On the Mismatch Between Multidimensionality and SQL

Oscar Romero and Alberto Abelló
Universitat Politècnica de Catalunya

Abstract

ROLAP tools are intended to ease information analysis and navigation through the whole Data Warehouse. These tools automatically generate a query according to the multidimensional operations performed by the end-user, using the relational database technology to implement multidimensionality and consequently, automatically translating multidimensional operations to SQL. In this paper, we consider this automatic translation process in detail and to do so, we present an exhaustive comparative (both theoretical and practical) between the multidimensional algebra and the relational one. Firstly, we discuss about the necessity of a multidimensional algebra with regard to the relational one and later, we thoroughly study those considerations to be made to guarantee the correctness of a cube-query (an SQL query making multidimensional sense). With this aim, we analyze the multidimensional algebra expressiveness with regard to SQL pointing out the features a query must satisfy to make multidimensional sense and we also focus on those problems that can arise in a cube-query due to SQL intrinsic restrictions. The SQL translation of an isolated operation does not represent a problem, but when mixing up the modifications brought about by a set of operations in a single cube-query, some conflicts derived from SQL could emerge depending on the operations involved. Therefore, if these problems are not detected and treated appropriately, the automatic translation can retrieve unexpected results.

1 Introduction

OLAP (On-line Analytical Processing) tools are intended to ease information analysis and navigation all through the organizational data previously integrated (homogenized, cleaned and filtered) in a huge repository of data, the Data Warehouse, used to extract relevant knowledge of the organization. Specifically, OLAP tools are conceived to exploit the Data Warehouse for analysis tasks based on multidimensionality, the main feature of these tools. The multidimensional conceptual view of data is distinguished by the fact/dimension dichotomy and it is characterized by representing data as if placed in an n-dimensional space, allowing us to easily understand and analyze data in terms of facts (the subjects of analysis) and dimensions showing the different points of view where a subject can be analyzed from. These characteristics are desirable since OLAP tools are aimed to enable analysts, managers, executives and in general those people
involved in decision making, to gain insight into data through fast queries and analytical tasks, allowing them to make better decisions and, in short, be more competitive.

More precisely, OLAP functionality is characterized by dynamic multidimensional analysis of consolidated enterprise data supporting end user analytical and navigational activities. "Navigation" means to interactively explore a data cube by drilling, rotating and screening, and as presented in [FBSV00] we consider "roll-up" (increase the aggregation level), "drill-down" (decrease the aggregation level), "screening and scoping" (select by means of a criterion evaluated against the data of a dimension), "slicing" (specify a single value for one or more members of a dimension) and "pivot" (reorient the multidimensional view), as the typical end user operations performed on data cubes. Some works, like [PJ01] and [ASS06], add "drill-across" (combine data from cubes sharing one or more dimensions) to these basic operations.

In general, building up a Data Warehousing System (a Data Warehouse all together with its exploitation tools) is never an easy job, raising up some interesting challenges. Data must be gathered and assembled from various and possibly heterogeneous sources in order to gain a single and detailed view of the organization (the Data Warehouse) that later, must be properly managed and exploited. One of these challenges focus on modeling multidimensionality. Despite lacking of an standard multidimensional model like in the relational model, lots of efforts have been devoted to multidimensional modeling and several models have been developed. Consequently, we can nowadays design a multidimensional conceptual schema, create it physically and later, exploit it through the model algebra or calculus (implemented in the exploitation tools).

When implementing (i.e. creating it physically) our conceptual schema, and in general, the Data Warehousing System, over a DBMS (Database Management System) there are two main trends: to use the relational technology or an adhoc one, giving rise, respectively, to what are known as ROLAP (Relational On-line Analytical Processing) and MOLAP (Multidimensional On-line Analytical Processing) tools. ROLAP tools map the multidimensional model over the relational one, allowing them to make profit of a well-known and established technology and being, nowadays, the most frequent way to implement a Data Warehousing System. Specifically, [KRTR98] presents how a Data Warehouse should be implemented over a RDBMS (Relational Database Management System) and how to retrieve data from it. But, unfortunately, because of the lack of a multidimensional algebra accepted as reference point, there is not yet a widely accepted trend to translate the multidimensional algebra operators to SQL.

In the last years several algebras have already been proposed but some of them do not directly map to SQL and, in general, none of them offers the translation of its operators to SQL (rather they propose alternatives to SQL and the relational algebra). In fact, there are some models proposing alternatives to SQL arguing that RDBMS are not well suited for multidimensional purposes. One of this alternatives proposed is the MDX (Multidimensional Expressions) language ([Mic]). Developed by Microsoft for multidimensional tasks, MDX provides a
rich and powerful language to handle multidimensional data based on the SQL syntax, even though it is not an extension of SQL. However, MDX queries are static and therefore, we can not navigate all over the multidimensional data concatenating operators like an algebra does. MDX does not fit multidimensionality necessities better than SQL either, since these kind of tools aim for a language easing the user navigation and analysis of data from a user friendly perspective, and MDX, like SQL, are not easy to understand for a non-expert user. Moreover, it is also a declarative language and therefore, it needs to be translated to a procedural language; like SQL must be translated to the relational algebra. Nevertheless, MDX could be used as an intermediate language where to translate the end-user multidimensional operators to, but in that case, SQL (used in ROLAP tools, nowadays, the most extended way to implement a data warehouse system) may fit better since it is standard, well-known and its importance in the market is unquestionable.

