-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by UPCommons. Portal del coneixement obert de la UPC

SVMs for the Temporal Expression Chunking
Problem

Jordi Poveda Poveda Mihai Surdeanu

jpoveda@lsi.upc.edu surdeanu@Ilsi.upc.edu

LSI Department Technical Report
Ph.D. Programme on Artificial Intelligence (UPC)
November 2006

https://core.ac.uk/display/41825918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 The Temporal Expression Chunking Problem 1
2 Literature review Lo Lo s 3
3 SVMs for Temporal Expression Chunking: the YamCha tagger 4
4 Results. o e 7
5 Conclusions and future work 10

1 The Temporal Expression Chunking Problem

Chunking refers to any problem or task in NLP (natural language processing)
which involves segmenting (i.e. identifying the boundaries of) the occurrences in
a text of a certain type of entities. This gives rise to different types of chunking
problems, for instance:

e Syntantic chunking, where the aim is to identify syntactic phrases (e.g.
noun phrases, verb phrases, prepositional phrases, ...).

e Named entity recognition, where mentions in text of certain types of con-
cepts that have a proper name designation (hence “named entity”) are
sought, for example: persons, locations, currency, organizations. . .

e Clause splitting (i.e. a group of words consisting of a subject and a pred-
icate).

A related task, which may accompany chunking, is that of classification of
the segmented chunks into appropriate types (e.g. PER for person, LOC for
location, ORG for organization, etc., in the case of named entities).

Chunking of temporal expressions is a part of the more complex task called
temporal expression recognition and normalization (TERN), in which the aim is
to identify the mentions in a text of expressions that denote time, and to capture
their meaning by writing them in a canonical representation. A common way to
represent these temporal denoting expressions in text —as well as other entities
of interest in information extraction, like named entities, events or relations—
is to employ XML tags with convenient attributes to further qualify the entity.
For example:

But even on <TIMEX2 VAL="1999-07-22">Thursday</TIMEX2>, there
were signs of potential battles <TIMEX2 VAL="FUTURE_REF"
ANCHOR_DIR="AFTER" ANCHOR_VAL="1999-07-22">ahead</TIMEX2>.

The TIMEX standard sets out guidelines for annotating and normalizing men-
tions of time expressions. These and a full account of the complex bestiary of
temporal expressions can be found in [FERO03].

There are two separate problems in the TERN task, one of identifying the
extension of the mentions of temporal expressions in text (i.e. chunking) and
the considerably more difficult problem of automatically normalizing the value
of the temporal expression. Here we are only concerned with the first of these
two problems. Contrary to what it may at first seem, temporal expressions
come into a wide variety of forms ([WILO01]):

e Fully-specified time references: 16th June 2006, the twentieth century,
Monday at 3pm.

e Expressions that depend on a context: last month, three days from today,
February last year.

e Anaphorical expressions and expressions relative to the time when the
expression is written: that day, yesterday, currently, then.

e Durations or intervals: a month, three days, some hours in the afternoon.

e Frequencies or recurring times: monthly, every other day, once a week,
every first Sunday of a month.

e Culturally dependent time denominations: Easter, the month of Ramadan,
St. Valentine.

e Fuzzy or vaguely specified time references: the future, some day, eventu-
ally, anytime you so desire.

The chunking-related problems have traditionally been represented as the multi-
ple classification problem of assigning I/0/B tags to each token in a sequence of
text. The tags stand for Inside (I), Outside (O) and Begin (B), and are enough
for delimiting non-overlapping, non-recursive chunks (i.e. chunks that neither
appear inside the boundaries of the extension of another larger chunk, nor over-
lap with another chunk). If the task involves further discriminating the chunks
into several classes, the I and B tags can be appended with a suffix to signify
the type of the chunk (e.g B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-ORG,
O for the named entity recognition task). In the case of temporal expression
chunking, the result looks like this:

In/0 2006/B ,/0 thirty/B years/I after/0 Mao/B Tse/I Tung/I
’s/1 death/I ,/0 hordes/0 of/0 devote/0 Chinese/0 arrive/D
still/0 daily/B to/0 his/0 memorial/0 site/0 ./0

For our experiments, we use the corpus of the ACE 2005 competition (Automatic
Content Extraction) for training and testing. This corpus has the mentions of
time expressions manually annotated using TIMEX tags. The composition of
the corpus is 550 documents distributed in five categories (newswire, broadcast
news, broadcast conversations, conversational telephone speech and weblogs),
containing 257000 tokens and approx. 4650 time expression mentions.

Regarding evaluation, we are interested in three measures for quantifying
the performance of the temporal expression recognizer:

Precision: The rate of returned temporal expressions that are correctly iden-
tified (i.e. correctly tagged divided by total tagged).

Recall: The rate of existing temporal expressions that are correctly identified
(i.e. correctly tagged divided by those that should have been tagged).

F-1 Score: It is the harmonic mean of the two previous values,
F = 2x Precisionx Recall
1 = "(Precision+Recall) *

Note that only temporal expression mentions whose boundaries are correctly
identified count positively towards the precision and recall scores. Partial matches
(a temporal expression that is identified partially, or misplaced) are not regarded
as hits. We are not counting the rate of correct assignments of I/0/B tags at
the token level: that one is a different measure and is termed accuracy —and
normally, the attained score in this measure is also considerably higher.

2 Literature review

The TERN (Temporal Expression Recognition and Normalization) task has
gathered attention only recently within the broader framework of Information
Extraction (IE), and references to it in the research literature are still sparse.
Temporal expression extraction has been most often approached as an interme-
diate step towards tackling the more difficult problems of event extraction and
characterization, extraction of temporal relations (e.g. before, after, includes,
...), temporal ordering and timestamping of events, and temporal reasoning
([BOGO5], [PERO03]).

Grammars continue to be the strategy most commonly resorted to for time
analysis in documents (see [SAQO8]| for an example of a grammatical treatment
of recognition and co-reference resolution of time expressions). Boguraev &
Ando (2005) [BOGO05] describes an hybrid approach to the extraction of time
expressions, events and temporal relations, which combines grammatical parsing
with machine learning. First, a cascade of finite-state grammars is used to
target temporal expressions and to extract attributes for their normalization;
separately, a combination of token, POS (part-of-speech), syntax and context,
in addition to word profiling from unannotated corpora, are used as features in
a robust risk minization classifier for event and temporal expression recognition.

Here we are rather interested in the more statistical treatment of chunking
afforded by methods such as support vector machines (SVM). Perrig (20035)

[PERO5] reports about the results of various experiments using SVMs for the
recognition of time expressions, events, and temporal relations. The precison,
recall and F-measure results are given for several configurations of features.

Isozaki & Kazawa (2002) [ISO02] propose an efficient classification method
for the related problem of NE (Named Entity) recognition using SVMs. They
remark that SVM classification of NEs is considerably slow as compared to
other techniques, and identify the cause of this slowness in the high number of
mathematical operations (dot products with a high number of support vectors)
required for classification. They exploit the fact that the feature vector repre-
sentation typically obtained in natural language processing applications —as a
result of expanding categorial variables into sets of binary features (see section 3
for details) — is largely sparse, in order to propose a quicker calculation method
based on expanding the quadratic kernel formula and grouping similar terms,
along with extensions for feature selection and reduction of training time. Fur-
ther in relation with NE recognition, Mayfield et al. (2005) [MAYO05] describes
an approach that makes use of SVMs to estimate transition probabilities in a
lattice, where vertices are given by the possible assignments of type-qualified
I/0O/B tags to the words in a sentence (i.e. I-LOC, B-PER, ...), and arcs
assign conditional probabilities to a certain I/O/B tag assignment for a word
given the tag assignment of the previous word (much in the resemblance of a
HMM). Thus, the problem of NE recognition is equated to finding the path of
the highest-likehood tag assignment in the lattice.

