
Inductive Logic Programming and Its

Application to the Temporal Expression

Chunking Problem

Jordi Poveda Poveda
jpoveda@lsi.upc.edu

Jordi Turmo Borràs
turmo@lsi.upc.edu

LSI Department Technical Report
Ph.D. Programme on Arti�cial Intelligence (UPC)

January 2007

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 ILP Overview . 1
1.1 Basic ILP terminology . 2
1.2 Types of ILP systems . 3
1.3 General concepts of ILP algorithms 4

2 FOIL . 6
3 Chunking of temporal expressions using ILP 7

3.1 Problem description . 7
3.2 Alternative modellings of the problem using ILP 10

4 Results . 13
4.1 Performance issues . 13
4.2 Reducing the model complexity 14
4.3 Testing . 15
4.4 Summary of results . 18

5 Conclusions . 18

1 ILP Overview

Inductive Logic Programming (ILP) comprises a group of machine learning tech-
niques that falls under the broader category of inductive concept learning. ILP
extends the capabilities of traditional attribute-value concept learners (e.g. de-
cision trees) by bringing the expressiveness of �rst-order logic into the equation.

Concept learners based on attribute-value example descriptions generate
concept de�nitions which make use of conditions on the value or ranges of val-
ues for individual attributes (in the form of rules or otherwise). In contrast,
ILP methods are able to exploit the relations among the features that char-
acterize examples �which are inherent to many instances of learning problem
scenarios� and among examples themselves, and express them in the form of
�rst-order logic predicates with variables. The form of hypotheses generated by
ILP methods is that of logic programs, in which each concept to be learned is
represented by a predicate consisting of one or more clauses.

1

1.1 Basic ILP terminology

In inductive concept learning, the aim is to learn a concept C ⊆ U that de�nes
a class of objects, examples, or individuals, where U represents the universe of
discourse. As a result of learning, the learner generates an hypothesis H ⊆ U
which is, ideally, a good approximation of the original concept C. Di�erent
learning algorithms use di�erent representations for both individual objects x ∈
U , and for concepts C and the generated hypotheses H (i.e. for representing
sets of individual objects).

In inductive logic programming ([LAV94]), target concepts are represented
in the form of �rst-order predicates pi(X1, . . . , Xn) of a certain arity n (in the
context of ILP, predicates are also called relations). Hypotheses generated by
the learning algorithm are de�nitions for each of the target predicates pi, in the
form of a set of logic clauses (rules) pi(X1, . . . , Xn) ← L1, . . . , Lm, where each
of the Li are literals.

The learner is supplied with an extensional set of training examples E de-
scribing each target predicate (or target concept), from which the concept is
learned. Each example e is represented as a ground fact of the correspond-
ing target predicate, i.e. as a n-tuple of constants < x1, . . . , xn > that de�ne
an assignment of values for the predicate arguments. Examples are divided in
positive examples (E+ ⊆ E), which satisfy the target predicate pi and, option-
ally, negative examples (E− ⊂ E), which provide counterexamples of the target
concept.

Moreover, the learner may be provided with additional non-target predi-
cate or relation de�nitions qi, which together constitute the existing background
knowledge B. These background knowledge predicates may be de�ned either
intensionally (i.e. as a set of �rst-order logic rules de�ning the cases that satisfy
the relation) or extensionally, through a set of positive and/or negative examples
that are ground facts of the predicate in question. The background knowledge
predicates both de�ne a vocabulary for the learner, in terms of which the hy-
pothesis for predicates pi may be constructed (the may appear in the literals
Li on the body of the clauses), as well as place additional restrictions on the
generated hypothesis H since the hypothesis must be consistent with both the
training examples and the background knowledge.

Lastly, each particular ILP method assumes a certain language bias L�the
language for representing hypothesis and the background knowledge�, which
places certain restrictions on the type of clauses that may be used in the pred-
icate de�nitions, for example: Horn clauses, function-free clauses (no complex
terms must appear as arguments to predicates in the clause literals, only vari-
ables or constants), non-recursive predicates (the target predicate must not
appear in the body of the clause), etc. This language bias L introduces an ex-
pressivity vs. complexity dilemma to ILP: the less complex the hypotheses that
may be expressed in the language, the smaller the complexity of the search in
the space of candidate hypotheses the learner has to perform; but, on the other
side, there may be complex target concepts for which the learner is unable to
�nd a suitable representation in the language.

2

Training examples Background knowledge

daughter(mary, ann). ⊕ parent(ann, mary). female(ann).
daughter(eve, tom). ⊕ parent(ann, tom). female(mary).
daughter(tom, ann). 	 parent(tom, eve). female(eve).
daughter(eve, ann). 	 parent(tom, ian).

Table 1: >From Lavra£, N. and Dºeroski, S. (1994) [LAV94]

Let us illustrate the above concepts by means of an example: we want to
learn the target concept daughter expressed as the relation daughter(X, Y)
which translates into �X is the daughter of Y�. Table 1 gives the training exam-
ples E and background knowledge B.

An ILP algorithm could learn the following de�nition for the target relation
daughter(X, Y), assuming the hypothesis language L of Horn clauses:

daughter(X, Y)← female(X), parent(Y, X).

The above hypothesis is both complete and consistent with respect to the
given examples E and background knowledge B. A hypothesis H is said to be
complete with respect to a set training of examples E and background knowledge
B if every positive example in the training set can be derived from the hypothesis
and the background knowledge (i.e. B ∪H � e,∀e ∈ E+), and it is said to be
consistent if no negative example in the training set can be derived from the
hypothesis and the background knowlegde (i.e B ∪H 2 e,∀e ∈ E−). In principle,
it is desirable that the hypothesis returned by an ILP learner be both complete
and consistent, but these requirement may need to be relaxed in a practical
situation with imperfect data (missing values, errors in the training examples,
insu�cient number of examples, or a language L that cannot represent the target
concept exactly), and as a measure to avoid producing too complex hypotheses
that produce over�tting of the training examples.

