
Another fully abstract graph semantics for the

ambient calculus

Nikos Mylonakis and Fernando Orejas

June 11, 2007

Abstract

The long-term aim of this work is the definition of a framework for

the modelling and development of distributed mobile component-based

applications. As a first step we provide a fully abstract graph semantics

for the ambient calculus which is more appropriate for our purposes than

the existing ones. In particular, in our encoding, the graph representing

an ambient calculus expression embeds faithfully the ambient structure

underlying the given expression.

1 Introduction

The overall goal of this work is to provide a framework for the modelling of
distributed mobile component-based systems. Components would be units as
the ones described in [7, 6, 5] whose distribution and mobility would be described
using the Ambient Calculus [2]. The idea is that components would live in
ambients and that they would move using the operations of that calculus. We
think that this kind of framework would be useful for systems that may be
reconfigured in runtime or for the description of agent systems, where agents
are some kind of components moving on the Internet.

In [6, 5] we defined the semantics of component-based architectures by means
of graph transformation. In this context, we considered that extending the
approach of [6, 5] to include mobility would be simpler if the semantics of the
Ambient calculus would also be expressed in terms of graph transformation.

The representation of process calculi in terms of some form of graph transfor-
mation over different kinds of graphical structures has shown to be very success-
ful for the study and analysis of these calculi (see e.g., [11, 10, 9, 12, 4, 3, 1]). In
the specific case of the Ambient calculus, Gadducci and Montanari [10], on one
hand, and Ferrari, Montanari and Tuosto [9], on the other, present a semantic
definition of the Ambient calculus using graph transformation. In the former
case, the ambient expressions are encoded in terms of ranked term graphs with
interfaces and transformations are defined using the double-pushout (DPO) ap-
proach. In the latter case, Ambient expressions are encoded as hypergraphs,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825939?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

defined in terms of syntactic judgements, and transformations are defined as
synchronized hyperedge replacements.

Unfortunately, none of the two approaches described above is fully adequate
for our purposes. The problem with the approach presented in [10] is the encod-
ing of the Ambient expressions. In particular, in our view, ambient expressions
should describe transformations of the given ambient (hierarchical) structure
where the components are located. In this sense, we consider that the encoding
of an Ambient expression should embed faithfully the ambient structure under-
lying that expression, and the transformations defined by the reduction of the
expression should modify that structure acordingly. Unfortunately, in [10] the
encoding of Ambient expressions does not satisfy these aims.

In the case of the approach presented in [9] the situation is different. Ambient
expressions are encoded according to our aims. In this case, the problem is
related with the kind of transformations considered. In particular, we consider
that synchronized hyperedge replacements do not enjoy the simple algebraic
formulation and properties of double pushouts. In particular, we fear that using
this kind of approach, our framework would be more involved.

As a consequence, in this paper we present a new graph semantics for the
ambient calculus. In our semantics, Ambient expressions are encoded in terms
of typed labeled graphs (with labels on the nodes) that, according to ou aims,
embed the ambient structure underlying the expression. Then, transformations
are defined using the DPO approach. The encoding is fully abstract and ade-
quate.

The paper is organized as follows. In section two we introduce typed labelled
graphs, similar to [8]. In the next section we present the original definition of
the ambient calculus [2] and our encoding in terms of typed labeled graphs.
Then, in section 4 we give the transformation rules associated to the calculus.
After that, we present a small example, and finally we present some conclusions.

2 Typed labeled graph transformation systems

Ambient calculus expressions are going to be encoded in terms of typed labeled
graphs, which are similar to the typed attributed graphs presented in [8], with
the main difference that we do not have a Σ-algebra with a set of operations to
define the data attributes, but a sorted set to define different sets of labels. In
addition, in our graphs only nodes can have labels, i.e. we do not have labels
on the edges. In particular, the intuition is that an attributed graph (in our
case a labeled graph) is just a standard graph, where attributes (labels) are a
special kind of nodes and where we also have a special kind of edges to bind an
attribute to a (regular) node.

