expression (In p (X, Z|m, A, Y, §)) , 7, can be simplified
to (Inp (21]m)) ,(,)- Given that p () and g () are Dirichlet distributions, then Eq. 44 is solved as
follows:

K
i —1)Inm; —Z(Z/j = Dnm; + (Inp (z1|7)) (., + € 45)

]:1 Jj=1

Mw

Each hyperparameter 7; is obtained by matching the terms dependent on In 7; as follows:
vj = vj+(2j1) (46)

A.2 Derivation of \

In this case, the functional derivative of F is taken with respect to ¢ (A), with the aim to obtain the
variational hyperparameter A as follows:

OF
Jq(A)

=Inp(A)+ Y ¢(Z)lnp(X,Zx,A,Y,3) —Ing(A) +c (47)
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Following a similar procedure to the one presented in the previous subsection, we obtain:
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Then, for each of the variational hyperparameters 5\2», IE
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A.3 Derivation of 3 and

The functional derivate of F' with respect to ¢ (Y) is given by:

~tp(Y)+ [4(9) Y 4@ np(X.2m AY.5)d-lng (V) e (G0
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9q (Y)

Now, using Egs. 6, 11 and 31, Eq. 50 is solved first for 3 and then for rh(d) as follows:
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This leads to:
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A4 Derivation of ds and 34

Once again, Eq. 42 is solved as in previous subsections, but now with respect to ¢ (3) as follows:
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Equating the factors of In 3, the variational parameter Jg is obtained as:

~ ND

Similarly, equating with respect to 3 the variational parameter 5g, is obtained:

Sp=152_ > (#in) (Ixn —¥5l1%) (57)
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