
Validation of Mappings between Schemas
Guillem Rull1,2 Carles Farré2 Ernest Teniente2 Toni Urpí2

Universitat Politècnica de Catalunya
Jordi Girona 1-3

08034 - Barcelona
phone: +34934137887

{grull | farre | teniente | urpi}@lsi.upc.edu

ABSTRACT
Mappings between schemas are key elements in several contexts
such as data exchange, data integration, peer data management
systems, etc. In all these contexts, the process of designing a
mapping requires the participation of a mapping designer that
needs a way to validate the mapping being defined, i.e., to check
whether the mapping is in fact what the designer intended.
However, to date very little work has directly focused on the
effective validation of schema mappings. In this paper, we present
a new approach for validating schema mappings that allows the
mapping designer to ask questions about the accomplishment of
certain desirable properties of these mappings. We consider four
properties of mappings: mapping satisfiability, mapping
inference, query answerability and mapping losslessness. We
reformulate these properties in terms of the problem of checking
the liveliness of a derived predicate. We emphasize that this
approach is independent of any particular method for liveliness
checking and, to show the feasibility of our approach, we use an
implementation of the CQC Method and provide some
experimental results.

1. INTRODUCTION
 Mappings between schemas are key elements for any system
that requires an interaction of heterogeneous data and
applications. Data exchange [10, 19] and data integration [20] are
two well known contexts in which mappings play a central role.
Another context in which mappings are also extensively used is
that of peer data management systems [6, 17]. In all these cases,
schema mappings are specifications that model a relationship
between schemas. Several formalisms are used for defining them.
In data exchange, tuple-generating dependencies (tgds) and
equality-generating dependencies (egds) are widely used [10]. In
the context of data integration, global-as-view (GAV), local-as-
view (LAV), and global-and-local-as-view (GLAV) [14, 20] are
the most common approaches. A further formalism that has
recently emerged is that of nested mappings [15], which extends
previous formalisms for relational and nested data. Model
management [3, 25] is also a widely known approach which
establishes a conceptual framework for handling schemas and
mappings in a generic way, providing a set of generic operators,
such as the composition of mappings [4, 11, 23].
 Data transformation languages like XSLT, XQuery and SQL
are also used for specifying mappings in several existing tools that
help engineers to build mappings [5, 24, 29]. One example of a
system for producing mappings is Clio [16], which can be used to
semi-automatically generate a schema mapping from a set of
correspondences between schema elements (e.g. field names).

This set of uninterpreted correspondences is usually called a
matching. Hence, finding a matching is the first step towards
developing a schema mapping. A significant amount of work on
schema matching techniques can be found in the literature, among
which we could cite [9, 21, 27].
 Nevertheless, the process of designing a mapping requires the
feedback of a human engineer. The designer guides the generating
process by choosing between alternative candidates, and
successively refining the mapping. The designer thus needs a way
to check whether the mapping produced is in fact what was
intended, that is, the developer must validate the mapping.
However, to date very little work has directly focused on the
effective validation of schema mappings.
 In this paper, we present a new approach for validating schema
mappings that allows the mapping designer to ask questions about
the accomplishment of certain desirable properties of these
mappings. Answers to these questions will provide information on
whether the mapping correctly and adequately matches the
intended needs and requirements.
 We consider the two properties identified in [22] as important
properties of mappings: mapping inference and query
answerability. We likewise introduce two new properties:
mapping satisfiability and mapping losslessness.1

 Mapping satisfiability is aimed at detecting incompatibilities,
either within the mapping or between the mapping and the
constraints of the schemas. Mapping inference can be used to
check for redundancies in the mapping or to check the
equivalence of two mappings.2

 In general, mappings lose some information and can be partial
or incomplete, since they rarely map all the concepts from one
schema to the other. Query answerability and mapping
losslessness are aimed at detecting whether these lossy mappings
still preserve some relevant information, which is represented in
terms of some queries defined over one of the schemas.
Specifically, query answerability informs the designer whether
two mapped schemas are equivalent with respect to these queries,
in the sense that they would obtain the same answers in both
sides. Instead, mapping losslessness is aimed at detecting whether
the mapping does not lose information from one schema to the
other, in the sense that the queries over the first schema can also
be computed over the second one. Note that it is not required for
the answers obtained from the second schema to be the exact ones
obtained from the former.

1 This work was supported in part by Microsoft Research through the
European PhD Scholarship Programme.
2 This work was partially supported by the Spanish Ministerio de
Educación y Ciencia under project TIN2005-05406.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 In summary, the main idea of our approach is to define, for
each particular property, a distinguished derived predicate which
describes the fulfillment of the property. This predicate will be
defined over a new schema that integrates the two mapped
schemas and a set of integrity constraints that make the
relationship modeled by the mapping explicit. Thus, if the
distinguished predicate is lively [13, 18, 32] over this schema, the
property is satisfied.
 Hence, the four properties we consider in this paper are
expressed in terms of the problem of checking whether a derived
predicate is lively in a database schema. This allows us to use one
single method to effectively check all the properties. It is worth
noting that any existing method for checking the liveliness of a
predicate can be used, provided that it is able to deal with the
classes of queries and integrity constraints that appear in the
database schema.
 To show the feasibility of our approach, we will use our CQC
Method [12], which is able to deal with a broad class of database
schemas and, thus, we are able to consider schemas and mappings
with a high degree of expressiveness.
 In this paper, we consider mappings defined as binary
relationships between two relational schemas, which are specified
as sets of mapping formulas in a similar way to the GLAV
approach.

Contributions
• We propose a new approach for validating schema mappings.
This approach consists in defining a set of desirable properties of
mappings and reformulates them in terms of predicate liveliness.
The approach is independent of the method used for checking
liveliness.
• We show how to use our approach for checking two important
properties of mappings already identified in the literature [22]:
mapping inference and query answerability.
• We propose two additional properties—mapping satisfiability
and mapping losslessness—to capture validation information not
covered by the two other properties.
• We show that our mapping losslessness property is in fact an
extension of query answerability. We can use losslessness to try
to obtain useful validation information when query answerability
does not hold.
• We show how to use our CQC Method to effectively check the
four mapping properties. The CQC Method is able to deal with
schemas that have integrity constraints, safe-negated EDB and
IDB literals, and comparisons.

 The paper is organized as follows. Section 2 introduces the
basic concepts and notation to be used throughout the paper.
Section 3 presents our approach, the properties and their
formulation in terms of predicate liveliness. Section 4 presents the
experimental evaluation using the CQC Method. In Section 5, we
address related work and, finally, in Section 6 we present our
conclusions and suggestions for further work.

2. SCHEMAS AND MAPPINGS
 In the following sections, we consider relational schemas, and
mappings between two relational schemas. These mappings
define a binary relationship on the sets of instances of the two
schemas. We express schemas and mappings in a logic notation,
in a similar way as is done in many other formalisms (e.g. tgds
and GLAV). Now, we introduce the basic concepts.

Schemas A schema S is a tuple (DR, IC) where DR is a finite set
of deductive rules and IC a finite set of constraints.
 A deductive rule has the form:

 p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct

and a constraint (or condition) the denial form:

 ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct.

