
Maximum Congestion Games on Networks:
How Can We Compute Their Equilibria? ?

Carme Àlvarez and Guillem Francès

alvarez@lsi.upc.edu guillem.frances@gmail.com

Universitat Politècnica de Catalunya, ALBCOM Research group.
Edifici Ω, Campus Nord. Jordi Girona, 1-3, Barcelona 08034, Spain.

Abstract. We study Network Maximum Congestion Games, a class of
network games where players choose a path between two given nodes in
order to minimize the congestion of the bottleneck (the most congested
link) of their path. For single-commodity games, we provide an algo-
rithm which computes a Pure Nash Equilibrium in polynomial time. If
all players have the same weight, the obtained equilibrium has optimum
social cost. If players are allowed to have different weights, the obtained
equilibrium has social cost at most 4

3
times worst than the optimum.

For multi-commodity games with a fixed number of commodities and a
particular graph topology, we also provide an algorithm which computes
a Pure Nash Equilibria in polynomial time. We also study some issues
related to the quality of the equilibria in this kind of games.

Keywords. Maximum Congestion, Network Congestion Games, Nash
equilibria, Complexity, Edge-Disjoint Paths.

1 Introduction

During the last years, a great effort has been devoted to the development of
mathematical tools for the modelling of computer networks such as the Internet.
Given the decentralized and non-cooperative nature of these networks, Game
Theory [1] arises as one the most suitable instruments to characterize the be-
haviour of its selfish users1. Network Congestion Games, for instance, provide a
useful means of studying the behaviour of such users when they try to minimize
the congestion of the network paths through which they route their packets.

One of the fundamental concepts of Game Theory is that of the Nash Equi-
librium [3], which intends to describe stable configurations of the system, i.e.
configurations in which no user has an incentive to unilaterally change his route
? Work partially supported by FET pro-actives Integrated Project 15964 (AEOLUS),

by Spanish CICYT under grant TIC2004–C02-02 (ASCE) and Spanish CICYT under
grant TIN2004-07925-C03-01 (GRAMMARS)

1 As stated by C. Papadimitriou on his paper [2], “... the mathematical tools and
insights most appropriate for understanding the Internet may come from a fusion of
algorithmic ideas with concepts and techniques from Mathematical Economics and
Game Theory”.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

in the network. Other useful concepts, such as that of the Price of anarchy of a
game, relate to the quality of equilibria, i.e. to their cost measured from a global
point of view.

In this article, we study a model of Network Games which has received little
attention until the moment, and which we call Network Maximum Congestion
Games (NMC games). In this class of games, the players try to minimize the
congestion of the most congested link of the network path they use, instead
of trying to minimize the sum of congestions of all the links (as it happens in
classical Network Congestion Games). We believe that the study of this new
model may be useful in a context where the bandwidth of the network is limited
and users want to route their packets through paths with minimum bandwidth
usage. Our study is focused on the analysis of the computational complexity of
computing (pure) Nash Equilibria in some types of Network Congestion Games,
as well as on some other issues related to the quality of these Nash Equilibria.

With respect to the class of classical Network Congestion Games, most of the
issues we study here have already been addressed. Any unweighted Congestion
Game (including those defined over networks) possess at least one Pure Nash
Equilibria [4], whereas there exist games with piecewise delay functions which
possess no PNE, [5]. However, [6] proves that weighted games with linear delay
functions do always possess a PNE. The computation of a Pure Nash Equilib-
ria can be done in polynomial time in single-commodity unweighted Network
Congestion Games, whereas the same problem is, in general Network Conges-
tion Games, PLS-complete [7]. Finally, the Price of anarchy of single-commodity
Network Congestion Games is at most PA = Ω(

√
n), and this bound is tight

[8]. If we consider only single-commodity games, this upper tight bound can be
set to PA = 5

2 .
For single-commodity unweighted NMC games, we prove that PNE always

exist and that their computation can be done in polynomial time. Furthermore,
we provide an algorithm which actually computes a PNE with optimum social
cost in polynomial time. If we consider single-commodity weighted NMC games,
our algorithm turns to be a 4

3 -approximation for the problem of computing an
optimum PNE. With respect to the quality of the configurations, we prove that
the Price of anarchy ([9]) in single-commodity games is at most equal to the
maximum number of edge-disjoint paths between the two distinguished nodes s
and t of the game.

For the case of unweighted multi-commodity NMC games, we limit our study
to a particular class of games, which we call l-common-edges games, and provide
an algorithm which computes a PNE in polynomial time, as long as we consider
that the number of commodities of the input game is fixed (i.e. there is a constant
number of source-destination pairs in the network).

During the development of our work, three papers [10–12] have been pub-
lished which independently study the same class of Network Maximum Conges-
tion Games (albeit with different denominations). Although they all prove the
existence of PNE for the class of NMC games, only [10] gives a constructive proof
for the single-commodity case. However, that proof is completely independent of

ours, and we believe that the conceptual clarity of our algorithm is interesting
enough to be presented here. On the other hand, none of these papers tackles
the multi-commodity case from a constructive point of view, as we do.

The rest article is organized as follows: in section 2 we give some formal
definitions and specify the notation we will be using in the rest of the article.
In section 3 we study single-commodity games, whereas in section 4 we tackle
the study of l-common-edges games. Finally, in section 5 we conclude the article
with some remarks. Some of the proofs have been omitted due to the lack of
space.

2 Definition of the model

A Game is formally defined as a tuple Γ = (N, (Pi)i∈N , (ui)i∈N) with a set N
of n players and, for each player i ∈ N , a set of actions or strategies Pi available
to him and a payoff function ui : P1 × · · · × Pn → R. Each element π of this
set P1 × · · · × Pn is said to be a configuration or strategy profile and reflects the
choice of each player. Given a configuration π = (p1, . . . , pn), we say that pi ∈ Pi

is the strategy chosen by player i ∈ N in π, while ui(π) is the benefit obtained
by the same player also under π2.