In this paper, we focus on the automatic translation of the multidimensional algebra to SQL, and eventually to the relational algebra, that a ROLAP tool must implicitly perform. To do so, we present an exhaustive comparative (both theoretical and practical) between the multidimensional algebra and the relational one. However, since, unfortunately, we can not benefit from an standard multidimensional model, section 2 presents $\mathbf{Y A M}^{2}$ as the multidimensional framework to be used as reference all over this paper, allowing us to compare both approaches.

Section 3 starts our discussion justifying why the relational algebra does not directly fit properly to multidimensionality by means of a conceptual comparison between both algebras. Later, we present a comparative between those multidimensional algebras introduced in the literature in the last ten years with regard to our framework. We conclude this section discussing about the necessity of a multidimensional algebra, the current state of the art and the suitability of $\mathbf{Y A M}^{2}$ as our multidimensional framework along this paper.

Next, we present a thorough (practical) comparison between both models according to the automatic translation a ROLAP tool would perform. Thus, we go one step beyond presenting a logical comparative where the multidimensional algebra faces SQL as performed in a ROLAP tool translation process. Section 4 presents, in general terms, how to translate our framework (focusing on the multidimensional algebra) to SQL, and for each multidimensional operator we present its isolated translation to SQL. Section 5 studies in detail those additional considerations to be made to also guarantee the semantic correctness of a cube-query (an SQL following the multidimensional SQL pattern). With this aim, we first analyze the multidimensional algebra expressiveness with regard to SQL pointing out the features a query must satisfy to make multidimensional sense (i.e. to be a valid cube-query). Furthermore, we introduce a detailed algorithm based on those features spotted in this section to automatically infer if a correct SQL query is a valid cube-query. Finally, section 6 focus on those problems that can arise in a cube-query due to SQL intrinsic restrictions. ROLAP tools automatically generate a cube-query according to the multidimensional op-
erations performed by the user. The SQL translation of an isolated operation does not represent a problem and can be easily obtained as presented in section 4 , but when mixing up the modifications brought about by a set of operations in a single cube-query, some conflicts derived from SQL could emerge depending on the operations involved. Therefore, if these problems are not detected and treated appropriately, the automatic translation can retrieve unexpected results. Consequently, we also analyze how to solve or minimize their impact. Finally, we present our conclusions and future work in section 7 .

2 Our Framework: YAM ${ }^{2}$

Due to the lack of an standard multidimensional model, and hence, the lack of a common notation, to carry out our work we need a reference framework in which to translate and compare the multidimensional algebras presented in the literature. Moreover, we will also need to compare that framework to the relational algebra since, nowadays, ROLAP tools are the most widely spread approach to model multidimensionality and therefore, multidimensional queries are being translated to SQL and (eventually) to the relational algebra. Conversely, a comparison among all those different algebras would be rather difficult.

In this section we present YAM 2 (Yet Another Multidimensional Model) [ASS06], to be used as our reference multidimensional framework along this paper. Therefore, we present $\mathbf{Y A M}^{2}$ data structure, its algebra and its integrity constraints to define concisely and univocally the multidimensional concepts as well as to provide a common notation all through this paper. From here on, YAM ${ }^{2}$ concepts will be bold faced for the sake of comprehension.

2.1 Data Structure

YAM ${ }^{2}$ data structure was introduced in [ASS06] as an extension of UML. On one hand, a Dimension (subclass of UML Classifier) contains a hierarchy of Levels (subclass of UML Class) representing different granularities (or levels of detail) to study data, and a Level contains Descriptors (subclass of UML Attribute). We differentiate between identifier Descriptors and non-identifier. The first univocally identify each instance of a Level, in a role similar to the "primary key" in the relational model. On the other hand, a Fact (subclass of UML Classifier) contains Cells (subclass of UML Class) which contain Measures (subclass of UML Attribute). One Cell represents those individual cells of the same granularity that show data regarding the same Fact (i.e. a Cell is a "Class" and cells are its instances). Specifically, a Cell of data is related to one Level for each of its associated Dimension of analysis. We call a Base to those minimal set of Levels identifying univocally a Cell, similar to the "primary key" concept in the relational model. Therefore, Dimension Levels determine the multidimensional space where each cell is placed. A set of cells placed in the multidimensional space with regard to the Base is called a Cube. Finally, one Fact and several Dimensions to analyze it give rise to a Star. As discussed in
[ASS06], we consider quite important to be able to relate different Stars not only sharing dimensions but defining semantic relationships at design time between them like UML Generalization, Association, Derivation or Flow; some of them already considered in other conceptual models as [TPGS01] and [TBC99].

