
Decomposition of Geometric Constraint Graphs

Based on Computing Fundamental Circuits

R. Joan-Arinyo, T. Soto, M. Tarrés-Puertas, S. Vila

Grup d’Informàtica a l’Enginyeria

Universitat Politècnica de Catalunya

Diagonal 647, 08028 Barcelona, Catalunya

Abstract

The graph-based geometric constraint solving technique works in two steps. First the
geometric problem is translated into a graph whose vertices represent de set of geometric
elements and whose edges are the constraints. Then the constraint problem is solved by
decomposing the graph into a colection of subgraphs each representing a standard problem
which is solved by a dedicated equational solver.

In this work we report on an algorithm to decompose biconnected graphs representing
geometric constraint problems. The algorithm is based on recursively splitting the graphs
through terns of vertices located on fundamental circuits of the graph. Preliminar exper-
iments suggest that the algorithm runtime is at worst quadratic with the total number of
vertices in the graph. In a case study we illustrate how the algorithm works.

Keywords Geometric constraint solving, Graph decomposition.

1 Introduction

Geometric models are data structures designed to represent physical properties of objects.
The main properties encoded include geometric shape and topological properties of physical
objects.

Computer Aided Design (CAD) systems are software applications built to help industrial
designers during the product design cycle. Because the main activity of CAD systems is
related to manage descriptions of objects, geometric models are at the core of such sys-
tems. Contemporary CAD/CAM systems capture the design intent partially by defining
functional relationships between dimensional variables, that is, parametric design and geo-
metric constraint-based design. One example of comercial CAD based in parametric design is
Proengineer, [1].

One of the issues found in parametric, geometric constraint based design is the geometric
constraint solving problem. This problem can be roughly summarized as follows:

Given a set of geometric elements and a set of constraints between them, place
each geometric element in such a way that the constraints are fulfilled.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We consider 2D constraint problems defined by a set of geometric elements like points, lines,
line segments, circles and circular arcs, along with a set of constraints like distance, angle,
incidence and tangency between any two geometric elements. The algorithms that solve
geometric constraint problems are named solvers. The reader is referred to [2, 7, 9, 15] for an
extensive review of solving algorithms.

A geometric constraint problem can be coded as a constraint graf G = (V,E), where the
graph vertices V are the geometric elements with two degrees of freedom and the graph edges
E are the geometric constraints, each canceling one degree of freedom.

Among the existing solving methods we focus on constructive techniques. In these techniques
the input is a geometric constraint problem represented as a geometric constraint graph. The
output is a constructive plan, that is, a sequence of basic steps that describe how to build a
solution. Usually the basic steps are related to elemental ruler-and-compass operations.

Many attempts to provide general, powerful and efficient constructive graph-based techniques
have been reported in the literature. For an extensive review refer to [4, 5, 6, 14].

Joan-Arinyo et al., [10, 11, 12, 19], defined the tree decomposition of a constraint graph. This
concept has been specially useful from a theoretical point of view. Due to this contribution,
the domains of Owen [14] and Fudos, [4], algorithms have been proved to be the same.

In this report we study the tree decomposition of a constraint graph from an algorithmic point
of view. A recursive application of this algorithm yields a tree decomposition of the graph.
Given a geometric constraint graph G = (V,E), the problem we are facing is to efficiently
compute the three hinges {v1, v2, v3} ⊆ V that induce a set decomposition of V .

This report is organized as follows. In Section 2 we review some basic concepts from graph
theory. In Section 3 we present an introduction to geometric constraint graphs. Sections 4
and 5 introduce an algorithm to compute the hinges of a geometric constraint graph. Section 4
shows an algorithm to decompose 0-connected and 1-connected graphs. In Section 5 we
present a decomposition algorithm for biconnected graphs. In Section 6 we illustrate how
the algorithm works by following a case study. Finally, in Section 7 we give a summary and
outline the future work.

2 Graph Concepts

In this section we recall some basic concepts and terminology of graph theory that will be used
in the rest of the paper. Among the topics presented are graph decomposition in fundamental
circuits and the depth first search algorithm. For an extensive treatment see the books of
Even, [3], and Thulasiraman and Swamy, [17].

2.1 Basic Definitions

A graph G = (V,E) consists of a set of vertices V , also called nodes, and a set of edges E. An
edge e ∈ E is a pair of vertices e = (vi, vj) such that vi, vj ∈ V . Vertices vi and vj associated
with an edge e are called the end vertices of e and, when needed, will be denoted by V (e). In
general, V (E) will denote the set of vertices of E. A graph can be represented by a diagram

2

ce4d

e1

e

e14

i

e13e13

e16

b
e2

h

e15

e10

e12

f
e17

g

e11

je9

e8
e6

e7

a
e5

ke3

Figure 1: Graph example.

in which a vertex is symbolized by a dot and an edge by a line segment connecting two dots.

Example 1 Figure 1 shows a graph G = (V,E) where

V = {a, b, c, d, e, f, g, h, i, j, k}

E = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17}

♦

The number of edges incident on a vertex v is called the degree of the vertex, and is denoted
by d(v). An isolated vertex is a vertex with degree 0.

Example 2 In the graph of Figure 1, d(a) = 4 and d(e) = 2. ♦

Consider the graph G = (V,E). A subgraph of G is a graph G′ = (V ′, E′) where

1. V ′ is a subset of V .

2. E′ consists of edges (vi, vj) in E such that both vi, vj are in V ′.

Consider the graph G = (V,E) where for each vertex vi in V , d(vi) ≥ 1. Let V ′ ⊂ V . Then
the subgraph induced by V ′ in G is the graph G′ = (V ′, E′) where E′ consists on all edges
vi, vj ∈ V ′ such that both vi and vj are in V ′. An induced subgraph G′ of G will be denote
by G′ ⊂ G.

According to Thulasiraman, [17], a walk in a graph G = (V,E) is a finite alternating sequence
of vertices and edges [v0, e1, v1, e2, . . . , vk−1, ek, vk] beginning and ending with vertices such
that vi−1 and vi are the end vertices of edge ei, 1 ≤ i ≤ k. A walk can be considered as
a finite sequence of vertices [v0, v1, v2, . . . , vk] such that (vi−1, vi), 1 ≤ i ≤ k, is an edge in
the graph G. This walk is usually called a v0 − vk walk where v0 and vk are the first and
last vertices of the walk. All other vertices are internal to the walk. Note that in a walk,
edges and vertices can appear more than once. A walk is open if its end vertices are distinct
otherwise it is closed.

3

Example 3 In the graph in Figure 1, the sequence [d, e9, j, e17, a, e8, f, e8, a, e5, d] is a closed
walk, whereas the sequence [j, e17, a, e8, f, e8, a, e5, d] is an open walk. ♦

A walk is a trail if all its edges are distinct. A trail is open if its end vertices are distinct
otherwise it is closed.

Example 4 The walk [j, e17, a, e5, d, e6, e, e7, f, e8, a, e1, b] in Figure 1 is an open trail, whereas
the sequence [j, e17, a, e5, d, e6, e, e7, f, e8, a, e1, b, e16, h, e12, j] is a closed trail. ♦

An open trail is a path if all its vertices are distinct. A closed trail is a circuit if all its vertices
except the end vertices are distinct.