A NMC game is a tuple Γ = (N,G, ((si, ti))i∈N , (wi)i∈N), where N is the
set of players, G is a directed graph and (si, ti) ∈ V (G) × V (G) and wi ∈
N+ are, respectively, the commodity and the weight of player i. The set Pi of
actions available to each player i ∈ N (which is implicitly defined by G and
the pair (si, ti)) is the set of all the paths between si and ti (we will often
denote that set by P (si,ti), and we will use the expression (s− t) path to mean
a path between nodes s and t). Given a configuration π = (p1, . . . , pn), we will
denote by Λe(π) the set of users of each edge e ∈ E(G) under π (i.e., Λe(π) =
{i ∈ N | e ∈ pi}), and we will denote by Λp(π) the set of users of path p (i.e.
Λp(π) = {i ∈ N | pi = p}). The congestion le of the edge e ∈ E(G) under π is
the sum of the weights of the users of e, le(π) =

∑
i∈Λe(π) wi. The congestion Lp

of any path p of the graph is then defined as the maximum of the congestions of
the edges it contains, Lp(π) = max {le(π) | e ∈ p}. Finally, the cost assumed by
player i ∈ N under the configuration π = (p1, . . . , pn) is exactly the congestion
of the path pi he uses in π, ci(π) = Lpi(π). We will use the standard notation
(π−i, p) to refer to the configuration resulting from replacing by p the strategy
of player i in π.

A NMC game is said to be single-commodity if all the players select paths
between the same pair (s, t) of nodes3; otherwise, the game is said to be multi-

2 It is not uncommon to describe a game in terms of costs instead of benefits. In that
case, for each player i ∈ N there is a cost function ci : P1 × · · · ×Pn → R, and ci(π)
is the cost assumed by player i under the configuration π.

3 For the sake of simplicity, we will often describe the games of this class as tuples
Γ = (N, G, (s, t), (wi)i∈N)

commodity. Also, a NMC game is said to be unweighted if the weight of all
players equals one4; otherwise, the game is said to be weighted.

A configuration π is a Pure Nash Equilibrium (PNE) if no player has an
incentive (with respect to the cost he assumes) to change his strategy in π. For-
mally, we say that π = (p1, . . . , pn) is a PNE if for each player i ∈ N and for
each strategy p ∈ Pi that player i may adopt it holds that ci((π−i, p)) ≥ ci(π).
Often, it is interesting to measure the quality of a PNE configuration from
a global or social point of view. To this end, the social cost of a configura-
tion π is defined as SC(π) = max {ci(π) | i ∈ N}. In the case of NMC games,
we can equivalently state the preceding definition in the following manner:
SC(π) = max {le(π) | e ∈ E}. We will denote by SC∗ the optimal social cost,
SC∗ = min {SC(π) | π is a config.}. Notice that a game can have more than
one configuration with optimal social cost. Related to the quality of the PNE
configurations, the concept of the Price of anarchy (or coordination ratio) of
a game [9] arises as a means of quantifying the degradation of the social cost
due to the lack of coordination among players. Thus, it is formally defined as
PA = max

π is a PNE

SC(π)
SC∗ .

3 Computation of Equilibria in Single-Commodity Games

First of all, we study some properties of PNE configurations in NMC games. In
the unweighted case, it seems natural to think that in a PNE configuration the
congestion of all the paths is almost the same. On the other hand, a configuration
where all the paths have exactly the same congestion is a PNE.

Proposition 1. Let π = (p1, . . . , pn) be a configuration for the unweighted NMC
Γ = (N,G, (s, t)) and let k = SC(π). Then,

1. If π is a PNE, then ∀p ∈ P (s,t) Lp(π) ∈ {k, k − 1}.
2. If ∀p ∈ P (s,t) Lp(π) = k, then π is a PNE.

Therefore, in order to compute a PNE we have to keep balanced the conges-
tion of all paths in P (s,t). A simple distribution of players among paths would
not keep that balance, since the edges shared by a greater number of paths
would increase their congestion faster, thus provoking an uneven increase of the
congestion of the different paths. However, this can be avoided if users select
only edge-disjoint paths. In that case, the congestion of any edge can be proven
to be equal to the congestion of the path where it belongs to:

Proposition 2. Let π = (p1, . . . , pn) be a configuration for the weighted NMC
Γ = (N,G, (s, t), (wi)i∈N). If C = {pi | i ∈ N} is a set of (s − t) edge-disjoint
paths, then ∀p ∈ C ∀e ∈ p Λe(π) = Λp(π), and hence le(π) = Lp(π) =∑

i∈Λp(π) wi

4 In this case, we will describe games of this class as tuples Γ = (N, G, ((si, ti))i∈N)

Notice that the last property holds for weighted games. It also implies that
if we distribute players among a set of edge-disjoint paths, we may end up
with a configuration where the congestion of those paths is fairly balanced.
Intuitively, if the set of paths is maximal, then all (s − t) paths will have a
balanced congestion, and the configuration will probably be a PNE. If we want
our distribution algorithm to be valid also for weighted games, we will have to
carefully consider the order in which players are allocated. All those ideas are
formalized in Algorithm 1, which allocates iteratively the player with the highest
weight to the path with the lowest congestion.

Algorithm 1: Computation of a PNE (w round robin algorithm)
input : A weighted single-comm game Γ = (N, G, (s, t), (wi)i∈N)
input : A set C ⊆ P (s,t) of paths in G
output : A configuration π for the given game

begin
N ′ := N ;
while N ′ 6= ∅ do

Let i be a player from N ′ with maximum weight wi;
Let c be a path from C with minimum congestion Lp(π);
Allocate player i to path c;
N ′ := N ′ \ {i};

end

3.1 Correctness and Complexity Issues

In order to prove that the configuration computed by Algorithm 1 is a PNE, we
need to introduce some notation. For all j ∈ {1, 2, . . . , n + 1}, let πj denote the
configuration computed by the algorithm just before the computation of the j-th
iteration, and let N j ⊆ N denote the set of players which have been allocated to
a path before that iteration. Finally, let ij and pj respectively denote the player
and the path selected by the algorithm during the execution of the j-th iteration.
Notice that, unless j = n + 1, the configurations πj are incomplete in the sense
that they do not contain a strategy for all players, but only for players in N j .
For the remaining players, we can consider that their strategy is the empty path
∅. Hence, note that π1, contains n empty paths.

The next lemma shows an important invariant of the algorithm.

