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ABSTRACT 
Mappings between schemas are key elements in several contexts 
such as data exchange, data integration, peer data management 
systems, etc. In all these contexts, the process of designing a 
mapping requires the participation of a mapping designer that 
needs a way to validate the mapping being defined, i.e., to check 
whether the mapping is in fact what the designer intended. 
However, to date very little work has directly focused on the 
effective validation of schema mappings. In this paper, we present 
a new approach for validating schema mappings that allows the 
mapping designer to ask questions about the accomplishment of 
certain desirable properties of these mappings. We consider four 
properties of mappings: mapping satisfiability, mapping 
inference, query answerability and mapping losslessness. We 
reformulate these properties in terms of the problem of checking 
the liveliness of a derived predicate. We emphasize that this 
approach is independent of any particular method for liveliness 
checking and, to show the feasibility of our approach, we use an 
implementation of the CQC Method and provide some 
experimental results. 
 

1. INTRODUCTION 
 Mappings between schemas are key elements for any system 
that requires an interaction of heterogeneous data and 
applications. Data exchange [10, 19] and data integration [20] are 
two well known contexts in which mappings play a central role. 
Another context in which mappings are also extensively used is 
that of peer data management systems [6, 17]. In all these cases, 
schema mappings are specifications that model a relationship 
between schemas. Several formalisms are used for defining them. 
In data exchange, tuple-generating dependencies (tgds) and 
equality-generating dependencies (egds) are widely used [10]. In 
the context of data integration, global-as-view (GAV), local-as-
view (LAV), and global-and-local-as-view (GLAV) [14, 20] are 
the most common approaches. A further formalism that has 
recently emerged is that of nested mappings [15], which extends 
previous formalisms for relational and nested data. Model 
management [3, 25] is also a widely known approach which 
establishes a conceptual framework for handling schemas and 
mappings in a generic way, providing a set of generic operators, 
such as the composition of mappings [4, 11, 23]. 
 Data transformation languages like XSLT, XQuery and SQL 
are also used for specifying mappings in several existing tools that 
help engineers to build mappings [5, 24, 29]. One example of a 
system for producing mappings is Clio [16], which can be used to 
semi-automatically generate a schema mapping from a set of 
correspondences between schema elements (e.g. field names). 

This set of uninterpreted correspondences is usually called a 
matching. Hence, finding a matching is the first step towards 
developing a schema mapping. A significant amount of work on 
schema matching techniques can be found in the literature, among 
which we could cite [9, 21, 27]. 
 Nevertheless, the process of designing a mapping requires the 
feedback of a human engineer. The designer guides the generating 
process by choosing between alternative candidates, and 
successively refining the mapping. The designer thus needs a way 
to check whether the mapping produced is in fact what was 
intended, that is, the developer must validate the mapping. 
However, to date very little work has directly focused on the 
effective validation of schema mappings.  
 In this paper, we present a new approach for validating schema 
mappings that allows the mapping designer to ask questions about 
the accomplishment of certain desirable properties of these 
mappings. Answers to these questions will provide information on 
whether the mapping correctly and adequately matches the 
intended needs and requirements.  
 We consider the two properties identified in [22] as important 
properties of mappings: mapping inference and query 
answerability. We likewise introduce two new properties: 
mapping satisfiability and mapping losslessness.1

 Mapping satisfiability is aimed at detecting incompatibilities, 
either within the mapping or between the mapping and the 
constraints of the schemas. Mapping inference can be used to 
check for redundancies in the mapping or to check the 
equivalence of two mappings.2

 In general, mappings lose some information and can be partial 
or incomplete, since they rarely map all the concepts from one 
schema to the other. Query answerability and mapping 
losslessness are aimed at detecting whether these lossy mappings 
still preserve some relevant information, which is represented in 
terms of some queries defined over one of the schemas. 
Specifically, query answerability informs the designer whether 
two mapped schemas are equivalent with respect to these queries, 
in the sense that they would obtain the same answers in both 
sides. Instead, mapping losslessness is aimed at detecting whether 
the mapping does not lose information from one schema to the 
other, in the sense that the queries over the first schema can also 
be computed over the second one. Note that it is not required for 
the answers obtained from the second schema to be the exact ones 
obtained from the former. 

                                                                 
1 This work was supported in part by Microsoft Research through the 
European PhD Scholarship Programme. 
2 This work was partially supported by the Spanish Ministerio de 
Educación y Ciencia under project TIN2005-05406. 
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 In summary, the main idea of our approach is to define, for 
each particular property, a distinguished derived predicate which 
describes the fulfillment of the property. This predicate will be 
defined over a new schema that integrates the two mapped 
schemas and a set of integrity constraints that make the 
relationship modeled by the mapping explicit. Thus, if the 
distinguished predicate is lively [13, 18, 32] over this schema, the 
property is satisfied. 
 Hence, the four properties we consider in this paper are 
expressed in terms of the problem of checking whether a derived 
predicate is lively in a database schema. This allows us to use one 
single method to effectively check all the properties. It is worth 
noting that any existing method for checking the liveliness of a 
predicate can be used, provided that it is able to deal with the 
classes of queries and integrity constraints that appear in the 
database schema. 
 To show the feasibility of our approach, we will use our CQC 
Method [12], which is able to deal with a broad class of database 
schemas and, thus, we are able to consider schemas and mappings 
with a high degree of expressiveness.  
 In this paper, we consider mappings defined as binary 
relationships between two relational schemas, which are specified 
as sets of mapping formulas in a similar way to the GLAV 
approach. 

Contributions 
• We propose a new approach for validating schema mappings. 
This approach consists in defining a set of desirable properties of 
mappings and reformulates them in terms of predicate liveliness. 
The approach is independent of the method used for checking 
liveliness. 
• We show how to use our approach for checking two important 
properties of mappings already identified in the literature [22]: 
mapping inference and query answerability.  
• We propose two additional properties—mapping satisfiability 
and mapping losslessness—to capture validation information not 
covered by the two other properties. 
• We show that our mapping losslessness property is in fact an 
extension of query answerability. We can use losslessness to try 
to obtain useful validation information when query answerability 
does not hold. 
• We show how to use our CQC Method to effectively check the 
four mapping properties. The CQC Method is able to deal with 
schemas that have integrity constraints, safe-negated EDB and 
IDB literals, and comparisons.  

 The paper is organized as follows. Section 2 introduces the 
basic concepts and notation to be used throughout the paper. 
Section 3 presents our approach, the properties and their 
formulation in terms of predicate liveliness. Section 4 presents the 
experimental evaluation using the CQC Method. In Section 5, we 
address related work and, finally, in Section 6 we present our 
conclusions and suggestions for further work. 

2. SCHEMAS AND MAPPINGS 
 In the following sections, we consider relational schemas, and 
mappings between two relational schemas. These mappings 
define a binary relationship on the sets of instances of the two 
schemas. We express schemas and mappings in a logic notation, 
in a similar way as is done in many other formalisms (e.g. tgds 
and GLAV). Now, we introduce the basic concepts. 

Schemas A schema S is a tuple (DR, IC) where DR is a finite set 
of deductive rules and IC a finite set of constraints. 
 A deductive rule has the form: 
 

 p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧  
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct
 

and a constraint (or condition) the denial form: 
 

 ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧  
 ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct. 
 