Example 5 In Figure 1 the open trail [j, e17, a, e5, d, e4, c] is a j − c path, whereas the closed
trail [j, e17, a, e5, d, e4, c, e10, j] is a circuit. ♦

2.2 Operations on Graphs

In this section we introduce a few operations involving graphs.

Consider two graphs, G1 = (V1, E1) and G2 = (V2, E2). The union of G1 and G2, denoted as
G1 ∪ G2, is the graph G3 = (V1 ∪ V2, E1 ∪ E2).

The intersection of G1 and G2, denoted as G1 ∩ G2, is the graph G3 = (V1 ∩ V2, E1 ∩ E2).

The ring sum of two graphs G1 and G2, denoted as G1 ⊕G2, is the graph G3(E,V) such that
edges in E belong to either E1 or E2 but not to both and whose vertices are V (E).

Consider the graph G = (V,E) and let vi ∈ V . Then vertex removal G − vi is the induced
subgraph of G on the vertex set V − vi; that is, G − vi is the graph obtained after removing
vertex vi from V and all the edges in E incident on vi.

Consider the graph G = (V,E) and let ei ∈ E. Then edge removal G − ei is the subgraph
of G that results by removing the edge ei from E. Note that the end vertices of ei are not
removed from G.

The removal of a set of vertices or edges from a graph G is defined as the removal of single
vertices or edges in succession.

2.3 Connectivity

A graph G = (V,E) is connected if there exists a path between every pair of vertices in G,
otherwise G is disconnected. The maximal connected subgraphs of a disconnected graph G
are the connected components of G.

Example 6 Figure 2 shows a disconnected graph. The set of vertices in each connected
component are V1 = {a, b, k, c, d, e, f} and V2 = {g, h, i}. ♦

Let G = (V,E) be a connected graph. We say that a vertex v ∈ V is an articulation vertex if
G − v is disconnected.

4

ce4d

e1

e

e14

i

e13e13

b
e2

h

e15

f

g

e8
e6

e7

a
e5

ke3

Figure 2: A disconnected graph.

Theorem 7 Let G = (V,E) be a connected graph. A vertex v ∈ V is an articulation vertex
if and only if there are vertices u,w ∈ V , with u 6= v and w 6= v such that v is on every u−w
path.

Proof

See Thulasiraman and Swamy, [17]. �

A non-separable or biconnected graph G = (V,E) has no articulation vertices, otherwise it
is separable. A biconnected component of a connected graph G is a maximal biconnected
subgraph of G. A connected graph can be decomposed into biconnected components. For
any beconnected graph G = (V,E), given a pair of vertices u, v ∈ V with u 6= v, there are, at
least, two disjoint paths u − v paths.

The connectivity of a graph G is the minimum number k of vertices that must be removed
to disconnect G. If the connectivity of G is k, we write κ(G) = k. For a disconnected or
0-connected graph, G, κ(G) = 0. For a connected or 1-connected graph, G, κ(G) ≥ 1. A
separable graph G has κ(G) = 1. A biconnected or 2-connected graph G has κ(G) ≥ 2. In a
similar way a graph G with κ(G) ≥ 3 is called triconnected or 3-connected graph. Biconnected
graphs can be decomposed into triconnected components.

2.4 Trees, Fundamental Circuits and Fundamental Cutsets

In this section we introduce trees, cutsets and several results associated with them. We also
point out the relationship between trees, cutsets and circuits.

A graph is said to be acyclic if it has no circuits. A tree of a graph G is a connected acyclic
subgraph of G. Aspanning tree T for a graph G is a tree that connects all the vertices uin
V . The cospanning tree T ∗ of a spanning tree T for a graph G is the subgraph of G whose
vertices are those of G and whose edges are exactly those edges of G that are not in T . The
edges of a spanning tree T are called the branches of T , and the edges in the cospanning tree
T ∗ are called chords. Notice that a cospanning tree may not be connected.

Example 8 Figure 3 shows a graph G, a spannig tree T and the corresponding cospanning
tree T ∗. ♦

5

cd

e

i

b

h

f

g

j

a

k d

e

i

b

h

f

g

j

a

k

b9

c1

c2

c3

c4

c6

c5

ce4d

e1

e

e14

i

e13e13

e16

b
e2

h

e15

e12

f

g

e11

je9

e8
e6

e7

a
e5

ke3

e17

e10

c7

c

b3

b4

b5

b6

b1

b2

b7

b8

b10

Figure 3: G, T and T ∗.

Theorem 9 Let G = (V,E) a graph with |V | = n and G′ ⊂ G. G′ is said to be a spanning
tree of G if and only if G′ is acyclic, connected, and has n − 1 edges.

Proof

See Thulasiraman and Swamy, [17]. �

Let G = (V,E) a graph with |V | = n and |E| = m. Let T be a spanning tree to G. Let
b1, . . . , bn−1 be the branches and c1, . . . , cm−n+1 the chords of T . The graph resulting from
adding to T the chord ci contains exactly one circuit C which consists of the chord ci and
those branches of T that lie in the unique path in T between the end vertices of ci. The
circuit C is a fundamental circuit of G with respect to the chord ci of the spanning tree T .

The m−n+1 possible fundamental circuits C1, . . . , Cm−n+1 of G with respect to the chords of
the spanning tree T of G is known as the set of fundamental circuits. An important feature of
a fundamental circuit Ci is that it contains exactly one chord, namely, chord ci. Furthermore,
this chord is not present in any other fundamental circuit respect to T . Because of these
properties, given a graph G and a spanning tree for it T , every circuit in G can be expressed
as the ring sum of some fundamental circuits.

Example 10 Consider the graph G and the spanning tree T in Figure 3. The fundamental
circuits are the following

C1 = [e, d, a, f]

C2 = [d, c, j]

C3 = [a, d, c, j]

C4 = [j, h, g]

C5 = [g, h, i]

C6 = [c, j, h, b, k]

C7 = [a, d, c, j, h, b]

Every fundamental circuit contains exactly one chord that is not present in any other funda-
mental circuit. For example, chord (e, f) in C1. The set of fundamental circuits are depicted
in Figure 4. ♦

A cutset S of a connected graph G is a minimal set of edges of G such that its removal
disconnects G, that is, the graph G − S is disconnected.

6

cd

i

b

h

g

j

a
k

e

f

cd

i

b

h

g

j

a
k

e

f

cd

i

b

h

g

j

a
k

e

f

cd

i

b

h

g

j

a
k

e

f

cd

i

b

h

g

j

a
k

e

f

cd

i

b

h

g

j

a
k

e

f

cd

i

b

h

g

j

a
k

e

f

C5C4

C1
C2 C3

C6

C7

Figure 4: Fundamental circuits for the graph in Figure 3.

Example 11 Consider the graph Figure 5 and the subset of edges S = {e1, e3, e7, e10}. The
removal of S from G results in a disconnected graph. Furthermore, the removal of any proper
subset of S cannot disconnect G. Thus S is a cutset of G. ♦

We now define the concept of a cut, which is closely related to that of a cutset. Consider
a connected graph G = (V,E). Let V1 and V2 be two subsets such that V1 ∪ V2 = V and
V1 ∩V2 = ∅. Then the set S of all those edges of G having one end vertex in V1 and the other
in V2 is called a cut of G. This is denoted by 〈V1, V2〉.