Lemma 3. Given a game Γ = (N,G, (s, t), (wi)i∈N) and a set C ⊆ P (s,t) of
edge-disjoint (s− t) paths, the algorithm w round robin on input (Γ,C) satisfies
that, for any j ∈ {1, . . . , n + 1}, no player in N j has an incentive to change his
strategy in πj for any other path in C. Formally,

∀i ∈ N j ∀p ∈ C ci((π
j
−i, p)) ≥ ci(πj)

Proof. For j = 1, we have that N1 = ∅, and the property trivially holds. Let
us assume that ∀i ∈ N j ∀p ∈ C ci((π

j
−i, p)) ≥ ci(πj) and consider the iteration

j + 1. We can distinguish two cases:

1. Let’s first consider the set of players N ′ ⊆ N j+1 allocated to pj in πj+1. We
will show that none of these players has an incentive to change his strategy.
Let i ∈ N ′ be one of them, and let p ∈ (C\

{
pj

}
) be an alternative strategy

(of course, i has no incentive to change to path pj , since that is his current
strategy). We will show that Lp((π

j+1
−i , p)) ≥ Lpj (πj+1).

First, since ij has been allocated to path pj 6= p, the set of players of p
remains unchanged, Λp(πj+1) = Λp(πj). If player i changes pj for p, then
Λp((π

j+1
−i , p)) = Λp(πj+1)∪ {i} = Λp(πj)∪ {i}. By proposition 2 (which can

be applied to πj and πj+1 since they only contain paths from C), we then
have that

Lp((π
j+1
−i , p)) =

∑
k∈Λp((πj+1

−i ,p))

wk = wi +
∑

k∈Λp(πj)

wk = wi + Lp(πj)

Since the algorithm guarantees that wi ≥ wij and that Lp(πj) ≥ Lpj (πj), we
have that wi+Lp(πj) ≥ wij +Lpj (πj). Thus, showing that this last expression
is exactly Lpj (πj+1) will suffice to prove that Lp((π

j+1
−i , p)) ≥ Lpj (πj+1).

Since the set of users of pj in πj+1 is Λp(πj+1) = Λp(πj) ∪
{
ij

}
(and, by

definition, ij /∈ Λp(πj)), by proposition 2 we have that

Lpj (πj+1) =
∑

k∈Λp(πj+1)

wk = wij +
∑

k∈Λe(πj)

wk = wij + Lpj (πj)

2. Let’s now consider the rest of players in N j+1, i.e. the ones who are not
allocated to pj in πj+1. Again, we will show that none of them has an in-
centive to change his strategy. Notice that, given that ij ∈ N ′, N j+1\N ′ =
(N j ∪

{
ij

}
)\N ′ = N j\N ′. Let i ∈ N j\N ′ and let p ∈ C. We want to

show that Lp((π
j+1
−i , p)) ≥ Lpi(π

j+1), pi being the strategy of player i in
πj+1. But using proposition 2 and our inductive hypothesis, it can be proven
that Lp((π

j+1
−i , p)) ≥ Lp((π

j
−i, p)) ≥ Lpi(π

j) = Lpi(π
j+1), which is what we

wanted to prove.

Since, by definition, N j+1 = N ′ ∪ (N j+1\N ′), we have proven that

∀i ∈ N j+1 ∀p ∈ C Lp((π
j+1
−i , p)) ≥ Lpi(π

j+1)

or, equivalently,

∀i ∈ N j+1 ∀p ∈ C ci((π
j+1
−i , p)) ≥ ci(πj+1)

ut

Once we have shown the invariant property satisfied after each iteration of the
algorithm, the next property of the strategy profile computed by the algorithm
follows immediately.

Corollary 4. Let π = (p1, . . . , pn) be the configuration obtained by the algorithm
w round robin applied to a game Γ = (N,G, (s, t), (wi)i∈N) and a set of edge-
disjoint paths C ⊆ P (s,t). Then, no player has incentive to change his strategy
in π for any other path in C. Formally, ∀i ∈ N ∀p ∈ C ci((π−i, p)) ≥ ci(π).

Notice that if C is equal to the set of all (s − t) paths in G then the confi-
guration computed by the algorithm is a PNE, but if there exist other (s−t) paths
the configuration might not be a PNE. However, if C is a maximal set of edge-
disjoint (s− t) paths in G, then the configuration computed by w round robin
on input (Γ,C) can be proven to be a PNE.

Theorem 5. The configuration π = (p1, . . . , pn) computed by the algorithm
w round robin applied to a game Γ = (N,G, (s, t), (wi)i∈N) and to a maximal
set of edge-disjoint paths C ⊆ P (s,t) is a PNE.

Proof. Let i ∈ N and let p ∈ P (s,t). We will first show that there exists a path
c∗ ∈ C such that Lp((π−i, p)) ≥ Lc∗((π−i, c)).

Since C is a maximal set, p shares at least one edge with at least one path
in C. Let c∗ ∈ C be one of these paths and let e∗ ∈ (p∩ c∗) be one of the shared
edges. Let πp = (π−i, p) and πc∗ = (π−i, c

∗) be the corresponding configurations
obtained when player i changes his strategy in π for p and c∗, respectively. Since
Λe∗(πp) = Λe∗(πc∗) = Λe∗(π) ∪ {i} and players in πc∗ select only paths from a
set of disjoint paths, by proposition 2 all the edges in c∗, even e∗, have exactly
the same congestion Lc∗(πc∗). Hence,

Lp(πp) ≥ le∗(πp) =
∑

i∈Λe∗ (πp)

wi =
∑

i∈Λe∗ (πc∗)

wi = le∗(πc∗) = Lc∗(πc∗)

By corollary 4 we have that Lc∗(πc∗) ≥ Lpi
(π). Thus, ci(πp) = Lp(πp) ≥

Lc∗(πc∗) ≥ Lpi
(π) = ci(π), which proves that π is a PNE. ut

A simple analysis of the computational complexity of our algorithm proves
that the problem of computing a PNE for a given weighted single-commodity
game5 can be solved in polynomial time with respect to the size of the input
game. Notice that we have to take into account not only the complexity of our
algorithm (which is clearly polynomial), but also the complexity of computing
a maximal set C of disjoint paths. Indeed, the computation of a maximum set
of disjoint paths between two given nodes of a graph can be done in polynomial
time, as shown in [13] (pp. 338-346 and proposition (7.44)).

3.2 Quality of the Equilibria

In this section, we show that, in the general case, our algorithm can be seen as
a 4

3 -approximation to the problem of computing a configuration with optimum
social cost, provided that we apply it to a maximum set of edge-disjoint paths.
5 Thus also for an unweighted single-commodity game, since it is a special case of a

weighted game.