The symbols p and r1, ..., rm are predicates. The tuples X̄, X̄1, ..., 
X̄n, Ȳ1, ..., Ȳs contains terms, which are either variables or 
constants. Each Ci is a built-in literal in the form of t1 θ t2, where 
t1 and t2 are terms and operator θ is <, ≤, >, ≥, = or ≠. The atom 
p(X̄) is the head of the rule, and r1(X̄1), ..., rn(X̄n), ¬rn+1(Ȳ1), ..., 
¬rm(Ȳs) are positive and negative ordinary literals (those that are 
not built-in). We require every rule and constraint be safe, that is, 
every variable occurring in X̄, Ȳ1, ..., Ȳs, C1, ..., Ct must also appear 
in some X̄i. Note that differing from other formalisms like tgds 
and egds, we express constraints stating what may not happen 
instead of what should happen. 
 Predicates that appear in the head of a deductive rule are 
derived predicates also called intensional database (IDB) 
predicates. They correspond to views or queries. The rest are base 
predicates also called extensional database (EDB) predicates. 
They correspond to tables. 
 For a schema S = (DR, IC), a schema instance D is an EDB, 
that is, a set of ground facts about the base predicates of S (the 
tuples stored in the database). We denote by DR(D) the whole set 
of ground facts about base and derived predicates that are inferred 
from an instance D, i.e., the fix-point model of DR∪D. 
 An instance D violates a constraint ← L1 ∧ ... ∧ Lk if (L1 ∧ ... ∧ 
Lk)σ is true on DR(D) for some ground substitution σ. An 
instance D is consistent with the schema S if it violates no 
constraint in IC. 
 A query over a schema is a finite set of deductive rules that 
define the same n-ary predicate. Given a schema S = (DR, IC) and 
an instance D, the answer to a query Q, defining the predicate q, 
over S on D, written AQ(D), is the set of all ground facts about q 
obtained evaluating the deductive rules from both Q and DR on D, 
i.e., AQ(D) = {q(ā) | q(ā) ∈ (Q∪DR)(D)}. 

Mappings A mapping M between two schemas A = (DRA, ICA) 
and B = (DRB, ICB BB) is a triplet (F, A, B) where F is a finite set of 
formulas {f1, ..., fu}. Each formula fi is either of the form QA

i = QB
i 

or QA
i ⊆ QB

i, where QA
i and QB

i are queries over the schemas A 
and B, respectively. Obviously, both queries must be compatible, 
that is, the predicates they define must have the same number and 
type of arguments. We will assume that the deductive rules for 
these predicates are either on DRA or on DRB. B

 In this paper, we consider queries used to define the mapping 
formulas as well as IDB predicates under the exact view 
assumption [20], i.e., the extension of a view or query is exactly 
the set of tuples satisfying their definition in the database. 
 We say that two schema instances DA and DB are consistent 
under a mapping M = (F, A, B) if all formulas in F are true. We 
say that a formula Q

B

A
i = QB

i is true if the tuples obtained as an 
answer to QA

i on DA are the same that the ones obtained as an 
answer to QB

i on DBB. More formally, the formula holds when for 
all tuple of constants ā, qA

i(ā) ∈ AQA
i(DA) if and only if qB

i(ā) ∈ 



AQB
i(DB), where qB

A
i and qB

i are the predicates defined by the two 
queries in the formula. Similarly, a formula QA

i ⊆ QB
i is true if the 

tuples obtained as an answer to QA
i on DA are a subset of those 

obtained as an answer to QB
i on DBB. 

3. CHECKING DESIRABLE 
PROPERTIES OF MAPPINGS 
 In this section, we describe our approach to validate mappings: 
(1) we formalize the desirable properties that we consider, and (2) 
we explain how to express the fulfillment of each property in 
terms of predicate liveliness [13, 18, 32]. 
 A predicate p is lively in a schema S if there is some consistent 
instance of S where at least one fact about p is true. In our case, 
schema S is defined in such a way that considers the two mapped 
schemas, A and B, and the mapping M, together. We assume that 
the two original schemas have different predicate names; 
otherwise, we can just rename the predicates. In general, the 
schema S is built by grouping the deductive rules and the integrity 
constraints from the two schemas, and then adding new 
constraints to make explicit the relationship stated by the 
mapping. Formally, S = (DRA∪DRB, ICB A∪ICBB∪ICM) where ICM is 
the set of additional constraints enforcing the mapping formulas. 
For each mapping formula like QA

i = QB
i, two constraints are 

needed: ← QA
i(X̄) ∧ ¬QB

i(X̄) and ← QB
i(X̄) ∧ ¬QA

i(X̄). They state 
that queries QA

i and QB
i may not give different answers, that is, 

cannot be true neither QA
i ⊈ QB

i nor QB
i ⊈ QA

i. When formula is 
like QA

i ⊆ QB
i, just the first constraint is required: ← QA

i(X̄) ∧ 
¬QB

i(X̄). 
 Having schema S defined, we will define for each property a 
new derived predicate p, such that p will be lively in S if and only 
if the property holds.  
 Next, we detail each property and its concrete reformulation in 
terms of predicate liveliness. 

3.1. Mapping Satisfiability 
 As stated in [20], when constraints are considered in the global 
schema in a data integration context, it may be the case that the 
data retrieved from the sources cannot be reconciled in the global 
schema in such a way that both the constraints of the global 
schema and the mapping are satisfied. 
 In general, whenever we have a mapping between two schemas 
that have constraints there may be incompatibilities between the 
constraints and the mapping, or even among the mapping 
formulas. Therefore, checking whether there is at least one case 
when the mapping and the constraints are satisfied simultaneously 
is clearly a validation task that should be done, and this is 
precisely what this first desirable property of mapping does. 
 
 DEFINITION 3.1. We say that a mapping M = (F, A, B) is 
satisfiable if there exists a pair of non-empty consistent instances 
DA and DB of schemas A and B, respectively, such that they are 
also consistent under M. 

B

 
 Note that the above definition explicitly avoids the trivial case 
when DA and DB are both the empty set. However, the formulas in 
F can still be satisfied trivially. We say that a formula Q

B

A
i = QB

i is 
satisfied trivially when both AQA

i(DA) and AQB
i(DBB) are empty 

sets. A formula QA
i ⊆ QB

i is satisfied trivially when AQA
i(DA) is 

the empty set. Therefore, to really validate the mapping, we may 
ask if M is either strongly satisfiable or weakly satisfiable. 
 

 DEFINITION 3.2. A mapping M = (F, A, B) is strongly satisfiable 
if all formulas in F are satisfied non-trivially. The mapping is 
weakly satisfiable if at least one formula in F is satisfied non-
trivially. 
 
 EXAMPLE 3.3. In this example, we consider schemas A and B, 
shown in Figure 1, and the following mapping: 
 

 M = (F, A, B), 
 where F = {Qa1 = Qb1, Qa2 = Qb2}. 
 

Note that the queries in the mapping formulas are those also 
shown in Figure 1. 
 

 SCHEMA A 
Tables: 
employee(emp-id, category, happiness-degree) 
category(cat-id, salary) 
Constraints: 
← category(C, S) ∧ S > 100 
← employee(E, C, H) ∧ ¬auxFkEmpToCat(C) 
Deductive rules: 
auxFkEmpToCat(C) ← category(C, S) 
Qa1(E, H) ← employee(E, C, H) ∧ H > 10 
Qa2(E, S) ← employee(E, C, H) ∧ category(C, S) 
 
SCHEMA B 
Tables: 
emp(id, salary) 
happy-emp(emp-id, happiness-degree) 
Constraints: 
← happy-emp(E, H) ∧ emp(E, S) ∧ S ≤ 200 
← happy-emp(E, H) ∧ ¬auxFkHapToEmp(E) 
Deductive rules: 
auxFkHapToEmp(E) ← emp(E, S) 
Qb1(E, H) ← happy-emp(E, H) 
Qb2(E, S) ← emp(E, S) 

 
Figure 1: Two example schemas. 

