
Image-space Sheet-Buffered Splatting on the
GPU

S.Grau1 and D. Tost1
1Divisió Informàtica Gràfica

Centre de Recerca de Enginyeria Biomèdica
UPC, Barcelona, Spain

March 15, 2007

Abstract

Image-Space Sheet-Buffered Splatting is a popular high quality volume-rendering
technique specially suitable for zoomed views of the data. On the contrary to other
splatting approaches, it processes the voxels in slabs perpendicular to the viewing
direction. Recently, a GPU design of this method has been proposed that consider-
ably accelerates the rendering stage. However, the bottleneck of the method is the
computation of the buckets, i.e the structure handling the voxels to be rendered in
each slab. This stage of the method is done on the CPU. In this paper, we propose
a new design of the method that creates and manages the buckets on the GPU. The
proposed method is more than twice faster than the previous ones.

1 Introduction

Splatting was originally proposed as a feed-forward algorithm for voxel-based volume
datasets [Wes89]. Recently, it has gained popularity in being applied to point-based
surface models [BHZK05]. The original approach considers the volume as an array of
3D overlapping kernels weighted by the voxels property values. The algorithm gains
its speed by exploiting the similarity of the kernel’s projection. In orthographic views,
all the kernels have the same projection orfootprint. Thus, the footprint can be com-
puted once, in a pre-process, stored as a look-up-table and used for the projection of
all the voxels. In perspective views, the footprints must bedistorted according to the
distance of the voxels to the observer [ZRB∗04]. In the original approach of the al-
gorithm, calledComposite-Every-Sample(CES), the voxel footprints are composited
in the image-plane one after the other in back-to-front order. Therefore, visibility is
combined with reconstruction and thus, color bleeding artifacts may appear. To correct
this error, Westover [Wes90] proposed theObject-Space Sheet-Buffered Splatting. This
method adds the voxels footprints slice-by-slice into sheet planes of the voxel model
most parallel to the image plane, and composites each sheet to the final image. It cor-
rects color bleeding but it introduces noticeable popping up artifacts when the camera

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


moves around the volume because the sheet planes change abruptly. TheImage-Space
Sheet-Buffer Splatting[MC98] solves this problem, because it uses sheet-buffers par-
allel to the image plane. In this approach, voxels contribute to more than one sheet,
therefore different footprints corresponding to different intersections of the voxels with
the sheet slab must be computed.

One of the major advantages of splatting is that only relevant voxels need to be
processed. There are three main strategies that exploit this idea. First, a list of relevant
voxels can be computed in a pre-process and taken as input forsplatting. Examples of
this approach are thefuzzy set[YESK95], theListSplat[Cra96] and theRenderLists
[MH01] [HMBG01] [HBH03]. Alternatively, data structures such as adjacency lists
[OM01] and run-length encoding [KM01] [FPT06] can be used toskip empty and non-
selected voxels. Finally, in Image-Space Sheet-Buffer Splatting, voxels can be sorted
according to their value and inserted in the buckets with a fast binary search [IL95]
[MSHC99].

In parallel to these software-based accelerations, several attempts have been done
to speed-up splatting using hardware features. Most of the research in this area focuses
on the acceleration of the kernels projection by using texture maps [CM93], 1D and 2D
look-up tables(fastSplats)[HMSC00], Vertex Arrays and point sprites [NM05] [BK03]
[VHFG05]. In addition, sheet composition can be speeded-upby using OpenGL P-
Buffers [XC04] and Frame-Buffer-Objects to render the image slices. Moreover, post-
shading on the slices can be implemented in a fragment shader[NM05]. Neophitou and
Mueller have also proposed to increase the voxel/pixel overdraw by treating the four
color channels as separate densities. Finally, they use theOpenGL depth test features
combined with NVidia Depth Bounds extension in order to avoid running fragment
programs on empty or opaque pixels.

Despite these improvements, the memory transfer of the datato the GPU is still
the bottleneck of splatting. The optimal solution is to keepall the data into the GPU.
This problem has been addressed for surface splatting [CRZP04] and particle models
rendering [KLRS04] [KSW04]. However, these approaches arebased on Object-Space
Sheet-Buffered and Composite-Every Sample splatting. They are not directly applica-
ble to Image-Space Sheet-Buffered Splatting, which, as mentioned above, gives the
best image quality and avoids flickering artifacts. The goalof this paper is to discuss
and propose a new GPU-based Image-Space Sheet-Buffered Splatting that constructs
and updates the buckets on the GPU in order to avoid memory transfer between CPU
and GPU. The proposed method can still benefit from the hardware-based improve-
ments described above (point sprite, multiple density pipeline and opaque and skipping
empty pixels), but in addition to them, it uses GPGPU sortingand OpenGL Depth Test
to manage the buckets on the GPU.