Proposition 6. Let Γ = (N,G, (s, t), (wi)i∈N) be a weighted game and let C be
a maximum set of edge-disjoint (s− t) paths in G. The configuration π computed
by the algorithm w round robin on input (Γ , C) has a social cost SC(π) ≤
4
3 · SC∗.

Contrasting with this, it is not hard to prove that, when the input of the
algorithm is an unweighted single-commodity game Γ = (N,G, (s, t)) and a
maximum set C of (s, t) edge-disjoint paths, the algorithm computes a PNE
with optimum social cost (which is, in turn, |N |

m , where m is the maximum
number of (s− t) disjoint paths).

Once we have analyzed the social cost of the PNE computed by our algorithm,
we study the price of anarchy. Obtaining an upper and a lower bound of the social
cost of any configuration of a weighted NMCG, it can be shown that the Price of
anarchy is at most equal to the maximum number of edge-disjoint (s− t) paths
in the graph that describes the network.

Theorem 7. Any weighted game Γ = (N,G, (s, t), (wi)i∈N) satisfies that PA ≤
m, where m is the maximum number of (s− t) edge-disjoint paths in G.

4 Computation of Equilibria in Multi-Commodity Games

In this section we study the equilibria of unweighted multi-commodity NMC
games. The technique developed in the previous section, which consisted in dis-
tributing players among a set of disjoint paths, can’t be applied to this kind
of games, since edge-disjoint paths among different commodities may not exist
(and even if they do, a simple distribution of players among paths may not lead
to a PNE). For that reason, we focus our analysis on games with a particular
graph topology, or, as we call them, l-common-edges games.

Let us consider a NMC game Γ and let M be the set of the m commodities
(si, ti) of Γ . For any commodity i ∈ M , we denote by Ni the set of players
playing in commodity i, i.e., the set of players choosing paths between the two
nodes of commodity i. For any subset of commodities S ⊆ M , we denote by NS

the set of players playing in any commodity i ∈ S, NS =
⋃

i∈S Ni. In addition,
ni = |Ni| and nS = |NS | denote the cardinality of these sets. A l-common-edges
game is a game whose graph has the following topology: for each commodity
i ∈ M there is a set Li containing li paths between si and ti which are edge-
disjoint with respect to all other paths in the graph6. In addition to this set Li

of private paths, there also exists a set L′
i of l public (s − t) paths which are

edge-disjoint with respect to the other paths in the same set L′
i, but intersect

with paths of the remaining commodities in M . More formally, there exists a
set E∗ of l common edges such that for each edge e ∈ E∗ and each commodity
i ∈ M there is exactly one path pe

i in L′
i such that e ∈ pe

i , whereas the remaining

6 It could be shown that if these paths were the only ones in the graph, then a PNE
could be computed in polynomial time applying the algorithm of the previous section
to each one of the commodities.

edges in pe
i are not part of any other path in the strategy set of any player.

Hence, L′
i = {pe

i | e ∈ E∗}. For each S ⊆ M , we denote by L′
S the set of all the

public paths of commodities in S, L′
S =

⋃
i∈S L′

i. Given an edge e ∈ E∗, then, we
can define a set of m paths Pe =

⋃
i∈M pe

i which contains, for each commodity
i ∈ M , the only path pe

i in L′
i which uses the edge e. Notice that, given the

particular structure of this class of graphs, the congestion of any path pe
i ∈ L′

i

will always be equal to the congestion of the edge e which, in turn, will be equal
to the number of players allocated to paths in Pe.

4.1 Correctness and Complexity Issues

Let’s now analyse the algorithm 2. In this analysis, we denote by kS the quotient
nS

l+lS
. Given an unweighted multi-commodity NMC game, the algorithm starts

(lines 2-5) by searching a subset of commodities which may be able to dominate
all the set of common edges, that is, to be the only commodities whose players use
those edges in such a way that players from other commodities can be satisfied
even if they only use their private paths.

Lemma 8. After the execution of lines 2-5 of Algorithm 2, the following state-
ments hold:

1. ∀i ∈ M \ S
(
bkSc ≥

⌈
ni

li

⌉
− 1

)
2. ∀S′ ⊆ M

(
|S′| < |S| ⇒ ∃i ∈ M \ S′

(
bkSc <

⌈
ni

li

⌉
− 1

))
3. ∀i ∈ S

(
ni

li
≥ kS

)
Once the algorithm has determined which subset S ⊆ M dominates the set

E∗ of common edges, it distributes players among paths in a particular manner.
In the first place (l. 6-25), it distributes all the players from the commodities in
S. The loop in lines 6-8 allocates bkSc players to every path of every commodity
i ∈ S. Since, as we have seen, ni ≥ li · kS , enough players exist to allow this
allocation. After the execution of the loop, lS · bkSc players have been allocated.
Thus, there remain at least kS ·l unallocated players. This fact ensures the correct
execution of the second loop (lines 9-10), given that it allocates exactly bkSc · l
players to paths in L′

S . After the execution of these loops, every path in LS , as
well as every edge in E∗, have a congestion of exactly bkSc units. Next (l. 11-14),
the algorithm iterates again through all the private paths of every commodity
in S, allocating –when possible– one more player to each of them. Similarly, the
loop of lines 15-17 allocates to each group of paths Pe (for all e ∈ E∗) at most
one more player from NS . Therefore, after the execution of these two loops every
path in LS and every edge in E∗ have congestion either bkSc or bkSc+ 1.