1.2 Types of ILP systems

ILP systems in existence can be classi�ed according to several criteria, among
these:

• Whether they accept a single target concept or multiple target concepts.

• Whether they take all the training examples at once and produce a hy-
pothesis (batch learners), or accept examples one by one (incremental
learners).

• Whether they enquire the user about the goodness of the so-far learned
hypothesis at di�erent points through the learning process, and/or ask
the user to classify new examples generated by the system as positive or
negative (interactive learners), or not (non-interactive).

3

• Whether they learn a concept from scratch, or accept an initial partial
de�nition of the target predicate which is then re�ned through the learning
(theory revisors).

• The representation language L for hypotheses.

With regard to the above criteria, a �rst essential distinction is drawn between
empirical ILP systems and interactive ILP systems. Empirical ILP systems
have become the most common variety. Their goal is typically to learn a single
concept (although some systems allow learning several target relations at the
same time) from a large training set of examples. Also, empirical ILP systems
are typically batch learners and non-interactive, and learn concepts from scratch.
Systems that belong in this category are FOIL ([QUI90]), GOLEM ([MUG90])
and PROGOL ([MUG95]), among others.

On the contrary, interactive ILP systems are oriented towards learning mul-
tiple target predicates from a small amount of examples, incrementally. These
systems compensate the sparsity of examples by resorting to an oracle (the user)
to verify the validity of a partially constructed hypothesis and to classify newly
generated examples. They may also accept an initial hypothesis that is used
to guide the search. Examples of interactive ILP systems are MIS ([SHA83]),
MARVIN ([SAM86]) and CIGOL ([MUG88]).

1.3 General concepts of ILP algorithms

All ILP systems employ some form of search in the space of hypothesis permitted
by their representation language L, which turns the problem of concept learning
into a problem of search. Before brie�y describing the basic techniques used in
ILP, let us introduce a way of structuring the search space of program clauses
p(X1, . . . , Xn)← L1, . . . , Lm based on the θ-subsumption relation.

A clause c = T ← Q (where T is an atom p(X1, . . . , Xn) and Q is a conjunc-
tion of literals L1, . . . , Lm) is said to θ-subsume clause c′ if there exists a substi-
tution θ = {X1/t1, . . . , Xk/tk} from the variables Xi in c to terms ti, such that
the clause c with the substitution θ is a proper subset of the clause c′ (cθ ⊆ c′).
For example, clause c = daughter(X, Y) ← parent(Y, X) expressed as a set
(a disjunction of literals) becomes {daughter(X, Y), parent(Y, X)}. Clause c
θ-subsumes the clause

daughter(mary, ann)← female(mary), parent(ann, mary) ≡

≡ {daughter(mary, ann), female(mary), parent(ann, mary)}

under the substitution θ = {X/mary, Y/ann}. The θ-subsumption relation
corresponds with the notion of generality: if clause c θ-subsumes clause c′, then
clause c is at least as general as clause c′ (expressed c ≤ c′); and it holds
that any training example that is explained by c′ is also explained by c. In
this manner, θ-subsumption introduces a lattice (partial ordering) in the set of
program clauses, which can be exploited when tackling ILP as a search problem.

4

The search in the hypothesis space for a candidate concept de�nition H can
be carried out top-down (from the general to the speci�c), bottom-up (starting
from single examples and working up towards predicates that account for more of
the training set), or in a combination of both ways. The most general hypothesis
is the empty hypothesis (p(X1, ..., Xn) ←), from which any ground fact about
p can be derived. The most speci�c hypotheses are the ground facts expressed
by individual training examples (p(x1, . . . , xn), with xi constants), which cover
only a single example. The objective of the search is to converge towards a
description of the target predicate p as a set of clauses that covers (most of) the
positive examples and (almost) none of the negative examples.

Generalization techniques (bottom-up search) are employed mainly by inter-
active (incremental) ILP systems. They use two basic generalization operations:
applying an inverse substituion to a clause (i.e. a substitution that maps terms
to variables instead of variables to terms), and removing a literal from the body
of a clause. In particular, in order to minimize the risk of allowing negative
examples to be covered by the hypothesis, these systems utilize the notion of
least general generalization (lgg), which is de�ned recursively for terms and
predicates, and is related to the θ-subsumption lattice on the space of clauses.

The two generalization operations described combine into the generalization
technique of inverse resolution, which attempts to invert the procedure of SLD-
resolution used in �rst-order logic deduction. The basic idea is to combine
(or inversely resolve) individual examples e with facts from the background
knowledge bj into a clause c = e ← b1, . . . , bk, while applying at each step an
inverse substitution θ−1 that maps some of the constant terms in the clause to
variables, whereby generalization is introduced. This idea is used in CIGOL
([MUG88]) and GOLEM ([MUG90]).

Specialization techniques (top-down search) are employed, in contrast, mainly
by empirical ILP systems, since top-down search adapts better to the use of
heuristics to prune a large search space. These use two basic specialization
�also called re�nement� operations, namely the opposite of generalization
operations: applying a substitution to a clause (changing some variables to con-
stant terms), and adding literals to the body of a clause. These two operations
are the basis for the ILP specialization technique known as top-down search of
re�nement graphs (�rst introduced in the MIS system [SHA83]).