Fig. 1. Example of a multi-star schema

For instance, in figure 1 we find two Facts containing two Cells each one (the Fact profit containing the Daily Profit and Monthly Profit Cells, and the Fact stock containing the Daily Stock and Weekly Stock Cells). Both Facts are related to its Dimensions of analysis, and in this case, they are sharing two of them; the Time (showing explicitly its Levels hierarchy) and Product Dimension. Note the special All Level depicted in the Time Dimension hierarchy. This Level contains a unique instance representing the whole elementary instances of the Dimension; that is, represents the whole Dimension, and it must always placed in the top of the hierarchy. Also notice the importance of consolidation of data in the multidimensional model, where a value in a single cell may represent an aggregated measure computed from more specific data at some lower Level of the same Dimension. For instance, the Monthly profit data may have been consolidated as the sum of each month Daily profit disaggregated data.

Once we have presented our framework data structure notation, we can emphasize how these concepts should be implemented over a RDBMS. [KRTR98] shows how a Star should be implemented on RDBMS through a star or a snowflake schema. The star schema consists of one table for the Fact and one denormalized table for every Dimension with the latter being pointed by "foreign keys" (FK) from the "fact table", which compose its "primary key" (PK). The normalized version of a star schema is a snowflake schema, getting a table for each Level with a FK pointing to each of its parents in the Dimension hierarchy. Nevertheless, both approaches can be conceptually generalized into a more generic one consisting in partially normalizing the Dimension tables according to our needs. Completely normalizing each Dimension we get a snowflake schema and not normalizing them at all results in a star schema. We choose this generic approach as we consider, like in [MK00], a Fact can contain not just one but several materialized Cells ("Cell tables"). So that, each Level related to a materialized Cell must also be materialized as a table since a FK (each FK in
the Cell pointing to Levels related to it) must be related to a PK, or at least, to a "unique" table field. If a certain Level is only related to non materialized Cells we can denormalize it. Semantic relationships are always translated as FK pointing to a "candidate key" (CK) without considering its semantics. In figure 1, we have decided to materialize the four Cells stated explicitly (i.e. Daily Stock, Weekly Stock, Daily Profit and Monthly Profit). Hence, those Levels directly related to them will be materialized, but, for instance, Year Level will not since no materialized Cell points to it.

2.2 Multidimensional Algebra

In this section we present $\mathbf{Y A M}^{2}$ operations introduced in detail in [ASS03], intended to manipulate Cubes.

- Selection: By means of a logic clause C over a Descriptor, this operation allows to choose the subset of points of interest out of the whole ndimensional space.
- Roll-up: It groups cells in the Cube based on an aggregation hierarchy. This operation modifies the granularity of data by means of a many-to-one relationship which relates instances of two Levels in the same Dimension, corresponding to a part-whole relationship.
- ChangeBase: This operation reallocates exactly the same instances of a Cube into a new n-dimensional space with exactly the same number of points, by means of a one-to-one relationship. Actually, it allows two different kinds of changes in the space Base. We can just rearrange the multidimensional space by reordering the Levels (this would be equivalent to the "pivot" operation), or, if exists more than one set of Dimensions identifying the cells (i.e. there are alternative Bases), by replacing the current Base by one of the alternatives ones.
- Drill-across: This operation changes the subject of analysis of the Cube by means of a one-to-one relationship. The n-dimensional space remains exactly the same, only the cells placed in it change. Like in the ChangeBase operation, semantic relations rise new possibilities as presented in [ASS03].
- Projection: It selects a subset of Measures from those available in the Cube.
- Union: It unites two Cubes containing the same Cells if both are defined over the same n-dimensional space. Same considerations could be done to define Difference and Intersection, just changing the logical operator applied between Cubes (the "OR", "AND NOT" an "AND" operators respectively). Notice, however, Intersection can be derived from Difference and therefore, it is not necessary in a minimal set of operations. From here on, we will just talk about Union for the sake of briefness, despite any consideration related to it can also be easily extended to Difference and Intersection as presented.

The algebra composed by these operations is "closed" (applied to a Cube, the result of all operations is another Cube), "complete" (any valid Cube can
be computed as the combination of a finite set of operations applied to the appropriate Cell) and "minimal" (none can be expressed in terms of others, nor can any operation be dropped without affecting its functionality). Therefore, other operations can be derived by sequences of these operations. This is the case of Slice (which reduces the dimensionality of the original Cube by fixing a point in a Dimension) by means of Selection and ChangeBase operations. For instance, referring to figure 1, we can Slice Weekly Stock fixing Place Dimension to a concrete value (i.e. Barcelona) by means of a Selection, and being Time \times Product $\times 1$ the current space Base. At this time, we can change the space base to Time \times Product through a ChangeBase without losing cells. About Drill-down (i.e. the inverse of Roll-up), as argued in [HS97], it can only be applied if we previously performed a Roll-up and did not lose the correspondences between cells. Losing correspondences can happen due to extra navigation between Cubes (through Drill-across or ChangeBase) resulting that we do not have data in a lower aggregation Level for the target Cube.

2.3 Integrity Constraints

This section presents the multidimensional model integrity restrictions to be guaranteed at every moment. Integrity constraints pay attention to two important multidimensional aspects; placement of data in a multidimensional space and summarizability of data.