Example 12 Let G be the graph shown in the Figure 1. If V1 = {a, b, k, c, d, e, f, j} and
V2 = {g, h, i}, then the cut 〈V1, V2〉 is the set of edges {e11, e12, e16}. ♦

A cut 〈V1, V2〉 of G is the minimal set of edges of G whose removal disconnects G into two

e3

e8

e10

e7e6

e9

e5e4

e2

e1

Figure 5: A graph and the cutset {e1, e3, e7, e10}.

7

a

g

e

d

b

c hh gc

b f

e

d

a

Figure 6: Left) Graph G(V,E). Right) Subgraph induced by V − f .

subgraphs G1 and G2 being G1 and G2 the induced subgraphs of G by the vertex sets V1

and V2 respectively. If both G1 and G2 are connected, then 〈V1, V2〉 is also the minimal set of
edges disconnecting G into exactly two components. Then, by definition,〈V1, V2〉 is a cutset
of G.

Theorem 13 A cut in a connected graph G is either a cutset or a union of edge-disjoint
cutsets of G.

Proof

See Thulasiraman and Swamy, [17]. �

Theorem 14 The set of edges incident on a vertex v in a connected graph G is a cutset of
G if and only if v is not an articulation vertex of G.

Proof

See Thulasiraman and Swamy, [17]. �

Example 15 Consider the separable graph G = (V,E) with the articulation vertex f . shown
in Figure 6. The subgraph of G induced by the vertex set V − f = {a, b, c, d, e, h, g} consists
of three components. Thus the edges incident to the articulation vertex f are not a cutset of
G. ♦

A spanning tree of a connected graph can be used to obtain a set of fundamental cutsets of
the graph. Let T be a spanning tree to the connected graph G. Let b be a branch of T . Now,
the removal of branch b disconnects T into exactly two components T1 and T2. Let V1 and V2,
respectively, denote the vertex sets of T1 and T2. V1 and V2 together contain all the vertices
of G. Let G1 and G2 be the induced subgraphs of G on the vertex sets V1 and V2. It can be
seen that T1 and T2 are, respectively, spanning trees of G1 and G2. Hence, 〈V1, V2〉 is a cutset
of G. This cutset is known as the fundamental cutset of G with respect to the branch b of
the spanning tree T to G. The set of the n − 1 distinct cutsets defined by the branches of a
spanning tree T of a connected graph G is known as the set of fundamental cutsets of G with
respect to the spanning tree T . The cutset 〈V1, V2〉 contains exactly one branch, namely, the
branch b of T . All the other edges are chords of T . This follows from the fact that 〈V1, V2〉
does not contain any edge of T1 or T2. Furthermore, branch b is not present in any other
fundamental cutset with respect to T . Because of these properties, every fundamental cutset
of a graph G can be expressed as the ring sum of the fundamental cutsets of G with respect
to the spanning tree T to G. The edge set of no fundamental cutset can be expressed as the
ring sum of the edge sets of some or all of the remaining fundamental cutsets.

8

ce4d

e1

e

e14

i

e13e13

e16

b
e2

h

e15

e10

e12

f
e17

g

e11

je9

e8
e6

e7

a
e5

ke3 cd

e

i

b

h

f

g

j

a
kcd

i

b

h

f

g

j

a
k

b5

b4

b3
b1

e

c7

c6

c5

c3

c2

c1

b6

b7

b8

b9

b10

b2

c4

Figure 7: Left) Graph. Middle) A DFS spanning tree. Right) The Cospanning tree.

Example 16 For example, the graph shown in Figure 3, have the following fundamental
cutsets:

FC1 = {(a, f), (f, e)}

FC2 = {(a, d), (f, e), (a, j), (a, b)}

FC3 = {(d, e), (e, f)}

FC4 = {(d, c), (d, j), (a, j), (a, b), (d, c)}

FC5 = {(c, j), (c, k), (a, j), (d, j), (a, b)}

FC6 = {(j, h), (c, k), (a, b), (c, k), (j, g)}

FC7 = {(h, b), (b, a), (k, c)}

FC8 = {(b, k), (k, c)}

FC9 = {(h, i), (i, g)}

FC10 = {(h, g), (i, g), (j, g)}

♦

2.5 Depth-First Search

The Depth-First Search (DFS) algorithm is a technique that allows to efficiently visit vertices
and edges in a graph and serves as an skeleton around which many other efficient graph
algorithms can be built. See [8, 16].

Assume we are given a finite connected graph G = (V,E). Starting in one of the vertices
we want to walk along the edges, from vertex to vertex and visit all the vertices. The start
vertex v is called the root of the DFS. DFS terminates when the search returns to the root
and all the vertices have been visited. When selecting the next vertex to explore, depth-first
search selects a vertex that has never been explored and is connected by an edge to the most
recently explored vertex. DFS partitions the edges of G into edges visited (branches) and
edges not visited (chords). The branches form a spanning tree T to G. The chords form a
cospanning tree T ∗ to G.

Example 17 Figure 7 shows a graph G = (V,E), a spanning tree computed by the DFS with
vertex d as the root and, the corresponding cospanning tree. ♦

9

2.6 Graph Embedding

Since planar graphs play an important role in this work, in this section we introduce the main
concepts related to graph planarity.

Consider a graph G = (V,E). We say that G is embeddable in a surface S if G can be drawn
in S in such a way that

1. Each vertex is represented by a point p ∈ S.

2. Each edge is represented by a continous curve c ∈ S connecting the two points which
represent its end vertices and,

3. No two curves share any point except the vertices.

Such a drawing is called an embedding of G in S. A graph G embedded in the Euclidean
plane is said to be planar.

Let G be a graph, S the Euclidean plane and D an embedding of G in S. A face F of D is
a maximal region of S bounded by edges of D such that for any pair of points (x, y) in F ,
there is a continous curve c that connects x to y with c ∈ F .

2.7 Components and Bridges

Following Even, [3], this section explains how a non-separable graph can be decomposed
into one circuit and a set of bridges. This is achieved by first showing how an arbitrary
set of vertices induces a graph decomposition. The result of this decomposition is a set of
graph components. If a number of conditions hold in the decomposition, then the resulting
components are bridges.

A graf G is called non-separable if it is connected, and if there are two graphs G1 and G2

each containing at least one edge, which form G if a vertex of one is made to coalesce with a
vertex of the other. If G is not non-separable, it is separable, [20].

Let G = (V,E) be a non-separable graph and let S ⊆ V . Consider the partition of the set
V − S into classes such that two vertices are in the same class if and only if there is a path
connecting them which does include any vertex of S. Let ≡ denote the relationship defined
and assume that V − S/≡ = {K1, . . . ,Km}. Each class Ki defines a non-singular component,
H = (V ′, E′) with H ⊆ G, as follows:

• V ′ ⊃ Ki.

• V ′ includes all the vertices of S which are connected by an edge to a vertex of Ki in G.

• E′ ⊆ E contains all edges of G which have at least one end vertex in Ki.