One problem that appears in trying to associate a probabilistic interpretation
to the output of a SVM classifier is that SVMs do not output probabilities, but
margins (i.e. distances to a discriminating hyperplane). Platt (1999) [PLA99]
discusses a method for associating posterior class probabilities to the outputs
of SVMs by estimating the parameters of a sigmoid function, which gives the
probability of an example being positive given its margin.

Lastly, other approaches that have been used in information extraction to
recognize useful mentions in text (such as named entities, events, relations, etc.)
involve some forms of symbolic learning. Turmo & Rodriguez (2002) [TURO02]
describe EVIUS, a relational learner that employs inductive logic programming
(ILP) to automatically extract rules for information extraction (IE rules) in
multiple domains. In Freitag (1998) [FRE9|, the performance of three differ-
ent systems (based on Bayesian learning, grammatical inference and relational
learning, respectively) in acquiring extraction patterns for IE is compared.

3 SVDMs for Temporal Expression Chunking: the
YamCha tagger

This section discusses our approach to the problem of temporal expression
chunking using SVMs. Both training and classification involve a previous step of
document preprocessing: tokenization and extraction of features for each token.
For our experiments we have used the YamCha (Yet Another Multi-purpose

CHunk Annotator) toolkit!, a free implementation of a multipurpose chunker
that uses SVMs as the underlying algorithm for chunking and classification of
chunks (more specifically, YamCha employs the free TinySVM library?).

The text is first tokenized (segmented into individual tokens) and then a
number of features are computed for each token. Tokens correspond normally
with individual words, but also include punctuation marks —which are separate
tokens— and special constructs like the saxon genitive “’s”. Features that we
use for tokens include:

e Lexical: The token form itself, the token in lowercase, the token that
results from removing all letters from the token (e.g. 3 for “3pm”), the
token that results from removing all letters and numbers (e.g. - - - for
1995-07-12).

e Morphological: The POS (Part Of Speech) tag (for instance, NN for noun,
JJ for adjective, CD for cardinal number, MD for modal verb, ...).

e Syntactic: The tag of the syntactic chunk that the token belongs to (e.g.
I-NP for inside noun phrase, B-VP for beginning of verb phrase, ...).

e Format features: These are flags that indicate if the token has certain
format characteristics (isAllCaps, isAllCapsOrDots, isAllDigits, isAllDig-
itsOrDots and initialCap).

e Features that indicate if the token belongs to certain specific clagses of

words: isNumber (e.g. one, two, ten, ...), isMultiplier (e.g. hundred,
thousands, . ..), isDay (e.g. monday, mon, saturday, sat, ...) and isMonth
(e.g. january, jan, june, jun., ...).

e Contextual features: All of the previous features, but in reference to the
tokens occurring in a certain window to the left and right of the current
token.

e The target classification: The correct I/O/B tag for a window of tokens
in the left context (we call these dynamic features).

The former set of features has points in common with those described in [BOGO5,
1SO02, MAY05] for identification of events and temporal relations, and for
named entity recognition. It is a subset of the features outlined in Surdeanu et
al. (2005) [SURO5] for the task of NE recognition.

The part-of-speech tags and the syntactic tags are computed using a suite
of basic NLP tools that provide the POS tagger and the parser. The rest of
features are computed programmatically, and arranged into a tabular format
which serves as input to the YamCha tagger. A sample of the input to YamCha
looks as follows (features other than the token form, POS tag, syntactic chunk
and correct classification are omitted for simplicity):

Ihttp://chasen.org/ taku/software/yamcha/
2http://chasen.org/ ~taku/software/ TinySVM/