Let’s now analyze the loop of lines 19-25:

Lemma 9. At each iteration of the loop of lines 19-25 of Algorithm 2, the fol-
lowing propositions hold:

1. There exists a commodity i ∈ S such that

Algorithm 2: Computation of a PNE in multi-commodity games.
input : An unweight. l-common-edges game Γ = (N, G, ((si, ti))i∈N)
output : A configuration π for the given game

begin1

// Selection of a proper subset of commodities:

foreach t := 1, . . . , m do2

foreach S ⊆ M s.t. |S| = t and while S is not proper do3

if ∀i ∈ M \ S
“
bkSc ≥

l
ni
li

m
− 1

”
then4

S is a proper subset5

// Distribution of players among paths:

foreach i ∈ S do6

foreach p ∈ Li do7

Allocate bkSc players from Ni to path p8

foreach e ∈ E∗ do9

Allocate bkSc players from NS to the paths in Pe10

foreach i ∈ S do11

foreach p ∈ Li do12

if there remain unallocated players in Ni then13

Allocate one player from Ni to path p14

foreach e ∈ E∗ do15

if there remain unallocated players in NS then16

Allocate one player from NS to a suitable path p ∈ Pe17

Let N ′
S be the set of players from NS still not allocated18

while N ′
S 6= ∅ do19

Let j be a player from N ′
S20

Let i ∈ S be a commodity such that21

1) There exists a path p ∈ Li with only bkSc allocated players, and22

2) There exists a player j′ ∈ Ni already allocated to a path p′ ∈ L′
i23

Allocate player j′ to path p and player j to path p′24

N ′
S := N ′

S \ {j}25

foreach i ∈ M \ S do26

Allocate players in Ni to paths in Li in a Round-Robin fashion27

end28

(a) There exists a path p ∈ Li with only bkSc allocated players, and
(b) There exists a player j′ ∈ Ni already allocated to a path p′ ∈ L′

i

2. Every path in LS and every edge in E∗ (and thus every path in L′
S have

congestion either bkSc or bkSc+ 1

At the end of the loop of lines 19-25, then, we have that for any commodity
i ∈ S, any player j ∈ Ni is allocated to a path with congestion at most bkSc+1.
Since all the other paths available to j are in LS ∪L′

S and thus have congestion
at least bkSc, player j has no incentive to change his strategy.

With respect to the players of commodities in M \S, the algorithm (l. 26-27)
simply allocates them to paths in Li in a Round-Robin fashion. We then have
that, if ni is divisible by li, all paths in Li will have congestion ni

li
. Thus, for

any commodity i ∈ M \S and any player j ∈ Ni, player j will have no incentive
to change his strategy, since all the other paths in Li have the same congestion
ni

li
, whereas all the paths in L′

i have an edge in E∗ with congestion at least

bkSc ≥
⌈

ni

li

⌉
− 1 = ni

li
− 1 (recall lemmas 8 and 9).

On the other hand, if ni is not divisible by li, all paths in Li will have
congestion either

⌊
ni

li

⌋
or

⌊
ni

li

⌋
+ 1. Thus, for any commodity i ∈ M \ S and

any player j ∈ Ni, player j will have no incentive to change his strategy, since
the paths in Li will have congestion at least

⌊
ni

li

⌋
, and –as we have already

seen– the paths in L′
i have congestion at least bkSc ≥

⌈
ni

li

⌉
− 1 =

⌊
ni

li

⌋
. As

no player has an incentive to change his strategy, we can conclude that the
configuration computed by our algorithm is a PNE. Furthermore, if we consider
that the number of commodities is fixed, the running time of the algorithm can
be proven to be polynomial. Therefore, the following theorem is proven.

Theorem 10. Let Γ = (N,G, ((si, ti))i∈N) be an unweighted l-common-edges
game. Algorithm 2 computes a PNE for Γ ; furthermore, if we consider the num-
ber of commodities to be a fixed constant k, the algorithm solves the problem
of computing a PNE for unweighted k-commodities l-common-edges games in
polynomial time.

5 Conclusions

In this work we have studied Network Maximum Congestion Games, which model
the behaviour of selfish users when they try to minimize the bottleneck of the
network paths through which they route their packets. Even though the exis-
tence of Nash Equilibria is guaranteed for this kind of games (see [10–12]), we
have taken a constructive approach and studied the computational complexity
of computing a PNE, as well as the quality of the computed equilibria.

In the case of single-commodity NMC games, we have designed a polynomial
time algorithm that computes a PNE for the general case of weighted users;
this algorithm is a 4

3 -approximation for the problem of computing an optimum
PNE, but if we do not allow players to have weights, then the algorithm directly

computes an optimum PNE. We have also proven that the Price of anarchy
in single-commodity games is at most equal to the maximum number of edge-
disjoint paths between the two distinguished nodes s and t of the game. In the
case of multi-commodity NMC games, we have focused our research on some
particular network topologies. We have given a polynomial time algorithm that
computes a PNE in polynomial time when the number of commodities is constant
and all the players have the right to use either the set of private edge-disjoint
paths of their commodities or a set of public paths (each one containing one
edge which is shared by all the users). A major direction of future research will
be to characterize other cases in which the computation of a PNE can be done
efficiently.

References

1. Osborne, M.: An introduction to game theory. Oxford University Press (2004)
2. Papadimitriou, C.: Algorithms, games, and the internet. In: STOC’01, ACM Press

(2001) 749–753
3. Nash, J.: Equilibrium Points in n-Person Games. Proceedings of the National

Academy of Sciences 36(1) (1950) 48–49
4. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. In-

ternational Journal of Game Theory 2(1) (1973) 65–67
5. Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows, Springer

(2004) 593–605
6. Fotakis, D., Kontogiannis, S., Spirakis, P.: Symmetry in network congestion games:

Pure equilibria and anarchy cost. Volume 3879., Springer (2006) 161–175
7. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equi-

libria. Proceedings of the thirty-sixth annual ACM symposium on Theory of com-
puting (2004) 604–612

8. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion
games. In: STOC’05, New York, ACM Press (2005) 67–73

9. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: STACS’99. Volume
1563., Springer (1999) 404–413

10. Caragiannis, I., Galdi, C., Kaklamanis, C.: Network load games. LNCS 3827
(2005) 809–818

11. Busch, C., Magdon-Ismail, M.: Atomic Routing Games on Maximum Congestion.
Lecture notes in computer science 4041 (2006) 79–91

12. Banner, R., Orda, A.: Bottleneck Routing Games in Communication Networks.
Proceedings of the 25th INFOCOM Conference (2006)

13. Kleinberg, J., Tardos, E.: Algorithm Design. Addison-Wesley (2006)
14. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of

NP-Completeness. WH Freeman & Co. New York, NY, USA (1979)
15. Graham, R.: Bounds on Multiprocessing Timing Anomalies. SIAM Journal on

Applied Mathematics 17(2) (1969) 416–429

6 Appendix: Omited Proofs

We present in this appendix those proofs which, due to space restrictions, have
been omitted in the previous sections.

Proposition 1. Let π = (p1, . . . , pn) be a configuration for the unweighted NMC
Γ = (N,G, (s, t)) and let k = SC(π). Then,

1. If π is a PNE, then ∀p ∈ P (s,t) Lp(π) ∈ {k, k − 1}.
2. If ∀p ∈ P (s,t) Lp(π) = k, then π is a PNE.

Proof. We are going to show each part separately.