2 Previous work

Image-Space Sheet-Buffered Splatting processes the volume by slabs parallel to the
image plane [MSHC99]. Figure 1 sketches its pipeline. Each slab is associated to a
data structure calledbucketthat holds the index of all the voxels that intersect the slab.
Buckets are filled for each new camera position by transforming the relevant voxels

2



with the viewing matrix. Slabs are then processed in front-to-back or back-to-front
order. All the voxels of a slab are summed into a sheet buffer according to a pre-
integrated kernel slice, and the sheet buffer is composed with the image buffer. No
sorting is required inside the buckets since splats of a buckets are added in the corre-
sponding sheet buffer, and adding is commutative. In order to speed up the buckets
construction, a list of per-value sorted non-empty voxels can be constructed in a pre-
process and used instead of the full voxel model. Other strategies to skip non-relevant
voxels in the bucket construction are the use of skeletons [CSM05] and run-length en-
coding based on classified values [FPT06]. In principle, Image-Space Sheet-Buffered
Splatting uses a post-shading scheme: it splats raw densityvalues, computes the gradi-
ents using central differences on the projection image and applies a per-pixel shading.
However, it could also support pre-shading. Post-shading provides images with less
blur on the objects edges [MMC99] but it is only applicable for transfer-function based
classification, and it is not suitable for segmented tagged data.

Figure 1: Image-Space Sheet-Buffered Splatting Pipeline.

In a recent paper, Neophitou and Mueller [NM05] have proposed a GPU based
acceleration of Image-Space Sheet-Buffered Splatting. They keep the buckets con-
struction step on the CPU and use the GPU in the second stage ofthe pipeline. Their
approach brings several contributions. First, instead of rasterizing a textured polygon
per splat, they use thePoint Spritesextension that requires only one vertex per splat
to be sent. They also use the Vertex Arrays extension to pack the points of the slices.
Next, they use a post-shading process, which allows us them to splat 4 slices at a time
by using each of the four color channel RGBA for a different density slice. In addition,
they use the early z-rejection test with two purposes: to avoid splatting on pixels of the

3



slice that are already opaque (early splat elimination), and to restrict shading and com-
positing only to the pixels of a slice that have been touched during splatting. Putting
all together these accelerations, they report between 2fps(frame per seconds) for the
semi-transparent 1,2M effective splats engine data set and 10fps for the 219K effective
splats Stony Brook lobster on a Pentium IV with NVidia QuadroFX 3400.

The current limitation of this implementation is, as reported by the authors them-
selves, the memory transfer between the CPU buckets and GPU slices. Keeping the
data inside the graphics board have been investigated Composite-Every-Sample and
Object-Space Sheet buffered Splatting but not for Image-Space Sheet-Buffered Splat-
ting. Specifically, Chen et al. [CRZP04] have proposed a GPU acceleration of EWA
splatting [ZPvBG01] for the object-space sheet-buffered approach. They store the vol-
ume data on the GPU sorted according to the object-space slices along with a 4-vertices
quad proxy geometry per voxel. In order to reduce the memory requirements, they
compress the proxy geometry and decompress it on the fly in thevertex shader. Vega-
Higuera et al. [VHFG05] propose to classify the data in a pre-process and send to the
GPU the center point of only the selected voxels. This approach requires thus to depth
sort the points for transparent rendering. To speed this part of the pipeline, sorting in
done on the CPU, after classification in the pre-process according to 8 viewing direc-
tions which correspond to the octants of the 3D space. The indices of the sorted voxels
are stored in 8 Vertex Buffer Objects and used in the splatting stage. This strategy pro-
vides high performance, specially on low occupancy ratio neurovascular data, which
were the motivation of the paper.