Definition 2.1 A labeled graph AG = (V1, V2, E1, E2, (sourcei, targeti)i=1,2)
consists of

• the set V1 called graph nodes.

2

• the sorted set V2 called label nodes.

• the sets E1,E2 called graph edges and node label edges, respectively.

• source functions source1 : E1 → V1, source2 : E2 → V1.

• and target functions target1 : E1 → V1, target2 : E2 → V2.

Remark: We denote by AGV 1, AGV 2, AGE1, AGE2, AGsource1
, AGsource2

, AGtarget1 , AGtarget2 ,
the different components of the labeled graph AG.

Now we present labeled graph morphisms. Since in our case labeled graph
morphism must preserve the values of the labels, the function fV 2 presented in
[8] is the identity.

Definition 2.2 A labeled graph morphism f : AG1→ AG2 is a tuple (fV 1, fV 2, fE1, fE2),
with fV 1 : AG1V 1 → AG2V 1, fV 2 : AG1V 2 → AG2V 2, fE1 : AG1E1 → AG2E1

and fE2 : AG1E2 → AG2E2, such that f commutes with the source1, source2,
target1 and target2 functions, and such that fV 2 is the identity.

As usual, typed graphs are defined as (standard) morphisms from a given
graph into a type graph.

Definition 2.3 A typed labeled graph (AG,t) over a type graph ATG consist of
a labeled graph (AG) together with a standard graph morphism (t : AG→ ATG).

A typed labeled graph morphism f : (AG1, t1)→ (AG2, t2) is a labeled graph
morphism f : AG1 → AG2 such that t2 ◦ f = t1.

Typed labeled graphs together with typed labeled graph morphisms form
the category of typed labeled graphs.

Our transformation rules are slightly more general than the standard rules
for the double pushout approach. In particular, for technical reasons related
with our encoding, the morphism r : K → R going from the context to the
righ-hand side of a rule does not need to be a monomorphism.

Definition 2.4 A production p consists of three typed labeled graphs L, K and
R together with a monomorphism l : K → L and an arbitrary morphism r :
K → R. As usual the production p is represented as p : L← K → R.

A transformation system of typed labeled graphs GTS = (ATG,AG,P) con-
sists of a labeled type graph ATG, a typed labeled graph AG, and a set of pro-
ductions.

A direct transformation G⇒ H via a left-linear production p : L← K → R
and a match m is defined by the double pushout diagram of figure 1.

Given a transformation system GTS = (ATG,AG0, P) typed labeled graph
derivation is a sequence AG0 ⇒ . . . ⇒ AGn of direct transformations, written
AG0 ⇒∗,GTS AGn.

In our encoding we use negative application conditions to restrict the appli-
cation of certain rules in certain circumstances.

3

L

m

��

K

d

��

l
oo r // R

m∗

��

G D
l∗

oo r∗ // R

Figure 1: Double pushout diagram

Definition 2.5 A negative application condition, or NAC for short, over a
graph L is a finite set A of total morphisms {c : L→ Li}i∈I called constraints

A morphism m : L→ G satisfies a constraint c : L→ Li if there is no total
morphism n : Li → G such that n ◦ c = m. A morphism m : L→ G satisfies an
application condition A over L if it satisfies all constraints in A.

3 The ambient calculus and its representation as

a typed labeled graph transformation system

3.1 The original ambient calculus

The ambient calculus is a formalism developed by Cardelli and Gordon [2] for
describing process mobility. Intuitively, ambients are the locations where the
processes or the computation live and are hierarchically organized. The ambient
topology can vary over time, having the possibility to move an ambient inside
another ambient, to move an ambient out of another ambient and to dissolve
or to open an ambient. These topological changes are performed by actions
or capabilities associated to a given ambient where the action has to express
the ambient to move in, the ambient to move out or the ambient to open.
Additionally, in the calculus there exists a name restriction operator to restrict
the topological space in which an action or capability with the restricted name
can take place.