FORM POS tag SYNTAX I/0/B tag

POS: -3 Philippines NNP B-NP B-TIMEX
P0OS: -2 , s 0 0
POS: -1 March NNP B-NP B-TIMEX
POS: 0 4 CD I-NP I-TIMEX
POS: +1 ((I-NP 0
POS: +2 AFP NNP I-NP 0
POS: +3)) 0 0

In the YamCha input file format, each line corresponds to an individual token
from a document or a collection of documents (corpus). Individual tokens with
their associated features make up the training and test examples. Thus, the first
column corresponds to the token form (i.e. the token itself), the last column
indicates the target classification for that token (also known as the golden tag),
and the remaining columns correspond to the rest of the token’s features. The
generation of contextual features in a certain frame, left and right, of the current
token is handled automatically by YamCha —basically, the features of tokens
that fall into the context window are themselves appended as additional features
of the current token. The length of the context window, to the left and to the
right, are adjustable parameters of YamCha. Moreover, YamCha provides the
ability to use the golden tags (the correct classification) of the tokens in a context
from the current token as dynamic features.

As briefly mentioned already in the former section, a SVM classifier requires
that examples be represented as a vector of numeric features (that is, if the
usual kernels involving dot products are to be used). Many features commonly
used in NLP learning tasks are categorial (e.g. the token form and variations
thereof like lowercase and patterns, the POS tag, the syntactic tag, ...); and,
moreover, some can have a domain of considerably many values —even several
thousands—. For instance, in the case of the token form, every distinct word
that appears in the training corpus becomes a value of the “token form” feature.
Therefore, a transformation that maps categorial features into sets of binary
features becomes a necessary step prior to training. The resulting feature vectors
are very high-dimensional and sparse vectors (not unfrequently tens or hundreds
of thousands of dimensions), with a majority of binary features indicating the
presence or absence of a value of one of the original categorial features. If, in
addition, we use contextual features from a number of tokens to the left and
right, the number of dimensions grows accordingly. So, an expanded feature

vector & = (x[1],...,2[D]) may look like this:
x[1] =0 // Current word is not ’international’
x[2] =1 // Current word is ’increase’
x[3] =0 // Current word is not ’March’
x[4] = 0 // Current word is not ’2000-06-12°
x[22379] = 0O // Current word is not a proper noun
x[22380] = 1 // Current word is a common noun
x[22381] = // Current word is not an adjective

x[22432] = 1 // Current word is the start a noun phrase
x[22433] = 0 // Current word is not inside a noun phrase
x[22434] = 0 // Current word is not the start of a prep. phrase
x[68134] = 0 // Previous word is not ’sales’

x[68135] = 1 // Previous word is ’spectacular’

x[145372] = 0 // Next word is not a verb

x[145373] = 1 // Next word is a preposition

This “expansion” of the feature vectors is also internally handled by YamCha.
With regard to the type of kernel, YamCha supports only polynomial kernels.

Support vector machines are in principle binary classifiers, whereas ours is
a multiclass classification problem —each individual token is classified as T (in-
side), O (outside) or B (beginning)—. There exist two different strategies to
tackle multiclass problems with SVMs, by reducing the multiclass classification
to a series of binary decisions: one vs. rest (training one binary classifier per
class in the data, treating examples of one class as positive and the rest as neg-
ative), and one vs. one (training one binary classifier per each pair of classes,
to discriminate between examples of the two). While both strategies are im-
plemented in YamCha, we have chosen to use one vs. rest classification with
a view to minimizing the total time required for training of the models and
for classification, although in our particular problem (3 classes) the number of
binary classifiers to be trained turns out to be the same in both cases: three.
Moreover, in the general case, the additional difficulty involved in combining the
outputs of (}) classifiers (one vs. one) to produce a coherent tag assignment
would be greater than the difficulty of combining the outputs of n classifiers (one
vs. rest), although this combination step is also handled internally by YamCha.

We have carried out experiments in which we altered different parameters
of learning: the feature set, the degree of the polynomial kernel, and the length
of the context window. The motivation behind these additional experiments
was to quantify how variations in these three factors affected the classification
performance. The results of the experiments are developed in the following
section.