GPU-accelerated splatting of points and particle systems shares the problem of
memory transfer between CPU and GPU. In the context of computer games simula-
tion, Latta [Lat04] has proposed to store the positions and velocities of the particles
in floating point textures. In order to update them, he uses a pair of texture for both
parameters and a double buffering technique to switch between textures. In order to
perform alpha-blending, particles are sorted on the GPU with theOdd-Even Merge Sort
distributed over 20 to 50 frames. If enough frame-to-frame coherence exists, which
is probable in computer games and simulations, this progressively sorting approach
gives visually acceptable images. The same sorting technique is used for large parti-
cle systems [KLRS04]. Kipfer, Segal and Westermann [KSW04]designed the Uber-
flow particle system that exploits theSuper BuffersOpen GL extension. They propose
an improvement of the GPU implementation of the Bitonic Merge Sort designed by
Buck and Purcell [BP04]. The technique is explained with more details in another pa-
per [KW05]. Krüger et al. [KKKW05] re-use this technique forthe visualization of 3D
flows. They store the position of the particles in the RGB channels of floating point
texture and a parameter representing the lifetime of the particle in the alpha-channel.
Particles are rendered using transparent point sprites. Sorting is performed with the
GPU Bitonic Merge sort.

The goal of this paper is to propose an Image-Space Sheet-Buffered Splatting that
makes full use of the GPU computational resources and computes the buckets on the
GPU. Our work is inspired on Neophitou and Mueller’s work [NM05] and on the ren-
dering particle systems approaches described above.

Next, we overview the proposed strategy 3.1, and then we describe with more de-
tails each step of our method.

4



3 Image-space Sheet-Buffered Splatting on the GPU

3.1 Overview

Figure 2 illustrates the proposed pipeline. We start loading the selected voxels on a 2D
texture(Voxels Texture)and next, we transform all the voxels according to the viewing
system. The result is stored in theView Transformed Voxels Texture. The problem that
arises then is how to compute the buckets. Scattering, i.e. random writes to specified
addresses, is not efficient on GPUs. Fragment shaders cannotchange the writing tex-
ture position. Thus, it is not feasible to process sequentially the voxels and insert them
in texture buckets according to their z-value, as it is done in the CPU pipeline illustrated
in Figure 1. What we do instead is depth sorting the transformed voxels. The resulting
texture(Depth-Sorted Voxels Texture)is an implicit representation of the buckets since,
as indicated in Figure 3, slabs correspond to overlapping sorted subsequences of voxels
in the texture. Therefore, in order to process sequentiallythe slabs, we need to know
the size of each of these subsequences. We define the bucket ofa slab as the subset of
the depth sorted voxels of the texture whose center falls inside the slab (see Figure 4).
This is different from the CPU approach, because these buckets do not contain all the
voxels intersecting the slab, but only a subset of them. Therefore, each voxel belongs
to only one of these buckets, although it is splatted for all the slabs it intersects.

Figure 2: GPU-based Image-Space Sheet-Buffered SplattingPipeline.

The next stage after depth sorting the texture is the bucket size computation. It gives
as a result a texture containing the position of the last voxel of each bucket(Buckets
Texture). The last step of the pipeline consists of processing the slabs one after the

5



Figure 3: Voxels of a slab in theDepth-Sorted Voxels Texture. Consecutive slabs cor-
respond to overlapping subsequences of the texture.

other. The radius of the voxels kernel determines the numberof previous and following
buckets that affect a slab in addition to its own bucket.

If the camera is static and the transfer function changes, only the render stage needs
to be re-done. When the camera moves, the pipeline is executed starting by computing
the View Transformed Voxels Texture. In these two cases, theVoxels Texturedoesn’t
change and it is kept in the GPU. If the selection pre-processing is modified, theVoxels
Textureshould be recomputed. Alternatively, we can load all the non-empty voxels on
the GPU in order to avoid the CPU-GPU transfer. In this case, the selection is done
using an opacity transfer function. If the number of non-empty voxels is large, the
texture memory may be insufficient to load them all. In order to solve this problem, we
have developed a bricking strategy based on the use of multiple textures.

3.2 Data structures

As shown in Figure 2, the basic data structures of our method are the 2D textures that
store the voxels throughout the different steps of the pipeline. Each voxel is encoded
in a texel position, storing its coordinates in the RGB channels and its value in the
alpha channel (< x,y,z,v >). In order to store the voxel coordinates with the maximum
precision, we use the FP32RGBA format that provides 32 bits floating point for each
channel.