 
 
 Schema A has two tables: employee(emp-id, category, 
happiness-degree) and category(cat-id, salary). Table employee is 
related with table category via a foreign key where 
employee.category references category.cat-id. Table category has 
a constraint on the salary which may not be greater that 100. In 
schema B there are also two tables: emp(id, salary) and happy-
emp(emp-id, happiness-degree). There is a foreign key from 
happy-emp.emp-id to emp.id and a constraint stating that all 
happy employees have a salary greater than 200. Mapping M 
relates instances of A and B where all employees with a happiness 
degree greater than 10 on A are happy-emps on B, and all 
employees on A are emps on B (together with their salary). 
 Note in Figure 1 that expressing a foreign key constraint 
requires the use of a derived predicate (auxFkEmpToCat and 
auxFkHapToEmp) because we require negated literals to be safe. 
 In this example, we can see that mapping M is not strongly 
satisfiable. The first formula, Qa1 = Qb1, can only be satisfied 
trivially. First, in schema B all happy-emps must have a salary 
over 200 while, in schema A, all employees, no matter their 
happiness degree, have a maximum salary of 100. At the same 
time, formula Qa2 = Qb2, enforces that employees should have 
the same salary in both sides. 



 In contrast, the second formula is non-trivially satisfiable and, 
thus, M is weakly satisfiable. That is because there may be 
employees on A with a happiness degree of 10 or lower, and emps 
on B that are not happy-emps. 
 Notice also that if we remove the second formula in the 
mapping, i.e. Qa2 = Qb2, and kept the first one alone, then the 
resulting mapping would be strongly satisfiable. This is an 
example of how satisfiability of one mapping formula may be 
affected by the rest of formulas in the mapping.  
 
 To formulate this mapping satisfiability property in terms of 
checking predicate liveliness, we build a new schema S grouping 
schemas A, B, and the mapping M: 
 

 S = (DRA∪DRB, ICB A∪ICBB∪ICM), 
 

and define a new derived predicate in order to check whether it is 
lively in S. Given that there are two types of satisfiability, strong 
and weak, we define two new predicates, one for each case. 
 Assuming that F = {f1, ..., fn} and that we want to check strong 
satisfiability, we define the new derived predicate strong_sat, as 
follows: 
 

 strong_sat ← QA
1(X̄1) ∧ ... ∧ QA

n(X̄n) 
 

where no variable in X̄i appears in X̄j , j ≠ i. 
 In a similar way, for the case of weak satisfiability, we would 
define the new derived predicate weak_sat, as follows: weak_sat 
← QA

1(X̄1) ∨ ... ∨ QA
n(X̄n), but due to the fact that rules’ bodies 

must be conjunctions of literals, it should be defined with the 
following deductive rules: 
 

 weak_sat ← QA
1(X̄1), 

 ..., 
 weak_sat ← QA

n(X̄n). 
 
 Figure 2 shows the schema we obtain when expressing 
Example 3.3 in terms of predicate liveliness. Note that the schema 
contains the deductive rule for the derived predicate strong_sat. 
 
 PROPOSITION 3.4. The derived predicate strong_sat/weak_sat is 
lively in schema S = (DRA∪DRB, ICB A∪ICBB∪ICM) if and only if the 
mapping M = (F, A, B) is strongly/weakly satisfiable. 
 
 PROOF. Let us suppose strong satisfiability. Therefore, we know 
that there exist a pair of instances not violating the constraints on 
A and B, making true all mapping formulas. Strong satisfiability 
implies that all formulas are satisfied non-trivially, so we can say 
that all QA

i queries on F have at least one tuple on its answer. 
Then, by definition strong_sat  will be true. Therefore, we have 
found an instance of schema S where strong_sat is true and that 
proves that strong_sat is lively in S. On the other hand, to get 
strong_sat lively in S, it is required by the definition of strong_sat 
the existence of a consistent instance of S where each query QA

i 
contains at least one tuple in its answer. By definition of S, that 
means that there exists a consistent instance of A and a consistent 
instance of B such that these two instances are also consistent 
under the mapping, that is, the mapping is satisfiable. Moreover, 
all QA

i queries have at least one answer so all mapping formulas 
are satisfied non-trivially. Thus, we can conclude that the 
mapping is strongly satisfiable. 
 The proof for the case of weak satisfiability is very similar to 
the previous one.  

 
 SCHEMA S 

Deductive rules: 
strong_sat ← Qa1(X, Y) ∧ Qa2(Z, U) 
 

auxFkEmpToCat(C) ← category(C, S) 
Qa1(E, H) ← employee(E, C, H) ∧ H > 10 
Qa2(E, S) ← employee(E, C, H) ∧ category(C, S) 
 

auxFkHapToEmp(E) ← emp(E, S) 
Qb1(E, H) ← happy-emp(E, H) 
Qb2(E, S) ← emp(E, S) 
 

Constraints: 
← category(C, S) ∧ S > 100 
← employee(E, C, H) ∧ ¬auxFkEmpToCat(C) 
 

← happy-emp(E, H) ∧ emp(E, S) ∧ S ≤ 200 
← happy-emp(E, H) ∧ ¬auxFkHapToEmp(E) 
 

← Qa1(A, B) ∧ ¬Qb1(A, B) 
← Qb1(A, B) ∧ ¬Qa1(A, B) 
← Qa2(A, B) ∧ ¬Qb2(A, B) 
← Qb2(A, B) ∧ ¬Qa2(A, B) 

DRA

DRB 

ICA 

ICB 

ICM 

 
Figure 2: Example 3.3 in terms of predicate liveliness 

 
 

3.2. Mapping Inference 
 The mapping inference property was identified in [22] as an 
important property of mappings. It consists on checking whether a 
mapping formula is entailed by a given mapping, that is, whether 
it does not add new mapping information. One application of the 
property would be that of checking whether a formula in the 
mapping is redundant, that is, entailed by the other formulas. 
Another application would be that of checking the equivalence of 
two different mappings. We can say that two mappings are 
equivalent if the formulas in the first mapping entail all the 
formulas in the second, and the vice versa. 
 The results presented in [22] are in the setting of conjunctive 
queries without considering integrity constraints in the schemas. 
The proof for the complexity result shows that the property can be 
checked in this setting by means of finding a maximally contained 
rewriting and query containment. Here, we consider a broader 
class of queries along with the presence of constraints in the 
schemas. 
 
 DEFINITION 3.5. (see [22]) Let a formula f be defined over 
schemas A and B. Formula f is inferred from a mapping M = (F, 
A, B) if all pair of instances of A and B consistent under M also 
satisfy the formula f. 
 