A re�nement graph is a directed acyclic graph (DAG) where nodes corre-
spond to the possible clauses for a target predicate, and arcs correspond to the
application of one of the two basic re�nement operations (substituting a variable
with a term and adding a literal to a clause). The algorithm iteratively adds
new clauses ci to the �nal hypothesis H in order to cover an increasingly larger
group of examples, and eliminates previously added clauses if they are found
to cover some negative example, until the �nal hypothesis H is consistent and
complete. For each new clause ci, a re�nement graph thus constructed is used
to guide the search from the most general clause (the empty clause ci = T ←) to
a more speci�c clause c′i = T ← L1, . . . , Lm, that covers a subset of the positive
examples E+.

ILP algorithms also introduce some safeguard mechanisms in order to deal

5

with noisy data. These can take the form of limiting the description length
of the generated hypothesis (by restricting the number of literals in the body
of clauses), at the expense of accuracy of the clauses. Allowing for partial
completeness and consistency with respect to the training examples E can also
contribute to avoid over�tting, when the learned hypothesis is used to classify
unseen examples.

2 FOIL

FOIL is an empirical ILP system developed by Quinlan ([QUI90], [QUI93]).
Its antecedents are attribute-value based learning systems such as ID3 trees
and AQ (a system that learnt concepts in the form of if-then propositional rules
concerning the values of attributes). FOIL utilizes a form of the top-down search
of re�nement graphs algorithm introduced by the MIS ([SHA83]) ILP system.

The hypothesis language L of FOIL restricts clauses in the hypothesis to
containing function-free literals (only constants and variables may appear as
arguments in the predicates of the body literals, not complex terms). Recursive
predicate de�nitions are supported, which means that the target predicate sym-
bol p may appear in the body of a clause. Representation of the background
knowledge B is restricted to extensional de�nitions of relations (predicates) in
the form of a list of ground facts (i.e. background knowledge predicates cannot
be de�ned using rules). Arguments of relations in FOIL are typed, which means
they take values over a particular domain.

A typical input to FOIL consists of the following:

1. A set of type de�nitions, where each type speci�es a set of values (a
domain) that the arguments of predicates can take. A type de�nition
consists of a type name followed by a set of constants (the possible values
for that type). FOIL supports unordered, ordered (where a particular
ordering of the constants exists) and possibly ordered types (where FOIL
attempts to discover an ordering of the constants that is useful for recursive
predicates). FOIL supports continuous types, which take values over the
integer and the real numbers.

2. A set of extensional relation de�nitions, one or several of which corre-
spond to target predicates and the rest to predicates of the background
knowledge (a vocabulary of relations). Relation de�nitions consist of a
header, indicating the name of the predicate and the number and types
of its arguments, and one or two sets of examples. First, a set of positive
examples for the predicate are given, and then, optionally, a set of neg-
ative examples. Each example is a comma-separated tuple of constants.
Negative examples need not be provided, FOIL can generate them under
the closed world assumption.

3. Optionally, a number of test examples for the target relations may be
provided, tagged as positive or negative.

6

>From these elements, FOIL returns an hypothesis consisting of a set of function-
free Horn clauses for each of the target predicates. The predicates that may
appear in the literals of the body of the solution clauses are: predicates from
the background knowledge, any of the target predicates, a predicate that binds
a variable to a value (Xi = Xj), and a predicate that speci�es an ordering rela-
tion between values (Xi < Xj). These predicates may also appear negated (in
the form not Li), where not denotes the closed-world interpretation of negation.
The arguments of predicates in the literals may only be variables or a special
type of constants that have been marked as �theory constants�. At least one of
the variables in a literal must be bound (i.e. must have appeared in the head of
the clause or in a previous literal).

The FOIL algorithm consists of three steps: pre-processing of examples,
hypothesis construction and post-processing of the solution. Post-processing of
the solution is a form of pruning that eliminates irrelevant clauses.

Hypothesis construction consist of an inner process of clause specialization
embedded into an outer covering loop. The covering loop starts out with an
empty hypothesis H := ∅ and iteratively searches for new clauses c that cover
(i.e. explain) a subset of the positive examples E+

cur that remain so far, adding
the new clause to the hypothesis (H := H∪{c}). This process stops when either
all positive examples are covered (E+

cur = ∅) or restrictions about maximum
description length of the hypothesis are violated.

The inner clause specialization loop starts out with an empty clause (c :=
T ←, with T being the target predicate), and iteratively re�nes the clause c
by adding new literals Li to its body until either the clause covers no negative
examples in the training set, or the maximum length restriction for a clause
is violated. FOIL uses an heuristic based on information gain to guide the
selection of literals Li that are added to the clause, among the possible choices.

3 Chunking of temporal expressions using ILP

In this section we �rst describe the problem of temporal expression chunking
within the bigger context of information extraction (IE), and next present two
alternative ways of modelling this problem (one propositional and one relational)
for tackling it using ILP.

3.1 Problem description

Chunking refers to any problem or task in NLP (natural language processing)
which involves segmenting (i.e. identifying the boundaries of) the occurrences in
a text of a certain type of entities. This gives rise to di�erent types of chunking
problems, for instance:

• Syntantic chunking, where the aim is to identify syntactic phrases (e.g.
noun phrases, verb phrases, prepositional phrases, . . .).

7

• Named entity recognition, where mentions in text of certain types of con-
cepts that have a proper name designation (hence �named entity�) are
sought, for example: persons, locations, currency, organizations. . .

• Clause splitting (i.e. a group of words consisting of a subject and a pred-
icate).

A related task, which may accompany chunking, is that of classi�cation of
the segmented chunks into appropriate types (e.g. PER for person, LOC for
location, ORG for organization, etc., in the case of named entities).