4 Results

In all of the following tables, the columns precision, recall and F-1 measure
refer to these three performance metrics as they were defined in section 1. The
precision, recall and F-measure scores are calculated in terms of mentions of time
expressions: only cases where the classifier recovers a time expression whose
boundaries match exactly those of the correct mention (as conveyed by the

| [PREC | RECALL | F-1] ACC

Round 1 81.33 75.23 | 78.16 | 98.68
Round 2 77.74 70.46 | 73.92 | 98.60
Round 3 75.92 71.22 | 73.50 | 98.47
Round 4 80.05 73.71 | 76.75 | 98.65
Round 5 80.34 72.54 | 76.24 | 98.66
AVERAGE 79.08 72.63 | 75.71 | 98.61
STD DEV. 2.20 1.91 1.97 0.17

Table 1: 5-fold cross-validation with all features, quadratic kernel and a 2-token
context window

returned vs. correct I/O/B tag assignments) are counted as a hits. The fourth
column, accuracy, refers to the percentage of correct I/O/B tag assigments
predicted by the classifier at the token level (i.e. whether the predicted tag
coincides with the target tag).

First, we performed experiments using what we believed to be the optimal
combination of features, learning algorithm parameters and context window
length. For this process, the ACE 2005 corpus was split in five partitions.
Special care was taken in order to obtain balanced partitions with regard to the
number of documents {rom each of the five categories (i.e. newswire, broadcast
news, broadcast conversations, conversational telephone speech and weblogs).
In each round of 5-fold cross-validation, 80% of the corpus was used for training
(4 of the 5 partitions) and 20% (the remaining partition) for test.

Table 1 shows the results of this 5-fold cross-validation experiment. We
employed the full set of token features described in section 3, a polynomial
kernel of degree 2, and a context window of 2 tokens to the left and 2 to the
right of the current token (only 2 tokens to the left for the dynamic feature).
The only reason supporting our choice of the quadratic kernel as part of the
“presumedly optimal” configuration is that the quadratic kernel is known to
give, in general, the best results in NLP chunking and classification tasks (e.g.
NE recognition and classification). In other words, the basis for this choice is
merely empirical.

The reason for the overwhelwingly high score in the accuracy column —
which measures, as said, matches between the assigned and correct IOB tags
at the level of single tokens—, as opposed to the much more modest 75.71% in
F-measure is that the vast majority of tokens carry the O tag (for being outside
of any time expression), which is easy to classify. Also, the lower score in recall
with respect to precision, indicates that there exist an important subset of time
expressions that the classifier cannot identify correctly.

Other sets of experiments look at the effect of varying the set of features
used, the degree of the polynomial kernel and the length of the context window.
Owing to the rather long time required to train one SVM model for classification
(approx. 8 hours with YamCha running in a computer cluster), these sets
of experiments have not been carried out using the full 5-fold cross-validation

KERNEL ‘ PREC ‘ RECALL ‘ F-1 ‘ ACC ‘

pol. lineal 72.39 (-7.66) | 70.08 (-3.63) | 71.21 (-5.54) | 98.25 (-0.40)
pol. quadratic 80.05 73.71 76.75 98.65

pol. cubic 81.30 (+1.25) | 71.73 (-1.98) | 76.21 (-0.54) | 98.65 (+0.00)

Table 2: Effects on performance of varying the degree of the kernel

procedure as above. Instead, we have trained a single model for each different
configuration, using the same data partitions for training and test as in Round
4 of the cross-validation (because the results for that round were closer to the
average). Note that we are using a corpus of considerable size for training (440
documents and approximately 205000 tokens [examples| in the training sets),
and that training a model involves 3 different classifiers (one for each of the I,
O and B tags).