 EXAMPLE 3.6. We take schemas A and B (on Figure 1), but 
without the salary constraints. We define a new mapping: 
 

 M2 = (F2, B, A), 
 where F2 contains just one mapping formula, Qb2 = Qa2, 
 

and the queries on this formula have the same definition than in 
Example 3.3. 
 We consider also a new formula f1, q1 ⊆ q2, where q1 and q2 
are queries over B and A, respectively, with the following 
definitions: 
 



 q1(E) ← happy-emp(E, H) 
 q2(E) ← employee(E, C, H) 
 

 The foreign key on schema B, from happy-emp to emp, 
guarantees that all happy-emps are also emps so, if the mapping 
formula in M2 holds, that means they are also employees on the 
corresponding instance of schema A. Thus, it is true what formula 
f1 states: the employees’ identifiers on table happy-emp are a 
subset of those on table employee. Therefore f1 is entailed by 
mapping M2. 
 Let us consider now another formula f2, q3 ⊆ q4, having q3 
and q4 the following definitions: 
 

 q3(E, H) ← happy-emp(E, H) 
 q4(E, H) ← employee(E, C, H) 
 

 This time, f2 is not entailed by mapping M2. The difference is 
that we are not projecting just the employee’s identifier as before, 
but also the happiness degree, and given that the formula on the 
mapping does not care about the happiness degree, we can build a 
counterexample showing that entailment of f2 does not hold. This 
counterexample consists of a pair of instances of A and B, DA and 
DB, that satisfy the mapping formula in MB 2 but that do not satisfy 
f2 like, for instance, the following EDBs: DA = {employee(0, 0, 
5), category(0, 50)} and DBB = {emp(0, 50), happy-emp(0, 10)}. It 
is not difficult to show that in this counterexample the formula in 
mapping M2 holds: Aqb2(DB) = {qb2(0, 50)} and AB qa2(DA) = 
{qa2(0, 50)}, but f2 does not: Aq3(DBB) = {q3(0, 10)} and Aq4(DA) 
= {q4(0, 5)}.  
 
 Expressing the mapping inference property in terms of 
predicate liveliness is best done by checking the negation of the 
property (i.e., the lack of inference) instead of checking the 
property directly. The negated property states that a certain 
formula f is not inferred from a mapping M if there exists a pair of 
schema instances A and B, consistent under M, such that they do 
not satisfy f. In this way, the derived predicate for checking 
liveliness must be the negation of f. When f has the form qa = qb, 
then we define the new derived predicate map_inf with the 
following two deductive rules: 
 

 map_inf ← qa(X̄) ∧ ¬qb(X̄) 
 map_inf ← qb(X̄) ∧ ¬qa(X̄). 
 

Otherwise, when f has the form qa ⊆ qb, just the following 
deductive rule is needed: 
 

 map_inf ← qa(X̄) ∧ ¬qb(X̄). 
 

 We define the new schema S as usual, putting together the 
deductive rules and constraints from schemas A and B, and 
considering additional constraints to enforce mapping formulas: 
 

 S = (DRA∪DRB, ICB A∪ICBB∪ICM). 
 
 The schema that results from the reformulation of Example 3.6 
in terms of predicate liveliness is similar to the one shown in 
Figure 2 but removing the constraints about salary and adding the 
rules defining the predicate map_inf. 
 
 PROPOSITION 3.7. The derived predicate map_inf will be lively 
in S if and only if the formula f is not inferred from the mapping 
M. 
 

 PROOF. Let us assume f has the form qa = qb. By the definition 
of lively, when map_inf is lively in S, there exists a consistent 
instance of S where map_inf is true. By construction of S, the 
existence of a consistent instance of S leads to the existence of a 
pair of consistent instances of A and B such that they are also 
consistent under the mapping. By the definition of map_inf, and 
given that map_inf is true, there exists a tuple either belonging to 
the answer of qa but not belonging to the answer of qb, or 
belonging to the answer of qb but not to the answer of qa. Thus, 
by definition of f, this pair of instances does not satisfy f.  
 On the other hand, let us suppose that there exist a pair of 
instances of A and B consistent under the mapping but that do not 
satisfy the formula f. By construction of S, there is a consistent 
instance of S for which the formula f does not hold. That means 
that qa ≠ qb, i.e., either qa ⊈ qb or qb ⊈ qa. Then, by definition of 
map_inf, map_inf is true in this instance of S, i.e., map_inf is 
lively in S. 
 The proof for the case when f is like qa ⊆ qb can be 
immediately obtained from the previous one.  

3.3. Query Answerability 
 In this section we consider the query answerability property, 
introduced in [22] as an important property of mappings. The 
intuition behind this property is that a mapping that is partial or 
incomplete can be, however, adequate for a certain task. This task 
will be represented by means of a certain query. The property will 
check whether the mapping enables answering of this query over 
the schemas being mapped. While the previous two properties are 
intended to validate the mapping without considering its context, 
this property validates the mapping with respect to the use for 
which it is designed. 
 As with mapping inference, the results presented in [22] are in 
the setting of conjunctive queries without constraints in the 
schemas. The proof for the complexity result showed that the 
property can be checked by means of the existence of an 
equivalent rewriting. As in the previous case, we consider a 
broader class of queries along with the presence of constraints in 
the schemas. 
 
 DEFINITION 3.8. (see [22]) Let be Q a query over a schema A. 
The mapping M = (F, A, B) enables query answering of Q if the 
following holds. Let DB be a consistent instance of B. Let DB A be 
the set of instances of schema A consistent under M with DBB. 
Then, AQ(DA) = AQ(DA’) for every pair of consistent instances DA, 
DA’ ∈ DA. 
 
 Intuitively, the mapping enables answering the query when, 
given a consistent instance of schema B, the answer for Q over 
schema A gets uniquely determined. In other words, when the 
query answerability property holds for a given query Q over a 
schema A, the exact answer for Q over an instance DA can be 
computed having only access to the tuples in the corresponding 
mapped instance DB. B

 
 EXAMPLE 3.9. We consider again schemas A and B shown in 
Figure 1, but without the salary constraints. We consider also the 
mapping M from Example 3.3 and a query Q defined over schema 
A as follows: 
 

 q(E) ← employee(E, C, H) ∧ H > 5 
 



 It can be seen that mapping M does not enable answering of 
this query Q. The intuition is that the mapping only takes care of 
those employees of schema A who have a happiness degree 
greater than 10, while the evaluation of the query Q needs also 
access to the employees with a happiness degree between 5 and 
10. Thus, we can build a counterexample consisting of three 
consistent instances: one instance DB of schema B and two 
instances of schema A, D

B

A and DA’. The instances DA (DA’) and 
DBB of the counterexample are consistent under the mapping M but 
the answer of the query Q is not the same in both instances of the 
schema A, i.e., AQ(DA) ≠ AQ(DA’). These criteria are satisified, for 
instance, by the following EDBs: DB = {emp(0, 150), emp(1, 
200), happy-emp(1, 15)}, D

B

A = {employee(0, 0, 6), employee(1, 1, 
15), category(0, 150), category(1, 200)} and DA’ = {employee(0, 
0, 4), employee(1, 1, 15), category(0, 150), category(1, 120)}. It 
is easy to see that those instances are consistent and that they 
satisfy the mapping formulas. We can verify that this is certainly a 
counterexample because AQ(DA) = {q(0), q(1)} but AQ(DA’) = 
{q(1)}, that is, the answers to the query do not match.  
 
 SCHEMA S 

 

Like the one in Figure 2 but removing the two 
constraints about salary and adding the following 
rules and constraints. 
 