Chunking of temporal expressions is a part of the more complex task called
temporal expression recognition and normalization (TERN), in which the aim is
to identify the mentions in a text of expressions that denote time, and to capture
their meaning by writing them in a canonical representation. A common way to
represent these temporal denoting expressions in text �as well as other entities
of interest in information extraction, like named entities, events or relations�
is to employ XML tags with convenient attributes to further qualify the entity.
For example:

But even on <TIMEX2 VAL="1999-07-22">Thursday</TIMEX2>, there

were signs of potential battles <TIMEX2 VAL="FUTURE_REF"

ANCHOR_DIR="AFTER" ANCHOR_VAL="1999-07-22">ahead</TIMEX2>.

The TIMEX standard sets out guidelines for annotating and normalizing men-
tions of time expressions. These and a full account of the complex bestiary of
temporal expressions can be found in [FER03].

There are two separate problems in the TERN task, one of identifying the
extension of the mentions of temporal expressions in text (i.e. chunking) and
the considerably more di�cult problem of normalizing the value of the temporal
expression. Here we are only concerned with the �rst of these two problems.
Contrary to what it may at �rst seem, temporal expressions come into a wide
variety of forms ([WIL01]):

• Fully-speci�ed time references: 16th June 2006, the twentieth century,
Monday at 3pm.

• Expressions that depend on a context: last month, three days from today,
February last year.

• Anaphorical expressions and expressions relative to the time when the
expression is written: that day, yesterday, currently, then.

• Durations or intervals: a month, three days, some hours in the afternoon.

• Frequencies or recurring times: monthly, every other day, once a week,
every �rst Sunday of a month.

8

• Culturally dependent time denominations: Easter, the month of Ramadan,
St. Valentine.

• Fuzzy or vaguely speci�ed time references: the future, some day, eventu-
ally, anytime you so desire.

The chunking-related problems have traditionally been represented as the multi-
ple classi�cation problem of assigning I/O/B tags to each token in a sequence of
text. The tags stand for Inside (I), Outside (O) and Begin (B), and are enough
for delimiting non-overlapping, non-recursive chunks (i.e. chunks that neither
appear inside the boundaries of the extension of another larger chunk, nor over-
lap with another chunk). If the task involves further discriminating the chunks
into several classes, the I and B tags can be appended with a su�x to signify
the type of the chunk (e.g B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG,
O for the named entity recognition task). In the case of temporal expression
chunking, the result may look something like this:

In/O 2006/B ,/O thirty/B years/I after/O Mao/B Tse/I Tung/I

's/I death/I ,/O hordes/O of/O devote/O Chinese/O arrive/O

still/O daily/B to/O his/O memorial/O site/O ./O

For our experiments, we use the corpus of the ACE 2005 competition (Automatic
Content Extraction) for training and test. This corpus has the mentions of
time expressions manually annotated using TIMEX tags. The composition of
the corpus is 550 documents distributed in �ve categories (newswire, broadcast
news, broadcast conversations, conversational telephone speech and weblogs),
containing 257000 tokens and approx. 4650 time expression mentions.

Regarding evaluation, we are interested in three measures for quantifying
the performance of the temporal expression recognizer:

Precision: The rate of returned temporal expressions that are correctly iden-
ti�ed (i.e. correctly tagged divided by total tagged).

Recall: The rate of existing temporal expressions that are correctly identi�ed
(i.e. correctly tagged divided by those that should have been tagged).

F1 Score: It is the harmonic mean of the two previous values,
F1 = 2×Precision×Recall

(Precision+Recall) .

Note that only temporal expression mentions whose boundaries are correctly
identi�ed count positively towards the precision and recall scores. Partial matches
(a temporal expression that is identi�ed partially, or misplaced) are not regarded
as hits. We are not counting the rate of correct assignments of I/O/B tags at
the token level: that one is a di�erent measure and is termed accuracy �and
normally, the attained score in this measure is also considerably higher�.

9

3.2 Alternative modellings of the problem using ILP

We propose two alternative modellings of the temporal expression chunking
problem in order to evaluate the performance that can be achieved using in-
ductive logic programming (speci�cally, FOIL) for the task: one propositional,
which takes into account features of individual tokens; and one relational, which
tries to classify fragments (i.e. sequences of tokens) as to whether they corre-
spond to the mention of a temporal expression, and which takes into account
as well relations between the tokens.

In the propositional approach, the text is �rst tokenized (segmented into
individual tokens) and then a number of features are computed for each token.
Tokens correspond normally with individual words, but also include punctua-
tion marks �which are separate tokens� and special constructs like the saxon
genitive �'s�. Features that we use for tokens include:

• Lexical: The token form itself, the token in lowercase, the token that
results from removing all letters from the token (e.g. 3 for �3pm�), the
token that results from removing all letters and numbers (e.g. - - - for
1995-07-12).

• Morphological: The POS (Part Of Speech) tag (for instance, NN for noun,
JJ for adjective, CD for cardinal number, MD for modal verb, . . .).

• Syntactic: The tag of the syntactic chunk that the token belongs to (e.g.
NP for noun phrase, VP for verb phrase, . . .).

• Format features: These are �ags that indicate if the token has certain
format characteristics (isAllCaps, isAllCapsOrDots, isAllDigits, isAllDig-
itsOrDots and initialCap).

• Features that indicate if the token belongs to certain speci�c classes of
words: isNumber (e.g. one, two, ten, . . .), isMultiplier (e.g. hundred,
thousands, . . .), isDay (e.g. monday, mon, saturday, sat, . . .) and isMonth
(e.g. january, jan, june, jun., . . .).