In one hand, first integrity constraint enforces us to identify each Cell instance by means of those Levels related to it. Cells (i.e. data) is placed in a n-multidimensional space conformed by its n Dimensions of analysis. For each one of its Dimensions, a Cell will be related to one Level of the Dimension hierarchy. Therefore:

- Every minimal set of Levels completely identifying a Cell is called a Base.

Notice the Base concept is similar to the "key" concept in the relational model, and it enforces us to keep, in every Cube, a functional dependency between cells and Levels. On the other hand, we present here the three necessary conditions (intuitively also sufficient) introduced in [LS97] to warrant a correct data summarization:

- Disjointness: Sets of cells at an specific Level to be aggregated must be disjoint.
- Completeness: Every cell at a certain Level must be aggregated in some parent Level.
- Compatibility: Dimension, kind of measure aggregated and the aggregation function must be compatible. Compatibility must be satisfied since certain functions are incompatible with some Dimensions and kind of measures. For instance, we can not aggregate Stock over Time Dimension by means of sum, as some repeated values would be counted.

Fig. 2. Schema of a multidimensional Cube

When aggregating data we have to assure these conditions to avoid summarizability anomalies. If not, we will face duplicated values or find that some measurements at an aggregation Level cannot be used to obtain data at higher aggregation Levels, forcing us to go to finer granularities, maybe to the "atomic Level" (lowest Level in a Dimension hierarchy which is always materialized), to obtain the source data for the calculation.

3 Comparison of Algebras

In this section we have two main objectives. On one hand, we justify the necessity of a multidimensional algebra and why the relational one does not directly fit to multidimensionality needs. On the other hand, we justify our framework choice comparing it with all the multidimensional algebras presented up to now in the literature. Consequently, it also reveals the current state of the art. Finally, we discuss about the results presented along this section.

3.1 Multidimensional Algebra Vs. Relational Algebra

This section aims to justify the necessity of a semantic layer (the multidimensional algebra) on the top of the RDBMS (i.e. the relational algebra). Despite we believe ROLAP tools are the best choice to implement multidimensionality, we present, by means of a conceptual comparative between the multidimensional and the relational algebra operators, why the relational algebra (and therefore SQL) does not directly fit properly to multidimensionality. Furthermore, we emphasize in those restrictions and considerations needed to be made over the relational algebra with regard to multidimensionality.

In this comparative we consider the relational algebra presented in [Cod72]. Thus, we consider "Selection" (σ), "Projection" (π), "Union" (\cup), "Difference" $(-)$ and "Natural Join" (\bowtie) as the relational algebra operators. As remark, we talk about "Natural Join", or simply "Join", instead of the "Cartesian Product" (the one presented in [Cod72] and where "Join" can be derived from) since a "Cartesian Product" without restrictions is meaningless in the multidimensional model, as discussed in [RA05]. Moreover, we do not include the "rename" operator, not included in [Cod72] but widely accepted later. This is because we are
focusing on handling and manipulating data and "rename" can be considered a meta-operator more than an operator by itself.

For the sake of comprehension, since we focus on a conceptual comparison, and to avoid messing results with considerations about the Data Warehouse implementation, we will consider, without loss of generality, that each multidimensional Cube is implemented as a single relation (i.e. a denormalized relational table). So that, considering the Cube depicted in figure 2 (extracted from figure 1) we would get the following relation: \{City, Day, Product, Daily Stock, Country, Month, Year\}. Being the underlined fields the multidimensional Base and therefore, the relation "primary key". Along this section, we will refer to this kind of denormalized relation as the multidimensional table.

Prior to present our results, just remind section 4 presents how each multidimensional operator should be translated to SQL, helping the reader to better understand this section.

Table 1 summarizes the mapping between both algebras operators. Notice we are considering the "group by" and "aggregation" as relational operators, and both will be justified consequently below. Since multidimensional tables contain (1) identifier fields (i.e. identifier Descriptors -see section 2.1-) identifying data -for instance: City, Day and Product in the above example-; (2) numerical fields: -Daily Stock-, representing multidimensional data (i.e. Measures) and (3) descriptive fields: -Country, Month and Year- (i.e. non-identifier Descriptors), we use the following notation in the table: $\checkmark_{\text {Measures }}$ if the multidimensional operator is equivalent to the relational one but it can be only applied over relation fields representing Measures, $\checkmark_{\text {Descs }}$ if the multidimensional operator must be applied over Descriptors fields and finally, $\checkmark_{\text {Descs }_{i d}}$ if it can be only applied over identifier Descriptors fields. Consequently, a \checkmark without restrictions means both operators are equivalent, without additional restrictions. If the translation of a multidimensional operator combines more than one relational operator, the subscript + is added.

YAM ${ }^{2}$ Operator		"Selection"	"Projection"	"Join"	"Union"	"Group by"	"Aggregation"
Selection		\checkmark Descs					
Projection			\checkmark Measures				
Roll-up						\checkmark Descs $_{\text {id }}+$	\checkmark Measures +
Drill-across			\checkmark Descs $_{\text {id }}+$	\checkmark Descs $_{\text {id }}+$			
changeBase	Add Dim.			$\checkmark{ }^{\text {Descs }}$ id			
	Remove Dim.		\checkmark Descs $_{\text {id }}$				
	Alt. Base		$\checkmark{ }^{\text {Descs }}$ id +	\checkmark Descs $_{\text {id }}+$			
Union					\checkmark		

Table 1. Comparative table between the relational and the multidimensional algebras.