An edge (u, v) where both u, v ∈ S defines a singular component H = ({u, v}, {(u, v)}).
Therefore a set of vertices S induces a graph decomposition into a set of singular and non-
singular components {H1, . . . ,Hn}.

Two components share no edges, and the only vertices they can share are vertices of S. The
vertices of a component v ∈ V (H) such that v ∈ S are called attachments.

10

b

a

c

d

fe

g

e

g

f

d

cb

a K1

a
H1

cb

fe d d
H3H2

e H6
f

fe
e f

g g
H5H4

d

a
B1

b c

d

fe

B2fe

g

d

a b c d

Figure 8: Graph, components and bridges.

Definition 18 Let S be the set of vertices of a circuit in G. Let H be the set of components
of G induced by S. A bridge, Bi, is a component Hi ∈ H whose edges do not belong to S.

A bridge is said to be singular if the corresponding component is singular otherwise it is
non-singular.

Example 19 Consider the graph G = (V,E) given in Figure 8a and let S = [d, e, g, f] ∈ V
shown in bold. Since V − S = {a, b, c}, there is just one induced class K1 = {a, b, c} shown
in Figure 8b. The components, shown in Figure 8c, are

H1 = ({a, b, c, e, d, f}, {(a, b), (a, c), (b, c), (b, e), (c, d), (c, f)})

H2 = ({d, e}, {(d, e)})

H3 = ({d, f}, {(d, f)})

H4 = ({e, g}, {(e, g)})

H5 = ({g, f}, {(g, f)})

H6 = ({e, f}, {(e, f)})

H1 is a non-sigular component, and Hi, 2 ≤ i ≤ 6, are singular components.

Components H1 and H6 are bridges, shown in Figure 8d respectively as B1 and B2. At-
tachments of B1 are {e, d, f}, and attachments of B2 are {e, f}. B2 is a singular bridge.
♦

Theorem 20 Let B be a bridge with attachments a1, a2 and a3. There exists a vertex v ∈ B,
that is not an attachment for which there are three vertex disjoint paths in B: v − a1, v − a2

and v − a3.

Proof

See Even, [3]. �

11

Bi

Bj

a

b

d

c
C

Bi

Bj

C

Figure 9: Interlacing attachments.

Example 21 Consider the graph in Example 19. The attachments of bridge B1 are {e, d, f}.
Vertex a ∈ B1 is not an attachment and you can find the paths {a, b, e}, {a, c, d} and {a, c,
f}. ♦

2.8 Planar Graphs and Bridges

This section is devoted to the relationships between planarity and bridges. First, we introduce
the concept of bridge interlacement. Then we consider the planar embedding of bridges.

Let G = (V,E) be a non-separable graph and C a circuit in G. Let B1, . . . , Bk be the bridges
of G with respect to C. We say that Bi and Bj interlace if at least one of the following
conditions holds:

1. There are two attachments a and b of Bi and two attachments c and d of Bj such that
all four attachments are distinct and they appear in C in the sequence [a, c, b, d].

2. There are three attachments common to Bi and Bj .

Figure 9 illustrates these conditions.

Example 22 Consider the graph in Figure 10 and the circuit C = [b, k, c, d, e, f, a] shown in
bold line. The bridges of the graph are B1 = {d, c, b}, B2 = {d, a, c, b} and B3 = {d, a}. B1

and B2 interlace because they have in common three attachments. ♦

For each bridge Bi, consider the subgraph C∪Bi ⊆ G. If any of these subgraphs is not planar,
then clearly G is not planar. Now, assume that all these subgraphs are planar. In every planar
embedding of G, C divides the plane into two disjoint parts, one is bounded (inside) and the
other is unbounded (outside). Two bridges that do not interlace can be embedded in any side
of the circuit C. However, if two bridges interlace they cannot be embedded on the same side
of C. Thus, in every planar embedding of G, C partitions the interlacing bridges into two
sets: those which are drawn inside C and those which are drawn outside. No two bridges in
the same set interlace. Notice that choosing the side where bridges are embedded does not
matter.

Theorem 23 If Bi, 1 ≤ i ≤ m, is the set of bridges of a non-separable graph G with respect
to a simple circuit C and the following two conditions are satisfied:

12

a b

n

om

p
l

kcd
a b

e
j

i
h

g

B1

d

a
c k

b

e

B2

f f

B3

B3

C

Figure 10: a) A graph with a cicuit C in boldline. b) Set of bridges induced B1, B2 and B3.

1. For every Bi, C ∪ Bi is planar.

2. No two bridges interlace,

then C ∪ (
⋃

1≤i≤m Bi), has a planar embedding in which all the bridges are inside (or outside)
of C.

Proof

See Even, [3]. �

2.9 Collapsed Graphs

We start recalling an standard concept from graphs field illustrated in Figure 11.

Definition 24 A star graph is a connected graph G = (V,E) with one vertex v ∈ V , called
center, whose degree is d(v) > 1 and such that for each vi ∈ V with vi 6= v, d(vi) = 1.

Star graphs are planar and are characterized by just listing the center and the set of vertices.

Now consider a graph G = (V,E) whose bridges are B = {B1, . . . , Bm}. Let Bi = (Vi, Ei) be
a bridge in B with attachments {a1, . . . , an} ⊆ Vi. We define the star graph Si = (VSi

, ESi
)

such that VSi
= {x, a1, . . . , an} where x is a new vertex and, ESi

= {(x, aj), 1 ≤ j ≤ n}.

Definition 25 Let G be a graph in the conditions described above. The collapsed graph of
G is the graph resulting from replacing each bridge Bi with the corresponding star graph Si.

Example 26 Figure 12 shows the collapsed graph corresponding to the graph in Figure 10.
Star graphs are S1 = {x1, d, c, b}, S2 = {x2, d, a, b} and S3 = {x3, a, d}. ♦

13

v

v1

v5

v4

v3

v2

Figure 11: Star graph.

Notice that star graphs Si and Sj in the collapsed graph interlace if and only if bridges Bi, Bj

interlace in graph G.

2.10 Merged Graphs

In this section we introduce the concept of merged graph.

Let G′ be the graph resulting from collapsing the bridges in graph G = (V,E). Let Si and Sj

be two stars in G′. We define the merging of Si and Sj as a new star graph Sij such that the
center is a new vertex and whose attachments are the union of the attachments in Si and in
Sj.

Example 27 Figure 13 shows a collapsed graph and the corresponding merged graph. Notice
that now merged stars S12 and S34 do not interlace. ♦

The merged graph is computed as follows. Choose two interlacing stars, say Si, Sj, and replace
them by a new star Sij resulting from merging Si and Sj. Repeat this process until no two
stars interlace.

Let G′ be a merged graph computed from graph G with respect to the fundamental circuit
C. G′ is the union of the circuit C with the collapsed stars derived from G. Clearly, G′ is a
planar graph and Theorem 23 applies. Moreover, if {a, b, c} are hinges of G which belong to

b

kc
a

f

e

d
S3

S1

x1

x3

S2

x2

Figure 12: Collapsed graph corresponding to the graph in Figure 10b.