The symbols p and r1, ..., rm are predicates. The tuples X̄, X̄1, ...,
X̄n, Ȳ1, ..., Ȳs contains terms, which are either variables or
constants. Each Ci is a built-in literal in the form of t1 θ t2, where
t1 and t2 are terms and operator θ is <, ≤, >, ≥, = or ≠. The atom
p(X̄) is the head of the rule, and r1(X̄1), ..., rn(X̄n), ¬rn+1(Ȳ1), ...,
¬rm(Ȳs) are positive and negative ordinary literals (those that are
not built-in). We require every rule and constraint be safe, that is,
every variable occurring in X̄, Ȳ1, ..., Ȳs, C1, ..., Ct must also appear
in some X̄i. Note that differing from other formalisms like tgds
and egds, we express constraints stating what may not happen
instead of what should happen.
 Predicates that appear in the head of a deductive rule are
derived predicates also called intensional database (IDB)
predicates. They correspond to views or queries. The rest are base
predicates also called extensional database (EDB) predicates.
They correspond to tables.
 For a schema S = (DR, IC), a schema instance D is an EDB,
that is, a set of ground facts about the base predicates of S (the
tuples stored in the database). We denote by DR(D) the whole set
of ground facts about base and derived predicates that are inferred
from an instance D, i.e., the fix-point model of DR∪D.
 An instance D violates a constraint ← L1 ∧ ... ∧ Lk if (L1 ∧ ... ∧
Lk)σ is true on DR(D) for some ground substitution σ. An
instance D is consistent with the schema S if it violates no
constraint in IC.
 A query over a schema is a finite set of deductive rules that
define the same n-ary predicate. Given a schema S = (DR, IC) and
an instance D, the answer to a query Q, defining the predicate q,
over S on D, written AQ(D), is the set of all ground facts about q
obtained evaluating the deductive rules from both Q and DR on D,
i.e., AQ(D) = {q(ā) | q(ā) ∈ (Q∪DR)(D)}.

Mappings A mapping M between two schemas A = (DRA, ICA)
and B = (DRB, ICB BB) is a triplet (F, A, B) where F is a finite set of
formulas {f1, ..., fu}. Each formula fi is either of the form QA

i = QB
i

or QA
i ⊆ QB

i, where QA
i and QB

i are queries over the schemas A
and B, respectively. Obviously, both queries must be compatible,
that is, the predicates they define must have the same number and
type of arguments. We will assume that the deductive rules for
these predicates are either on DRA or on DRB. B

 In this paper, we consider queries used to define the mapping
formulas as well as IDB predicates under the exact view
assumption [20], i.e., the extension of a view or query is exactly
the set of tuples satisfying their definition in the database.
 We say that two schema instances DA and DB are consistent
under a mapping M = (F, A, B) if all formulas in F are true. We
say that a formula Q

B

A
i = QB

i is true if the tuples obtained as an
answer to QA

i on DA are the same that the ones obtained as an
answer to QB

i on DBB. More formally, the formula holds when for
all tuple of constants ā, qA

i(ā) ∈ AQA
i(DA) if and only if qB

i(ā) ∈

AQB
i(DB), where qB

A
i and qB

i are the predicates defined by the two
queries in the formula. Similarly, a formula QA

i ⊆ QB
i is true if the

tuples obtained as an answer to QA
i on DA are a subset of those

obtained as an answer to QB
i on DBB.

3. CHECKING DESIRABLE
PROPERTIES OF MAPPINGS
 In this section, we describe our approach to validate mappings:
(1) we formalize the desirable properties that we consider, and (2)
we explain how to express the fulfillment of each property in
terms of predicate liveliness [13, 18, 32].
 A predicate p is lively in a schema S if there is some consistent
instance of S where at least one fact about p is true. In our case,
schema S is defined in such a way that considers the two mapped
schemas, A and B, and the mapping M, together. We assume that
the two original schemas have different predicate names;
otherwise, we can just rename the predicates. In general, the
schema S is built by grouping the deductive rules and the integrity
constraints from the two schemas, and then adding new
constraints to make explicit the relationship stated by the
mapping. Formally, S = (DRA∪DRB, ICB A∪ICBB∪ICM) where ICM is
the set of additional constraints enforcing the mapping formulas.
For each mapping formula like QA

i = QB
i, two constraints are

needed: ← QA
i(X̄) ∧ ¬QB

i(X̄) and ← QB
i(X̄) ∧ ¬QA

i(X̄). They state
that queries QA

i and QB
i may not give different answers, that is,

cannot be true neither QA
i ⊈ QB

i nor QB
i ⊈ QA

i. When formula is
like QA

i ⊆ QB
i, just the first constraint is required: ← QA

i(X̄) ∧
¬QB

i(X̄).
 Having schema S defined, we will define for each property a
new derived predicate p, such that p will be lively in S if and only
if the property holds.
 Next, we detail each property and its concrete reformulation in
terms of predicate liveliness.

3.1. Mapping Satisfiability
 As stated in [20], when constraints are considered in the global
schema in a data integration context, it may be the case that the
data retrieved from the sources cannot be reconciled in the global
schema in such a way that both the constraints of the global
schema and the mapping are satisfied.
 In general, whenever we have a mapping between two schemas
that have constraints there may be incompatibilities between the
constraints and the mapping, or even among the mapping
formulas. Therefore, checking whether there is at least one case
when the mapping and the constraints are satisfied simultaneously
is clearly a validation task that should be done, and this is
precisely what this first desirable property of mapping does.

 DEFINITION 3.1. We say that a mapping M = (F, A, B) is
satisfiable if there exists a pair of non-empty consistent instances
DA and DB of schemas A and B, respectively, such that they are
also consistent under M.

B

 Note that the above definition explicitly avoids the trivial case
when DA and DB are both the empty set. However, the formulas in
F can still be satisfied trivially. We say that a formula Q

B

A
i = QB

i is
satisfied trivially when both AQA

i(DA) and AQB
i(DBB) are empty

sets. A formula QA
i ⊆ QB

i is satisfied trivially when AQA
i(DA) is

the empty set. Therefore, to really validate the mapping, we may
ask if M is either strongly satisfiable or weakly satisfiable.

 DEFINITION 3.2. A mapping M = (F, A, B) is strongly satisfiable
if all formulas in F are satisfied non-trivially. The mapping is
weakly satisfiable if at least one formula in F is satisfied non-
trivially.

 EXAMPLE 3.3. In this example, we consider schemas A and B,
shown in Figure 1, and the following mapping:

 M = (F, A, B),
 where F = {Qa1 = Qb1, Qa2 = Qb2}.

Note that the queries in the mapping formulas are those also
shown in Figure 1.

 SCHEMA A
Tables:
employee(emp-id, category, happiness-degree)
category(cat-id, salary)
Constraints:
← category(C, S) ∧ S > 100
← employee(E, C, H) ∧ ¬auxFkEmpToCat(C)
Deductive rules:
auxFkEmpToCat(C) ← category(C, S)
Qa1(E, H) ← employee(E, C, H) ∧ H > 10
Qa2(E, S) ← employee(E, C, H) ∧ category(C, S)

SCHEMA B
Tables:
emp(id, salary)
happy-emp(emp-id, happiness-degree)
Constraints:
← happy-emp(E, H) ∧ emp(E, S) ∧ S ≤ 200
← happy-emp(E, H) ∧ ¬auxFkHapToEmp(E)
Deductive rules:
auxFkHapToEmp(E) ← emp(E, S)
Qb1(E, H) ← happy-emp(E, H)
Qb2(E, S) ← emp(E, S)

Figure 1: Two example schemas.

 Schema A has two tables: employee(emp-id, category,
happiness-degree) and category(cat-id, salary). Table employee is
related with table category via a foreign key where
employee.category references category.cat-id. Table category has
a constraint on the salary which may not be greater that 100. In
schema B there are also two tables: emp(id, salary) and happy-
emp(emp-id, happiness-degree). There is a foreign key from
happy-emp.emp-id to emp.id and a constraint stating that all
happy employees have a salary greater than 200. Mapping M
relates instances of A and B where all employees with a happiness
degree greater than 10 on A are happy-emps on B, and all
employees on A are emps on B (together with their salary).
 Note in Figure 1 that expressing a foreign key constraint
requires the use of a derived predicate (auxFkEmpToCat and
auxFkHapToEmp) because we require negated literals to be safe.
 In this example, we can see that mapping M is not strongly
satisfiable. The first formula, Qa1 = Qb1, can only be satisfied
trivially. First, in schema B all happy-emps must have a salary
over 200 while, in schema A, all employees, no matter their
happiness degree, have a maximum salary of 100. At the same
time, formula Qa2 = Qb2, enforces that employees should have
the same salary in both sides.