Textures are used together with the Frame Buffer Objects extension (FBO) in order
to apply the ping-pong technique. This technique is used in recursive processes that
need to re-use the last computed values in the next stage of recursion. It uses two
textures attached to an FBO by color attachment. When a stagebegins, the texture
used as source in the previous stage is set as the target, and the previous target texture
is the current source texture. Specifically, we use the ping-pong technique in the sorting
stage to compute theDepth-Sorted Voxels Texture.

In addition to FBO, we use Vertex Buffer Objects (VBO) with the Render to Vertex
Buffer (R2VB) technique that lets us create VBO using the values of a 2D texture.
We use the Pixel Buffer Object (PBO) extension to load the 2D texture values onto the
VBO. This keeps all the data flow inside the GPU. We use R2VB in theBuckets Texture
construction and for the rendering stage.

6



Figure 4: Each bucket of a slab has the subset of the depth sorted voxels whose center
falls inside the slab.Bucketi has only voxels 1 and 3. For the rendering stage voxels of
bucketi will be taken into account inslabi−2 to slabi+2.

3.3 Viewing Transform

This stage computes theView Transformed Voxels Texturefrom the Voxels Texture.
We use a fragment shader that transforms the coordinates of the voxels stored as RGB
values in the source texels according to the viewing matrix.For each texel, the fragment
shader stores the 2D raster coordinates of the voxel’s projection in the R and G channel
of the target texture, its depth value in the viewing coordinate system in the G channel
and the voxel property value in the alpha channel (< i, j,b,v >).

3.4 GPGPU sorting

Once the points have been transformed into the viewing coordinate system, they need
to be sorted according to the distance to the viewer in order to define the volume slabs.

Sorting on the GPU uses the programmable graphics hardware as a stream proces-
sor. Therefore, the challenge of designing GPGPU sorting algorithms is to exploit as
best as possible the parallel nature of the GPU architecture. Data-driven sorting algo-
rithms such as Quicksort, that are the fastest on CPU, are notsuitable for GPU imple-
mentation. This is why existing GPU sorting methods, basically Odd-Even Merge Sort
andBitonic Sort, are network sorting data-independent strategies. Current GPU imple-
mentations ofBitonic Sortare much faster thanOdd-Even Merge Sort. However, this
latter strategy is sometimes preferred because it gives a partial ordering at each step.

7



This may be sufficient in applications such as particle systems which spread sorting
throughout various frames. In our case, we useBitonic Sort, because we need an exact
ordering at each frame and thus, the sort-while-drawing property is not convenient.

Govindaraju et al. [GRHM05] have improved the first implementations ofBitonic
Sort [?] [KW05] by using cache-efficient memory accesses. This sortachieves very
high performances: on an NVidia GeForce 7800, it is about twice as fast as the best
quick sort CPU implementation. In addition, it has been adapted to sort very large
billion record databases [GGKM06]. Very recently, Gress and Zachmann [GZ06]
have designed an Adaptive Bitonic Sort(ABIsort) that has an optimal complexity of
O((nlogn)/p), beingp the number of stream processor units andn the number of val-
ues to be sorted. These authors report thatABisortis the fastest GPU method. However,
in our implementation we have preferred the Govindaraju et al.’s method, because their
library is fully accessible and easy to adapt to our application.

The library sorts an array of< key,value> pairs. It uses theMultiple Render Target
(MRT) extension to efficiently store the keys and the values.One render target stores
the keys and the other the values, and a one-to-one correspondence exists between the
two textures. This allows us keeping four instances in one RGBA texel. The sorting
steps use the ping-pong strategy described above.

The library takes as input a CPU array. In our case, the view transformed voxels
to sort are already in the GPU. The sorting key is the depth voxel valueb. We use a
fragment shader on theView Transformed Voxels Texturethat fills the render targets
with theb texel values as the key and a voxel index in the texture as the value. Once
sorting is finished, another fragment shader fills theDepth-Sorted Voxels Texturefrom
the sorted render targets.

3.5 Bucket size computation

In this stage of the pipeline, we compute on the GPU theBuckets Texturethat stores the
position of the last voxel of each bucket(bucket boundary voxel). This texture cannot
be computed directly from theDepth-Sorted Voxels Textureusing fragment shaders
because there is no relationship between these two textures. The former contains all
the selected voxels, whereas the latter contains only one voxel per bucket. Therefore,
we need a vertex shader capable of writing at specified positions on a texture. However,
determining if a voxel is bucket boundary requires to compute its bucket and compare it
to the bucket of the following voxel in theDepth-Sorted Voxels Texture(see Figure 5).
This would be very expensive in a vertex shader, because it requires a texture fetch for
each voxel, and current vertex shaders do no implement efficiently this operation. For
this, we have splitted the computation of theBuckets Textureinto two steps: first, we
compute the bucket boundary voxels using a fragment shader and next, we construct
theBucket Textureusing a vertex shader.