1. Since k = SC(π), then any path p ∈ P (s,t) satisfies that Lp(π) ≤ k. It
remains to show that Lp(π) ≥ k − 1 . Let us assume that there is a path
p ∈ P (s,t) with congestion Lp(π) < k − 1. Let i ∈ N be one of the players
with maximum cost, i.e. ci(π) = Lpi(π) = k. If player i changes strategy pi

for p then Lp((π−i, p)) ≤ Lp(π)+1 < k ≤ Lpi(π). Hence, ci((π−i, p)) < ci(π)
and this contradicts that π is a PNE.

2. Let us consider that any path p ∈ P (s,t) satisfies Lp(π) = k. If any player
i changes his strategy pi for p, the congestion of p is incremented at most
by 1. Formally, ∀i ∈ N ∀p ∈ P (s,t) Lp((π−i, p)) ∈ {Lp(π), Lp(π) + 1} =
{k, k + 1}. Hence, each player i has no incentive to change unilaterally his
strategy, Lp((π−i, p)) ≥ k = Lpi

(π), and then π is a PNE.
ut

Proposition 2. Let π = (p1, . . . , pn) be a configuration for the weighted NMC
Γ = (N,G, (s, t), (wi)i∈N). If C = {pi | i ∈ N} is a set of (s − t) edge-disjoint
paths, then ∀p ∈ C ∀e ∈ p Λe(π) = Λp(π), and hence le(π) = Lp(π) =∑

i∈Λp(π) wi

Proof. Since all the paths p ∈ C are edge-disjoint, then every edge e of any path
p ∈ C, does not belong to any other path p′ ∈ C. Hence, if a player i uses edge e
and e ∈ p, it means that player i has selected the path p, and then Λe(π) ⊆ Λp(π).
On the other hand, if a player i has selected path p ∈ C then i uses edge e ∈ p.
Then Λp(π) ⊆ Λe(π). So we have that ∀p ∈ C ∀e ∈ p Λe(π) = Λp(π).

Furthermore, if we apply the definition of edge congestion, we have that for
any e ∈ p le(π) =

∑
i∈Λe(π) wi =

∑
i∈Λp(π) wi Hence, applying the definition of

the path congestion we have that Lp(π) = max
e′∈p

le′(π) = le(π) =
∑

i∈Λp(π) wi

ut

In order to show Proposition 6 first we need to remind some properties related
to directed graphs, the definition of a classical scheduling problem and, finally,
we also need to prove properties related to social cost.

Theorem 11 (Menger’s Theorem). Let G = (V,E) be a directed graph and
let s, t ∈ V be two nodes of G. The maximum number of edge-disjoint paths from
s to t is equal to the minimum number of edges that should be eliminated in order
to disconnect s from t.

Proof. A nice proof of this theorem can be found in [13] (theorem (7.45)). ut

Corollary 12. For any directed graph G = (V,E) and for any pair of nodes
s, t ∈ V , there exists a set of edges B ⊆ E such that every (s− t) path contains
at least one of its edges and the cardinality of B is equal to the maximum number
of (s − t) edge-disjoint paths in G. Moreover, every path in a maximum set of
(s− t) edge-disjoint paths contains exactly one of the edges of B

Proof. Let B ∈ E be a set with the minimum number of edges that disconnect s
from t when they are eliminated. By Menger’s Theorem, the cardinality of B is
equal to the maximum number of (s− t) edge-disjoint paths in G. Besides this,
every path p ∈ P (s,t) contains at least one of the edges of B, otherwise if we
delete all the edges of B, s will not be disconnected from t.

Finally, if M ⊆ P (s,t) is a set with a maximum number of (s−t) edge-disjoint
paths, then every path p ∈ M has an edge in B and no one of these edges can
appear in more than one path of M . Hence, there are as many disjoint paths in
M as edges in B. ut

Proposition 13. Let Γ = (N,G, (s, t), (wi)i∈N) be a NMC game and let SC∗

be the optimum social cost. Let C be a maximum set of (s − t) edge-disjoint
paths in G. Then there exists a configuration π = (p1, . . . , pn) such that for all
i, pi ∈ C and SC(π) = SC∗.

Proof. Let π′ = (p′1, . . . , p
′
n) be a configuration with minimum social cost, i.e.

SC(π′) = SC∗. We are going to see that from this π′ (in fact from any con-
figuration π) we can define a new configuration π′′ which only contains paths
that belong to C and so that SC(π′′) = SC(π′) (and in the case that π is any
configuration then SC(π′′) ≤ SC(π)).

Let G = (V,E) and let B ⊆ E be the edge set of corollary 12. Then it satisfies
that |B| = |C| and each path p ∈ C contains exactly one edge e ∈ B. Then we
can define a bijection f : B → C so that for every e ∈ B, f(e) is the only path
in C that contains the edge e. Due to corollary 12 we also know that any path
p′i contains at least one edge of B. For each p′i, let us select (arbitrarily) one of
these edges and denote it by ei.

Now, we can define a configuration π′′ that only uses paths of C: π′′ =
(f(e1), f(e2), . . . , f(en)). Notice that every player i that uses path f(ei) in π′′

uses edge ei in π′. Hence, by proposition 2, for all i ∈ N we have that

Lf(ei)(π
′′) =

∑
k∈Λf(ei)(π

′′)

wk ≤
∑

k∈Λei
(π′)

wk = lei(π
′) ≤ SC(π′)

Hence,
SC(π′′) = max

i∈N
ci(π′′) = max

i∈N
Lf(ei)(π

′′) ≤ SC(π′).

Since SC(π′) = SC∗ then SC(π′′) = SC∗. Notice that π′′ is the desired
configuration, it has an optimal social cost and all its paths p′′i belong to C. ut

Let us remind a well-known NP-complete problem named as Minimum Mul-
tiprocessor Scheduling (see [14], problem [SS8]): Given a set M = {1, 2, . . . , l}
of identical machines and given a set J = {1, 2, . . . , n} of tasks where each task
j requires a processing time tj , the problem consists in assigning a machine to
each task so that the load of all machines has to be kept as balanced as possible.
Formally, the problem consists in computing µ = (m1, . . . ,mn) (where mj ∈ M
is the machine assigned to task j ∈ J) so that minimizes the makespan defined
as

MS(µ) = max
m∈M

∑
j∈Λm(µ)

tj

where Λm((m1, . . . ,mn)) = {j ∈ J | mj = m}.
In order to find an upper bound of the ratio between the social cost of the

configuration computed by the algorithm w round robin and the optimum social
cost, we use a result published in [15]. This result states that the algorithm LPT
computes an assignment that is a 4

3 -approximation to the makespan optimum.