14

d

hg

f

b

a

c

S12

S34

ba

d

a

b

g h

f

c

S2

S1

S3

S4

Figure 13: a) Collapsed graph. b) Merged graph.

the circuit C, vertices {a, b, c} are also hinges for G′ and belong to C.

3 Geometric Constraint Solving

In this chapter we define what is a geometric constraint problem and the associated geomet-
ric constraint graph. We also introduce the decomposition analysis of the constraint graph.
Decomposition is a technique commonly used to analyze geometric constraint graphs in geo-
metric constraint solving. For more information we refer the reader to the works by Hoffmann
et al., [7], and R.Joan-Arinyo et al., [11].

3.1 The General Geometric Constraint Problem

A general geometric constraints problem consists of a set of geometric elements, a set of ge-
ometric constraints defined between them and a set of parameters, i.e. the values of the
geometric constraints. In what follows, we consider that geometric elements are two dimen-
sional points, lines, circles and arcs of circle with given radii. Geometric constraint is either a
distance between two points, a distance between a point and a line, angle between two lines,
tangencies perpendicularities and so on.

A geometric constraint problem can be characterized by means of a tuple (E,O,X,C) where

• E is the geometric space where the problem is embedded. E is usually Euclidean.

• O is the set of specific geometric objects which define the problem. They are chosen
from a fixed repertoire including points, lines, circles and the like.

• X is a, possibly empty, set of variables whose values must be determined. In general,
variables represent quantities with geometric meaning: distances, angles and so on.
When the quantities are without a geometric meaning, for example, when they quantify
technological aspects and functional capabilites, those variables are called external.

15

x

C

y

LBC

LAC

D

A LAB

d

h

α

B

Figure 14: The general geometric constraint solving problem in 2D.

• C is the set of constraints. Constraints can be geometric or equational. Geometric
constraints are relationships between geometric elements chosen from a predefined set,
e.g., distance, angle, tangency, etc. The relationship (the distance, the angle,...) is
represented by a tag. If the tag represents a fixed value, known in advance, then the
constraint is called valuated. If the tag represents a value to be computed as part
of solving the constraint problem, then the constraint is called symbolic. Equational
constraints are equations some of whose variables are tags of symbolic constraints. The
set of equational constraints can be empty.

The geometric constraint solving problem can now be stated as follows:

Given a geometric constraint problem (E,O,X,C),

1. Are the geometric elements in O placed with respect to each other in such a
way that the constraints in C are satisfied? If the answer is positive, then

2. Given an assignment of values to the valuated constraints and external vari-
ables, is there an actual construction that satisfies the constraints and equa-
tions?

Example 28 Figure 14 depicts a general geometric constraint solving problem in 2D. Problem
components are defined as follows:

• The set of geometric elements, O = {A,B,C,D,LAB , LAC , LBC}.

• The set of tags in the constraints, P = {d, h, α}.

• The set of geometric variables, V1 = {x, y}.

• The set of external variables, V2 = {v}.

• The set of geometric constraints with fixed tags, C1 = {dpp(A,B) = d, dpl(C,LAB) =
h, ang(LAB , LBC) = α}.

• The set of geometric constraints with variable tags, C2 = {dpp(A,C) = x, dpp(C,D) =
y}.

• The set of equational constraints, C3 = {y = x · v, v = 0.5cos(α)}.

16

C

d2

D
LAC

A LAB B

d1

LBC

h

α

A
d1

B

LAB

α

LBC

LAC

D

d2
C

Figure 15: A geometric constraint problem and the associated constraint graph.

with X = V1 ∪ V2 and C = C1 ∪ C2 ∪ C3.

The meaning of the basic construction names is the usual: point defined by its coordinates,
straight line given by and ordered pair of points. For example, LAB defines a line between two
points A and B. Predicate names are self explanatory. The predicate dpp(A,B) = d specifies
a point-point distance, dpl(C,LAB) = h defines the signed perpendicular distance from a point
to a straight line and, ang(LAB , LBC) = α denotes the angle between two straight lines. ♦

3.2 The Basic Problem

The basic constraint problem only considers geometric elements and constraints whose tags
are assigned a value. It excludes external variables, constraints whose tags must be computed,
and equational constraints. So the basic problem is stated in the following way.

Given a set O with n geometric elements and a set C with m geometric constraints
defined on them

1. Is there a placement of the n geometric elements such that the m constraints
are fullfilled? If the answer is positive,

2. Given an assignment of values to the m constraints tags, is there an actual
construction of the n geometric elements satisfying the constraints?

In what follow we focus on the basic problem.

3.3 Geometric Constraint Solving and Graphs

A geometric constraint problem can be represented by means of a geometric constraint graph
G = (V,E), where the nodes in V are geometric elements with two degrees of freedom and the
edges in E are geometric constraints such that each of them cancels one degree of freedom.

Example 29 Figure 15 shows a geometric constraint problem and the associated constraint
graph. ♦

17

d

a

c
g

h

e C3

a

h

g
c

C2

e

C1

d

ff

b b

Figure 16: Set and set decomposition.

Once a geometric constraint problem has been translated into a geometric constraint graph,
solving the geometric constraint problem amounts to decompose the graph until basic con-
figurations, in this work graphs with exactly three vertices, are found to which standard
equational solvers are applied. Therefore, devising feasible algorithms that efficiently decom-
pose constraint graphs is paramount.

3.4 Decomposition of a Constraint Graph

In this section we first define the concepts of set decomposition and tree decomposition. Then
we outline the algorithm used to compute tree decompositions.

3.4.1 Definitions

The concept of set decomposition refers to a way of partitioning a given abstract set. Next
we define the concept of tree decomposition of a graph.

Definition 30 Let C be a set with at least three different members, say a, b, c. Let C1, C2, C3 ⊂
C. We say that {C1, C2, C3} is a set decomposition of C if

1. C1 ∪ C2 ∪ C3 = C,

2. C1 ∩ C2 = {a},

3. C2 ∩ C3 = {b} and

4. C1 ∩ C3 = {c}.

We say that vertices a, b, c are the hinges of the set decomposition, and C1, C2 and C3 are
clusters. Notice that a set decomposition is not necessarily unique.

Example 31 Figure 16 shows a set and a set decomposition. ♦

Next we define the concept of set decomposition of a graph.

18

d

e

a

c
b

f

g

h

V1

d

e

V2

a

b
c

g

f

h

V3

Figure 17: Set decomposition of a graph.

Definition 32 Let G = (V,E) be a graph and V1, V2, V3 ⊆ V . Then V1, V2 and V3 is a set
decomposition of G if it is a set decomposition of V and for every edge e ∈ E, V (e) ⊆ Vi for
some i, 1 ≤ i ≤ 3.

Example 33 The concept of set decomposition for a graph G is illustrated in Figure 17. ♦

Roughly speaking, a set decomposition of a graph G = (V,E), is a set decomposition of the
set of vertices V such that does not break any edge in E.

Example 34 Figure 18 shows a graph G = (V,E) and a set decomposition of V which is not
a set decomposition of G because vertices incident to edge (e, b) do not belong to any set in
the partition. ♦

Next, we define the concept of tree decomposition of a graph.

Definition 35 Let G = (V,E) be a graph. A 3-ary tree T is a tree decomposition of G if

1. V is the root of T ,

d

e

h

g
c

a

b

f f

b

h

g
c

V2

e

V1

d

a

V3

Figure 18: Set decomposition of a graph with a broken edge.