In the first step, we render theDepth-Sorted Voxels Textureinto an auxiliary texture
that indicates for each voxel if it is bucket boundary or not.This auxiliary texture stores
for each voxel the coordinates of its corresponding bucket in theBucket Texturein the
R and G channels. In the B channel, it stores a false z value inside the viewing frustum
if the voxel is bucket boundary and outside otherwise. The alpha channel stores the
index of the voxel in theDepth-Sorted Voxels Texture(see Figure 6).

8



The second step uses this auxiliary texture as a VBO and renders it using glPoints
of size one. The points corresponding to non bucket boundaryvoxels are rejected in
the early-depth test. Thus, only the bucket boundary voxelsare rendered in theBucket
Texture. The shader writes in the texture only the index of the voxel in theDepth-Sorted
Voxels Texture.

Figure 5: Bucket boundary voxels. Voxeli is at the boundary of the first bucket, because
the center of the next voxel(i +1) falls inside the next slab.

Figure 6: Buckets Texture construction. The bucket boundary voxel i has a 0.5 z value
in the auxiliary texture, and thus, it is rendered in theBuckets Texture. The non-bucket
boundary voxelj is rejected.

3.6 Rendering

The rendering process needs the size of the buckets and so, theBucket Textureis trans-
ferred back to the CPU. This is a very low cost operation, because the texture size is
small (the number of buckets or slabs). Then, we have the distribution of the buckets on
the CPU and, on the GPU, the depth sorted voxels. Again, we usethe R2VB extension
to create a VBO that contains all the voxels. In order to render slabi , we splat all the

9



voxels of the buckets that may intersect it: from bucketbucketi−radius to bucketi+radius,
beingradius the radius of the voxel’s kernel. This is illustrated in Figure 4. To render
all the voxels of a bucket, we useDrawArray with the first voxel’s position and the
number of voxels of the bucket.

Starting at this point, the rendering pipeline proceeds as in previous GPU imple-
mentations of Image-space Sheet-Buffered Splatting. The voxels are splatted using the
glPoint primitive with the Point Sprites extension. This extensionallows us to create
an automatic quad from aglPoint, and thus, it reduces to one instead of four the vertex
traffic. Voxels have a different kernel footprint in the different slabs that they intersect.
Neophytou and Mueller [NM05] propose to store only one footprint and to modulate
it with an appropriate slab coefficient. Alternatively, we propose to compute all the
different kernel footprints and to store them all in one 2D texture. When a voxel is
splatted, an index to its footprint is computed and used to determine the coordinates of
the sub-texture containing the corresponding footprint. This is trivial to do for splatting
with texture quads, but a little more difficult using Point Sprites, since with this exten-
sion the texture coordinates are computed automatically. For Point Sprites, the correct
texture coordinates must be computed in a vertex shader.

4 Brick Processing

The limitations of our method can come from the texture size which is limited and may
not always fit an entire volume. In our case, the memory limitation is 4096x4096. This
allows us to render up to 16M selected voxels, which is a reasonable model size.

Figure 7: The proposed GPU Image-Space Sheet-Buffered Splatting Pipeline.

10



However, when larger models need to be processed, we subdivide them using bricks
[?]. Each brick is stored on the GPU as a 2D texture(Voxel Bricks Texture). The
maximum number of voxels of each brick is given by the texturememory size. The new
pipeline is represented in Figure 7. Bricks are computed by subdividing the volume into
octants. They are traversed orderly according to the cameraposition.

A drawback of bricking is that overlapping kernels at the boundary between bricks
can be composed in incorrect order. However, bricking is needed when the number
of selected voxels is large, and thus the ratio pixels per voxel is generally low. In
this case, kernels do not overlap very much and artifacts at the brick boundary are not
perceivable.

For very large datasets such that all the bricks cannot be loaded in GPU-memory,
before processing a brick, we check if it is already in the GPU. Otherwise, we need to
transfer it from the CPU.