- The multidimensional Selection operator is equivalent to a restricted relational "Selection". It can be only applied over Descriptors and then, it is equivalent to restrict the relational "Selection" just over Level data. According to our notation, we express the multidimensional Selection in terms of the relational algebra as $\sigma_{\text {Descriptors }}$.
- Similarly, the multidimensional Projection operator is equivalent to the relational one restricted to Measures; that is, specific Cell data. In terms of the relational algebra we could express it as $\pi_{\text {Measures }}$.
- OLAP tools emphasize on flexible data grouping and efficient aggregation evaluation over groups and it is the multidimensional Roll-up operator the one aimed to provide us with powerful grouping and aggregation of data. In order to support it, we need to extend the relational algebra to provide grouping and aggregation mechanisms. This topic have already been studied and previous works like [Klu82], [LW96] and [Lar99] have already presented extensions of the relational algebra to what is also called the grouping algebra. All of them introduce two new operators, and following the [Lar99] grouping algebra, we will refer to them as the "group by" and the "aggregation" operators.
The "group by" operator presented allows us to group data and apply a simple addition, counting or maximization of a collection of domain values (like it has been typically introduced, tightly connected to aggregation), and it also allows to perform relational computations on groups, even without applying aggregation. Moreover, it supports nested groupings, extending it with respect to more than one relational argument, fulfilling the OLAP necessities about grouping. The syntaxis introduced is the following: group r_{1}, \ldots, r_{n} by \mathcal{X} do e. Where r_{1}, \ldots, r_{n} are relational names, \mathcal{X} a subset of attribute names and e is a relational expression (even another "group by" expression). For instance, if we would like to group data by the Product field in the multidimensional table depicted in table 2 we would obtain: \{\{[Scarf, Spain, Barcelona, 10, 1, 1, 2006],[Scarf, Italy, Rome, 9, 1, 1, 2006]\},\{[Tshirt, Spain, Barcelona, 7, 1, 1, 2006], [T-shirt, Italy, Rome, 50, 1, 1, 2006]\}, \{[Socks, Spain, Barcelona, 30, 1, 1, 2006]\}\}.

Country	City	Product	Sales	Day	Month	Year
Spain	Barcelona	Scarf	10	1	1	2006
Italy	Rome	Scarf	9	1	1	2006
Spain	Barcelona	T-Shirt	7	1	1	2006
Italy	Rome	T-Shirt	50	1	1	2006
Spain	Barcelona	Socks	30	1	1	2006

Table 2. Implementation of figure 2 through a denormalized table (a multidimensional table).

Finally, the "aggregation" operator computes the aggregation of a given attribute over a given nested relation. Hence, it could be any of the usual aggregation functions, like SUM, COUNT, MAX, MIN, AVG, etc. For instance, $M A X_{\text {Sales }}(\mathrm{T})$, being T table 2, would evaluate to 50 .
In terms of this grouping algebra, a Roll-up operator consists of a proper "group by" operation along with an "aggregation" of data. Following our
example, group T by Product do SUM(Sales) would calculate the Sales sum per product; evaluating to $\{[$ Scarf,19],[T-Shirt,57],[Socks,30]\}. Keep in mind this operation must perform a proper aggregation of data if we want it to be consistent.

- A consistent Drill-across typically consists on a "Join" between two multidimensional tables sharing the same multidimensional space. Notice that to "Join" both tables it must be performed over their common Level identifiers that must univocally identify each cell in the multidimensional space (the Cube Base). Moreover, once "joined", we must "project" out the columns in the multidimensional table drill-acrossed to, except for its Measures. Formally, Let \mathcal{A} and \mathcal{B} be the multidimensional tables implementing, respectively, the origin and the destination Cells involved. In the relational algebra it can be expressed as:

$$
\pi_{\text {Descriptors }_{\mathcal{A}}, \text { Measures }_{\mathcal{A}}, \text { Measures }_{\mathcal{B}}}(\mathcal{A} \bowtie \mathcal{B})
$$

- As stated in section 2, changeBase allows us to rearrange our current multidimensional space either by changing to an alternative Base (adding / removing a Dimension or replacing Dimensions) or reordering the space (i.e. "pivoting").