19

{a,b,c,d,e,f,g,h}

{a,b,c,d,f,,g,h}{c,e} {d,e}

{a,b,c,d}{d,h}{b,f,g,h}

{f,g,h} {b,f} {b,g} {a,b,c} {a,d} {d,c}

{a,c}{b,c}{a,b}{f,h}{g,h}{f,g}

d

e

h

f

b

a

c
g

Figure 19: Collection of set decompositions of a graph.

2. Each node V ′ ⊂ V of T is the father of exactly three nodes, say {V ′
1 , V ′

2 , V ′
3}, which are

a set decomposition of the subgraph of G induced by V ′, and

3. Each leaf node contains exactly two vertices of V .

Geometric constraint graphs for which there is a tree decomposition will be called tree de-
composable graph.

Example 36 Figure 19 shows a collection of set decompositions recursively generated for the
tree decomposable graph in Figure 17 and, the corresponding tree decomposition. ♦

If a graph is tree decomposable, then any subgraph obtained by removing some of its edges
is also tree decomposable. This is a useful property of tree decompositions we will make use
of later on.

Theorem 37 Let G = (V,E) be a tree decomposable graph. For all E′ ⊆ E, the subgraph of
G with the set of edges E′, G′ = (V,E′), is tree decomposable.

Proof

See Joan-Arinyo et al.[12]. �

20

INPUT: constraint graph G = (V,E) with |V | ≥ 3
OUTPUT: a set of hinges {a, b, c} ⊆ V , if one exists

forevery {a, b, c} ⊆ V do

V ′ = V − {a, b, c}
forevery {G′

1, G
′
2, G

′
3} partition of V ′ do

G1 = G′
1 ∪ {a, c}

G2 = G′
2 ∪ {a, b}

G3 = G′
3 ∪ {b, c}

if ∀e ∈ E : V (e) ⊆ G1 or V (e) ⊆ G2 or V (e) ⊆ G3 then

return {a, b, c}
endfor

endfor

return ∅

Figure 20: Finding hinges by means of exhaustive search.

3.5 Computing a Tree Decomposition

The goal now is to give an algorithm to compute a set decomposition of a constraint graph
G = (V,E). A recursive application of this algorithm yields a tree decomposition of a graph.
In this section we just give a preliminary algorithm based on an exhaustive search of all the
vertices of G in order to find hinges. In the next section we offer a more efficient approach.

A naive approach to computing hinges is to perform an exhaustive search. This amounts to
considering different combinations of three different vertices of V until finding one tern that
allows to split the graph G in three disjoint clusters G1, G2 and G3. The algorithm is shown
in Figure 20. Notice that the number of different sets with three vertices is

(|V |
3

)

.

Notice that the algorithm fails if it does not find any triplet of vertices such that splits the
graph. Clearly this means that the graph is no decomposable.

4 Computing Hinges in Trivial Cases

In this section we consider geometric constraint graphs with more than three vertices and
0-connectivity or 1-connectivity.

First, we present an algorithm to compute the hinges of a 0-connected constraint graph. Then
we present an algorithm to compute the hinges of a 1-connected constraint graph. Finally, we
give an algorithm for dealing with graphs with vertices of degree two. Although this is just a
particular case, constraint graphs with vertices of degree two are in practice very usual.

4.1 Decomposition of 0-connected Graphs

Let G = (V,E) be a 0-connected constraint graph with |V | > 3. Let K = {K1, . . . ,Kn} be
the set of connected components of G. Since G is 0-connected, |K| ≥ 2. To compute the

21

G1

G2

G3

K1

K2

K4

K3

v1

v2

v3

Figure 21: Decomposition of 0-connected graphs.

hinges of G we proceed as follows (refer to Figure 21).

1. Let G1 be a non trivial subset of K containing at least two vertices v1, v2 ∈ V with
v1 6= v2. Notice that G1 must exists because |V (G)| > 2.

2. Let v3 be an arbitrary vertex of V − V (G1).

3. Then v1, v2 and v3 are hinges of G.

Figure 22 shows an efficent algorithm to decompose a 0-connected graph.

4.2 Decomposition of 1-connected Graphs

Let G = (V,E) be a 1-connected constraint graph with |V | > 3. To compute the hinges of G
we proceed as follows (see Figure 23):

1. Let v1 be an articulation vertex of G. v1 must exist because G is 1-connected.

2. Let K = K1, . . . ,Km, be a set of connected components of the graph G1 = G−v1. |K| ≥
2 because v1 is an articulation vertex. Arbitrarily select two connected components of
K, say K1 = (V1, E1) and K2 = (V2, E2). Let v2 ∈ V1 and v3 ∈ V2.

3. Then v1, v2 and v3 are hinges of G.

Example 38 Figure 24 shows a 1-connected graph with hinges {c, e, g}. ♦

Figure 25 shows an efficent algorithm to decompose a 1-connected graph.

22

INPUT: 0-connected constraint graph G = (V,E) with |V | ≥ 3
OUTPUT:{v1, v2, v3}, hinges of a set decomposition of G

Choose K, a connected component of G
if |V (K)| > 1 then

Choose v1, v2 ∈ V (K)
Choose v3 ∈ V − V (K)

else

/* K is a component with one vertex */
Choose v1, v2 ∈ V − V (K)
Choose v3 ∈ V (K)

endif

return {v1, v2, v3}

Figure 22: Decomposition of 0-connected graphs.

v1

K2

K1

v2

v3

C3

C2

C1

Figure 23: Decomposition of 1-connected graphs.

g

h

f
a

c

e

d

b

G1

d

b

a

e

c

G3

f
G2

g

h

Figure 24: A 1-connected graph and hinges {c, e, g}.

23

INPUT: 1-connected constraint graph G = (V,E) with |V | ≥ 3
OUTPUT:{v1, v2, v3}, hinges of G

Select one articulation vertex v1 ∈ V
G1 = G − v1

Choose K1,K2 ⊂ G1 two arbitrary connected components
Choose v2 ∈ V (K1) and v3 ∈ V (K2)
return {v1, v2, v3}

Figure 25: Decomposition of 1-connected graphs.

4.3 Decomposing Graphs with Degree 2 Vertices

In this section we show a way for decomposing a graph G = (V,E) with connectivity k ≥ 1
and with vertices of degree 2. Todd [18], reported on a method where graphs are subdivided
by isolating vertices of degree two from their neighbors. This subdivision method is rather
limited but can be satisfactorily combined with other techniques for decomposing graphs.
Graphs with degree 2 vertices can be decomposed as follows.

1. Let G = (V,E) be a graph, with v ∈ V a vertex with degree 2.

2. Choose two different vertices v1 and v2 from V such that (v, v1) ∈ E and (v, v2) ∈ E.

3. Then G, (v, v1, v2 are hinges with clusters G1 = {v, v1}, G2 = {v, v2}, G3 = V − {v}.
Decomposition is shown in Figure 26.

This decomposition technique can be efficiently implemented if the graph is stored as an
adjacency list where the set of vertices with degree 2 can be easily identified.