 In contrast, the second formula is non-trivially satisfiable and,
thus, M is weakly satisfiable. That is because there may be
employees on A with a happiness degree of 10 or lower, and emps
on B that are not happy-emps.
 Notice also that if we remove the second formula in the
mapping, i.e. Qa2 = Qb2, and kept the first one alone, then the
resulting mapping would be strongly satisfiable. This is an
example of how satisfiability of one mapping formula may be
affected by the rest of formulas in the mapping.

 To formulate this mapping satisfiability property in terms of
checking predicate liveliness, we build a new schema S grouping
schemas A, B, and the mapping M:

 S = (DRA∪DRB, ICB A∪ICBB∪ICM),

and define a new derived predicate in order to check whether it is
lively in S. Given that there are two types of satisfiability, strong
and weak, we define two new predicates, one for each case.
 Assuming that F = {f1, ..., fn} and that we want to check strong
satisfiability, we define the new derived predicate strong_sat, as
follows:

 strong_sat ← QA
1(X̄1) ∧ ... ∧ QA

n(X̄n)

where no variable in X̄i appears in X̄j , j ≠ i.
 In a similar way, for the case of weak satisfiability, we would
define the new derived predicate weak_sat, as follows: weak_sat
← QA

1(X̄1) ∨ ... ∨ QA
n(X̄n), but due to the fact that rules’ bodies

must be conjunctions of literals, it should be defined with the
following deductive rules:

 weak_sat ← QA
1(X̄1),

 ...,
 weak_sat ← QA

n(X̄n).

 Figure 2 shows the schema we obtain when expressing
Example 3.3 in terms of predicate liveliness. Note that the schema
contains the deductive rule for the derived predicate strong_sat.

 PROPOSITION 3.4. The derived predicate strong_sat/weak_sat is
lively in schema S = (DRA∪DRB, ICB A∪ICBB∪ICM) if and only if the
mapping M = (F, A, B) is strongly/weakly satisfiable.

 PROOF. Let us suppose strong satisfiability. Therefore, we know
that there exist a pair of instances not violating the constraints on
A and B, making true all mapping formulas. Strong satisfiability
implies that all formulas are satisfied non-trivially, so we can say
that all QA

i queries on F have at least one tuple on its answer.
Then, by definition strong_sat will be true. Therefore, we have
found an instance of schema S where strong_sat is true and that
proves that strong_sat is lively in S. On the other hand, to get
strong_sat lively in S, it is required by the definition of strong_sat
the existence of a consistent instance of S where each query QA

i
contains at least one tuple in its answer. By definition of S, that
means that there exists a consistent instance of A and a consistent
instance of B such that these two instances are also consistent
under the mapping, that is, the mapping is satisfiable. Moreover,
all QA

i queries have at least one answer so all mapping formulas
are satisfied non-trivially. Thus, we can conclude that the
mapping is strongly satisfiable.
 The proof for the case of weak satisfiability is very similar to
the previous one.

 SCHEMA S

Deductive rules:
strong_sat ← Qa1(X, Y) ∧ Qa2(Z, U)

auxFkEmpToCat(C) ← category(C, S)
Qa1(E, H) ← employee(E, C, H) ∧ H > 10
Qa2(E, S) ← employee(E, C, H) ∧ category(C, S)

auxFkHapToEmp(E) ← emp(E, S)
Qb1(E, H) ← happy-emp(E, H)
Qb2(E, S) ← emp(E, S)

Constraints:
← category(C, S) ∧ S > 100
← employee(E, C, H) ∧ ¬auxFkEmpToCat(C)

← happy-emp(E, H) ∧ emp(E, S) ∧ S ≤ 200
← happy-emp(E, H) ∧ ¬auxFkHapToEmp(E)

← Qa1(A, B) ∧ ¬Qb1(A, B)
← Qb1(A, B) ∧ ¬Qa1(A, B)
← Qa2(A, B) ∧ ¬Qb2(A, B)
← Qb2(A, B) ∧ ¬Qa2(A, B)

DRA

DRB

ICA

ICB

ICM

Figure 2: Example 3.3 in terms of predicate liveliness

3.2. Mapping Inference
 The mapping inference property was identified in [22] as an
important property of mappings. It consists on checking whether a
mapping formula is entailed by a given mapping, that is, whether
it does not add new mapping information. One application of the
property would be that of checking whether a formula in the
mapping is redundant, that is, entailed by the other formulas.
Another application would be that of checking the equivalence of
two different mappings. We can say that two mappings are
equivalent if the formulas in the first mapping entail all the
formulas in the second, and the vice versa.
 The results presented in [22] are in the setting of conjunctive
queries without considering integrity constraints in the schemas.
The proof for the complexity result shows that the property can be
checked in this setting by means of finding a maximally contained
rewriting and query containment. Here, we consider a broader
class of queries along with the presence of constraints in the
schemas.

 DEFINITION 3.5. (see [22]) Let a formula f be defined over
schemas A and B. Formula f is inferred from a mapping M = (F,
A, B) if all pair of instances of A and B consistent under M also
satisfy the formula f.

 EXAMPLE 3.6. We take schemas A and B (on Figure 1), but
without the salary constraints. We define a new mapping:

 M2 = (F2, B, A),
 where F2 contains just one mapping formula, Qb2 = Qa2,

and the queries on this formula have the same definition than in
Example 3.3.
 We consider also a new formula f1, q1 ⊆ q2, where q1 and q2
are queries over B and A, respectively, with the following
definitions:

 q1(E) ← happy-emp(E, H)
 q2(E) ← employee(E, C, H)

 The foreign key on schema B, from happy-emp to emp,
guarantees that all happy-emps are also emps so, if the mapping
formula in M2 holds, that means they are also employees on the
corresponding instance of schema A. Thus, it is true what formula
f1 states: the employees’ identifiers on table happy-emp are a
subset of those on table employee. Therefore f1 is entailed by
mapping M2.
 Let us consider now another formula f2, q3 ⊆ q4, having q3
and q4 the following definitions:

 q3(E, H) ← happy-emp(E, H)
 q4(E, H) ← employee(E, C, H)

 This time, f2 is not entailed by mapping M2. The difference is
that we are not projecting just the employee’s identifier as before,
but also the happiness degree, and given that the formula on the
mapping does not care about the happiness degree, we can build a
counterexample showing that entailment of f2 does not hold. This
counterexample consists of a pair of instances of A and B, DA and
DB, that satisfy the mapping formula in MB 2 but that do not satisfy
f2 like, for instance, the following EDBs: DA = {employee(0, 0,
5), category(0, 50)} and DBB = {emp(0, 50), happy-emp(0, 10)}. It
is not difficult to show that in this counterexample the formula in
mapping M2 holds: Aqb2(DB) = {qb2(0, 50)} and AB qa2(DA) =
{qa2(0, 50)}, but f2 does not: Aq3(DBB) = {q3(0, 10)} and Aq4(DA)
= {q4(0, 5)}.

 Expressing the mapping inference property in terms of
predicate liveliness is best done by checking the negation of the
property (i.e., the lack of inference) instead of checking the
property directly. The negated property states that a certain
formula f is not inferred from a mapping M if there exists a pair of
schema instances A and B, consistent under M, such that they do
not satisfy f. In this way, the derived predicate for checking
liveliness must be the negation of f. When f has the form qa = qb,
then we define the new derived predicate map_inf with the
following two deductive rules:

 map_inf ← qa(X̄) ∧ ¬qb(X̄)
 map_inf ← qb(X̄) ∧ ¬qa(X̄).