When changing to an alternative Base we must assure it does not affect the functional dependency of data with regard to the Cube Base. Hence:

- To add a Dimension it must be done through its All Level or fixing just one value at any other Level by means of a Selection, to not lose cells (i.e. representing the whole Dimension as a unique instance as discussed in 2.2). Therefore, in the relational algebra adding a Dimension is achieved through a "cartesian product" between the multidimensional table and the Dimension table (that would contain a unique instance). Specifically, being \mathcal{C} the initial multidimensional table and \mathcal{D} the relational table implementing the added Dimension, it can be expressed as:

$$
\mathcal{C} \times \mathcal{D}, \quad \text { where }|\mathcal{D}|=1
$$

- To remove a Dimension it is just the opposite, and we need to get rid of the proper Level identifier projecting it out in the multidimensional table.
- To change the set of Dimensions identifying each cell, that is, choosing an alternative Base to display the data, we must perform a "join" between both Bases and project out the replaced Levels Descriptors in the multidimensional table. In this case, the "join" must be performed through the identifier Descriptors of Levels replaced and Levels introduced. Formally, let \mathcal{A} be the multidimensional table, \mathcal{B} the table showing the correspondence between both Bases and d_{1}, \ldots, d_{n} the identifier Descriptors of those Dimensions introduced. In the relational algebra, it is equivalent to:

$$
\pi_{\text {Descriptors } \left._{\mathcal{B}\left(\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}}\right.}\right), \text { Measures }_{\mathcal{A}}}(\mathcal{A} \bowtie \mathcal{B})
$$

- Finally, pivoting just asks to reorder the Levels identifiers using the SQL "order by" operator, not mappable to the relational algebra. For that reason, it is not included in table 1.
- The multidimensional Union (Difference, Intersection) unites two Cubes defined over the same multidimensional space. In terms of the relational algebra, it is equivalent to "Union" two multidimensional tables.

3.2 The Multidimensional Algebras

Next, we present a comparative among our reference algebra and the other multidimensional algebras presented in the literature. To the best of our knowledge, it is the first comparative about multidimensional algebras carried out. In [VS99], a survey describing the multidimensional algebras in the literature is presented. However, unlike us, it does not compare them. Results presented along this section are summarized in table 3. There, rows, representing an algebraic operator, are grouped according to which algebra they belong to (also ordered chronologically), whereas columns represent the multidimensional algebraic operators in our framework. Notice Roll-up and Drill-down are considered together since one is the inverse of the other. Moreover, as discussed in section 2.2, we consider all together the Union, Intersection and Difference operators.

The notation used is the following; a \checkmark cell means that those operations represent the same conceptual operator; a \sim stands for operations with similar purpose but different proceeding making them slightly different; a \checkmark_{p} means that the operation partially performs the same data manipulation than the $\mathbf{Y A M}^{2}$ operator despite the last also embraces other functionalities, and a $\checkmark+$ means that this operation is equal to combine the marked operators of our reference algebra, meaning it is not an atomic operator. Analogously, there are some $\mathbf{Y A M}^{2}$ operators that can be mapped to another algebra combining more than one of its operators. This case is showed in the table with a \mathcal{D} (from derived). Keep in mind this last mark must be read vertically unlike the rest of marks. Finally, notice we have only considered those operations manipulating data. Consequently, those aimed to manipulate the data structure are not included.
[LW96] introduces a multidimensional algebra as well as its translation to SQL. To do so, it previously extends the relational algebra with grouping and aggregation operators, and later, it presents the multidimensional operators translation to the grouping algebra defined. Prior to present its operators, we must notice it was one of the first models presented, and its main aim is to construct multidimensional Cubes from local operational databases. In fact, they provide the "Construct" operator to generate Cubes from relations. More precisely, it defines five multidimensional operators representing mappings between either Cubes or relations and Cubes.

The "Add dimension" operator adds a new Dimension to the current Cube, like in the changeBase operator; the "Transfer" operator rearranges data in the multidimensional space similar to a changeBase. This operation transfers a Dimension attribute (a Descriptor) from one Dimension to another