5 Computing Hinges in 2-connected Graphs

In this section we first study the relationship between hinges and fundamental circuits in
biconnected graphs. Then we outline the algorithm to compute hinges for biconnected graphs.

v1

v2

v

G1

G2

G3

Figure 26: Decomposition based in a 2-degree vertex.

24

e

G2G1

G3

u
w

v1

v2

a

f

Figure 27: Paths in a circuit connecting v1 and v2.

5.1 Hinges and Fundamental Circuits

To establish the relation between hinges and fundamental circuits in biconnected graphs, we
prove that if a graph G is decomposable, there is always a fundamental circuit C of G with
nodes that are hinges. When needed, the edges of a circuit C will be denoted as E(C). We
start with the following lemma.

Lemma 39 Let G = (V,E) be a graph, let {G1, G2, G3} be a set decomposition of G and let
C be a circuit of G. Then, one of the two following cases holds:

1. G1, G2 and G3 contain edges of C, or

2. The edges of C belong to just G1 or to G2 or to G3.

Proof

Let G = (V,E) be a graph, {G1, G2, G3} a set decomposition of G, and let a ∈ V be the
hinge of the set decomposition such that {a} = V (G1) ∩ V (G2). For a contradiction, assume
that C is a circuit of G such that some edges belong to E(G1), some to E(G2) but no edges
of C belong to E(G3). Let e, f be two edges in E(C) such that e ∈ E(G1) and f ∈ E(G2).
Since C is a circuit, there are two paths in C, say u,w, that connect e to f . See Figure 27.
Moreover, since C and G3 are disjoint, paths u and w are also disjoint with G3. Hinge a
must belong to any path connecting a vertex in G1 to a vertex in G2 hence a ∈ u and a ∈ w.
Therefore C is not a circuit.

�

Example 40 Consider the circuit C = [d, a, h] in the graph of Figure 28 left. Figure 28
middle shows a graph decomposition {G1, G2, G3} such that C ⊂ G3.

♦

Example 41 Consider the circuit C = [b, d, h, a, f, g, c] in the graph of Figure 28 left. Fig-
ure 28 right shows a graph decomposition {G1, G2, G3} such that the edges of C are spread all
over the three clusters G1, G2 and G3. ♦

Next we present the main result in this work.

25

G3

G2

G1

b

d

a
h

f
g

cc

b

g
h

d

a

f

C

G3

G2

G1

b

d

a
h

f
g

c

Figure 28: Left) Graph. Middle) Circuit within just one decomposition cluster. Right) Circuit
spread over three decomposition clusters.

Theorem 42 Let G = (V,E) be a biconnected graph with hinges {a, b, c} and let T be a
spanning tree to G. Then there is a fundamental circuit C of G with respect to T such that
the hinges {a, b, c} belong to C.

Proof

Let G = (V,E) be a decomposable biconnected graph. Let {C1, . . . , Cm} be the set of
fundamental circuits of G with respect to the spanning tree T and let {a, b, c} ⊆ V be the
hinges that split G into clusters {G1, G2, G3}.

For a contradiction assume that there is no fundamental circuit in {C1, . . . , Cm} such that
its edges span the three clusters G1, G2, G3. According to Lemma 39, we have that for each
fundamental circuit C, either C ⊆ G1 or C ⊆ G2 or C ⊆ G3.

Since G is biconnected there are two vertex disjoint paths that connect any pair of given
vertices, thus there is a circuit, say C ′, such that connects the three hinges a, b, c. Hence
some edges of C ′ belong to G1 some to G2 and some to G3 and by hypothesis C ′ is not a
fundamental circuit and, according to what has been said in Section 2.4, can be expressed as
the ring sum of some fundamental circuits of G.

But the edges of each fundamental circuit in G belong to either G1, G2 or G3 and the ring
sum of circuits in Gi yields a circuit just in Gi. Thus C ′ cannot be built as the ring sum of
fundamental circuits of G. This contradiction refutes the initial hypothesis.

�

5.2 The Algorithm

If G = (V,E) is a biconnected graph, decomposing it into clusters components amounts
to computing a set of hinges in G. Since we have proved that hinges, if any, belong to
fundamental circuits C of G, the problem of decomposing a biconnected graph can be stated
as

Given a biconnected constraint graph G = (V,E), with a fundamental circuit C,
compute the hinges contained in C, if any.

26

INPUT: a biconnected constraint graph G = (V,E) with |V | > 3
OUTPUT: a set of hinges {v1, v2, v3} ⊆ V , if one exists

Compute an spanning tree T to G
Compute the set of fundamental circuits C of G according to T
for Ci in C do

Compute the set of bridges B of G with respect to Ci

Compute the set of merged bridges B′

Compute the set of faces F of the planar embedding of B′ ∪ Ci

for Fi in F do

for each tern {v1j , v2j , v3j} in Fi do

if {v1j , v2j , v3j} ∈ Ci then return {v1j , v2j , v3j} endif

endfor

endfor

endfor

return ∅

Figure 29: Decomposition of a biconnected graph.

Theorem 42 is the basis to efficiently solve this problem. The algorithm starts by computing
a spanning tree using a depth-first search and, from it, computing the set of fundamental
circuits of G.

Then the algorithm seeks for a fundamental circuit C with a set of hinges. Our efficient
algorithm for computing the hinges is based on the decomposition of a graph in the bridges
induced by C, and is inspired in the algorithm for finding the triconnected components of a
graph reported by Miller and Ramachandran, [13]. If the algorithm fails finding a fundamental
circuit with a set of hinges, the input graph is not decomposable. Figure 29 shows this
algorithm.

6 Case Study

In this section we show how our algorithm works by following a case study. Assume that the
given graph G = (V,E) is the one shown in Figure 30.

6.1 Computing the Set of Fundamental Circuits

First the algorithm computes a spanning tree to the graph G by applying a DFS technique
as explained in Section 2.5. If the starting arbitrary root is vertex d, Figure 31a shows the
resulting spanning tree.

Then fundamental circuits are computed. Notice that every chord in the spanning tree induces
a fundamental circuit as depicted in Figure 31b.

27

d

a

c
g

b

f

h

Figure 30: Case study graph.

ca b

d

C5

C1

c

a

C4

b

C2
f

gC3

h

d

C4

a

b

f

h

d

a

b

f

h

c
g

c
g

Figure 31: a) Spanning tree. b) Associated circuits. c) Chosen fundamental circuit.

28

C1 = [a, c, b]

C2 = [b, f, g]

C3 = [f, g, h]

C4 = [d, a, c, b, f, g, h]

C5 = [d, a, c]

6.2 Computing the Set of Bridges

Choose an arbitrary fundamental circuit, for example C4 = [d, a, c, b, f, g, h] in Figure 31c.
According to the definition given in Section 2.7, C4 induces in G the set of components, say

H1 = ({a, b}, {(a, b)})

H2 = ({c, d}, {(c, d)})

H3 = ({b, g}, {(b, g)})

H4 = ({f, h}, {(f, h)})

Thus, H1,H2,H3 and H4 are also the bridges of G induced by C4. Notice that, in this case,
all the bridges are singular.