Additional deductive rules: 
q_answer ← Q(X) ∧ ¬Q’(X) 
 

Q(E) ← employee(E, C, H) ∧ H > 5 
 

Q’(E) ← employee’(E, C, H) ∧ H > 5 
auxFkEmpToCat’(C) ← category’(C, S) 
Qa1’(E, H) ← employee’(E, C, H) ∧ H > 10 
Qa2’(E, S) ← employee’(E, C, H) ∧ category’(C, S) 
 

Additional constraints: 
← employee’(E, C, H) ∧ ¬auxFkEmpToCat’(C) 
 

← Qa1’(A, B) ∧ ¬Qb1(A, B) 
← Qb1(A, B) ∧ ¬Qa1’(A, B) 
← Qa2’(A, B) ∧ ¬Qb2(A, B) 
← Qb2(A, B) ∧ ¬Qa2’(A, B) 

ICM’ 

ICA’ 

DRA’

 
Figure 3: Example 3.9 in terms of predicate liveliness 

 
 
 As seen in the example, the query answerability property is also 
easier to check by means of its negation. 
 First, we need to define the new schema S. In this case, given 
that the counterexample requires finding two instances of a same 
schema, we need to extend the definition of schema S, as follows: 
 

 S = (DRA∪DRA’∪DRB, ICB A∪ICA’∪ICBB∪ ICM∪ICM’) 
 

where A’ = (DRA’, ICA’) is a copy of schema A = (DRA, ICA) just 
renaming all predicates (e.g. renaming predicate q by predicate 
q’) and, similarly, M’ is a copy of mapping M renaming those 
predicates in the mapping formulas that are predicates from 
schema A. 
 Then, we define the derived predicate q_answer with the 
following deductive rule: 
 

 q_answer ← q(X̄) ∧ ¬q’(X̄), 
 

where q is the predicate defined by Q and q’ is its renamed 
version over schema A’. 
  
 Figure 3 shows the additional deductive rules and constraints 
that we get when reformulating Example 3.9 in terms of database 
schema validation, with respect to the schema shown in Figure 2. 
 
 PROPOSITION 3.10. The derived predicate q_answer is lively in 
S if and only if the mapping M does not enable answering of 
query Q. 
 
 PROOF. Let us assume that q_answer is lively in S. That means 
that there exists a consistent instance of S where q_answer is true. 
By construction of S, there exists an instance DB of B, an instance 
D

B

A of A, and an instance DA’ of A’, such that they are all 
consistent and, DA and DA’ are both consistent with DBB under 
mappings M and M’, respectively. By definition of q_answer, 
there exists a ground fact q(ā) such that q(ā) ∈ AQ(DA) but q’(ā) ∉ 
AQ’(DA’). Given that schema A’ is in fact a copy of schema A, for 
each instance of schema A’ there exists an identical one in schema 
A. Thus, DA’ can be seen as an instance of schema A, DA’, in such 
a way that, if it was previously consistent with DB under M’ it is 
also now consistent with D

B

BB under M, and for all q’(ā) previously 
in the answer of Q’ exists now a q(ā) in the answer of Q. 
Therefore, we found two instances of schema A, DA and DA’, 
consistent under the mapping M with a given instance DB of 
schema B, such that A

B

Q(DA) ⊈ AQ(DA’). The conclusion is that M 
does not enable answering of Q. The other direction can be easily 
proved by inverting the reasoning.  

3.4. Mapping Losslessness 
 As we have seen, query answerability determines whether two 
mapped schemas are equivalent with respect to a certain set of 
queries in the sense that they obtain the same answers on both 
sides. However, in certain contexts this may be too restrictive. 
Consider data integration [20] for instance and assume that for 
security reasons it must be known whether some sensitive local 
data is exposed by the integrator system. Clearly, in such a 
situation, the answer to a query intended to retrieve such sensitive 
data from one of the sources is not expected to obtain the exact 
answer that would be obtained if the query were directly executed 
over the global schema. Therefore, such a query is not answerable 
under the terms specified above. Nevertheless, sensitive local data 
are in fact exposed if the query can really be computed over the 
global schema. Thus, a new property that captures this idea is 
needed. 
 In fact, when a mapping contains formulas like QA

i ⊆ QB
i, 

checking query answerability does not always provide the 
designer with useful information. Let us illustrate this with an 
example.  
 
 EXAMPLE 3.11. We consider schemas A and B shown in Figure 
1, and a new mapping: 
 

 M3 = (F3, A, B), 
 where F3 = {Qa1 ⊆ Qb1, Qa2 ⊆ Qb2} 

and Qa1, Qb1, Qa2, Qb2 are the queries also in shown in 
Figure 1. 

 

Note that mapping M3 is similar to the previous mapping M (see 
Example 3.3), but the = operator is replaced by the ⊆ operator. 
 We also consider the query Q, which is defined as follows: 
 



 q(E) ← employee(E, C, H) 
 

 It is not difficult to see that the mapping M enables answering 
of query Q. The query selects all the employees in schema A and 
M states that all employees on A are also emps in B.  Thus, when 
an instance of schema B is given, the extension of the table 
employee in schema A is uniquely determined and, consequently, 
also the answer to Q. 
 However, if we consider mapping M3, the extension of the table 
employee is not uniquely determined when an instance of B is 
given. In fact, it can be any subset of the emps in the given 
instance of B. For example, let DB be an instance of schema B 
such that D

B

BB = {emp(0, 70), emp(1, 40)}, and let DA and DA’ be 
two instances of schema A such that DA = {employee(0, 0, 5), 
category(0, 70)} and DA’ = {employee(1, 0, 5), category(0, 40)}. 
Therefore, we have come up with a counterexample and, thus, M3 
does not enable answering of Q.  
 
 The previous example shows that when the mapping contains 
formulas like QA

i ⊆ QB
i, giving an instance of schema B does not 

result, in general, on uniquely determining the answer of a certain 
query Q over schema A. This is because for a given instance of B, 
there is just one possible answer for each query QB

1,...,QB
n in the 

mapping. However, due to the ⊆ operator, there is more than one 
possible answer for the queries QA

1,...,QA
n. Something similar 

would happen if Q were defined over schema B. Thus, query 
answerability does not hold in general for  mappings of this type. 
The intuitive reason for this is that query answerability holds 
when we are able to compute the exact answer for Q over an 
instance DA in which we only have access to the tuples in the 
corresponding mapped instance DB. However, if any of the 
mapping formulas have the ⊆ operator, we cannot know just by 
looking at D

B

BB which tuples are also in DA and we are therefore 
unable to compute an exact answer. 
 
 DEFINITION 3.12. We say that a mapping M = (F, A, B) is 
lossless with respect to a query Q defined over schema A if, for 
every pair of consistent instances of schema A, DA and DA’, the 
following holds: if there exists an instance DB of schema B 
consistent under M with both D

B

A, and DA’, and also AQA
i(DA) = 

AQA
i(DA’) for 1 ≤ i ≤ n, then, it is true that AQ(DA) = AQ(DA’). 

 
 Informally, when the mapping losslessness property holds for a 
given query Q over a schema A, an answer to Q can be computed 
by only accessing the tuples in the corresponding mapped 
instance DB. Notice that if the query selects tuples from a table 
that doesn’t participate in the mapping, the property clearly does 
not hold. 

