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Abstract

Generative Topographic Mapping (GTM) is a non-linear latent variable model of
the manifold learning family that provides simultaneous visualization and cluster-
ing of high-dimensional data. It was originally formulated as a constrained mix-
ture of Gaussian distributions, for which the adaptive parameters were determined
by Maximum Likelihood (ML), using the Expectation-Maximization (EM) algo-
rithm. In this paper, we define an alternative variational formulation of GTM that
provides a full Bayesian treatment to a Gaussian Process (GP) - based variation of
the model.

1 Introduction

Manifold learning models attempt to describe multivariate data in terms of low-dimensional rep-
resentations, often with the goal of allowing the intuitive visualization of high-dimensional data.
Generative Topographic Mapping (GTM) [1] is one such model that can be ascribed to the field of
Statistical Machine Learning. Its probabilistic setting and functional similarity make it a principled
alternative to Self-Organizing Maps (SOM) [2]. It can also be described as a density modelling
method defined as constrained mixture of distributions. As such, it has been extended to perform
missing data imputation [3, 4]; to handle data outliers robustly [4, 5]; to perform unsupervised fea-
ture selection [6, 7, 8]; and to analyse multivariate time series [8, 9], amongst other capabilities.

The GTM model has also been modified to provide active regularization in the presence of noise
[10, 11]. In its basic formulation, the GTM is trained within the ML framework using EM, per-
mitting the occurrence of data overfitting unless regularization is included, a major drawback when
modelling noisy data. The regularization methods in [10, 11] were based on Bayesian evidence ap-
proaches. Alternatively, we could reformulate GTM within a fully Bayesian approach and endow
the model with regularization capabilities based on evidence with Laplacian approximations [12],
Markov Chain Monte Carlo (MCMC) methods [13], and variational techniques [14, 15]. In this pa-
per, we chose the latter alternative to provide the theoretical foundations of a Variational GTM model
based on the GTM with GP prior outlined in [10], to which a Bayesian estimation of its parameters
is added. This Variational GTM should limit the negative effect of data overfitting, improving on the
performance of the standard GTM with GP prior, while retaining the data visualization capabilities
of the model. Variational techniques have been successfully associated to well-known methods such
as Gaussian Mixture Models [16], Probabilistic PCA [17], Independent Component Analysis [18],
and Hidden Markov Models [19], amongst others.

The remaining of this report is organized as follows: First, in section 2, introductions to the original
GTM, the GTM with GP prior and a Bayesian approach of the GTM, are provided. This is followed,
in section 3, by the description of the proposed Variational GTM.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825949?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Generative Topographic Mapping

2.1 The Original GTM

The neural network-inspired GTM is a nonlinear latent variable model of the manifold learning fam-
ily, with sound foundations in probability theory. It performs simultaneous clustering and visualiza-
tion of the observed data through a nonlinear and topology-preserving mapping from a visualization
latent space in <L(with L being usually 1 or 2 for visualization purposes) onto a manifold embedded
in the <D space, where the observed data reside. The mapping that generates the manifold is carried
out through a regression function given by:

y = WΦ (u) (1)

where y ∈ <D, u ∈ <L, W is the matrix that generates the mapping, and Φ is a matrix with the
images of S basis functions φs (defined as radially symmetric Gaussians in the original formulation
of the model). To achieve computational tractability, the prior distribution of u in latent space is
constrained to form a uniform discrete grid of K centres, analogous to the layout of the SOM units,
in the form:

p (u) =
1
K

K∑

k=1

δ (u− uk) (2)

This way defined, the GTM can also be understood as a constrained mixture of Gaussians. A density
model in data space is therefore generated for each component k of the mixture, which, assuming
that the observed data set X is constituted by N independent, identically distributed (i.i.d.) data
points xn, leads to the definition of a complete likelihood in the form:

P (X|W, β) =
(
β

2π

)ND/2 N∏
n=1

{
1
K

K∑

k=1

exp
(
−β

2
‖xn − yk‖2

)}
(3)

where yk = WΦ (uk). From Eq. 3, the adaptive parameters of the model, which are W and the
common inverse variance of the Gaussian components, β, can be optimized by ML using the EM
algorithm. Details can be found in [1].