Algebra	Operator	Selection	Projection	$\underset{\text { Roll-up }}{\text { Rolll-down }}$	changeBase	Drill-across	Union Difference Intersection$\|$	Remarks
[LW96]	"Add Dimension"				$\checkmark p$			
	"Transfer"				\sim			
	"Cube Aggr."			\checkmark				
	"Rc-join"	\checkmark						
	"Union"						\checkmark	
[AGS97]	"Push"					$\checkmark p$		Semantic Rels.
	"Pull"		\mathcal{D}		$\checkmark p$			$\begin{gathered} \text { Semantic } \\ \text { Rels. } \end{gathered}$
	"Destroy Dimension"		\mathcal{D}		$\checkmark p$			
	"Restriction"	\checkmark						
	"Join"					\checkmark		
	"Merge"			\checkmark				
[ML97]	"Selection"	\checkmark						
	"Projection"		\checkmark					
	"Cartesian Product"					\sim		
	"Union/Diff./Inters."						\checkmark	
	"Fold/Unfold"				$\checkmark p$			
	"Classification"			D				
	"Summarization"			D				
[TD97]	"Restriction"	\checkmark						
	"Metric Projection"		\checkmark					
	"Aggregation"			\checkmark				
	"Cartesian Product"					\sim		
	"Join"					\checkmark		
	"Union/Diff."						\checkmark	
	"Extract"				$\checkmark p$			Semantic Rels.
	"Force"					$\checkmark p$		Semantic Rels.
[Leh98]	"Slicing"	\checkmark						
	"Roll-up/Drill-down"			\checkmark				
	"Split/Merge"			\sim				
	"Implicit/Explicit Aggr."			$\checkmark p$				
	"Cell Operators"							Derived Measures
[CT98b]	"Cartesian Product"					\sim		
	"Natural Join"					\checkmark		
	"Roll-up"			D				
	"Aggregation"			D				
	"Level Description"				$\checkmark p$			$\begin{gathered} \text { Semantic } \\ \text { Rels. } \\ \hline \end{gathered}$
	"Scalar Function App."							$\begin{aligned} & \text { Derived } \\ & \text { Measures } \end{aligned}$
	"Selection"	\checkmark						
	Simple Projection"		\checkmark		$\checkmark p$			
	"Abstraction"		$\checkmark+$		$\checkmark p+$			
[HS98]	"Restrict"	\checkmark						
	"Destroy"				$\checkmark p$			
	"join"					\checkmark		
	"Join"			$\checkmark+$		$\checkmark+$		
	"Aggr"			\checkmark				
[Ped00]	"Selection"	\checkmark						
	"Projection"		\checkmark					
	"Union/Diff."						\checkmark	
	"Identity-based Join"					\sim		
	"Aggregate Formation"			$\sqrt{ }$				
	"Value-based Join"					\checkmark		
	"Duplicate Removal"							$\begin{gathered} \text { cell } \\ \text { definition } \\ \hline \end{gathered}$
	"SQL-like Aggr."				$\checkmark p$			
	"Star-join"	$\sqrt{ }+$		$\sqrt{+}$				
	"Roll-up/Drill-down"			\checkmark				
[Vas00]	"Navigate"			\checkmark				
	"Selection"	\checkmark						
	"Split Measure"		\checkmark					
[FK04]	"Derived Measures"							Derived Measures
	"Join"					$\checkmark p$		
	"Slice/Multislice"	\checkmark						
	"Union/Diff./Inters."						\checkmark	
[YP04]	"Selection Cube"	\checkmark						
	"Decoration"				$\sqrt{ }$			
	"Fed. Gen. Projection"		$\checkmark+$	$\checkmark+$	$\checkmark+$			