B

 
 EXAMPLE 3.13. We again consider the mapping M3 and the 
query Q from Example 3.11. We saw that the query answerability 
property does not hold for this mapping. Let us now check the 
mapping losslessness property. 
 Let us assume that we have two consistent instances of schema 
A, DA and DA’, and an instance DB of schema B consistent under 
M with both, such that the answers to Qa2 and Qa1 are exactly 
the same over D

B

A and DA’. Assume now that Q obtains q(0) over  
DA but not over DA’. According to the definition of Q, it follows 
that DA contains a least a tuple of employee, say employee(0, 0, 
12), that DA’ does not contain. Since DA is consistent with the 
integrity constraints, it must also contain its corresponding tuple 
of predicate category, say category(0, 20). Thus, according to the 

definition of Qa2 the answer Qa2(0, 20) would be obtained over 
DA but no over DA’. This clearly contradicts our initial assumption 
and, thus, M3 is lossless with respect to Q.  
 
 To formulate the mapping losslessness property in terms of 
checking the liveliness of a derived predicate, we define the new 
schema S in a similar way as we did for query answerability: 
 

 S = (DRA∪DRA’∪DRB, ICB A∪ICA’∪ ICBB∪ICM∪ICL), 
 

where schema A’ is a copy of A in which the predicates are 
renamed, and ICM is the set of constraints that enforce the 
mapping formulas in M. By ICL we denote the set of constraints 
that force A and A’ to share the same answers for the queries in 
the mapping: 
 

 ICL = {← QA
1(X̄1) ∧ ¬QA

1’(X̄1), ← QA
1’(X̄1) ∧ ¬QA

1(X̄1), 
 ..., 
 ← QA

n(X̄n) ∧ ¬QA
n’(X̄n), ← QA

n’(X̄n) ∧ ¬QA
n(X̄n)} 

 

 Let Q be the query we wish to use for checking losslessness 
and let Q’ be a copy of Q in which the predicates are renamed, as 
we did with A’. We define a derived predicate map_loss as 
follows: 
 

 map_loss ← Q(X̄) ∧ ¬Q’(X̄). 
 

Figure 4 shows the additional deductive rules and constraints that 
we obtain when reformulating Example 3.13 in terms of database 
schema validation, with respect to the schema shown in Figure 2. 
 
 SCHEMA S 

 

Like the one in Figure 2 but removing the salary 
constraints, and adding the following rules and 
constraints. Note that we replace ICM by ICM3. 
 

Additional deductive rules: 
map_loss ← Q(X) ∧ ¬Q’(X) 
 

Q(E) ← employee(E, C, H) 
 

Q’(E) ← employee’(E, C, H) 
auxFkEmpToCat’(C) ← category’(C, S) 
Qa1’(E, H) ← employee’(E, C, H) ∧ H > 10 
Qa2’(E, S) ← employee’(E, C, H) ∧ category’(C, S) 
 

Additional constraints: 
← employee’(E, C, H) ∧ ¬auxFkEmpToCat’(C) 
 

← Qa1(A, B) ∧ ¬Qa1’(A, B) 
← Qa1’(A, B) ∧ ¬Qa1(A, B) 
← Qa2(A, B) ∧ ¬Qa2’(A, B) 
← Qa2’(A, B) ∧ ¬Qa2(A, B) 
 

← Qa1(A, B) ∧ ¬Qb1(A, B) 
← Qa2(A, B) ∧ ¬Qb2(A, B) 

ICL 

DRA’

ICA’ 

ICM3 

 
Figure 4: Example 3.13 in terms of predicate liveliness 

 
 
 PROPOSITION 3.14. The derived predicate map_loss is lively in S 
if and only if the mapping M is not lossless with respect to Q. 
 
 Note that we check for the existence of a counterexample. 
 



 PROOF. Let us assume that map_loss is lively in S. Hence, there 
exists an instance of S in which map_loss is true. This means that 
the answer to Q has a tuple that is not in the answer to Q’. By 
construction of schema S, we can build from the instance of S, 
three instances, DA for A, DA’ for A’ and DB for B. Given that A 
and A’ are in fact the same schema, just with different predicate 
names, and also queries Q and Q’ are the same query, we can 
conclude that D

B

A’ is also an instance for A, DA’, and that the query 
Q evaluated over DA returns a tuple that is not returned when 
evaluated over DA’. Thus, we have two instances for schema A, 
both consistent under mapping M with a third instance of schema 
B, in such a way that both instances have the same answer for the 
queries in the mapping but not for the query Q. According to the 
definition of mapping losslessness, M is not lossless w.r.t. Q. The 
other direction can be proved by following the reasoning 
backwards.  
 
The mapping losslessness property is the result of adapting the 
property of view losslessness or determinacy [7, 28]. A set of 
views V is lossless with respect to a query Q, under the exact view 
assumption, if for every pair of database instances having the 
same extensions for the views in V, they also have the same 
answer for Q. 
 In our case, the mapping losslessness property checks whether 
the set of queries V = {QA

1,...,QA
n} is lossless with respect to the 

query Q, but with the additional requirement that the extensions 
for the queries in V must also ensure the existence of a consistent 
instance for schema B. 
 
 Finally, it can be seen that in the cases in which all the formulas 
in the mapping have the form QA

i = QB
i,  the mapping losslessness 

and the query answerability properties, are equivalent. 

 
 PROPOSITION 3.15. Let Q be a query over schema A, and let M 
= (F, A, B) be a mapping where F = {f1,...,fn} and fi is QA

i = QB
i 

for 1 ≤ i ≤ n. Mapping M is lossless w.r.t Q if and only if M 
enables answering of Q. 
 
 PROOF. Let us assume that a mapping M is lossless w.r.t a query 
Q, and let us suppose that mapping M does not enable answering 
the query Q. By the negation of query answerability, there exists 
an instance DB of B and a pair of instances, DB A and DA’, of A, such 
that DA and DA’ are both consistent under M with DBB but AQ(DA) ≠ 
AQ(DA’). Given that all mapping formulas are like QA

i = QB
i, it’s 

true that AQA
i(DA) = AQA

i(DA’) for 1 ≤ i ≤ n. Hence, instances DA, 
DA’ and DB are a counterexample for mapping losslessness and 
we reached a contradiction. In the other way, let us assume now 
that mapping M enables answering the query Q, and let us 
suppose M is not lossless w.r.t Q. By the negation of losslessness, 
there are two instances of A, D

B

A and DA’, in which AQA
i(DA) = 

AQA
i(DA’) for 1 ≤ i ≤ n, there exists a third instance DBB of B 

consistent under M with both instances, and such that AQ(DA) ≠ 
AQ(DA’). In this case, the three instances are directly a 
counterexample for query answerability. Thus, we reached a 
contradiction again.  
 

4. EXPERIMENTAL EVALUATION 
 The main goal of this section is to show the feasibility of our 
approach by means of some experiments. We have used the CQC 
Method [12], more precisely its implementation in the Schema 

Validation Tool prototype [30], to perform the previous tests in 
different situations. 
 We first provide a brief overview of the CQC Method and the 
SVT. and we explain how to use them to perform liveliness tests 
and, therefore, to effectively check the desirable properties of 
mappings we defined in the previous section. Then, we describe 
some experiments we have performed using SVT for validating 
mappings and comment on the results. 