Otherwise, when f has the form qa ⊆ qb, just the following
deductive rule is needed:

 map_inf ← qa(X̄) ∧ ¬qb(X̄).

 We define the new schema S as usual, putting together the
deductive rules and constraints from schemas A and B, and
considering additional constraints to enforce mapping formulas:

 S = (DRA∪DRB, ICB A∪ICBB∪ICM).

 The schema that results from the reformulation of Example 3.6
in terms of predicate liveliness is similar to the one shown in
Figure 2 but removing the constraints about salary and adding the
rules defining the predicate map_inf.

 PROPOSITION 3.7. The derived predicate map_inf will be lively
in S if and only if the formula f is not inferred from the mapping
M.

 PROOF. Let us assume f has the form qa = qb. By the definition
of lively, when map_inf is lively in S, there exists a consistent
instance of S where map_inf is true. By construction of S, the
existence of a consistent instance of S leads to the existence of a
pair of consistent instances of A and B such that they are also
consistent under the mapping. By the definition of map_inf, and
given that map_inf is true, there exists a tuple either belonging to
the answer of qa but not belonging to the answer of qb, or
belonging to the answer of qb but not to the answer of qa. Thus,
by definition of f, this pair of instances does not satisfy f.
 On the other hand, let us suppose that there exist a pair of
instances of A and B consistent under the mapping but that do not
satisfy the formula f. By construction of S, there is a consistent
instance of S for which the formula f does not hold. That means
that qa ≠ qb, i.e., either qa ⊈ qb or qb ⊈ qa. Then, by definition of
map_inf, map_inf is true in this instance of S, i.e., map_inf is
lively in S.
 The proof for the case when f is like qa ⊆ qb can be
immediately obtained from the previous one.

3.3. Query Answerability
 In this section we consider the query answerability property,
introduced in [22] as an important property of mappings. The
intuition behind this property is that a mapping that is partial or
incomplete can be, however, adequate for a certain task. This task
will be represented by means of a certain query. The property will
check whether the mapping enables answering of this query over
the schemas being mapped. While the previous two properties are
intended to validate the mapping without considering its context,
this property validates the mapping with respect to the use for
which it is designed.
 As with mapping inference, the results presented in [22] are in
the setting of conjunctive queries without constraints in the
schemas. The proof for the complexity result showed that the
property can be checked by means of the existence of an
equivalent rewriting. As in the previous case, we consider a
broader class of queries along with the presence of constraints in
the schemas.

 DEFINITION 3.8. (see [22]) Let be Q a query over a schema A.
The mapping M = (F, A, B) enables query answering of Q if the
following holds. Let DB be a consistent instance of B. Let DB A be
the set of instances of schema A consistent under M with DBB.
Then, AQ(DA) = AQ(DA’) for every pair of consistent instances DA,
DA’ ∈ DA.

 Intuitively, the mapping enables answering the query when,
given a consistent instance of schema B, the answer for Q over
schema A gets uniquely determined. In other words, when the
query answerability property holds for a given query Q over a
schema A, the exact answer for Q over an instance DA can be
computed having only access to the tuples in the corresponding
mapped instance DB. B

 EXAMPLE 3.9. We consider again schemas A and B shown in
Figure 1, but without the salary constraints. We consider also the
mapping M from Example 3.3 and a query Q defined over schema
A as follows:

 q(E) ← employee(E, C, H) ∧ H > 5

 It can be seen that mapping M does not enable answering of
this query Q. The intuition is that the mapping only takes care of
those employees of schema A who have a happiness degree
greater than 10, while the evaluation of the query Q needs also
access to the employees with a happiness degree between 5 and
10. Thus, we can build a counterexample consisting of three
consistent instances: one instance DB of schema B and two
instances of schema A, D

B

A and DA’. The instances DA (DA’) and
DBB of the counterexample are consistent under the mapping M but
the answer of the query Q is not the same in both instances of the
schema A, i.e., AQ(DA) ≠ AQ(DA’). These criteria are satisified, for
instance, by the following EDBs: DB = {emp(0, 150), emp(1,
200), happy-emp(1, 15)}, D

B

A = {employee(0, 0, 6), employee(1, 1,
15), category(0, 150), category(1, 200)} and DA’ = {employee(0,
0, 4), employee(1, 1, 15), category(0, 150), category(1, 120)}. It
is easy to see that those instances are consistent and that they
satisfy the mapping formulas. We can verify that this is certainly a
counterexample because AQ(DA) = {q(0), q(1)} but AQ(DA’) =
{q(1)}, that is, the answers to the query do not match.

 SCHEMA S

Like the one in Figure 2 but removing the two
constraints about salary and adding the following
rules and constraints.

Additional deductive rules:
q_answer ← Q(X) ∧ ¬Q’(X)

Q(E) ← employee(E, C, H) ∧ H > 5

Q’(E) ← employee’(E, C, H) ∧ H > 5
auxFkEmpToCat’(C) ← category’(C, S)
Qa1’(E, H) ← employee’(E, C, H) ∧ H > 10
Qa2’(E, S) ← employee’(E, C, H) ∧ category’(C, S)

Additional constraints:
← employee’(E, C, H) ∧ ¬auxFkEmpToCat’(C)

← Qa1’(A, B) ∧ ¬Qb1(A, B)
← Qb1(A, B) ∧ ¬Qa1’(A, B)
← Qa2’(A, B) ∧ ¬Qb2(A, B)
← Qb2(A, B) ∧ ¬Qa2’(A, B)

ICM’

ICA’

DRA’

Figure 3: Example 3.9 in terms of predicate liveliness

 As seen in the example, the query answerability property is also
easier to check by means of its negation.
 First, we need to define the new schema S. In this case, given
that the counterexample requires finding two instances of a same
schema, we need to extend the definition of schema S, as follows:

 S = (DRA∪DRA’∪DRB, ICB A∪ICA’∪ICBB∪ ICM∪ICM’)

where A’ = (DRA’, ICA’) is a copy of schema A = (DRA, ICA) just
renaming all predicates (e.g. renaming predicate q by predicate
q’) and, similarly, M’ is a copy of mapping M renaming those
predicates in the mapping formulas that are predicates from
schema A.
 Then, we define the derived predicate q_answer with the
following deductive rule:

 q_answer ← q(X̄) ∧ ¬q’(X̄),

where q is the predicate defined by Q and q’ is its renamed
version over schema A’.

 Figure 3 shows the additional deductive rules and constraints
that we get when reformulating Example 3.9 in terms of database
schema validation, with respect to the schema shown in Figure 2.

 PROPOSITION 3.10. The derived predicate q_answer is lively in
S if and only if the mapping M does not enable answering of
query Q.

 PROOF. Let us assume that q_answer is lively in S. That means
that there exists a consistent instance of S where q_answer is true.
By construction of S, there exists an instance DB of B, an instance
D

B

A of A, and an instance DA’ of A’, such that they are all
consistent and, DA and DA’ are both consistent with DBB under
mappings M and M’, respectively. By definition of q_answer,
there exists a ground fact q(ā) such that q(ā) ∈ AQ(DA) but q’(ā) ∉
AQ’(DA’). Given that schema A’ is in fact a copy of schema A, for
each instance of schema A’ there exists an identical one in schema
A. Thus, DA’ can be seen as an instance of schema A, DA’, in such
a way that, if it was previously consistent with DB under M’ it is
also now consistent with D

B

BB under M, and for all q’(ā) previously
in the answer of Q’ exists now a q(ā) in the answer of Q.
Therefore, we found two instances of schema A, DA and DA’,
consistent under the mapping M with a given instance DB of
schema B, such that A

B

Q(DA) ⊈ AQ(DA’). The conclusion is that M
does not enable answering of Q. The other direction can be easily
proved by inverting the reasoning.