The ambient calculus expressions are defined by the following grammar:

P ::= P |Q | 0 | n[P] | M.n[P] | M.0 | νn.P
M ::= in n | out n | openn | M.M ′

In this definition n and m ranges over names, P and Q over processes and
M and M’ over capabilities, which are actions to make a move.

We have restricted the original definition of the ambient calculus in two
senses. On one hand, we do not allow expressions of the form M.(P |Q) because
in our context these expressions make no sense. If we would allow them, some
minor changes would be needed. On the other hand, we do not include the
replicator operator (!P) either. The reason is that, to have a fully abstract
representation of this operator, we would have to deal with infinite graphs.

4

Instead, we could include this operator in our semantic framework by encoding
the following rule:

!P → P | !P

The definition of the structural congruence between expressions of the cal-
culus is the closure by α conversion of name restrictions of the rules in Fig. 2
and the operational semantics of the ambient calculus consists of the rules in
Fig. 3:

(1)P ≡ P
(2)P ≡ Q⇒ Q ≡ P
(3)P ≡ Q, Q ≡ R⇒ P ≡ R
(4)P ≡ Q⇒ (νn)P ≡ (νn)Q
(5)P ≡ Q⇒ P |R ≡ Q |R
(6)P ≡ Q⇒!P ≡!Q
(7)P ≡ Q⇒ n[P] ≡ n[Q]
(8)P ≡ Q⇒M.P ≡M.Q
(9)P |Q ≡ Q|P
(10)(P |Q)|R ≡ P |(Q|R)
(11) (νn)(νm)P ≡ (νm)(νn)P
(12) (νn)(P |Q) ≡ P |(νn)Qif n /∈ fn(P)
(13) (νn)(m[P]) ≡ m[(νn)P] if n 6= m
(14)P |0 ≡ P
(15)(νn)0 ≡ 0

Figure 2: Structural equivalence for the Ambient Calculus

(1)n[inm.P |Q] |m[R] → m[n[P |Q] |R]
(2)m[n[outm.P |Q] |R]] → n[P |Q] |m[R]
(3)openm.P |m[Q] → P |Q
(4)P → Q ⇒ (νn)P → (νn)Q
(5)P → Q ⇒ n[P] → n[Q]
(6) P → Q ⇒ P |R → Q |R
(7)P ′ ≡ P, P → Q, Q ≡ Q′ ⇒ P ′ → Q′

Figure 3: Operational semantics of the Ambient Calculus

3.2 Ambient expressions as typed labels graphs

In this subsection we present our encoding of the ambient calculus in terms of
typed labeled graphs and we prove that this encoding is fully abstract. First, we

5

give the definition of the type graph of ambients and then typed labeled graphs
of ambients. In addition to the nodes and edges to represent the labels, we have
three types of graph nodes: nodes to denote ambients with a name label, nodes
to denote interfaces between ambient nodes and nodes to denote capability units
with a name label and a capability. Concerning the edges we also have three
types: edges to define the hierarchy of ambients, edges to concatenate capability
units and edges to associate capability units to ambient nodes.

Intuitively, our encoding includes a node (and the corresponding label) for
each ambient in the expression. Moreover, if an ambient a1 is inside the ambient
a2 then we have an edge from the node associated to a1 to an interface node
and another edge from that interface node to the node associated to a2 (we need
these interface nodes for technical reasons). That is, the graph associated to an
expression can be considered to embed the topology of the ambients involved in
the expression. In addition, if we have some capabilities associated to a given
ambient then, on one hand, these capabilities are encoded as a list and, on the
other hand, we have an edge from the corresponding ambient node to the first
node in the list.