4.1. CQC Method and SVT 
 The CQC (Constructive Query Containment) Method [12], 
originally defined for query containment, performs a validation 
test by trying to build a consistent instance for a database schema 
in order to satisfy a given goal (a conjunction of literals). It is able 
to deal with database schemas having integrity constraints, safe-
negated EDB and IDB literals, and comparisons. 
 The method starts with the empty instance and uses different 
Variable Instantiation Patterns (VIPs), according to the syntactic 
properties of the views/queries and constraints in the schema, to 
generate only the relevant facts to be added to the instance under 
construction. If the method is able to build an instance that 
satisfies all literals in the goal and does not violate any constraint, 
then that instance is a solution and it shows that the goal is 
satisfiable. The key point is that the VIPs guarantee that if 
instantiating the variables in the goal using the constants they 
provide the method does not find any solution, then no solution 
exists. 
 As proved in [12], the CQC Method always terminates when 
there is a finite consistent instance satisfying the goal, or when the 
goal is unsatisfiable. 
 SVT (Schema Validation Tool) [30] is a prototype tool 
designed to perform some validation tests on database schemas, in 
particular the liveliness test in which we are interested here. It 
accepts the following subset of the SQL language: 
− Primary key, foreign key, boolean check constraints. 
− SPJ views, negation, subselects (exists, in), union. 
− Data types: integer, real, string. 

 The current implementation of SVT assumes a set semantics of 
views and queries and it does not allow null values neither 
aggregate nor arithmetic functions. 
 SVT implements the CQC Method as a backtracking algorithm. 
It adds facts to the EDB under construction in order to make true 
the literals in the goal. After adding a new fact, it checks if the 
EDB violates some constraint. When it detects that some 
constraint is violated or some literal in the goal is evaluated to 
false (e.g. a comparison), it backtracks and reconsiders the last 
decision. Some constraints, like foreign keys, can be repaired by 
adding new literals to the goal and thus no backtracking is 
required in these cases. 
 Using the CQC Method, and thus SVT, for checking the 
properties of mappings is easy once we have redefined them in 
terms of predicate liveliness. We just have to provide the schema 
and the goal. The schema will be the schema S we explained how 
to construct in Section 3. The goal will be only one literal 
corresponding to the derived predicate we defined in Section 3 for 
each property. 

4.2. Experiments 
 We have experimentally evaluated the behavior of our 
approach for validating mappings by means of some experiments 
using SVT. We executed our experiments on an Intel Core 2 Duo, 
2.16 GHz machine with Windows XP (SP2) and 2GB RAM. Each 



There is a solution for the liveliness test
Mapping formulas with no comparisons

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

# mapping formulas

R
un

ni
ng

 ti
m

e 
(s

ec
)

strong sat. map. losslessness map. inference weak sat.

 
Mapping losslessness varying the number of comparisons in the 

query, There is a solution for the test

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

# mapping formulas

R
un

ni
ng

 ti
m

e 
(s

ec
)

3 comparisons 2 comparisons 1 comparison no comparisons

There is no solution for the liveliness test
Mapping formulas with no comparisons

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

# mapping formulas

R
un

ni
ng

 ti
m

e 
(s

ec
)

strong sat. map. losslessness map. inference weak sat.

 
Mapping losslessness varying the number of comparisons in the 

query, There is no solution for the test

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

# mapping formulas

R
un

ni
ng

 ti
m

e 
(s

ec
)

3 comparisons 2 comparisons 1 comparison no comparisons

 
 

Figure 5: (a-b) Comparison in performance between the properties and (c-d) study of the effect in mapping losslessness of 
increasing query complexity by means of comparisons. 

(a) (b) 

(c) (d) 

experiment was repeated three times and we report the average of 
these three trials. 
 The experiments were designed with the goal of measuring the 
influence of two parameters: (1) the size of the mapping, and (2) 
its complexity. 
 We focused on the setting where the two sides of the mapping 
are of similar complexity. Therefore, if we increase the 
complexity of the mapping, we should increase the complexity in 
both sides. 
 We designed the scenario for the experiments using the 
relational schema of the Mondial database [26], which models 
geographic information. The schema consists in 28 tables with 38 
foreign keys. We consider each table with their primary key, 
unique and foreign key constraints. 
 The scenario consists in two “copies” of the Mondial database 
schema that play the roles of schema A and schema B, 
respectively. The mapping between the two schemas contains one 
formula for each table in the Mondial database. The mapping 
states that each table of one schema is equal to its copy in the 
other schema. Thus, the mapping consists in 28 formulas all with 
the = operator, and all the queries in the mapping follow the 
pattern: q(X̄) ← R(X̄), where R is a table from the corresponding 
schema. 
 Note that in this scenario the reformulation in terms of 
predicate liveliness of both query answerability and mapping 
losslessness is identical, i.e., ICM’ = ICL. The results shown in the 
graphics for mapping losslessness are thus also applicable to 

query answerability (not shown in the graphics). In fact, it is 
expected that when the complexity of the schemas is similar, and 
also the complexity of the queries in both sides of the mapping, 
the schemas resulting from the reformulation of query 
answerability and mapping losslessness be also of similar 
complexity. 
 In Figure 5(a), we show the results of the first experiment, 
which consists on the execution of the liveliness tests for the 
properties: strong satisfiability, mapping losslessness, mapping 
inference and weak satisfiability, with an increasing number of 
mapping formulas. We started the experiment considering just 
one of the 28 formulas, which we selected randomly. Then, we 
executed the test again but with two formulas, the previous one 
and another also selected randomly among the remaining ones, 
and so on. In this experiment, we consider mapping formulas with 
queries that have no order comparisons. We also focus in this 
experiment on the case where the liveliness tests have a solution. 
Note that finding a solution means something different depending 
on the property we are checking. Finding a solution for mapping 
satisfiability means that the property holds, and the found solution 
is an EDB showing that. For the other properties, finding a 
solution means that a counterexample has been found and so the 
property does not hold. 
 In Figure 5(a), the two variants of mapping satisfiability, strong 
and weak, can be checked without any change in the mapping 
because both already hold. Instead, to check mapping inference 
and mapping losslessness, it is required to find a formula and a 



query, respectively, for which the properties do not hold. In the 
case of mapping inference we used the following formula: q1 = 
q2 where q1(X̄) ← R(X̄) ∧ Xi ≠ K1, q2(X̄) ← R’(X̄) ∧ Xi ≠ K2, and 
R is a selected randomly table from schema A, R’ is the 
corresponding copy of R in schema B, Xi ∈ X̄, and K1 and K2 are 
two different fresh constants. We used this formula, as a 
parameter for checking the mapping inference property because is 
very similar to the formulas already in the mapping. We add the 
inequalities to make the property fail while keeping the changes in 
the mapping at minimum. We add an inequality in both queries 
with the goal of keeping the two sides of the formula with the 
same complexity. In the case of mapping losslessness, we 
generated a parameter query that selects all the tuples from one 
random table from schema A. We also modified the corresponding 
formula that maps this table with its copy in schema B, in such a 
way that now the formula maps all the columns in the table except 
one. 
 We can see in Figure 5(a) that the strong version of mapping 
satisfiability is slower than the weak one. This is expected since 
strong satisfiability requires checking all formulas to be sure that 
all of them can be satisfied non-trivially, but weak satisfiability 
can stop the checking after finding one. We can also see that 
strong satisfiability is clearly slower than mapping losslessness 
and mapping inference. That is because these two properties have 
an additional parameter: a query and a formula respectively, and 
in order to check the properties SVT has to deal only with the 
fragment of the schema that is “affected” by the parameter query 
or formula. On the other hand, strong satisfiability has to deal 
with the whole part of the schema that participates in the 
mapping, which in our scenario is the entire schema. 
 Comparing mapping inference and mapping losslessness in 
Figure 5(a), we can see that losslessness is slower. This is the 
expected behavior since if we remind the reformulation of each 
property in terms of liveliness we will see how the schema S for 
losslessness is formed by grouping three schemas, while in the 
case of mapping inference it is formed by grouping only two. 
Thus, there is a significant difference of size between the resulting 
schemas, which explains the gap between the computing times. 
 In Figure 5(b), we can see the same experiment as in the 
previous figure but for the case when there is no solution for the 
liveliness tests. To make the two satisfiability properties fail in 
this second experiment, we added to each table in schema A, a 
check constraint requiring that one of the columns must be greater 
than some constant. We add the same constraint to the 
corresponding copy of the table in schema B. We also modified 
the mapping formulas in such a way that the two queries in the 
formula are forced to select those tuples that violate the check 
constraints. In the case of mapping inference, we used one of the 
formulas already in the mapping as a parameter. In this way, the 
property does not hold. In the case of mapping losslessness, to 
make the property fail we used a query that selects all tuples from 
a randomly selected table (we did not make any modification in 
the mapping). 
 The first thing we can observe in Figure 5(b) is the global 
increment of all computing times. This is not unexpected since the 
SVT must try all the relevant instances provided by the VIPs 
before concluding that no solution exists. In the previous 
experiment, the search stopped when a solution was found. It is 
worth to note that strong satisfiability and weak satisfiability has 
exchanged their roles. Now the weak version of the property is 
slower than the strong one. The intuitive explanation is that strong 
satisfiability can stop as early as it finds a formula that cannot be 