3.4. Mapping Losslessness
 As we have seen, query answerability determines whether two
mapped schemas are equivalent with respect to a certain set of
queries in the sense that they obtain the same answers on both
sides. However, in certain contexts this may be too restrictive.
Consider data integration [20] for instance and assume that for
security reasons it must be known whether some sensitive local
data is exposed by the integrator system. Clearly, in such a
situation, the answer to a query intended to retrieve such sensitive
data from one of the sources is not expected to obtain the exact
answer that would be obtained if the query were directly executed
over the global schema. Therefore, such a query is not answerable
under the terms specified above. Nevertheless, sensitive local data
are in fact exposed if the query can really be computed over the
global schema. Thus, a new property that captures this idea is
needed.
 In fact, when a mapping contains formulas like QA

i ⊆ QB
i,

checking query answerability does not always provide the
designer with useful information. Let us illustrate this with an
example.

 EXAMPLE 3.11. We consider schemas A and B shown in Figure
1, and a new mapping:

 M3 = (F3, A, B),
 where F3 = {Qa1 ⊆ Qb1, Qa2 ⊆ Qb2}

and Qa1, Qb1, Qa2, Qb2 are the queries also in shown in
Figure 1.

Note that mapping M3 is similar to the previous mapping M (see
Example 3.3), but the = operator is replaced by the ⊆ operator.
 We also consider the query Q, which is defined as follows:

 q(E) ← employee(E, C, H)

 It is not difficult to see that the mapping M enables answering
of query Q. The query selects all the employees in schema A and
M states that all employees on A are also emps in B. Thus, when
an instance of schema B is given, the extension of the table
employee in schema A is uniquely determined and, consequently,
also the answer to Q.
 However, if we consider mapping M3, the extension of the table
employee is not uniquely determined when an instance of B is
given. In fact, it can be any subset of the emps in the given
instance of B. For example, let DB be an instance of schema B
such that D

B

BB = {emp(0, 70), emp(1, 40)}, and let DA and DA’ be
two instances of schema A such that DA = {employee(0, 0, 5),
category(0, 70)} and DA’ = {employee(1, 0, 5), category(0, 40)}.
Therefore, we have come up with a counterexample and, thus, M3
does not enable answering of Q.

 The previous example shows that when the mapping contains
formulas like QA

i ⊆ QB
i, giving an instance of schema B does not

result, in general, on uniquely determining the answer of a certain
query Q over schema A. This is because for a given instance of B,
there is just one possible answer for each query QB

1,...,QB
n in the

mapping. However, due to the ⊆ operator, there is more than one
possible answer for the queries QA

1,...,QA
n. Something similar

would happen if Q were defined over schema B. Thus, query
answerability does not hold in general for mappings of this type.
The intuitive reason for this is that query answerability holds
when we are able to compute the exact answer for Q over an
instance DA in which we only have access to the tuples in the
corresponding mapped instance DB. However, if any of the
mapping formulas have the ⊆ operator, we cannot know just by
looking at D

B

BB which tuples are also in DA and we are therefore
unable to compute an exact answer.

 DEFINITION 3.12. We say that a mapping M = (F, A, B) is
lossless with respect to a query Q defined over schema A if, for
every pair of consistent instances of schema A, DA and DA’, the
following holds: if there exists an instance DB of schema B
consistent under M with both D

B

A, and DA’, and also AQA
i(DA) =

AQA
i(DA’) for 1 ≤ i ≤ n, then, it is true that AQ(DA) = AQ(DA’).

 Informally, when the mapping losslessness property holds for a
given query Q over a schema A, an answer to Q can be computed
by only accessing the tuples in the corresponding mapped
instance DB. Notice that if the query selects tuples from a table
that doesn’t participate in the mapping, the property clearly does
not hold.

B

 EXAMPLE 3.13. We again consider the mapping M3 and the
query Q from Example 3.11. We saw that the query answerability
property does not hold for this mapping. Let us now check the
mapping losslessness property.
 Let us assume that we have two consistent instances of schema
A, DA and DA’, and an instance DB of schema B consistent under
M with both, such that the answers to Qa2 and Qa1 are exactly
the same over D

B

A and DA’. Assume now that Q obtains q(0) over
DA but not over DA’. According to the definition of Q, it follows
that DA contains a least a tuple of employee, say employee(0, 0,
12), that DA’ does not contain. Since DA is consistent with the
integrity constraints, it must also contain its corresponding tuple
of predicate category, say category(0, 20). Thus, according to the

definition of Qa2 the answer Qa2(0, 20) would be obtained over
DA but no over DA’. This clearly contradicts our initial assumption
and, thus, M3 is lossless with respect to Q.

 To formulate the mapping losslessness property in terms of
checking the liveliness of a derived predicate, we define the new
schema S in a similar way as we did for query answerability:

 S = (DRA∪DRA’∪DRB, ICB A∪ICA’∪ ICBB∪ICM∪ICL),

where schema A’ is a copy of A in which the predicates are
renamed, and ICM is the set of constraints that enforce the
mapping formulas in M. By ICL we denote the set of constraints
that force A and A’ to share the same answers for the queries in
the mapping:

 ICL = {← QA
1(X̄1) ∧ ¬QA

1’(X̄1), ← QA
1’(X̄1) ∧ ¬QA

1(X̄1),
 ...,
 ← QA

n(X̄n) ∧ ¬QA
n’(X̄n), ← QA

n’(X̄n) ∧ ¬QA
n(X̄n)}

 Let Q be the query we wish to use for checking losslessness
and let Q’ be a copy of Q in which the predicates are renamed, as
we did with A’. We define a derived predicate map_loss as
follows:

 map_loss ← Q(X̄) ∧ ¬Q’(X̄).

Figure 4 shows the additional deductive rules and constraints that
we obtain when reformulating Example 3.13 in terms of database
schema validation, with respect to the schema shown in Figure 2.

 SCHEMA S

Like the one in Figure 2 but removing the salary
constraints, and adding the following rules and
constraints. Note that we replace ICM by ICM3.

Additional deductive rules:
map_loss ← Q(X) ∧ ¬Q’(X)

Q(E) ← employee(E, C, H)

Q’(E) ← employee’(E, C, H)
auxFkEmpToCat’(C) ← category’(C, S)
Qa1’(E, H) ← employee’(E, C, H) ∧ H > 10
Qa2’(E, S) ← employee’(E, C, H) ∧ category’(C, S)

Additional constraints:
← employee’(E, C, H) ∧ ¬auxFkEmpToCat’(C)

← Qa1(A, B) ∧ ¬Qa1’(A, B)
← Qa1’(A, B) ∧ ¬Qa1(A, B)
← Qa2(A, B) ∧ ¬Qa2’(A, B)
← Qa2’(A, B) ∧ ¬Qa2(A, B)

← Qa1(A, B) ∧ ¬Qb1(A, B)
← Qa2(A, B) ∧ ¬Qb2(A, B)

ICL

DRA’

ICA’

ICM3

Figure 4: Example 3.13 in terms of predicate liveliness

 PROPOSITION 3.14. The derived predicate map_loss is lively in S
if and only if the mapping M is not lossless with respect to Q.

 Note that we check for the existence of a counterexample.

 PROOF. Let us assume that map_loss is lively in S. Hence, there
exists an instance of S in which map_loss is true. This means that
the answer to Q has a tuple that is not in the answer to Q’. By
construction of schema S, we can build from the instance of S,
three instances, DA for A, DA’ for A’ and DB for B. Given that A
and A’ are in fact the same schema, just with different predicate
names, and also queries Q and Q’ are the same query, we can
conclude that D

B

A’ is also an instance for A, DA’, and that the query
Q evaluated over DA returns a tuple that is not returned when
evaluated over DA’. Thus, we have two instances for schema A,
both consistent under mapping M with a third instance of schema
B, in such a way that both instances have the same answer for the
queries in the mapping but not for the query Q. According to the
definition of mapping losslessness, M is not lossless w.r.t. Q. The
other direction can be proved by following the reasoning
backwards.