Definition 14. Let Γ = (N,G, (s, t), (wi)i∈N) a NMC game and let C be a set
of (s− t) edge-disjoint paths of G. Let Ω = (J,M, (tj)j∈J) be an instance of the
Minimum Multiprocessor Scheduling problem. We say that Ω and (Γ,C)
are equivalent if J = N , tj = wj for all j ∈ J and |M | = |C|. If (Γ,C) and Ω
are equivalent, we also define the equivalence between a configuration of Γ and
an assignment for Ω. Let φ : C → M be the bijection that assigns each path
cj ∈ C to the machine mj ∈ M . We say that a configuration π = (p1, . . . , pn) of
Γ and an assignment µ = (m1, . . . ,mn) for Ω are equivalent if mi = φ(pi) for all
i ∈ N . Notice that π can only be composed of paths that belong to C. And since
φ is a bijection, π = (p1, . . . , pn) can only be equivalent to µ = (φ(p1), . . . , φ(pn))
and vice versa.

Proposition 15. Let Γ = (N,G, (s, t), (wi)i∈N) be a NMC game and let C be a
set of (s− t) edge-disjoint paths of G. Let Ω = (J,M, (tj)j∈J) be an instance of
the Minimum Multiprocessor Scheduling problem equivalent to (Γ,C). Let
π = (p1, . . . , pn) be a configuration of Γ and µ = (m1, . . . ,mn) an assignment
for Ω. If π and µ are equivalent, then SC(π) = MS(µ).

Proof. It is not hard to see that if π i µ are equivalent, then the set of users of
any path pi ∈ C is equal to the set of users of any machine mi ∈ M :

Λpi(π) = {k ∈ N | pk = pi} = {k ∈ J | φ(pk) = φ(pi)} =
= {k ∈ J | mk = mi} = Λmi(µ)

Furthermore, since π and µ are equivalent, and the set of paths used by π is
a set of edge-disjoint paths then we can apply proposition 2, obtaining that

SC(π) = max
i∈N

ci(π) = max
i∈N

Lpi(π) = max
i∈N

∑
k∈Λpi

(π)

wk =

= max
i∈J

∑
k∈Λmi

(µ)

tk = max
m∈M

∑
k∈Λm(µ)

tk = MS(µ)

ut

Now we have all what is necessary to show an upper bound of the ratio
between the PNE computed by our algorithm and the social optimum.

Proposition 6. Let Γ = (N,G, (s, t), (wi)i∈N) be a weighted game and let C be
a maximum set of edge-disjoint (s− t) paths in G. The configuration π computed
by the algorithm w round robin on input (Γ , C) has a social cost SC(π) ≤
4
3 · SC∗.

Proof. Let Ω = (J,M, (tj)j∈J) be an instance of the Minimum Multiproces-
sor Scheduling problem equivalent to (Γ,C). Let µ an assignment computed
by LPT on input Ω. Notice that π = w round robin(Γ,C) and µ are equiva-
lent, the algorithms w round robin and LPT works in the same way assigning
players/tasks to paths/machines.

In [15] it is shown that the makespan of µ is at most 4
3 times greater than

the makespan of the optimum. Let µ∗ one of the assignments that induces the
optimum makespan. Hence, MS(µ) ≤ 4

3 · MS(µ∗). Let π∗ the configuration
of Γ equivalent to σ∗. By proposition 15, we have that SC(π) = MS(µ) ≤
4
3 ·MS(µ∗) = 4

3 ·SC(π∗). It remains only to show that π∗ is a configuration with
an optimum social cost.

Let us suppose that π∗ is not optimum, i.e. SC∗ < SC(π∗). By propo-
sition 13, there exists another configuration π′ all its paths belong to C and
SC(π′) = SC∗. Then µ′ is equivalent to π′ and by proposition 15, MS(µ′) =
SC(π′) = SC∗ < SC(π∗) = MS(µ∗). But this is not possible, µ∗ is the optimum
assignment. Hence, π∗ has an optimum social cost. ut

In order to show Theorem 7 we need to prove the following results.

Proposition 16. Let Γ = (N,G, (s, t), (wi)i∈N) be a NMC game. Let m be the
maximum number of (s− t) edge-disjoint paths in G and w =

∑
i∈N wi. If π is

any configuration of Γ , then SC(π) ≥
⌈

w
m

⌉
.

Proof. By corollary 12 there exists a set B ⊆ E of m edges so that any (s− t)
path contains at least one edge e ∈ B. Hence in any configuration π of Γ every
one of its components contains at least one of the m edges of B. This fact implies
that ⋃

e∈B

Λe(π) = N

and then ∑
e∈B

le(π) =
∑
e∈B

∑
i∈Λe(π)

wi ≥
∑

i∈
S

e∈B Λe(π)

wi =
∑
i∈N

wi = w

This means that there exists at least one edge e∗ ∈ B such that le∗(π) ≥⌈
w
|B|

⌉
=

⌈
w
m

⌉
. Hence, we can bound the social cost as follows:

SC(π) = max
e∈E

le(π) ≥ le∗(π) =
⌈ w

m

⌉
ut

Proposition 17. Let π = (p1, . . . , pn) be a configuration of a NMC game Γ =
(N,G, (s, t), (wi)i∈N). Then SC(π) ≤ w, where w =

∑
i∈N wi.

Proof. Since for any e ∈ E we have that Λe(π) ⊆ N then

SC(π) = max
e∈E

le(π) = max
e∈E

∑
i∈Λe(π)

wi ≤
∑
i∈N

wi = w

ut

Once we have shown the two previous results, we can bound the Price of
anarchy of weighted single-com NMC games:

Theorem 7. Any weighted game Γ = (N,G, (s, t), (wi)i∈N) satisfies that PA ≤
m, where m is the maximum number of (s− t) edge-disjoint paths in G.