satisfied non-trivially, while weak satisfiability must continue the 
searching until all the formulas have been considered. 
 In Figure 5(c) and Figure 5(d), we show the results of two 
experiments where it is measured the effect of increasing the 
complexity of the parameter query when checking mapping 
losslessness. The same experiments for the case of mapping 
inference would be similar (graphics not shown). Figure 5(c) 
shows the case where the there is a solution for the liveliness test 
and Figure 5(d) shows the case where no solution exists. In each 
experiment the query we used to check mapping losslessness with 
respect to, is the same than in Figure 5(a) and 5(b) respectively. 
The increment of complexity consists on adding comparisons to 
the query definition. These comparisons are like X > K, where X 
is a variable corresponding to one column of the underlying table, 
and K is a fresh constant. 
 In Figure 5(c), the increasing in the number of comparisons 
results in a greater computation time. This is expected since more 
constants in the definitions of the queries means a greater number 
of constants provided by the VIPs. We can see a significant gap 
between the cases of 2 and 3 comparisons. In Figure 5(d) a gap 
already appears between the cases of 1 and 2 comparisons. It is 
not unexpected that the increment of computing time grows when 
we add more comparisons since the VIPs provide more constants 
and thus there are more combinations to try when instantiating a 
literal from the goal (Figure 5(c)). If in addition to that, there is no 
solution, computing time increases even faster with respect to the 
number of comparisons (Figure 5(d)). 
 

Strong satisfiability varying the number of comparisons for each query 
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Figure 6: Study of the effect in strong satisfiability of 

increasing mapping complexity by means of comparisons. 
 
 In Figure 6, we study the effect that adding comparisons to the 
queries in the mapping has on strong satisfiability checking. We 
focus here in the case when there is a solution for the liveliness 
test. In the case when there is no solution, the results would be 
similar but with lower times (remind Figure 5(b)). The 
comparisons we add to the queries are like X > K, where X is a 
variable corresponding to some column of the underlying table, 
and K is a fresh constant. Note that we vary the number of 
comparisons for each query in the mapping. That means, for 
example, that when the mapping has 28 formulas, in the case of 3 
comparisons per query there is an amount of 168 comparisons in 
the whole mapping. The graphic shows a great increment of 
computing time when going from the case of 2 comparisons per 
query to the case of 3. The reason for that increment is the growth 
in the number of combinations that can be made using the 
constants provided by the VIPs. That number of combinations 



increments exponentially as the graphic already shows. That 
exponential cost cannot be avoided because the complexity of the 
problem, but we believe that further work on optimizing the 
implementation of the CQC Method can reduce computing time 
considerably. 

5. RELATED WORK 
 A debugger for schema mappings is presented in [8]. The 
approach is based on the idea of routes. These routes describe the 
relationships between source and target data with the schema 
mapping. The authors present this feature to allow a user to 
explore and understand a schema mapping. It is the first 
debugging tool developed for schema mappings [1]. The main 
difference with our approach is that we do not need a source 
instance and a target instance in order to do the validation. In our 
approach is only required to provide the mapping and the mapped 
schemas, and therefore we are able to reason over the mapping 
itself rather than relying on a concrete instance that may not 
expose all the potential pitfalls. 
 However, the work in [8] can be seen as complementary to our 
approach. Indeed, since we could get a counterexample when 
validating a certain property, it would be interesting to use the 
routes to allow the designer understand the counterexample and 
discover why the checked property does not hold. 
 As another difference we could mention that we deal with a 
class of mappings more general than tgds. We consider mappings 
defined by means of queries that may have negations and 
comparisons, and schemas that may have views and check 
constraints. 
 In [31], the authors propose a framework for understanding and 
refining mappings in Clio. It consists on making easier to the user 
the task of building the mapping by means of examples. This 
examples are samples of a given data source carefully selected to 
help the user to understand the mapping and choose between 
alternative mappings. Our approach can be used in conjunction 
with this framework because it is always difficult for the user to 
be aware of all possible questions so it would be useful if she 
were able to confirm that some desirable properties hold for her 
mapping. The main difference of our approach with respect to this 
work is that we focus on checking some concrete desirable 
properties, but not concretely on data exchange context so we do 
not assume that there is a source data available. 
 In [2], the authors address the problem of information 
preservation in XML-to-relational mapping schemes. A mapping 
schema consists, basically, on a procedure for storing XML 
documents into a relational database and a procedure for 
recovering the documents back. Compared with our mappings, 
these mapping schemas would be mappings between models (the 
XML model and the relational model in this case) while our 
mappings are between two concrete relational schemas. Our 
approach is related with this in the sense that the authors define 
two properties of information preservation for mapping schemas. 
They define validating mapping schemas as those in which valid 
documents can be mapped into legal databases and all legal 
databases are mappings of valid documents. They also define 
lossless mapping schemas as those that preserve the structure and 
content of the XML documents. Note that despite of its name this 
property is not the same as our mapping losslessness property. 
The authors show decidability results for these two properties and 
propose a XML-to-relational mapping schema that satisfies both. 
 The related work for each validation property has been stated in 
the corresponding section. 

6. CONCLUSIONS AND FUTURE WORK 
 We have proposed a new approach for validating schema 
mappings which relies on determining the accomplishment of 
certain desirable properties of those mappings. We have 
considered two properties already identified in the literature [22]: 
mapping inference and query answerability, and we have 
introduced two new properties: mapping satisfiability and 
mapping losslessness.  
 We have also shown how all these properties may be 
established by means of checking liveliness of a distinguished 
derived predicate in a new schema that integrates the two mapped 
schemas and the mapping. 
 Finally, we have described the results of some experiments we 
performed using an implementation of our CQC Method for 
validating the four properties in different scenarios. 
 As a future work, it would be interesting to find new desirable 
properties of mappings capturing validation information not 
covered by the four properties discussed here and that were 
helpful for mapping designers. Moreover, further work on 
optimizing the implementation of the CQC Method could also be 
interesting. We also envisage extending our approach for 
mappings beyond the relational-to-relational setting, that is, 
considering other classes of schemas in addition to the relational 
one (e.g. XML, object-oriented, etc.). 
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