2.2 Gaussian Process Formulation of GTM

The original formulation of GTM described in the previous section has a hard constraint imposed on
the mapping from the latent space to the data space due to the finite number of basis functions used.
An alternative approach is introduced in [10], where the regression function using basis functions is
replaced by a smooth mapping carried out by a GP prior. This way, the likelihood takes the form:

P (X|Z,Y, β) =
(
β

2π

)ND/2 N∏
n=1

K∏

k=1

{
exp

(
−β

2
‖xn − yk‖2

)}zkn

(4)

where: Z = {zkn} are binary membership variables complying with the restriction
∑K

k=1 zkn = 1
and yk = (yk1, . . . , ykD)T are the column vectors of a matrix Y and the centroids of spherical
Gaussian generators. Note that the spirit of yk in this approach is similar to the regression version
of GTM (Eq. 1) but with a different formulation: A GP formulation is assumed introducing a prior
multivariate Gaussian distribution over Y defined as:

P (Y) = (2π)−KD/2 |C|−D/2
D∏

d=1

exp
(
−1

2
yT

(d)C
−1y(d)

)
(5)

where y(d) is each one of the row vectors of the matrix Y and C is a matrix where each element is
a covariance function that can be defined as
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C (i, j) = C (ui,uj) = ν exp

(
−‖ui − uj‖2

2α2

)
, i, j = 1 . . .K (6)

and where parameter ν is usually set to 1. The α parameter controls the flexibility of the mapping
from the latent space to the data space. An extended review of covariance functions can be found in
[20]. An alternative GP formulation was introduced in [21], but this approach had the disadvantage
of not preserving the topographic ordering in latent space, being therefore inappropiate for data
visualization purposes.

Note that Eqs. 3 and 4 are equivalent if a prior multinomial distribution over Z in the form P (Z) =∏N
n=1

∏K
k=1

(
1
K

)zkn = 1
KN is assumed.

Eq. 4 leads to the definition of a log-likelihood and parameters Y and β of this model can be
optimized using the EM algorithm, in a similar way to the parameters W and β in the regression
formulation. Some basic details are provided in [10].

2.3 Bayesian GTM

The specification of a full Bayesian model of GTM can be completed by defining priors over the
parameters Z and β. Since zkn are defined as binary values, a multinomial distribution can be chosen
for Z:

P (Z) =
N∏

n=1

K∏

k=1

pzkn

kn (7)

where pkn is the parameter of the distribution.

As in [17], a Gamma distribution1 is chosen to be the prior over β:

P (β) = Γ (β|dβ , sβ) (8)

where dβ and sβ are the parameters of the distribution. Therefore, the joint probability
P (X,Z,Y, β) is given by:

P (X,Z,Y, β) = P (X|Z,Y, β)P (Z)P (Y)P (β) (9)

This expression can be maximized through evidence methods using the Laplace approximation [12]
or, alternatively, using Markov Chain Monte Carlo [13] or variational [14, 15] methods.

3 Variational GTM

3.1 Motivation of the Use of Variational Inference

A basic problem in Statistical Machine Learning is the computation of the marginal likelihood
P (X) =

∫
P (X,Θ) dΘ, where Θ = {θi} is the set of parameters defining the model. Depend-

ing of the complexity of the model, the analytical computation of this integral could be intractable.
Variational inference allows approximating the marginal likelihood through Jensen’s inequality as
follows:

lnP (X) = ln
∫
P (X,Θ) dΘ = ln

∫
Q (Θ)

P (X,Θ)
Q (Θ)

dΘ

≥
∫
Q (Θ) ln

P (X,Θ)
Q (Θ)

dΘ = F (Q) (10)

1The Gamma distribution is defined as follows: Γ (ν|dν , sν) =
sdν

ν νdν−1 exp−sν ν

Γ(dν)
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The function F (Q) is a lower bound function such that its convergence guarantees the convergence
of the marginal likelihood. The goal in variational methods is choosing a suitable form for the
densityQ (Θ) in such a way that F (Q) can be readily evaluated and yet which is sufficiently flexible
that the bound is reasonably tight. A reasonable approximation forQ (Θ) is based on the assumption
that it factorizes over each one of the parameters as Q (Θ) =

∏
iQi (θi). That assumed, F (Q) can

be maximized leading the optimal distributions:

Qi (θi) =
exp 〈lnP (X,Θ)〉k 6=i∫
exp 〈lnP (X,Θ)〉k 6=i dθi

(11)

where 〈 . 〉k 6=i denotes an expectation with respect to the distributions Qk (θk) for all k 6= i.