Definition 3.1 The labeled type graph of ambients (LTGA) is defined in the
following diagram:

cv

cap

av

amb name

iv

where the graph nodes are capability nodes (of type cv), ambient nodes (of type
av) and interfaces between ambient nodes (of type iv), and where amb name
and cap are the graph nodes to represent the labels. In addition, we have edges
between graph nodes of type av and iv whose type is denoted by ambient edge,
the type of the edge between graph nodes of type cv and av is denoted by
amb cap edge and the type of the directed edges between graph nodes of type
cv and itself is denoted by capability edge.

The rest of the edges are used to attach attributes to graph nodes.

Definition 3.2 A labeled graph of ambients has the following data labels:

• Names where the name denotes the name of an ambient. Normal names
do not have the $ symbol and we have additionally two distinguished names
RN and NN to define restricted names and the null process.

• A capability set Cap with the capabilities in, out or open.

6

Definition 3.3 A typed labeled graph of ambients over LTGA consists of a
labeled graph of ambients LGA and a graph morphism t : LGA → LTGA such
that:

• for any pair nodes of V1 of type av or iv there exists at most one edge e1
of E1 such that the type t(e1) is ambient edge.

• there are no cycles on edges of type ambient edge.

• the nodes of type cv, which form sequences as the one in the figure below,
have two kind of labels: a capability and an ambient name. In particular,
this name may be a normal name or the distinguished name RN.

c1

v1

ambn1

. . .

ci

vi

RN

. . .

cn

vn

ambnn

ambn

• Every ambient node has one and only one ambient name and every ambi-
ent name can be targeted by different edges e2 ∈ E2 but it can appear just
once in the graph. Every capability node has one and only one capability
and one and only one ambient name.

Now, in what follows, ambient nodes will be denoted by av, av0, av1, av2, . . . ;
capability nodes will be denoted by cv, cv0, cv1, cv2, . . . and interface nodes will
be denoted by iv, iv0, iv1, iv2, . . .

Now we will define the semantic function which, given an ambient expression
amb expr, returns its representation as a typed labeled graph. It requires an
auxiliary function with two additional parameters: a graph G which is a graph
already built and it has to be glued with the graph which represents amb expr
(sharing the common ambient names), and a set of ambient names Γ which are
nodes of the graph G which might be targeted by arrows of the graph associated
to amb expr. We use the usual functions on sets ∪ (union) and − (difference).

Before describing how this function is inductively defined, we give some
examples of the result of this function, for some ambient expressions. First, in
Fig. 4 we give the graph semantics of the expression

w[open k′.open k′′.p[0]]]

In this case we just have a hierarchy of two graph nodes and the root node is av1
with ambient name w. In addition to this hierarchy we have the representation

7

of the list of capabilities open k′.open k′′. For each capability we require a node
with two labels: one for the kind of capability and one for the ambient name.
Additionally the first node which represent a capability in the capability list is
bound to its associated ambient node. In this case it is the ambient node av2.
This is required for a correct representation of the in, out and open rule.

open k’ open k”

iv0

av1 w

iv2

iv1

av2 pcv1 cv2

Figure 4: Representation of w[open k′.open k′′.p[0]]]

Next, in Fig. 5 we give the representation of an ambient expression with a
restricted name:

νw.w[k[0]]

Since w is a restricted name, the ambient node whose name is restricted, is
labeled with RN and not with w.

Finally, in Fig. 6 we represent an expression that is used in the example
section of the paper. The ambient term has a subexpression with a restricted
name which represents a firewall:

(νw)(w[k[outw.in k′.inw.0] | open k′.open k′′.p[0]])

The term has also an agent in parallel which will enter the firewall:

k′[open k.k′′[q[0]]]

In this case and throughout all the example we will represent the names
k, k′ and k′′ several times in the graph for readability reasons. In the correct
representation the names k and k′′ must only appear once and be targeted twice,
whereas the name k′ must only appear once and be targeted three times. Note
that the restricted name w is represented as RN just once and it is targeted
three times.