The mapping losslessness property is the result of adapting the
property of view losslessness or determinacy [7, 28]. A set of
views V is lossless with respect to a query Q, under the exact view
assumption, if for every pair of database instances having the
same extensions for the views in V, they also have the same
answer for Q.
 In our case, the mapping losslessness property checks whether
the set of queries V = {QA

1,...,QA
n} is lossless with respect to the

query Q, but with the additional requirement that the extensions
for the queries in V must also ensure the existence of a consistent
instance for schema B.

 Finally, it can be seen that in the cases in which all the formulas
in the mapping have the form QA

i = QB
i, the mapping losslessness

and the query answerability properties, are equivalent.

 PROPOSITION 3.15. Let Q be a query over schema A, and let M
= (F, A, B) be a mapping where F = {f1,...,fn} and fi is QA

i = QB
i

for 1 ≤ i ≤ n. Mapping M is lossless w.r.t Q if and only if M
enables answering of Q.

 PROOF. Let us assume that a mapping M is lossless w.r.t a query
Q, and let us suppose that mapping M does not enable answering
the query Q. By the negation of query answerability, there exists
an instance DB of B and a pair of instances, DB A and DA’, of A, such
that DA and DA’ are both consistent under M with DBB but AQ(DA) ≠
AQ(DA’). Given that all mapping formulas are like QA

i = QB
i, it’s

true that AQA
i(DA) = AQA

i(DA’) for 1 ≤ i ≤ n. Hence, instances DA,
DA’ and DB are a counterexample for mapping losslessness and
we reached a contradiction. In the other way, let us assume now
that mapping M enables answering the query Q, and let us
suppose M is not lossless w.r.t Q. By the negation of losslessness,
there are two instances of A, D

B

A and DA’, in which AQA
i(DA) =

AQA
i(DA’) for 1 ≤ i ≤ n, there exists a third instance DBB of B

consistent under M with both instances, and such that AQ(DA) ≠
AQ(DA’). In this case, the three instances are directly a
counterexample for query answerability. Thus, we reached a
contradiction again.

4. EXPERIMENTAL EVALUATION
 The main goal of this section is to show the feasibility of our
approach by means of some experiments. We have used the CQC
Method [12], more precisely its implementation in the Schema

Validation Tool prototype [30], to perform the previous tests in
different situations.
 We first provide a brief overview of the CQC Method and the
SVT. and we explain how to use them to perform liveliness tests
and, therefore, to effectively check the desirable properties of
mappings we defined in the previous section. Then, we describe
some experiments we have performed using SVT for validating
mappings and comment on the results.

4.1. CQC Method and SVT
 The CQC (Constructive Query Containment) Method [12],
originally defined for query containment, performs a validation
test by trying to build a consistent instance for a database schema
in order to satisfy a given goal (a conjunction of literals). It is able
to deal with database schemas having integrity constraints, safe-
negated EDB and IDB literals, and comparisons.
 The method starts with the empty instance and uses different
Variable Instantiation Patterns (VIPs), according to the syntactic
properties of the views/queries and constraints in the schema, to
generate only the relevant facts to be added to the instance under
construction. If the method is able to build an instance that
satisfies all literals in the goal and does not violate any constraint,
then that instance is a solution and it shows that the goal is
satisfiable. The key point is that the VIPs guarantee that if
instantiating the variables in the goal using the constants they
provide the method does not find any solution, then no solution
exists.
 As proved in [12], the CQC Method always terminates when
there is a finite consistent instance satisfying the goal, or when the
goal is unsatisfiable.
 SVT (Schema Validation Tool) [30] is a prototype tool
designed to perform some validation tests on database schemas, in
particular the liveliness test in which we are interested here. It
accepts the following subset of the SQL language:
− Primary key, foreign key, boolean check constraints.
− SPJ views, negation, subselects (exists, in), union.
− Data types: integer, real, string.

 The current implementation of SVT assumes a set semantics of
views and queries and it does not allow null values neither
aggregate nor arithmetic functions.
 SVT implements the CQC Method as a backtracking algorithm.
It adds facts to the EDB under construction in order to make true
the literals in the goal. After adding a new fact, it checks if the
EDB violates some constraint. When it detects that some
constraint is violated or some literal in the goal is evaluated to
false (e.g. a comparison), it backtracks and reconsiders the last
decision. Some constraints, like foreign keys, can be repaired by
adding new literals to the goal and thus no backtracking is
required in these cases.
 Using the CQC Method, and thus SVT, for checking the
properties of mappings is easy once we have redefined them in
terms of predicate liveliness. We just have to provide the schema
and the goal. The schema will be the schema S we explained how
to construct in Section 3. The goal will be only one literal
corresponding to the derived predicate we defined in Section 3 for
each property.

4.2. Experiments
 We have experimentally evaluated the behavior of our
approach for validating mappings by means of some experiments
using SVT. We executed our experiments on an Intel Core 2 Duo,
2.16 GHz machine with Windows XP (SP2) and 2GB RAM. Each

There is a solution for the liveliness test
Mapping formulas with no comparisons

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

mapping formulas

R
un

ni
ng

 ti
m

e
(s

ec
)

strong sat. map. losslessness map. inference weak sat.

Mapping losslessness varying the number of comparisons in the

query, There is a solution for the test

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

mapping formulas

R
un

ni
ng

 ti
m

e
(s

ec
)

3 comparisons 2 comparisons 1 comparison no comparisons

There is no solution for the liveliness test
Mapping formulas with no comparisons

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

mapping formulas

R
un

ni
ng

 ti
m

e
(s

ec
)

strong sat. map. losslessness map. inference weak sat.

Mapping losslessness varying the number of comparisons in the

query, There is no solution for the test

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

mapping formulas

R
un

ni
ng

 ti
m

e
(s

ec
)

3 comparisons 2 comparisons 1 comparison no comparisons

Figure 5: (a-b) Comparison in performance between the properties and (c-d) study of the effect in mapping losslessness of
increasing query complexity by means of comparisons.

(a) (b)

(c) (d)

experiment was repeated three times and we report the average of
these three trials.
 The experiments were designed with the goal of measuring the
influence of two parameters: (1) the size of the mapping, and (2)
its complexity.
 We focused on the setting where the two sides of the mapping
are of similar complexity. Therefore, if we increase the
complexity of the mapping, we should increase the complexity in
both sides.
 We designed the scenario for the experiments using the
relational schema of the Mondial database [26], which models
geographic information. The schema consists in 28 tables with 38
foreign keys. We consider each table with their primary key,
unique and foreign key constraints.
 The scenario consists in two “copies” of the Mondial database
schema that play the roles of schema A and schema B,
respectively. The mapping between the two schemas contains one
formula for each table in the Mondial database. The mapping
states that each table of one schema is equal to its copy in the
other schema. Thus, the mapping consists in 28 formulas all with
the = operator, and all the queries in the mapping follow the
pattern: q(X̄) ← R(X̄), where R is a table from the corresponding
schema.
 Note that in this scenario the reformulation in terms of
predicate liveliness of both query answerability and mapping
losslessness is identical, i.e., ICM’ = ICL. The results shown in the
graphics for mapping losslessness are thus also applicable to