3.2 Variational Distributions

In order to apply the variational principles to the Bayesian GTM within the framework described in
the previous section, a Q distribution of the form:

Q (Z,Y, β) = Q (Z)Q (Y)Q (β) (12)
is assumed, where natural choices of Q (Z), Q (Y) and Q (β) are similar distributions to the priors
P (Z), P (Y) and P (β), respectively. Thus,

Q (Z) =
N∏

n=1

K∏

k=1

p̃zkn

kn (13)

Q (Y) =
D∏

d=1

N
(
y(d)|m̃(d), Σ̃

)
(14)

Q (β) = Γ
(
β|d̃β , s̃β

)
(15)

Now, using Eqs. 13 to 15 in Eq. 11, the following expressions for the variational parameters
Σ̃, m̃(d), p̃kn, d̃β and s̃β can be obtained:

Σ̃ =

(
〈β〉

N∑
n=1

Gn + C−1

)−1

(16)

m̃(d) = 〈β〉 Σ̃
N∑

n=1

xnd 〈zn〉 (17)

p̃kn = pkn exp
(
−〈β〉

2
〈‖xn − yk‖2

〉
Y

)
(18)

d̃β = dβ +
ND

2
(19)

s̃β = sβ +
1
2

N∑
n=1

K∑

k=1

〈zkn〉
〈
‖xn − yk‖2

〉
(20)

where zn corresponds to each row vector of Z and Gn is a diagonal matrix of size K × K with
elements 〈zn〉. The moments in the previous equations are defined as:

〈zkn〉 = p̃kn (21)

〈β〉 =
d̃β

s̃β
(22)
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〈‖xn − yk‖〉Y =
〈
(xn − yk)T (xn − yk)

〉
Y

=
D∑

d=1

x2
nd − 2xnd 〈ykd〉Y +

〈
y2

kd

〉
Y

=
D∑

d=1

x2
nd − 2xndm̃

(d)
k + Σ̃kk +

(
m̃

(d)
k

)2

= DΣ̃kk + ‖xn − m̃k‖2 (23)

Details on these calculations can be found in the appendix.

3.3 Lower Bound

Finally, and according to Eqs. 9 and 10, the lower bound function F (Q) is derived from:

F (Q) =
∫
Q (Z)Q (Y)Q (β) ln

P (X|Z,Y, β)P (Z)P (Y)P (β)
Q (Z)Q (Y)Q (β)

dZdYdβ (24)

Integrating out, we obtain:

F (Q) = 〈lnP (X|Z,Y, β)〉+ 〈lnP (Z)〉+ 〈lnP (Y)〉+ 〈lnP (β)〉
− 〈lnQ (Z)〉 − 〈lnQ (Y)〉 − 〈lnQ (β)〉 (25)

where the moments are expressed as:

〈lnP (X|Z,Y, β)〉 =
ND

2
〈lnβ〉 − ND

2
ln 2π

−〈β〉
2

N∑
n=1

K∑

k=1

〈zkn〉
〈
‖xn − yk‖2

〉
(26)

〈lnP (Z)〉 =
N∑

n=1

K∑

k=1

〈zkn〉 ln pkn (27)

〈lnP (Y)〉 = −KD
2

ln 2π − D

2
ln |C| − 1

2

D∑

d=1

〈
yT

(d)C
−1y(d)

〉
(28)

〈lnP (β)〉 = dβ ln sβ − ln Γ (dβ) + (dβ − 1) 〈lnβ〉 − sβ 〈β〉 (29)

〈lnQ (Z)〉 =
N∑

n=1

K∑

k=1

〈zkn〉 ln p̃kn (30)

〈lnQ (Y)〉 = −KD
2

ln 2π − D

2
ln

∣∣∣Σ̃
∣∣∣− KD

2
(31)