5 Results

Table 1 shows the results of the proposed method for different datasets. Color plates of
the rendered images are included in Figure 8. In order to evaluate the improvement of
our strategy, we have compared it with an implementation that computes the buckets
on the CPU and uses the GPU only in the second part of the pipeline. The simulations
have been performed on a Pentium Dual Core 3.2 GHz with 3.2 Gb memory and a
NVidia GeForce 7900 GTX with 512 Mb memory. The results show that our method
accelerates rendering in a factor between 2 and 2.5.

In all the simulations, we have seen that the most expensive stage of the pipeline
is sorting. Therefore, even better performance can be expected when new GPU-based
sorting methods appear.

Effective CPU GPU
Data set Size Voxels FPS FPS

Lobster 324x301x56 233K 13.2 35.4
Engine 2562x128 1.3M 2.4 5.6
BostonTeapot 2562x178 4.9M 0.8 1.8
Aneurism 2563 169K 18.4 43.4
Bonsai 2563 1.3M 2.4 5.6
StagBeetle 8322x494 13.8M 0.4 0.8

Table 1: Results. The efficiency of rendering is measured in frames per second. It
is computed for a visualization sequence with a moving camera. All the images are
rendered with semi-transparency. Frames per second in the CPU column correspond
to an implementation of the method that uses GPU only for the rendering part. GPU
results correspond to our pipeline.

11



Figure 8: Example renderings using the Image-space Sheet-Buffered Splatting on the
GPU. (A) Lobster, (B) Engine, (C) Boston Teapot, (D) Aneurism, (E) Bonsai, (F)
StagBeetle.

6 Conclusions

In this paper, we have proposed a new Image-space Sheet-Buffered Splatting design
that creates and manages the buckets on the GPU. Our implementation achieves frame
rates twice and more faster than methods that use the GPU onlyfor the rendering part.
Moreover, the evolution of the speed of GPU algorithms is dramatical in relation to
the evolution of CPU algorithms. Therefore, as GPUs will evolve, the cost of the most
expensive part of our pipeline, sorting, will reduce, and thus, much higher rendering
speed-ups are expected.

Our future research is to try to adapt this method to multi-modal data that require
performing a fusion of the property values of the different modalities either in the
splatting stage or during the buckets construction depending on if post-shading or pre-
shading is applied. Furthermore, we will investigate how torender time-varying data
using this strategy taking into account frame-to-frame coherence.

12



References

[BHZK05] BOTSCH M., HORNUNG A., ZWICKER M., KOBBELT L.: High quality
surface splatting on todays GPU. InEG Symp.on Point-based graphics
(2005), Pauly M., Zwicker M., (Eds.), pp. 1–8.

[BK03] BOTSHM., KOBBELT L.: High-quality point-based rendering on modern
GPUs. InPacific Graphics 2003(2003), pp. 335–343.

[BP04] BUCK I., PURCELL T.: A Toolkit for Computation on GPUs. Addison-
Wesley, 2004, ch. GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics, R. Fernando Editor.

[CM93] CRAWFIS R., MAX N.: Texture splats for 3D scalar and vector field
visualization. InIEEE Visualization’93(1993), pp. 261–266.

[Cra96] CRAWFIS R.: Real-time slicing of data space. InIEEE Visualization’96
(1996), IEEE Computer Society Press, pp. 271–277.

[CRZP04] CHEN W., REN L., ZWICKER M., PFISTER H.: Hardware-accelerated
adaptive EWA volume splatting. InIEEE Visualization’04(2004),
pp. 67–74.

[CSM05] CORNEA N. D., SILVER D., MIN P.: Curve-skeleton applications. In
IEEE Visualization(2005), p. 13.

[FPT06] FERRÉM., PUIG A., TOSTD.: Decision trees for accelerating unimodal,
hybrid and multimodal rendering models.The Visual Computer, 3 (2006),
158–167.

[GGKM06] GOVINDARAJU N., GRAY J., KUMAR R., MANOCHA D.: Gputerasort:
high performance graphics co-processor sorting for large database man-
agement. InSIGMOD Conference(2006), pp. 325–336.

[GRHM05] GOVINDARAJU N. K., RAGHUVANSHI N., HENSON M., MANOCHA

D.: A Cache-Efficient Sorting Algorithm for Database and Data Mining
Computations using Graphics Processors. Tech. rep., UNC Tech. Report,
2005.

[GZ06] GRESS A., ZACHMANN G.: GPU-ABiSort: Optimal parallel sorting
on stream architectures. InProceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS)(April 2006).