• Contextual features: All of the previous features, but in reference to the
tokens occurring in a certain window to the left and right of the current
token.

• The target classi�cation: The correct I/O/B tag for a window of tokens
in the left context (we call these dynamic features).

In order to transform this attribute-value representation of tokens into logic
predicates that can be used as input to FOIL, each individual token is assigned
an identi�er. These token identi�ers function as constants. All logic predicates
take a single argument, which is a token identi�er (therefore we refer to this
approach as propositional, because the predicates do not really express rela-
tions). Each possible feature of a token will be represented as a predicate of the

10

background knowledge, with positive examples for the predicate being the iden-
ti�ers of the tokens that have that feature. For example, the following sequence
of tokens with some of their features:

FORM POS SYNTAX I/O/B tag

tok100: the DT B-NP O

tok101: current JJ I-NP O

tok102: deficit NN I-NP O

tok103: will MD B-VP O

tok104: narrow VB I-NP O

would produce, among others, the following ground facts of the background
knowledge: form_de�cit(tok102), form_current(tok101), POS_DT (tok100),
POS_NN (tok102), syn_B_VP(tok103), context_l1_form_current(tok102), con-
text_r2_POS_VB (tok102), . . .

In this propositional approach, we will have three target predicates, that cor-
respond to the three possible classi�cations of a token, namely: begin_time_exp
(X), inside_time_exp(X) and outside_time_exp(X), which take a token iden-
ti�er as argument. The purpose of trying out this propositional approach is
to compare how well ILP performs for this task in comparison with a previous
experiment that we did with the same corpus using support vector machines,
and with the same set of features.

Two relational approaches at automatically learning rules for information ex-
traction are described in [FRE98] and [TUR02]. Freitag (1998) [FRE98] presents
the SVR system, a relational learning system for acquiring extraction patterns
for IE, and compares its performance with other methods (Bayesian learning and
grammatical inference). Turmo & Rodriguez (2002) [TUR02] describe EVIUS,
a relational learner that employs ILP (FOIL in particular) to automatically ex-
tract rules for information extraction (IE rules) in multiple domains, based on
the idea of an scenario of extraction, which speci�es which concepts are relevant
to the domain at hand. The performance of EVIUS is also compared to the
same methods treated in [FRE98] as well as other methods. Our proposal of a
relational approach for the problem of temporal expression chunking draws on
some ideas from the former papers.

In the relational approach, the aim is not to focus on individual token's
features, but to exploit the relations between successive tokens as they appear
in the text. In this approach we look at fragments of text rather than single
tokens, and try to classify fragments as being temporal expressions or not. A
fragment is de�ned as a sequence of consecutive tokens from the text, of a
bounded length. In order to limit the number of examples to be considered,
we look at the minimum and the maximum length of a temporal expression
mention in the training corpus. We will consider only fragments of a length
between that minimum and maximum.

This time, an identi�er for each fragment in the training data is generated,
and also token identi�ers for individual tokens are generated. These fragment
and token identi�ers are constants that can be used as arguments for relations

11

(predicates). The di�erence with respect to the propositional approach is that
using relations gives us much more freedom in the type of predicates we can use
as background knowledge.

Thus, we can have predicates that capture the relation between fragments
and tokens, like:

• fragment_span(Fragment: FragmentId, FirstTok: TokenId, LastTok: To-
kenId),

• contains_token(Fragment: FragmentId, Tok:TokenId);

and predicates that capture relations among individual tokens, like

• follows(Tok1: TokenId, Tok2: TokenId) and

• precedes(Tok1: TokenId, Tok2: TokenId).

Also, unlike in the propositional approach, where the limitation that predicates
could only take token identi�ers as arguments obliged us to de�ne a separate
predicate for each possible value of a token's feature, we may now de�ne new
types for each feature we intend to use and have generic predicates that link
individual tokens to their features, as in:

• token_form(Tok: TokenId, Word: TokenForm),

• token_POS(Tok: TokenId, Tag: POSTag);

even though due to computational complexity reason, it may be more convenient
to keep the arity of predicates to a minimum and de�ne a di�erent predicate for
each possible value of a feature, as in:

• token_form_Form(Tok: TokenId), where Form means each of the lexi-
con's token forms.

We may also have predicates that describe features of fragments, as in

• length_less_than(Fragment: FragmentId, Length: Integer), or else, for the
same reason as above,

• length_less_than_X(Fragment: FragmentId), for X = maxlen−minlen+
1 . . .maxlen,

or that specify whether a fragment contains one of a list of trigger words (days,
weeks, hours, year, . . .) that point towards the fragment being a time expression

• contains_trigger(Fragment: FragmentId, Word: Trigger).

In the relational approach, our target predicate would simply be is_time_expr
(Fragment: FragmentId).

12

4 Results

The following discussion concerns the results obtained by using the approach
termed propositional as described in section 3.2 above. The implementation of
the relational approach has been dropped due to performance issues discussed
next. Some additional experiments intended to reduce the model complexity
and the results obtained will also be outlined.

4.1 Performance issues

We encountered that the amount of time that FOIL requires to train a model
for a large dataset and number of features (as it is our case with the ACE corpus
and the feature set described above) renders it impractical for real use.

Our training set consists of 192182 tokens, 3613 of which are tagged as B
(start of temporal expression), 3187 as I (inside temporal expression) and 185364
as O (outside). In the propositional knowledge representation, the number of
domain predicates other than the 3 target predicates (i.e. predicates correspond-
ing to possible features of the individual tokens) is 159175, and all predicates
have arity 1 (the only variable is the token identi�er). Training has been con-
ducted in a cluster of workstations with Pentium 4 3.20 GHz and 4 GBytes of
RAM.