Table 2 shows the gain in performance achieved by varying the degree of
the polynomial kernel. The increments between brackets indicate the difference
with respect to the reference configuration: the quadratic kernel, in this case.
As seen, the quadratic kernel gives the best performance, and the best balance
between results and complexity. The linear kernel lacks discriminating power,
and the small improvement achieved (if at all) with a cubic kernel does not
compensate for the added time complexity.

In order to study which types of features are relevant, we have designed three
incremental models that use increasingly complex sets of features. The features
used in each of these models are as follows:

e Model 1: the token form and the token form in lowercase.

e Model 2: Model 1 + POS tags + format features (isAllCaps, isAllCap-
sOrDots, isAllDigits, isAllDigitsOrDots, initialCap) + the token form re-
moving alphabetic characters + the token form removing alphanumeric
characters.

e Model 3: Model 2 + syntactic chunk tags + classes of words (isNumber,
isMultiplier, isDay, isMonth).

Table 3 shows the effect of incrementally using a richer feature set. The in-
crements between brackets indicate the difference with respect to the reference
configuration: the maximal feature set (model 3). The results indicate that all
of the features initially considered (i.e. those described previously in section 3)
contribute, at least positively, to classification performance. A context window
of 2 tokens left and right and a quadratic kernel were used in all three models.

And last, table 4 shows the results obtained from increasing the size of the
context window used for the contextual features. It can be observed that passing
from a context of 2 tokens to the left and right to a context of 3 tokens in each
direction goes in detriment of classification performance. Enlarging the context
window causes a dramatical increase in the number of dimensions of the feature

[FEATURES | PREC | RECALL | F-1__ | ACC |
Model 1 80.00 (-0.05) | 66.89 (-6.82) | 72.86 (-3.89) | 98.56 (-0.09)
Model 2 80.10 (10.05) | 71.73 (-1.98) | 75.68 (-L.07) | 98.60 (-0.05)
Model 3 80.05 73.71 76.75 98.65

Table 3: Effects on performance of incrementally extending the feature set

[WINDOW | PREC | RECALL | F-1_ | ACC |
2. 12 80.05 73.71 76.75 98.65
3. 13 | 80.30 (10.25) | 71.20 (-2.42) | 75.52 (-1.23) | 98.59 (-0.06)

Table 4: Effects of increasing the context window

vectors, which may be a reason for decrease in performance (too many new
unuseful features being introduced).

5 Conclusions and future work

Our optimal model for temporal expression chunking yields a F-1 score of
75.71%, which although far from being a success (provided that we are ounly
tackling the task of detecting mentions of time expressions, not normalization),
is not a despicable result. As a matter of comparison, the best system in the
ACE 2005 evaluation® for the task of Named Entity Recognition (at the level
of identifying the entity mentions) —different from, but somehow comparable
to time expression recognition— achieved an average correctness of 85.1%. The
best system for the task of Time Expression Recognition and Normalization in
ACE 2005 achieved a score of 63.7%. The task of identification of the mentions
of time expressions alone (for the English language) was not evaluated in ACE
2005.

The best performance in a task like time expression recognition, which has an
important syntactic component, will still be achieved by a system that integrates
grammatical analysis of some kind. The main drawback of using grammars is
that grammar rules have to be tailored specifically to the task at hand. This is
one of the reasons why we wanted to try out a purely statistical method such as
SVMs and observe the classification performance that such a method affords.

Two potentially positive aspects of SVMs, regarding their application to our
problem, are: first, SVM’s resistance to overfitting, even in the presence of very
high dimensional feature spaces (as those that arise typically in NLP problems);
second, the fact that SVMs allow one to freely experiment with differents sets of
features, and that by the use of non-linear kernels one can entrust the learning
method with automatically finding interesting combinations of these features.