[HBH03] HADWIGER M., BERGERC., HAUSER H.: High-quality two-level vol-
ume rendering of segmented data sets on consumer graphics Hardware. In
IEEE Visualization ’03(2003), IEEE Computer Society Press, pp. 40–45.

[HMBG01] HAUSER H., MROZ L., BISCHI G., GRÖLLER M.: Two-level volume
rendering. IEEE Trans. on Visualization and Computer Graphics 7, 3
(2001), 242–252.

13



[HMSC00] HUANG J., MUELLER K., SHAREEF N., CRAWFIS R.: Fastsplats: op-
timized splatting on rectilinear grids. InIEEE Visualization’00(2000),
IEEE Computer Society Press, pp. 219–226.

[IL95] I HM I., LEE R.: On enhancing the speed of splatting with indexing. In
IEEE Visualization ’95(1995), IEEE Computer Society Press, pp. 69–76.

[KKKW05] K RUGER J., KIPFER P., KONDRATIEVA P., WESTERMANN R.: A par-
ticle system for interactive visualization of 3d flows.IEEE Transactions
on Visualization and Computer Graphics 11, 6 (2005), 744–756.

[KLRS04] KOLB A., LATTA L., REZK-SALAMA C.: Hardware-based simulation
and collision detection for large particle systems. InHWWS ’04: Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics
hardware(2004), ACM Press, pp. 123–131.

[KM01] K ILTHAU S., MÖLLER T.: Splatting optimizations. Tech. rep., Simon
Fraser University, 2001.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.: Uberflow: a gpu-
based particle engine. InHWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware(2004),
ACM Press, pp. 115–122.

[KW05] K IPFERP., WESTERMANN R.: GPU Gems 2, M. Pharr Editor. Pearson
Education, 2005, ch. Improved GPU sorting.

[Lat04] LATTA L.: Game developers Conference. Gamasutra, 2004, ch. Building
a million particle system.

[MC98] MUELLER H., CRAWFIS R.: Eliminating popping artifacts in sheet
buffer-based splatting.IEEE Visualization’98(1998), 239–246.

[MH01] M ROZ L., HAUSER H.: RTVR: a flexiblejava library for interactive vol-
ume rendering. InIEEE Visualization’01(2001), IEEE Computer Society
Press, pp. 279–286.

[MMC99] M UELLER K., MÖLLER T., CRAWFIS R.: Splatting without the blur. In
IEEE Visualization’99(1999), pp. 363–371.

[MSHC99] MUELLER K., SHAREEF N., HUANG J., CRAWFIS R.: High-quality
splatting on rectilinear grids with efficient culling of occluded voxels.
IEEE Trans. on Visualization and Computer Graphics 5, 2 (1999), 116–
134.

[NM05] NEOPHYTOU N., MUELLER K.: GPU accelerated image aligned splat-
ting. In Volume Graphics(2005), Fujishiro I., Gröller E., (Eds.), pp. 197–
205.

[OM01] ORCHARD J., MÖLLER T.: Accelerated splatting using a 3D adjacency
data structure. InGraphics Interface’01(2001), pp. 191–200.

14



[VHFG05] VEGA F., HASTREITERP., FAHLBUSCH R., GREINER G.: High perfor-
mance volume splatting for visualization of neurovasculardata. InIEEE
Visualization’05(2005), IEEE Computer Society Press, pp. 271–278.

[Wes89] WESTOVER L.: Interactive volume rendering. InChapel Hill Volume
Visualization Workshop(1989), pp. 9–16.

[Wes90] WESTOVERL.: Footprint evaluation for volume rendering.ACM Com-
puter Graphics 24, 4 (July 1990), 367–376.

[XC04] XU D., CRAWFIS R.: Efficient splatting using modern graphics hard-
ware.Journal of graphics tools 8, 4 (2004), 1–21.

[YESK95] YAGEL R., EBERT D. S., SCOTT J. N., KURZION Y.: Grouping vol-
ume renderers for enhanced visualization in computationalfluid dynam-
ics. IEEE Trans. on Visualization and Computer Graphics 1, 2 (1995),
117–132.

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSSM.: EWA volume
splatting. InIEEE Visualization’01(2001), pp. 29–36.

[ZRB∗04] ZWICKER M., RASANEN J., BOTSCH M., DACHSBACHER C., PAULY

M.: Perspective accurate splatting. InGraphics interface’04(2004),
pp. 247–254.

15