Training 3 classi�ers in this manner with FOIL (one for each of the tar-
get predicates: B, I and O) took over three and a half weeks for each �the
three of them were trained simultaneously�. FOIL's temporal complexity is of
order O(‖B‖×‖E+ ∪E−‖×A), where ‖B‖ is the number of background knowl-
edge predicates, ‖E+ ∪ E−‖ is the number of examples and counterexamples for
the target predicate and A is the maximum arity (number of arguments) of a
predicate. As a matter of comparison, consider that training 3 one-vs-all SVM
classi�ers to perform the same task with the same dataset takes on the order of
8 hours. Obviously, this impairs FOIL's ability to be considered a viable alter-
native for our problem. This is one of the reasons why we did not even attempt
running FOIL with a relational representation of the problem (see section 3.2),
the other reason being that the classi�cation results obtained in the testing were
not up to the expectations. A relational representation of the problem, in spite
of its purportedly greater expressive power, should have required a prohibitive
amount of time to train, provided that the arity of the predicates increases as
well as the number of examples to consider (fragments of tokens).

Nevertheless, we attempted to speed up the training of our model with FOIL,
at the expense of �ltering predicates from the background knowledge (thus re-
ducing the number of available options for FOIL to construct literals for clauses)
and reducing the number of counterexamples for the target predicates. The de-
crease in training time achieved in this way was only limited, and not without
a considerable penalty in the classi�cation results.

13

4.2 Reducing the model complexity

An attempt was made to decrease the time required for training by introducing
two measures to reduce the model complexity:

• Eliminating domain predicates (token features) that had few positive ex-
amples.

• Eliminating negative examples for the target predicate that were not dis-
criminant enough with respect to the set of positive examples (i.e. the
information they provide can be deemed less relevant).

The rationale behind �ltering out the less frequent domain predicates is that
a great number of these predicates are generated by the token forms of words
encountered in the training section of the corpus and other token features that
depend directly on the the token form (e.g. lower case form, and the lexical
features). This is increased by the use of contextual features, which multiplies
the number of this type of predicates by the width of the context window. Many
of the thus generated predicates may be irrelevant, because the ocurrence in the
corpus of the words that motivate them may only be anecdotal. Therefore, we
introduced the restriction that background knowledge predicates must have at
least X positive examples in order to be included as input to FOIL.

As for the second simpli�cation, the motivation behind �ltering negative
examples for the target predicates is that, in our problem, tokens pertaining
to temporal expressions appear sparingly through the whole training set. The
tokens that are negative examples for one of the target predicates, B (begin), I
(inside) and O (outside), are those that are a positive examples for either one
of the other two. This creates a situation where the B and the I predicates have
few positive examples and a lot of negative examples, whereas the opposite is
true for the O predicate. By eliminating the non-informative counterexamples,
we reduce the burden placed on FOIL to ensure consistency with the set of
examples.

We considered informative counterexamples to be those that are �similar
enough� to one or more of the positive examples, so that taking this particular
counterexample into account is important for the classi�er to learn establish the
frontier among positive and negative cases accurately. To this end, we de�ned
an ad hoc threshold on the similarity of a negative example with respect to the
set of positive examples. A particular negative example will only be included
in the set of negative examples for the target predicate presented to FOIL if
it shares at least M features with (i.e. satis�es at least M domain predicates
that are also satis�ed by) at least N tokens from the set of positive examples
�note that the features the counterexample in question shares with each of the
N positive examples may be a di�erent M in each case�.

We experimented with di�erent values of these thresholding parameters X,
M and N , using more restrictive values each time until we achieved a reduction
that we deemed reasonable in both the resulting number of domain predicates
and the number of negative examples, while at the same time looking at not

14

compromising classi�cation accuracy excessively. How much such a reduction
would compromise correctness of classi�cation was still a guess, as we could not
a�ord to run a full FOIL training and testing for each choice of thresholding
parameters' values. The values that were �nally decided upon are X = 10,
M = 20 and N = 5. Observe that the number of token features that we demand
a negative example to share with some of the positive examples in order to be
taken into consideration is large (M = 20). This is so because once two tokens
have the same token form (i.e. they both are the same word), a lot of other
features automatically follow suit in most cases: the lower case form, the lexical
features, the POS tag, the syntactic chunk tag, the format and class features. . .
This is again increased if some of the words in the left or right context of the
two tokens in consideration coincide as well.

With the above values for threshold parameters (X = 10, M = 20 and N =
5), the number of domain predicates was reduced from 159175 to only 20105;
and the number of negative examples for the target predicates was reduced from
188551 to 66351 for the B predicate, from 188997 to 35768 for the I predicate,
and from 6800 to 5629 for the O predicate. The training time of FOIL was
reduced proportionately: for example, the classi�er for B needed 2 and a half
days to complete, and the classi�er for O needed around 3 days to complete.
However, classi�cation performance was also considerably impaired, with losses
in the order of 8%-10% in both precission and recall with respect to using the
full model (see section 4.4).

4.3 Testing

Once classi�ers for each of the B, I and O target predicates had been trained
with FOIL, we took advantage of the built-in inference engine of PROLOG
for evaluation against the test set. We collected the set of clauses produced
by FOIL for the three target predicates into one �le of rules for PROLOG by
using a PERL script. In a similar manner, we produced a �le of PROLOG
facts which contained the features of the tokens in the test partition expressed
as a set of ground facts (i.e. predicates that take a constant as argument, the
constant being a token identi�er). Next, we ran a PROLOG program to output
our classi�er's guess (that is, a B, I or O tag) for each of the test set tokens in
sequence, and place them alongside the correct tag for each token in a tabular
�le. And lastly, we used a PERL script that computes the precission, recall and
F1 measures to evaluate the results.