Proof. Considering the bounds shown in Propositions 16 and 17:

PA = max
π s PNE

SC(π)
SC∗ ≤ w⌈

w
m

⌉ ≤ w
w
m

= m

ut

Lemma 8. After the execution of lines 2-5 of Algorithm 2, the following state-
ments hold:

1. ∀i ∈ M \ S
(
bkSc ≥

⌈
ni

li

⌉
− 1

)
2. ∀S′ ⊆ M

(
|S′| < |S| ⇒ ∃i ∈ M \ S′

(
bkSc <

⌈
ni

li

⌉
− 1

))
3. ∀i ∈ S

(
ni

li
≥ kS

)
Proof. The first proposition is exactly the condition in line 4. Notice that this
condition will evaluate to true sooner or later, since it always holds when S = M .
The second proposition is directly implied by the order in which the algorithm
considers the subsets of M .

Finally, let’s prove the last proposition. Suppose that there exists a commod-
ity i ∈ S for which the proposition does not hold, i.e. ni

li
< kS or, equivalently,

ni < kS · li. Thus,

kS\{i} =
nS\{i}

l + lS\{i}
=

nS − ni

l + lS − li
>

nS − kS · li
l + lS − li

=
nS − (nS

l+lS
) · li

l + lS − li

=
nS(l + lS − li)

(l + lS)(l + lS − li)
=

nS

l + lS
= kS

Therefore, it holds that

kS\{i} > kS >
ni

li
≥

⌈
ni

li

⌉
− 1

Since
⌈

ni

li

⌉
− 1 is an integer,

⌊
kS\{i}

⌋
≥

⌈
ni

li

⌉
− 1. On the other hand, thanks to

the first proposition of the lemma we can state that

∀i′ ∈ M \ S

(⌊
kS\{i}

⌋
≥ bkSc ≥

⌈
ni′

li′

⌉
− 1

)
Combining the two last propositions, we have that

∀i′ ∈ M \ (S \ {i})
(⌊

kS\{i}
⌋
≥

⌈
ni′

li′

⌉
− 1

)
but, since |S \ {i}| < |S|, that contradicts what we have shown in the second
proposition of the lemma. Consequently, the third proposition must hold. ut

Lemma 9. At each iteration of the loop of lines 19-24 of Algorithm 2, the fol-
lowing propositions hold:

1. There exists a commodity i ∈ S such that
(a) There exists a path p ∈ Li with only bkSc allocated players, and
(b) There exists a player j′ ∈ Ni already allocated to a path p′ ∈ L′

i

2. Every path in LS and every edge in E∗ (and thus every path in L′
S have

congestion either bkSc or bkSc+ 1

Proof. 1. Consider the set S∗ ⊆ S of commodities i ∈ S with at least one path
in Li having congestion bkSc. Let’s first see that, at any iteration of the loop,
this set S∗ is not empty. Since we have entered the loop, there remain some
unallocated players in N ′

S ⊆ NS . That implies that all paths in L′
S have

congestion bkSc + 1. If there were a path in L′
S with congestion bkSc, then

there would be a path with that congestion in each L′
i, i ∈ S, due to the

nature of our graph topology. But that is not possible, otherwise the loop of
lines 15-17 would have allocated to these paths the unallocated players from
N ′

S . It is then impossible that all commodities i ∈ S have congestion bkSc+1,
otherwise the total number of players allocated would be (lS + l) · (bkSc+1),
which is strictly greater than nS , the actual number of players. Thus, we
have that S∗ contains at least one commodity.
In turn, that fact implies that no player of NS∗ is in N ′

S , the set of unallocated
players; otherwise, the loop of lines 11-14 would have allocated him to one
of the paths of his commodity with congestion bkSc. All the players in N ′

S ,
then, come from commodities in S \ S∗ (and that also proves that S∗ (S,
that is, that S \ S∗ is not empty).
Let’s now suppose that all players in NS∗ are allocated to paths in LS∗ .
One one hand, that means that all shared paths in L′

S are allocated only
to players in NS\S∗ . Since, by definition of S∗, all paths in LS\S∗ have
congestion bkSc+1, the number of players in NS\S∗ already allocated equals
(bkSc+1) · (l + lS\S∗). Furthermore, there is at least one more (unallocated)
player in NS\S∗ , otherwise we would have not entered the loop. Therefore,
the total number of players in NS\S∗ is nS\S∗ ≥ (bkSc+1) · (l + lS\S∗)+1 >

(bkSc+ 1) · (l + lS\S∗), so we have that nS\S∗

l+lS\S∗
> bkSc+ 1.

On the other hand, that means that the number of players in each commodity
i∗ ∈ S∗ is ni∗ < (bkSc+1) · li∗ . Therefore, ni∗

li∗
< bkSc+1 <

nS\S∗

l+lS\S∗
= kS\S∗ ,

using the previous inequality. In turn, the total number of players in NS∗ is
nS∗ < (bkSc+ 1) · lS∗ , so we have that nS∗

lS∗
< (bkSc+ 1) < kS\S∗ , using the

same inequality as before. Therefore,

kS =
nS

l + lS
=

nS∗ + nS\S∗

l + lS∗ + lS\S∗
<

nS\S∗

l + lS\S∗
= kS\S∗

which makes use of the general fact that c
d < a

b ⇒
a+c
b+d < a

b .
Now, we can apply lemma 8 to state that

∀i ∈ M \ S

(
kS\S∗ > kS ≥ bkSc ≥

⌈
ni

li

⌉
− 1

)
while, as we have just seen, ∀i∗ ∈ S∗

(
kS\S∗ > ni∗

li∗
>

⌈
ni∗
li∗

⌉)
. Merging both

assertions, we have that

∀i ∈ M \ (S \ S∗)
(

kS\S∗ >

⌈
ni

li

⌉
− 1

)
which implies that

∀i ∈ M \ (S \ S∗)
(⌊

kS\S∗
⌋
≥

⌈
ni

li

⌉
− 1

)
since

⌈
ni

li

⌉
− 1 is an integer.

This last assertion, however, contradicts the second proposition of lemma 8.
For that reason, we have to conclude that there exists at least one player in
NS∗ which is allocated to a path in L′

S , and the proposition is proven.
2. The second proposition is not difficult to prove, since the algorithm first

reallocates a player from a path with congestion bkSc + 1 to a path with
congestion bkSc and then allocates a player to the first path.

ut