6.3 Computing the Collapsed Graph

Star graphs that replace bridges are computed as explained in Section 2.9. They are

S1 = {x1, a, b}

S2 = {x2, c, d}

S3 = {x3, b, g}

S4 = {x4, f, h}

The collapsed graph resulting by replacing every bridge Hi by the star graph Si is shown in
Figure 32a.

6.4 Computing the Merged Graph

Stars in the collapsed graph are merged as explained in Section 2.10. Stars S1 and S2 have
interlaced attachments and are merged into S12. Similarly, stars S3 and S4 interlace and are
merged into S34. The resulting merged graph is shown in Figure 32b.

6.5 Computing the Planar Embedding

Next step is to compute a planar graph as explained in Section 2.6. Figure 33 shows the
planar graph resulting from embedding the merged graph given in Figure 32b.

29

h

d

S2

S3

S4

x2

x1

x3

x4

c

b

f
g

S1

a

a

h

S12

d

a
c

b

f
g

b

x34

S34

x12

Figure 32: a) Collapsed graph. b) Merged graph.

f

x12

U

F1 F2 F3
F4 F5 F6

gbca

x34

hd

F7

Figure 33: Planar embedding for the merged graph given in Figure 32b.

30

d

h

a

c

g

b

f

G1

G2

G3

Figure 34: Graph and clusters G1, G2 and G3.

The set of faces defined by the planar embedding of the merged graph is {U,F1, F2, F3, F4, F5, F6}.
The boundaries of the faces in the planar embedding are the circuits

F1 = [d, x12, a]

F2 = [a, x12, c]

F3 = [c, x12, b]

F4 = [b, x34, f]

F5 = [f, x34, g]

F6 = [g, x34, h]

F7 = [d, a, c, b, f, g, h]

U = [d, x12, b, x34, h]

Notice that, in the planar embedding, face U is the unbounded part of the drawing.

6.6 Computing the Hinges

To compute a set of hinges, we search in the set of faces {F1, F2, F3, F4, F5, F6, F7, U}.

We found that vertices {d, b, h} in the boundary of the face labeled U also belong to the chosen
circuit C4 used to compute the planar embedding. Therefore, {d, b, h} are hinges which split
the graph G into three clusters G1, G2 and G3. This completes the decomposition process.
Resulting clusters are shown in Figure 34.

7 Summary and Future Work

One of the main issues in graph-based geometric constraint solving is decomposing a ge-
ometric constraint graph. In this work we have presented a new algorithm to decompose
geometric constraint graphs. The algorithm is inspired in a technique reported by Miller and
Ramachandran to split a graph into triconnected components, [13].

The algorithm decomposes the graph by computing terns of vertices, called hinges, which
allow to split the graph into three clusters. First the algorithm transforms the constraint

31

graph into a planar embedding such that preserves the hinges. Then hinges are computed by
searching in the fundamental circuits.

Some open problems deserve more work. We plan to study in the near future the following
issues

• Correctness. In this work have pointed out some aspects about algorithm correctness.
However a complete proof of the correctness must be developed. The correcteness of
the planar embedding seems to be the most challenging.

• Complexity. Preliminary experiments suggest that the algorithm running time is at
most quadratic with the number of nodes in the graph. Studies to accept or reject this
conjecture must be conducted. It would be interesting how our algorithm compares to
those reported by Fudos, [4], and by Owen,[14] .

• Improving the runnung time. When decomposing a graph, computing hinges is applied
recursively. We believe that some of the intermediate results obtained after computing
the hinges at a given level can be reused in the following level.

8 Acknowledgments

This research has been partially funded by Ministerio de Educacion y Ciencia and by FEDER
under grant TIN2004-06326-C03-01.

References

[1] Condoor, S. S., and Condoor, S. Mechanical Design Modeling Using Pro/Engineer.
McGraw-Hill Higher Education, 2001.

[2] Durand, C. B. Symbolic and numerical techniques for constraint solving. PhD thesis,
Computer science department, Purdue University, 1998. Major Professor-Christoph M.
Hoffmann.

[3] Even, S. Graph Algorithms. Computer Science Press, Potomac, Md., 1979.

[4] Fudos, I., and Hoffmann, C. M. A graph-constructive approach to solving systems
of geometric constraints. ACM Trans. Graph. 16, 2 (1997), 179–216.

[5] Hoffmann, C., Lomonosov, A., and Sitharam, M. Decomposition plans for geo-
metric constraint systems, part i: Performance measures for cad. Journal of Symbolic
Computation (2001).

[6] Hoffmann, C., Lomonosov, A., and Sitharam, M. Decomposition plans for geo-
metric constraint systems, part ii: New algorithms. Journal of Symbolic Computation
(2001).

[7] Hoffmann, C. M., and Joan-Arinyo, R. A brief on constraint solving. Computer-
Aided Design and Applications (2005).

32

[8] Hopcroft, J., and Tarjan, R. Algorithm 447: efficient algorithms for graph manip-
ulation. Commun. ACM 16, 6 (1973), 372–378.

[9] Joan-Arinyo, R., Soto, A., and Vila, S. Resolución de restricciones geométricas.
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 20 (2003), 121–
136.

[10] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana, J. Declar-
ative characterization of a general architecture for constructive geometric constraint
solvers. In The Fifth International Conference on Computer Graphics and Artificial In-
telligence (Limoges, France, 14-15 May 2002), D. Plemenos, Ed., Université de Limoges,
pp. 63–76.

[11] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana-Pastó, J.

Revisiting decomposition analysis of geometric constraint graphs. In SMA’02: Proceed-
ings of the seventh ACM symposium on Solid modeling and applications (New York, NY,
USA, 2002), ACM Press, pp. 105–115.

[12] Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., and Vilaplana-Pastó, J.

Transforming an under-constrained geometric constraint problem into a well-constrained
one. In SM’03: Proceedings of the eighth ACM symposium on Solid modeling and appli-
cations (New York, NY, USA, 2003), ACM Press, pp. 33–44.

[13] Miller, G. L., and Ramachandran, V. A new graph triconnectivity algorithm and
its parallelization. Combinatorica 12, 1 (1992), 53–76.

[14] Owen, J. Algebraic solution for geometry from dimensional constraints. In SMA’91:
Proceedings of the first ACM symposium on Solid modeling foundations and CAD/CAM
applications (New York, NY, USA, 1991), ACM Press, pp. 397–407.

[15] Soto-Riera, A. Geometric Constraint Solving in 2D. PhD thesis, Departament de
Llenguatges i Sistemes Informàtics, UPC, 1998.

[16] Tarjan, R. E. Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 2
(1972), 146–160.

[17] Thulasiraman, K., and Swamy, N. Graphs: Theory and Algorithms. John Wiley &
Sons, 1992.

[18] Todd, P. A k-tree generalization that characterizes consistency of dimensioned engi-
neering drawings. SIAM J. Discrete Mathematics 2, 2 (1989), 255–261.

[19] Vila-Marta, S. Contribution to Geometric Constraint Solving in Cooperative Engi-
neering. PhD thesis, Departament de Llenguatges i Sistemes Informàtics, UPC, 2003.

[20] Whitney, H. Non-separable and planar graphs. Proceedings of the National Academy
of Sciences of the United States of America 17, 2 (February 1931), 125–127.

33