There are several details that need to be taken into consideration which
preclude evaluation of the test set with PROLOG from being straightforward.
The most obvious di�culty that arises is that we have trained three classi�ers
with FOIL independently of each other (one to decide if a token carries the
tag B or not, another for the tag I and another for the O). Each of the three
classi�ers uses its own set of clauses (produced by FOIL) to provide an individual
yes/no response for a token, but several of the three classi�ers may give a 'yes'
response (or none of them for that matter), whereas the correct classi�cation
for a token is one and only one of the three possible tags. Therefore, it becomes

15

necessary to establish a procedure to reach a consensus or agreement on the
classi�cation of a token, given the outputs of the three classi�ers. Also, and
not less importantly, the sequence of tags output by this consensus of individual
classi�ers has to comply with certain consistency constraints with respect to the
sequence of tokens, such as that an I (inside) tag cannot follow an O (outside)
tag, or that the �rst token in a sentence cannot carry an I tag.

Thus, we need to resort to some type of measure that gives us an indication
of the amount of evidence supporting each possible decision (that is, whether
to assign a B, I or O tag), in order to break a possible tie when several of the
classi�ers give a 'yes' response. One such evidence measure, which we have
employed, is the con�dence of a rule. Each of the three classi�ers applies a
series of rules in order (i.e. clauses produced by FOIL), which have the form
A⇐ B, to decide on a yes/no response for the token in question. In these FOIL
or PROLOG rules, the left hand side A is one of the three target predicates
(i.e. begin_time_exp(X), inside_time_exp(X) or outside_time_exp(X)), and
the right hand side B is a conjunction of literals or negated literals constructed
from the domain predicates (that is, the possible features of a token as described
in section 3.2, including the contextual features). Each classi�er will output a
'yes' response for a token whenever it �nds a clause whose right hand side B can
be satis�ed when the variable in the literals is uni�ed with that token's identifer,
or a 'no' otherwise. The satis�ability of the rules' right hand sides with respect
to a token is computed by PROLOG, using the ground facts supplied in a facts
�le about the tokens in the test set. The con�dence of each rule or clause is
computed thus:

conf(A ⇐ B) = #(A∧B)
#B , where #(A ∧ B) refers to the number of tokens

(cases) that satisfy both the antecedent (B) and the consequent (A) of the rule,
and #B refers to the number of tokens that satisfy the antecedent.

This quantity is computed for each clause by taking into account the ground
facts (i.e. predicate facts derived from the tokens' features) about tokens from
the training test (in a way similar to how we consider the ground facts about
tokens from the test set for the �nal evaluation). The con�dence of each clause is
stored as an additional constant argument to the target predicates in a modi�ed
PROLOG rule �le. Thus, each rule from the rule �le has a form similar to this:

learned_begin_time_exp(X, 0.986486) :- form_now(X),

context_l1_syn_B_VP(X).

And the PROLOG facts �le contains a succession of ground facts expressing the
individual tokens' features, such as:

form_July(tok1992).

pos_JJ(tok25983).

context_r2_syn_I_VP(tok199238).

ground_begin_time_exp(tok34).

Notice the subtle distinction above between the target predicate as a classi�-
cation hypothesis (that is, the target predicate for which FOIL learns a set of

16

clauses), and the target predicate as in expressing the correct tag for a token
in the �le of ground facts. In order to distinguish between the two, we prepend
the pre�x �learned� in the �rst case to the name of the predicate, and the pre�x
�ground� in the second.

Evaluation is then performed by having PROLOG produce a classi�cation
decision of one and only one tag, for each token of the test set in sequence,
based on all the information discussed above. The consensus among the deci-
sions of the three classi�ers (B, I and O) makes use of the con�dences of the
rules that support each of the individual decisions. Because a 'yes' response
from a classi�er could be based on several rules (that is, the token in question
could satisfy the antecedents of one or several clauses), each one having a di�er-
ent con�dence value, we have tried two di�erent approaches to computing the
con�dence of each possible decision (the results of both are reported in section
4.4 below):

1. Considering the con�dence of the best clause among those satis�ed by the
token.

2. Considering the sum of the con�dences of all the clauses satis�ed by the
token.

The procedure for reaching the �nal agreement on the classi�cation of a token
is as follows:

• If the three individual classi�ers give a 'no' response, the token is assigned
the O (outside) tag, as it is by far the most common situation that a token
does not belong to a time expression.

• If one of the possible classi�cations is I (inside), i.e. the I classi�er gave
a 'yes' response, and the token in question either appears at the start of
a sentence, or the classi�cation of the previous token was an O, the tag I
is discarded from the options to consider �as it would create an inconsis-
tent tag sequence� and the �nal classi�cation is based on the remaining
options alone. To this end, we add a special predicate �begins_sentence�
to the �le of ground facts, which tells whether a token occurs at the start
of a sentence.

• In any other case, the token is assigned the tag corresponding to the
classi�cation decision with the highest con�dence (among those for which
the corresponding classi�er gave a 'yes' response).