A deeper analysis of the test results, looking for the actual tokens where
the returned and the actual time expression mentions mismatch, reveals that

3http://www.nist.gov/speech/tests/ace/ace05/doc/ace05eval _official _results 20060110.htm

10

most of the errors revolve around a small set of short-length time expressions
that repeat a lot (e.g. now, new, the day, today, future, year, right now, once,
past, latest, ...). On the other side of the spectrum, there are large numbers
of errors due to long and complex time expressions that appear only once.
We believe that a good percentage of the errors produced with these short-
length time expressions are due to these words having different interpretations
depending on the context, some of which are part of a time expression while
some are not. Studying the context where these errors occur and trying to
achieve better discrimination of these short and frequent time expressions (by
contextual features) would most likely improve the results. Conversely, it would
be difficult to attain improvements by focusing on the infrequent and complex
time expressions.

In the meanwhile, we are exploring relational learning approaches to the
time expression recognition task (e.g. ILP, inductive logic programming), and
expect to be able to reach better recognition rates by using some combination
of the statistical (SVMs, for the time being) and relational learners. A possible
approach to try out could be to integrate new features based on some inductively
learned logic predicates (ILP), as additional token features for SVM classifica-
tion. Another line of improvement would be to perform a more in-detail analysis
of in which contexts time expressions appear in the corpus —and in particular,
which contexts are responsible for most classification errors—, and to introduce
lists of trigger words that provide a clue as to the presence of a time expression
mention.

11

Bibliography

[BOGO3]

[FER03]

[FRE9S]

[1S002]

[MAY05]

[PERO3]

[PLA99]

[SAQOS|

[SURO3]|

Boguraev, B. and Ando. R. K. (2005). TimeML-Compliant Text Anal-
ysis for Temporal Reasoning. In Proc. of the 19th International Joint
Conference on Artificial Intelligence, pp. 997-1003. Edinburgh, Scot-
land.

Ferro, L. et al. (2003). TIDES Standard for the Annotation of Tem-
poral Expressions v1.3. Technical Report, MITRE Corporation.

Freitag, D. (1998). Machine Learning for Information Extractionin
Informal Domains. PhD thesis, Carnegie Mellon University, 1998.

Isozaki, H. and Kazawa H. (2002). Efficient Support Vector Classi-
fiers for Named Entity Recognition. In Proc. of the 19th International
Conference on Computational Linguistics, Vol. 1, pp. 1-7. Association
for Computational Linguistics, Morristown, NJ, USA.

Mayfield, J., McNamee, P. and Piatko, C. (2003). Named Entity
Recognition using Hundreds of Thousands of Features. In. Proc. of
the 7th Conference on Natural Language Learning. HLT-NAACL 2003.
Association for Computational Linguistics.

Perrig, C. (2005). Identification of Time Expressions, Signals, Fvents
and Temporal Relations in Texts. ETH Zurich, Switzerland.

Platt, J. (1999). Probabilistic Outputs for Support Vector Machines
and Comparisons to Regularized Likelihood Methods. Advances in
Large Margin Classifiers, in Smola, A., Bartlett, P., Scholkopf, B.,
Schuurmans, D. eds. MIT Press.

Saquete, E., Muifioz, R. and Martinez-Barco, P. (2004). Event Order-
ing Using TERSEO System. In Proc. of the 9th International Con-
ference on Application of Natural Language to Information Systems,
NLDB 2004, pp. 39-50. LNCS Vol. 3136. Springer.

Surdeanu, M., Turmo, J. and Comelles, E. (2005). Named Entity
Recognition from Spontaneus Open-Domain Speech. In Proc. of the
9th European Conference on Speech Communication and Technology
(Interspeech,).

12

[TURO2] Turmo, J. and Rodriguez, H. (2002). Learning Rules for Information

[WILO1]

Extraction. Natural Language Engineering 8, pp. 167-191. Cambridge
University Press.

Wilson, G., Mani, 1., Sundheim, B., Ferro, L. (2001). A Multilingual
Approach to Annotating and Extracting Temporal Information. In

Proc. Workshop on Temporal and Spatial Information Processing, Vol.
13, pp. 1-7. ACM.

13