query answerability (not shown in the graphics). In fact, it is
expected that when the complexity of the schemas is similar, and
also the complexity of the queries in both sides of the mapping,
the schemas resulting from the reformulation of query
answerability and mapping losslessness be also of similar
complexity.
 In Figure 5(a), we show the results of the first experiment,
which consists on the execution of the liveliness tests for the
properties: strong satisfiability, mapping losslessness, mapping
inference and weak satisfiability, with an increasing number of
mapping formulas. We started the experiment considering just
one of the 28 formulas, which we selected randomly. Then, we
executed the test again but with two formulas, the previous one
and another also selected randomly among the remaining ones,
and so on. In this experiment, we consider mapping formulas with
queries that have no order comparisons. We also focus in this
experiment on the case where the liveliness tests have a solution.
Note that finding a solution means something different depending
on the property we are checking. Finding a solution for mapping
satisfiability means that the property holds, and the found solution
is an EDB showing that. For the other properties, finding a
solution means that a counterexample has been found and so the
property does not hold.
 In Figure 5(a), the two variants of mapping satisfiability, strong
and weak, can be checked without any change in the mapping
because both already hold. Instead, to check mapping inference
and mapping losslessness, it is required to find a formula and a

query, respectively, for which the properties do not hold. In the
case of mapping inference we used the following formula: q1 =
q2 where q1(X̄) ← R(X̄) ∧ Xi ≠ K1, q2(X̄) ← R’(X̄) ∧ Xi ≠ K2, and
R is a selected randomly table from schema A, R’ is the
corresponding copy of R in schema B, Xi ∈ X̄, and K1 and K2 are
two different fresh constants. We used this formula, as a
parameter for checking the mapping inference property because is
very similar to the formulas already in the mapping. We add the
inequalities to make the property fail while keeping the changes in
the mapping at minimum. We add an inequality in both queries
with the goal of keeping the two sides of the formula with the
same complexity. In the case of mapping losslessness, we
generated a parameter query that selects all the tuples from one
random table from schema A. We also modified the corresponding
formula that maps this table with its copy in schema B, in such a
way that now the formula maps all the columns in the table except
one.
 We can see in Figure 5(a) that the strong version of mapping
satisfiability is slower than the weak one. This is expected since
strong satisfiability requires checking all formulas to be sure that
all of them can be satisfied non-trivially, but weak satisfiability
can stop the checking after finding one. We can also see that
strong satisfiability is clearly slower than mapping losslessness
and mapping inference. That is because these two properties have
an additional parameter: a query and a formula respectively, and
in order to check the properties SVT has to deal only with the
fragment of the schema that is “affected” by the parameter query
or formula. On the other hand, strong satisfiability has to deal
with the whole part of the schema that participates in the
mapping, which in our scenario is the entire schema.
 Comparing mapping inference and mapping losslessness in
Figure 5(a), we can see that losslessness is slower. This is the
expected behavior since if we remind the reformulation of each
property in terms of liveliness we will see how the schema S for
losslessness is formed by grouping three schemas, while in the
case of mapping inference it is formed by grouping only two.
Thus, there is a significant difference of size between the resulting
schemas, which explains the gap between the computing times.
 In Figure 5(b), we can see the same experiment as in the
previous figure but for the case when there is no solution for the
liveliness tests. To make the two satisfiability properties fail in
this second experiment, we added to each table in schema A, a
check constraint requiring that one of the columns must be greater
than some constant. We add the same constraint to the
corresponding copy of the table in schema B. We also modified
the mapping formulas in such a way that the two queries in the
formula are forced to select those tuples that violate the check
constraints. In the case of mapping inference, we used one of the
formulas already in the mapping as a parameter. In this way, the
property does not hold. In the case of mapping losslessness, to
make the property fail we used a query that selects all tuples from
a randomly selected table (we did not make any modification in
the mapping).
 The first thing we can observe in Figure 5(b) is the global
increment of all computing times. This is not unexpected since the
SVT must try all the relevant instances provided by the VIPs
before concluding that no solution exists. In the previous
experiment, the search stopped when a solution was found. It is
worth to note that strong satisfiability and weak satisfiability has
exchanged their roles. Now the weak version of the property is
slower than the strong one. The intuitive explanation is that strong
satisfiability can stop as early as it finds a formula that cannot be

satisfied non-trivially, while weak satisfiability must continue the
searching until all the formulas have been considered.
 In Figure 5(c) and Figure 5(d), we show the results of two
experiments where it is measured the effect of increasing the
complexity of the parameter query when checking mapping
losslessness. The same experiments for the case of mapping
inference would be similar (graphics not shown). Figure 5(c)
shows the case where the there is a solution for the liveliness test
and Figure 5(d) shows the case where no solution exists. In each
experiment the query we used to check mapping losslessness with
respect to, is the same than in Figure 5(a) and 5(b) respectively.
The increment of complexity consists on adding comparisons to
the query definition. These comparisons are like X > K, where X
is a variable corresponding to one column of the underlying table,
and K is a fresh constant.
 In Figure 5(c), the increasing in the number of comparisons
results in a greater computation time. This is expected since more
constants in the definitions of the queries means a greater number
of constants provided by the VIPs. We can see a significant gap
between the cases of 2 and 3 comparisons. In Figure 5(d) a gap
already appears between the cases of 1 and 2 comparisons. It is
not unexpected that the increment of computing time grows when
we add more comparisons since the VIPs provide more constants
and thus there are more combinations to try when instantiating a
literal from the goal (Figure 5(c)). If in addition to that, there is no
solution, computing time increases even faster with respect to the
number of comparisons (Figure 5(d)).

Strong satisfiability varying the number of comparisons for each query
in the mapping, There is a solution for the liveliness test

0
50

100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

mapping formulas

R
un

ni
ng

 ti
m

e
(s

ec
s)

3 comparisons 2 comparisons 1 comparison no comparisons

Figure 6: Study of the effect in strong satisfiability of

increasing mapping complexity by means of comparisons.

 In Figure 6, we study the effect that adding comparisons to the
queries in the mapping has on strong satisfiability checking. We
focus here in the case when there is a solution for the liveliness
test. In the case when there is no solution, the results would be
similar but with lower times (remind Figure 5(b)). The
comparisons we add to the queries are like X > K, where X is a
variable corresponding to some column of the underlying table,
and K is a fresh constant. Note that we vary the number of
comparisons for each query in the mapping. That means, for
example, that when the mapping has 28 formulas, in the case of 3
comparisons per query there is an amount of 168 comparisons in
the whole mapping. The graphic shows a great increment of
computing time when going from the case of 2 comparisons per
query to the case of 3. The reason for that increment is the growth
in the number of combinations that can be made using the
constants provided by the VIPs. That number of combinations

increments exponentially as the graphic already shows. That
exponential cost cannot be avoided because the complexity of the
problem, but we believe that further work on optimizing the
implementation of the CQC Method can reduce computing time
considerably.

5. RELATED WORK
 A debugger for schema mappings is presented in [8]. The
approach is based on the idea of routes. These routes describe the
relationships between source and target data with the schema
mapping. The authors present this feature to allow a user to
explore and understand a schema mapping. It is the first
debugging tool developed for schema mappings [1]. The main
difference with our approach is that we do not need a source
instance and a target instance in order to do the validation. In our
approach is only required to provide the mapping and the mapped
schemas, and therefore we are able to reason over the mapping
itself rather than relying on a concrete instance that may not
expose all the potential pitfalls.
 However, the work in [8] can be seen as complementary to our
approach. Indeed, since we could get a counterexample when
validating a certain property, it would be interesting to use the
routes to allow the designer understand the counterexample and
discover why the checked property does not hold.
 As another difference we could mention that we deal with a
class of mappings more general than tgds. We consider mappings
defined by means of queries that may have negations and
comparisons, and schemas that may have views and check
constraints.
 In [31], the authors propose a framework for understanding and
refining mappings in Clio. It consists on making easier to the user
the task of building the mapping by means of examples. This
examples are samples of a given data source carefully selected to
help the user to understand the mapping and choose between
alternative mappings. Our approach can be used in conjunction
with this framework because it is always difficult for the user to
be aware of all possible questions so it would be useful if she
were able to confirm that some desirable properties hold for her
mapping. The main difference of our approach with respect to this
work is that we focus on checking some concrete desirable
properties, but not concretely on data exchange context so we do
not assume that there is a source data available.
 In [2], the authors address the problem of information
preservation in XML-to-relational mapping schemes. A mapping
schema consists, basically, on a procedure for storing XML
documents into a relational database and a procedure for
recovering the documents back. Compared with our mappings,
these mapping schemas would be mappings between models (the
XML model and the relational model in this case) while our
mappings are between two concrete relational schemas. Our
approach is related with this in the sense that the authors define
two properties of information preservation for mapping schemas.
They define validating mapping schemas as those in which valid
documents can be mapped into legal databases and all legal
databases are mappings of valid documents. They also define
lossless mapping schemas as those that preserve the structure and
content of the XML documents. Note that despite of its name this
property is not the same as our mapping losslessness property.
The authors show decidability results for these two properties and
propose a XML-to-relational mapping schema that satisfies both.
 The related work for each validation property has been stated in
the corresponding section.