8

iv2

av2

iv1

av1

iv0

k

RN

Figure 5: Representation of νw.w[k[0]]

Definition 3.4 The semantic function J K which given a correct ambient ex-
pression returns a typed label ambient graph requires an auxiliary function with
a graph G and a set of attribute nodes (names) Γ as parameters, and it returns
a new graph, a set of names and a distinguished interface ambient node. It is
inductively defined as follows:

• JP K = JP K(∅,∅)

• J0KG,Γ = (G′,Γ, iv) where G′ is G with an additional fresh interface graph
node iv.

• Jn[P]KG,Γ = (G′,Γ′ ∪ {n}, iv′) where (H,Γ′, iv) = JP KG,Γ. The construc-
tion of G′ requires to differentiate two cases: the case where n /∈ Γ′ and
the case where n ∈ Γ′. The case where n /∈ Γ′ is represented in Fig. 7,
and the case where n ∈ Γ′ is represented in Fig. 8.

• JM.n[P]KG,Γ = (I,Γ′′, iv) where (G′,Γ′, iv) = Jn[P]KG,Γ and (G′′,Γ′′, cvi, cvf) =
JMKG′,Γ′

. The function JMKG,Γ, given a capability list, a graph and a set
of name attributes of this graph returns a new graph, a new set of attribute
nodes, and two capability nodes: the first and the last of the capability list.
Each capability node will have two arrows: one to a capability attribute and
the other one to a name attribute. We define inductively this function be-
low. The representation of I is depicted in Fig. 9, where the subgraph H
with the nodes iv, av, iv′ and n and the edges among them is the encoding
of G′ and the subgraph CL with the nodes cvi, capi, ni, cvf , capf and nf
together with their associated edges among them is the encoding of M via
the semantic function. Note that it could be the case that ni and nf were
in Γ′ and therefore they would be nodes in G′.

9

RN

out

in

k’

in

cv4

cv5

cv6

av2

iv2

av3

iv1

av1

k

p

NN

iv7

av7 cv9

cv10

iv0

k’

open

k”

open

q

k”

k’

iv13

av13

iv12

av12

iv11

av11

cv15 open

k

Figure 6: Representation of (νw)(w[k[outw.in k′.inw.0] | open k′.open k′′.p[0]])|k′[open k.k′′[q[0]]]

The function JMKG,Γ is inductively defined as follows:

– Jcap nKG,Γ = (G′,Γ∪ {n}, cv, cv), where cv is in G′ and its construc-
tion has two cases. If n /∈ Γ then the representation is depicted in
Fig. 10. If n ∈ Γ then the representation is depicted in Fig. 11.

– JM.M ′KG,Γ = (H,Γ′′, cvi, cvf2) where (G′,Γ′, cvi, cvf) = JMKG,Γ

and (G′′,Γ′′, cvi2, cvf2) = JM ′KG′,Γ′

The construction of H is de-
picted in Fig. 12, where the subgraph CL with the nodes cvi, capi,
ni, cvf , capf and nf together with their associated edges among them
is the encoding of M via the semantic function JMKG,Γ and the sub-
graph CL2 with the nodes cvi2, capi2, ni2, cvf2, capf2 and nf2
together with their associated edges among them is the encoding of
M ′ via the semantic function JM ′KG′,Γ′

• JM.0KG,Γ = (I,Γ′, iv) where (G′,Γ′, cvi, cvf) = JMKG,Γ. In this case the

10

H

iv

av n

iv’

Figure 7: Adding an ambient whose name was not used previously

representation of I is depicted in Fig. 13, where the subgraph CL with the
nodes cvi, capi, ni, cvf , capf and nf together with their associated edges
among them is the encoding of M via the semantic function JMKG,Γ

• J(νn)P KG,Γ = (G′[RN/n],Γ′ − {n}, iv) where (G′,Γ′, iv) = JP KG,Γ and
in the resulting graph we replace in G′ the attribute node with name n by
RN.