〈lnQ (β)〉 = d̃β ln s̃β − ln Γ
(
d̃β

)
+

(
d̃β − 1

)
〈lnβ〉 − s̃β 〈β〉 (32)

and

〈lnβ〉 = ψ
(
d̃β

)
− ln s̃β (33)

〈
yT

(d)C
−1y(d)

〉
= tr

[
C−1

(
Σ̃ + m̃(d)

(
m̃(d)

)T
)]

(34)

In the previous expressions, Γ (·) are Gamma functions, and ψ (·) is the Digamma function.
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4 Conclusions and Future Work

In this brief report, the theoretical foundations of a Variational Bayesian GTM model have been laid.
This model should prevent, even if partially, the phenomenon of data overfitting, and, therefore,
show good generalization capabilities. Immediate future work should be directed towards assessing
such capabilities as well as the limitations of the proposed model, through the design of experiments
using noisy artificial data.
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A Computation of the Variational Parameters

Details on the derivation of some of the variational parameters of the model, starting from the Eq.
11, are provided next.

A.1 Derivation of p̃kn

The variational distribution Q (Z) takes the following form:

lnQ (Z) =
∫
Q (Y)

∫
Q (β) [lnP (X|Z,Y, β) + lnP (Z)] dβdY + c (35)

where c groups the constant expressions. Then, the Eqs. 4, 7, and 13 are included in Eq. 35 to
obtain:

N∑
n=1

K∑

k=1

zkn ln p̃kn =

〈
−β

2

N∑
n=1

K∑

k=1

zkn‖xn − yk‖2
〉

Y,β

+
N∑

n=1

K∑

k=1

zkn ln pkn + c (36)

Thus, the variational parameter p̃kn is obtained from the Eq. 36 as follows:

ln p̃kn =
〈
−β

2
‖xn − yk‖2

〉

Y,β

+ ln pkn (37)

This equation is resolved for p̃kn leading the following expression:

p̃kn = pkn exp
(
−〈β〉

2
〈‖xn − yk‖2

〉
Y

)
(38)

where 〈β〉 is the mean of β for the Gamma distribution Q (β) given by Eq. 22 and the calculation
of

〈‖xn − yk‖2
〉
Y

is shown in Eq. 23.

A.2 Derivation of Σ̃ and m̃

Solving Eq. 11 for Q (Y) leads to the following expression:

lnQ (Y) =
∫
Q (Z)

∫
Q (β) [lnP (X|Z,Y, β) + lnP (Y)] dβdZ + c (39)

Now, using Eqs. 4, 5 and 14, Eq. 39 is solved first for Σ̃ and then for m̃(d) as follows:

D∑

d=1

(
y(d) − m̃(d)

)T
Σ̃−1

(
y(d) − m̃(d)

)
= 〈β〉

N∑
n=1

K∑

k=1

〈zkn〉 ‖xn − yk‖2

+
D∑

d=1

yT
(d)C

−1y(d) + c (40)

then:
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Σ̃ =

(
〈β〉

N∑
n=1

Gn + C−1

)−1

(41)

and

m̃(d) = 〈β〉 Σ̃
N∑

n=1

xnd 〈zn〉 (42)

A.3 Derivation of d̃β and s̃β

Once again, the Eq. 11 is solved in a similar way to the previous subsections, but now with respect
to Q (β) as follows:

lnQ (β) =
∫
Q (Z)

∫
Q (Y) [lnP (X|Z,Y, β) + lnP (β)] dYdZ + c (43)

d̃β ln s̃β +
(
d̃β − 1

)
lnβ − s̃ββ =

ND

2
lnβ − β

2

N∑
n=1

K∑

k=1

〈zkn〉
〈‖xn − yk‖2

〉

+dβ ln sβ + (dβ − 1) lnβ − sββ + c (44)

Equating the factors with respect to the term lnβ, the variational parameter d̃β is obtained:

d̃β =
ND

2
+ dβ (45)

Similarly, equating with respect to β the variational parameter s̃β is obtained:

s̃β =
1
2

N∑
n=1

K∑

k=1

〈zkn〉
〈‖xn − yk‖2

〉
(46)
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