6. CONCLUSIONS AND FUTURE WORK
 We have proposed a new approach for validating schema
mappings which relies on determining the accomplishment of
certain desirable properties of those mappings. We have
considered two properties already identified in the literature [22]:
mapping inference and query answerability, and we have
introduced two new properties: mapping satisfiability and
mapping losslessness.
 We have also shown how all these properties may be
established by means of checking liveliness of a distinguished
derived predicate in a new schema that integrates the two mapped
schemas and the mapping.
 Finally, we have described the results of some experiments we
performed using an implementation of our CQC Method for
validating the four properties in different scenarios.
 As a future work, it would be interesting to find new desirable
properties of mappings capturing validation information not
covered by the four properties discussed here and that were
helpful for mapping designers. Moreover, further work on
optimizing the implementation of the CQC Method could also be
interesting. We also envisage extending our approach for
mappings beyond the relational-to-relational setting, that is,
considering other classes of schemas in addition to the relational
one (e.g. XML, object-oriented, etc.).

7. REFERENCES
[1] Bogdan Alexe, Laura Chiticariu, Wang Chiew Tan:

SPIDER: a Schema mapPIng DEbuggeR. VLDB 2006:
1179-1182

[2] Denilson Barbosa, Juliana Freire, Alberto O. Mendelzon:
Information Preservation in XML-to-Relational
Mappings. XSym 2004: 66-81

[3] Philip A. Bernstein: Applying Model Management to
Classical Meta Data Problems. CIDR 2003

[4] Philip A. Bernstein, Todd J. Green, Sergey Melnik, Alan
Nash: Implementing Mapping Composition. VLDB 2006:
55-66

[5] Microsoft BizTalk Server 2004. BizTalk Mapper.
http://msdn.microsoft.com/library/en-
us/introduction7/html/ebiz_intro_story_jgtg.asp.

[6] Angela Bonifati, Elaine Qing Chang, Terence Ho, Laks V.
S. Lakshmanan, Rachel Pottinger: HePToX: Marrying
XML and Heterogeneity in Your P2P Databases. VLDB
2005: 1267-1270

[7] Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, Moshe Y. Vardi: Lossless Regular Views.
PODS 2002: 247-258

[8] Laura Chiticariu, Wang Chiew Tan: Debugging Schema
Mappings with Routes. VLDB 2006: 79-90

[9] Robin Dhamankar, Yoonkyong Lee, AnHai Doan, Alon
Y. Halevy, Pedro Domingos: iMAP: Discovering
Complex Matches between Database Schemas. SIGMOD
Conference 2004: 383-394

[10] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller,
Lucian Popa: Data exchange: semantics and query
answering. Theor. Comput. Sci. 336(1): 89-124 (2005)

[11] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang
Chiew Tan: Composing schema mappings: Second-order
dependencies to the rescue. ACM Trans. Database Syst.
30(4): 994-1055 (2005)

[12] Carles Farré, Ernest Teniente, Toni Urpí: Checking query
containment with the CQC method. Data Knowl. Eng.
53(2): 163-223 (2005)

[13] Hendrik Decker, Ernest Teniente, Toni Urpí: How to
Tackle Schema Validation by View Updating. EDBT
1996: 535-549

[14] Marc Friedman, Alon Y. Levy, Todd D. Millstein:
Navigational Plans For Data Integration. AAAI/IAAI
1999: 67-73

[15] Ariel Fuxman, Mauricio A. Hernández, C. T. Howard Ho,
Renée J. Miller, Paolo Papotti, Lucian Popa: Nested
Mappings: Schema Mapping Reloaded. VLDB 2006: 67-
78

[16] Laura M. Haas, Mauricio A. Hernández, Howard Ho,
Lucian Popa, Mary Roth: Clio grows up: from research
prototype to industrial tool. SIGMOD Conference 2005:
805-810

[17] Alon Y. Halevy, Zachary G. Ives, Jayant Madhavan, Peter
Mork, Dan Suciu, Igor Tatarinov: The Piazza Peer Data
Management System. IEEE Trans. Knowl. Data Eng.
16(7): 787-798 (2004)

[18] Alon Y. Halevy, Inderpal Singh Mumick, Yehoshua
Sagiv, Oded Shmueli: Static analysis in datalog
extensions. J. ACM 48(5): 971-1012 (2001)

[19] Phokion G. Kolaitis: Schema mappings, data exchange,
and metadata management. PODS 2005: 61-75

[20] Maurizio Lenzerini: Data Integration: A Theoretical
Perspective. PODS 2002: 233-246

[21] Jayant Madhavan, Philip A. Bernstein, AnHai Doan, Alon
Y. Halevy: Corpus-based Schema Matching. ICDE 2005:
57-68

[22] Jayant Madhavan, Philip A. Bernstein, Pedro Domingos,
Alon Y. Halevy: Representing and Reasoning about
Mappings between Domain Models. AAAI/IAAI 2002:
80-86

[23] Jayant Madhavan, Alon Y. Halevy: Composing Mappings
Among Data Sources. VLDB 2003: 572-583

[24] Altova MapForce. http://www.altova.com.
[25] Sergey Melnik, Philip A. Bernstein, Alon Y. Halevy,

Erhard Rahm: Supporting Executable Mappings in Model
Management. SIGMOD Conference 2005: 167-178

[26] The Mondial database
http://www.dbis.informatik.uni-goettingen.de/Mondial/.

[27] Erhard Rahm, Philip A. Bernstein: A survey of
approaches to automatic schema matching. VLDB J.
10(4): 334-350 (2001)

[28] Luc Segoufin, Victor Vianu: Views and queries:
determinacy and rewriting. PODS 2005: 49-60

[29] Stylus Studio. http://www.stylusstudio.com.
[30] Ernest Teniente, Carles Farré, Toni Urpí, Carlos Beltrán,

David Gañán: SVT: Schema Validation Tool for
Microsoft SQL-Server. VLDB 2004: 1349-1352

[31] Ling-Ling Yan, Renée J. Miller, Laura M. Haas, Ronald
Fagin: Data-Driven Understanding and Refinement of
Schema Mappings. SIGMOD Conference 2001: 485-496

[32] Xubo Zhang, Z. Meral Özsoyoglu: Implication and
Referential Constraints: A New Formal Reasoning. IEEE
Trans. Knowl. Data Eng. 9(6): 894-910 (1997)

	ABSTRACT
	1. INTRODUCTION
	2. SCHEMAS AND MAPPINGS
	3. CHECKING DESIRABLE PROPERTIES OF MAPPINGS
	3.1. Mapping Satisfiability
	3.2. Mapping Inference
	3.3. Query Answerability
	3.4. Mapping Losslessness

	4. EXPERIMENTAL EVALUATION
	4.1. CQC Method and SVT
	4.2. Experiments

	5. RELATED WORK
	6. CONCLUSIONS AND FUTURE WORK
	7. REFERENCES