• JP |QKG,Γ = (G2′,Γ2, iv2) where (G1,Γ1, iv1) = JP KG,Γ and (G2,Γ2, iv2)JQKG1,Γ

and the construction of G2′ is just G2 where the distinguished nodes iv1
and iv2 are identified as iv2.

Now, it is routine to prove that our encoding is fully abstract with respect
the congruence relation:

Proposition 3.5 If P ≡ Q then JP K is isomorphic to JQK

Actually, we can additionally prove that the encoding is adequate:

Theorem 3.6 The semantic function that maps each congruence class of am-
bient expressions into its representation is injective and surjective.

4 The representation of the reduction relation

The reduction relation will be defined as a set of typed labeled graph trans-
formations. More precisely, the typed labeled graph transformation system is

11

H

iv

av

n

iv’

Figure 8: Adding an ambient whose name was used previously

defined as AMBTS = (ATG,AMBTAG,REDP) where ATG is the labeled
type graph of definition 3.1 and AMBTAG a typed labeled ambient graph.

For the representation of the rules of the reduction relation we just have to
encode the first three rules, because the rest hold in our graph transformation
approach. For each rule of the ambient calculus we have three rules in the graph
representation. Due to space limitations, we just give one of these three rules
for the representation of the in rule and another rule for the representation of
the open rule. In particular, the first graph transformation rule that encodes
the in rule (n[inm.P |Q] |m[R] → m[n[P |Q] |R]) is the following:

12

H

iv

avn

iv’

cvi

capi ni

CL cvf

capf nf

Figure 9: Capability list associated to the ambient n

n

av2

iv1

av1

iv0

cv2

cv1

iv3

av3

in

m

av2

iv1

av1

iv3

av3

iv0

cv2

n

m

This transformation rule encodes the case where the length of the capability
list inside the ambient n is greater than one. In this case the ambient n is moved
to ambient m and the in capability is removed from the list. The second case
is when the length of the capability list is exactly one. We have an additional
case when we have a capability list of length one associated to the null operator.
In this case we have to remove the null node in the transformation. Note that
these 3 cases work well for the case that n is a normal name and for the case

13

cv

cap n

G

Figure 10: Adding a capability referring to an ambient not mentioned before

cv

cap

n

G

Figure 11: Adding a capability referring to an ambient already in the graph

that n is RN.
The rules to move an ambient with name m out of the ambient n are basically

the reverse of the corresponding in rules.
In the case of the open rule, (openm.P |m[Q] → P |Q). we present the case

where the capability list has length one and is associated to the null process.
In this situation the encoding will be the rule below together with a NAC
disallowing its application when the list of capabilities has length greater than
one:

14

G cvi

capi ni

CL cvf

capf nf

cvi2

capi2 ni2

CL2 cvf2

capf2 nf2

Figure 12: Concatenation of two capability lists

G avNN

iv

cvi

capi ni

CL cvf

capf nf

Figure 13: Capability list associated to 0

NN av2

iv1

av1

iv0

cv1

iv3

av3

open

m

iv1

av1

iv0

Its associated NAC is:

15

NN av2

iv1

av1

iv0

cv1

iv3

av3

open

m

NN av2

iv1

av1

iv0

cv2

cv1

iv3

av3

open

m

In this rule the interface node iv3 is not removed but identified with iv0. It is
not difficult to prove the following theorem:

Theorem 4.1 Given two ambient expressions P and Q, if P → Q then JP K⇒
JQK

5 Example

As an example, we present a sequence of reductions so that the agent k′[open k.k′′[q[0]]]
can enter the firewall (νw)(w[k[outw.in k′.inw.0] | open k′.open k′′.p[0]]).