One �nal detail which is worth mentioning concerns the way how the dynamic
contextual features of tokens are generated (that means, the ground fact predi-
cates that tell the correct tag for the tokens within the context window of a given
token). In the training stage, it is acceptable to take the correct classi�cation
tag for the contextual tokens in order to generate this particular token feature.
However, this is not the case for the testing stage because now, as we are test-
ing the learned classi�er, the classi�cation of the previous tokens would be an

17

CLASSIFIER PREC RECALL F1

FOIL (best) 77.58 52.15 62.37

FOIL (sum) 81.32 50.28 62.13
SVM 80.05 (-1.27) 73.71 (+21.56) 76.75 (+14.38)

Table 2: Performance of the propositional approach with FOIL vs. a SVM
classi�er

imperfect one. This means that in order to produce coherent testing results, we
need to generate this dynamic contextual features �on-the-�y�: the correspond-
ing ground facts about the previous tokens are added to the PROLOG base of
facts as the classi�cation takes place.

4.4 Summary of results

Table 2 shows the precission, recall and F1 values achieved by the propositional
classi�ers trained with FOIL using the full data (i.e. without any kind of reduc-
tion of complexity). We include the results obtained with both strategies for
computing the con�dence of a classi�cation decision ('best' indicates the con�-
dence of the best clause is taken, 'sum' indicates that the sum of con�dences of
all the satis�ed clauses is taken). The precission, recall and F1 results achieved
with a statistical SVM classi�er (one-vs-all) trained with the same data and
using exactly the same set of features is included for the sake of comparison.

The quantities in bold correspond to the best result obtained by FOIL (with
each of the two strategies for computing the con�dence), and the numbers in
parentheses are the score di�erences of the SVM classi�er with respect to FOIL.
It can be observed that the precission values are close in both cases, but there
is consistently a drop in the recall value of FOIL with respect to that achieved
by the SVM. This loss in recall damages the F1 �gures of FOIL considerably.
We believe that this low recall of FOIL is due to an implicit bias of the learn-
ing method that makes it more susceptible to commiting over�tting than, for
instance, an SVM, provided that the two classi�ers were trained with exactly
the same data and feature sets.

Table 3 compares the results after applying complexity reduction to the data
in order to reduce the trainig time of FOIL (by �ltering the less frequent domain
predicates and the less informative counterexamples as described above), with
those achieved by using the full data. It can be observed that both precission
and recall su�er an important decrease of about 8%-9%.

5 Conclusions

First, we have presented general notions about ILP (inductive logic program-
ming), including a basic vocabulary of ILP, a typology of ILP systems and a
description of the main techniques in ILP. Then, we have turned our atten-
tion to one ILP system in particular, FOIL. And last, we have delimited the

18

PREC RECALL F1

Full model (best) 77.58 52.15 62.37
Reduced model (best) 71.18 44.55 54.80
Full model (sum) 81.32 50.28 62.13

Reduced model (sum) 72.50 41.47 52.76

Table 3: Performance of the reduced model with FOIL vs. the full model

problem on which we intended to apply ILP, that of temporal expression recog-
nition, and have proposed two alternative logic representations for the problem:
propositional and relational.

We have evaluated the performance achieved by FOIL for the propositional
approach only, and have observed that, while the precission scores lie within
an acceptable range, the recall values are abnormally low, perhaps owing to
an implicit bias in the learner. We saw also that the execution time of FOIL
for training a full model under the assumptions that occupy us in this problem
renders its usage impractical, and that simplifying the training data set in order
to reduce execution time carries a non-negligible penalty associated in both
precission and recall.

19

Bibliography

[FER03] Ferro, L. et al. (2003). TIDES Standard for the Annotation of Tem-
poral Expressions v1.3. Technical Report, MITRE Corporation.

[FRE98] Freitag, D. (1998). Machine Learning for Information Extractionin
Informal Domains, Ch. 5, pp. 73�117. PhD thesis, Carnegie Mellon
University, 1998.

[LAV94] Lavra£, N. and Dºeroksi, S. (1994). Inductive Logic Programming:
Techniques and Applications. Ellis Horwood, New York.

[MUG88] Muggleton, S. and Buntine, W. (1988). Machine Invention of First-
Order Predicates by Inverting Resolution. In Proc. Fifth International
Conference on Machine Learning, pp. 339�352. Morgan Kaufmann,
San Mateo, CA.

[MUG90] Muggleton, S. and Feng, C. (1990). E�cient Induction of Logic Pro-
grams. In Proc. First Conference on Algorithmic Learning Theory,
pp. 368�381. Ohmsha, Tokyo.

[MUG95] Muggleton, S. (1995). Inverse Entailment and Progol. New Genera-
tion Computing Journal, Vol. 13, pp. 245�286

[QUI90] Quinlan, J. R. (1990). Learning Logical De�nitions from Relations.
Machine Learning 5, pp. 239�266.

[QUI93] Quinlan, J. R. and Cameron-Jones, R.M. (1993). FOIL: A Midterm
Report. In Proc. European Conference on Machine Learning, pp. 3�
20, Springer Verlag.

[SAM86] Sammut, C. and Banerji, R. (1986). Learning Concepts by Asking
Questions. In Michalski, R., Carbonell, J., and Mitchell, T., eds.,
Machine Learning: An Arti�cial Intelligence Approach, Vol. 2, pp.
167�191. Morgan Kaufmann, San Mateo, CA.

[SHA83] Shapiro, E. (1983).Algorithmic Program Debugging. MIT Press, Cam-
bridge, MA.

20

[TUR02] Turmo, J. and Rodriguez, H. (2002). Learning Rules for Information
Extraction. Natural Language Engineering 8, pp. 167�191. Cambridge
University Press.

[WIL01] Wilson, G., Mani, I., Sundheim, B., Ferro, L. (2001). A Multilingual
Approach to Annotating and Extracting Temporal Information. In
Proc. Workshop on Temporal and Spatial Information Processing, Vol.
13, pp. 1�7. ACM.

21