The representation of the expression is given in Fig. 6. After applying the
transformations associated to an out and an in capabilities, respectively, and
after applying the transformation associated to the rule to open ambient k, we
obtain the following graph:

16

p

iv7

av7

iv1

av1

cv10

cv9

k”

open

k’

open2

iv0

in

RN

cv6

av3 NN q

k”

av11k’

iv13

av13

iv12

av12

iv11

representing the expression:

(νw)(w[open k′.open k′′.p[0]] | k′[inw.0 | k′′[q[0]]])

Now, if we apply the transformation associated to the in rule to move the
external agent inside the firewall and, finally, we apply twice transformations
associated to the open rule we obtain the graph:

p

iv7

av7

av1

iv0

RN

q

iv13

av13

which is the encoding of the expression:

(νw)(w[p[0] | q[0]])

6 Conclusions and future work

As we mentioned in the introduction, the final aim of this work is the definition of
a framework for the modelling of distributed mobile component-based systems.

17

In [13] we extended the generic approach to components presented in [7]
to allow for the modelling of mobile systems. More precisely, we embedded
the component approach from [7] into the ambient calculus [2]. However, the
approach was too ad-hoc and, as a consequence, too involved.

Now we are approaching this task from a more systematic point of view. On
one hand, in [6, 5] we have defined the semantics of component-based architec-
tures in terms of graph transformation. On the other hand, in this paper we
are also providing a graph transformation semantics for the ambient calculus.
The future task will be the integration of the two approaches.

References

[1] P. Baldan, A. Corradini, T. Heindel, B. Koenig, and P. Sobociński. Pro-
cesses for adhesive rewriting systems. In Foundations of Software Science
and Computation Structures, FoSSaCS ’06, volume 3921 of lncs, pages
202–216. Springer, 2006.

[2] L. Cardelli and A. D. Gordon. Mobile ambients. In In Maurice Nivat, ed-
itor, Proc. FOSSACS’98, International Coference on Foundations of Soft-
ware Science and Computation Structures, volume 1378 of Lecture Notes
in Computer Science, pages 140–155. Springer-Verlag, 1998.

[3] A. Corradini, F. Hermann, and P. Sobociński. Subobject transformation
systems. Applied Categorical Structures, 2007. To appear.

[4] H. Ehrig and B. Koenig. Deriving bisimulation congruences in the DPO
approach to graph rewriting. In Foundations of Software Science and Com-
putation Structures, FoSSaCS ’04, volume 2987 of lncs, pages 151–166.
Springer, 2004.

[5] H. Ehrig, F. Orejas, J. Padberg, M. Klein, S. Perez, and E. Pino. A generic
approach to connector architectures. Submitted, 2007.

[6] H. Ehrig, J. Padberg, B. Braatz, M. Klein, M. Piirainen, F. Orejas, S. Perez,
and E. Pino. A generic freamework for connector architectures based on
components and transformations. In FESCA proceedings, Barcelona, 2004.

[7] Hartmut Ehrig, Fernando Orejas, Benjamin Braatz, Markus Klein, and
Martti Piirainen. A generic component framework for system modeling. In
FASE 2002 (LNCS 2306), 2002.

[8] Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental the-
ory for typed attributed graph transformation. In ICGT, number 3256 in
LNCS, pages 161–177, 2004.

[9] Gian Luigi Ferrari, Ugo Montanari, and Emilio Tuosto. A LTS semantics of
ambients via graph synchronization with mobility. In ICTCS, pages 1–16,
2001.

18

[10] Fabio Gadducci and Ugo Montanar. A concurrent graph semantics for
mobile ambients. Electronic Notes of Theoretical Computer Science, 45,
2001.

[11] Ole Jensen and Robin Milner. Bigraphs and mobile processes. Technical
report, University of Cambridge, UCAM-CL-TR-57.

[12] S. Lack and P. Sobociński. Adhesive categories. In FOSSACS, number
2987 in LNCS, pages 273–288, 2004.

[13] N. Mylonakis and F. Orejas. A distributed and mobile component system
based on the ambient calculus. In Recent Trends in Algebraic Development
Techniques, 2004.

19