Table 3. Summary of the comparative between $\mathbf{Y A M}^{2}$ and the rest of multidimensional algebras presented in the literature.
via a "Cartesian Product". Since multidimensional concepts are directly derived from non-multidimensional relations, concepts like Dimensions could be rather vaguely defined, justifying the transfer operator; the "Cube Aggregation" operator performs grouping and aggregation over data, being equivalent to a Roll-up and finally, the "Rc-join" operator, that allows us to join a relational relation with a Dimension of the Cube projecting (selecting) the values in the Dimension also present in the relation. It is a low level operator tightly related to the multidimensional model presented, and it is introduced to relate non-multidimensional relations with relations modeling multidimensionality (i.e. Cubes). In our framework, it is equivalent to perform a Selection over a certain Dimension.
[AGS97] presents an algebra composed by six operators rather relevant since they inspired many of the following algebras as we will see. First, "Push" and "Pull" transform a Measure into a Dimension and viceversa, since in their model Measures and Dimensions are handled uniformly. In our framework they would be equivalent to define semantic relationships between the proper $\mathbf{D i}$ mensions and Cells and then, Drill-across and changeBase respectively. The "Destroy Dimension" operator drops a Cube Dimension, like in the changeBase operator, whereas the "Restriction" operator is equivalent to a Selection, "Merge" to a Roll-up and "Join" to an unrestricted Drill-across. Consequently, the latter can even be performed without common Dimensions between the Cubes, performing a "Cartesian Product" and embracing a massive doublecounting. Notice that defining the "Cartesian Product" in a general sense does not make any multidimensional sense if it is not restricted, since it does not preserve disjointness when aggregating data. Finally, we can perform a Projection by means of "Pull"ing the Measure into a Dimension and performing a "Destroy Dimension" operation over it.
[ML97] presents an algebra based on the classical algebraic operations. Therefore, it includes "Selection", "Projection", "Union" / "Intersection" / "Difference" and the "Cartesian Product". All of them, except for the latter, being equivalent to their analogous operator in our reference algebra. The "Cartesian Product", like in the previous algebra, is defined as a binary relationship between two Cubes and therefore, mappable to an unrestricted Drill-across. "Fold" and "Unfold" operators add or remove a Dimension to the multidimensional space respectively, like in a changeBase and finally, it presents a Roll-up as a "Summarization of Tables" and a "Classification of Tables", where "Summarization" summarizes data according to an aggregation function and "Classification" maps results into groups (close to the GROUP BY clause modus operandi).
[TD97] and [TD01] present an algebra with eight operators based on the algebra presented in [AGS97]. Therefore, the "Restriction" operator is equivalent to a Selection; the "Metric Projection" to a Projection; the "Aggregation" to a Roll-up and the "Union" / "Difference" operators to those with the same name in our reference algebra. Moreover, like in [AGS97], Measures can be con-
verted to Dimensions and viceversa (i.e. they are handled uniformly). Hence, the "Force" and "Extract" operators are equivalent to the "Push" and "Pull" operators introduced above. Finally, the "Cubic Product" is equivalent to the "Join" operator in [AGS97]. Since a general "Cartesian Product" do not make multidimensional sense, they also remark the specific case of a "Cubic Product" over two Cubes with common Dimensions (preserving disjointness if they are joined through their Dimensions in common). They call "Join" to this specific "Cubic Product".
[Leh98] presents an algebra composed by five operators. "Slicing" restricts the multidimensional model in the same sense than Selection; "Roll-up" and "Drilldown" and the "Split" and "Merge" operators are equivalent to Roll-up and Drill-down. Despite they represent the same conceptual operators, its model data structure, that differentiates two analysis phases of data, justifies them. "Roll-up" and "Drill-down" find and interesting context in the first phase whereas "Split" and "Merge" are needed to modify the data granularity dynamically along the "dimensional attributes" (non-identifiers Descriptors) defined in the "classification hierarchies" nodes of the data structure. Moreover, like in other algebras, they differentiate "Roll-up" from "Aggregation" of data. Because of that, they also present two other operations aimed to aggregate and group data, the "Implicit" and the "Explicit" aggregation. According to this, to "Roll-up" means to perform an "Implicit aggregation" according to an aggregate function defined over the multidimensional object. Finally, the "Cell-oriented operator" derive new data preserving the same multidimensional space by means of "unary operators" (,$- a b s$ and sign) or "binary operators" (${ }^{*},+,-, /, \min$ and max). "Binary operators" ask for two multidimensional objects aligned (that is, with exactly the same multidimensional space). In our framework it is obtained defining Derived Measures when designing the multidimensional schema, and therefore, in design time.
[CT97], [CT98a] and [CT98b] present an algebra with nine operators. "Selection", "Cartesian Product" and "Natural Join" are equivalent to those introduced along this section. Similar to [Vas00], [Ped00] and [ML97], Roll-up is equivalent to "Roll-up" and "Aggregation". "Roll-up" is the conceptual change of Levels through an aggregation relation whereas "Aggregation" aggregates and groups data according to the Levels and aggregation functions depicted in the "Rollup". A "Level description" is equivalent to an specific changeBase. It changes a Level by another one related through a one-to-one relation to it. In our framework we should define a semantic relationship among the Levels involved and perform a changeBase. "Simple projection" projects out the selected Measures and reduce the multidimensional space dropping Dimensions. Moreover, it can only drop Measures or Dimensions or combine both. To drop Measures is equivalent to a Projection and to drop Dimensions to a changeBase. Finally, "Abstraction" is equivalent to the "Pull" operator in [AGS97].
[HS98] presents a Description Logics based algebra developed from those presented in [AGS97]. Therefore, it also introduces the "Restrict" operator; the "Destroy" one equivalent to the "Destroy Dimension" and the "Aggr" operator equivalent to a "Merge". Furthermore, the "join" and "Join" operators can be considered an extension of the "Join" operator in [AGS97]. Both operators restrict it to make multidimensional sense and consequently, being equivalent to a Drill-across, despite the second one also allows to group and aggregate data before showing data. Consequently, it is equivalent to a Drill-across and Roll-up.
[Ped00] presents an algebra where "Selection", "Projection", "Union" / "Difference" and Roll-up and Drill-down are equivalent to those with the same name presented in our framework, whereas the "Value-based join" is equivalent to a Drill-across and the "Identity-based join" to a "Cartesian product". As already presented in other algebras, it also differentiates the "Aggregate operation" from the "Roll-up" one and two different operators are introduced. It also introduces the "Duplicate Removal" operator to remove cells characterized by the same combination of dimensional values. In our framework it can never happen because of the Base definition introduced.

Finally, it presents a set of non-atomic operators; the "star-join" operator combines a Selection over the Dimensions with a Roll-up over a certain Dimensions by the same aggregation function, and the "SQL-like aggregation" applies the "Aggregate operation" to a certain Dimensions and projects out the rest (that is, performs a changeBase).
[Vas00] presents an algebra with three operators focusing on the most common multidimensional operators. "Navigation" allows us to Roll-up, and according to [Vas98] it is performed by means of "Level-Climbing" -reducing the granularity of data-, "Packing" -grouping data- and "Function Application" aggregating by means of an aggregation function-. Finally, "Split a Measure" is equivalent to a Projection and a "Selection" to our Selection.
[YP04] presents an algebra over an XML and OLAP federation where "Selection Cube" is equivalent to Selection; the "Decoration" operator adds new Dimensions to the Cube and therefore, being mappable to a changeBase and the "Federation Generalized Projection" Roll-ups the Cube and removes unspecified Dimensions (changeBase) and Measures (Projection). Notice despite the Roll-up is mandatory in this operator, we can combine it with a Projection or/and a changeBase.

An algebra with four operations is presented in [FK04]. "Slice" and "Multislice" select a single or a range of values like a Selection; "Union" / "Intersection" / "Difference" are equivalent to the same operators in our reference algebra; "Join" rather close to Drill-across but in a more restrictive way forcing both Cubes to share the same multidimensional space and "Derived Measures" to derive new measures from already existent. In our framework, as already said,
it should be performed in the schema design phase. Finally, notice they do not include Roll-up in their set of operators. It is because it is considered in the data structure of the model.

Some of these approaches have also presented an equivalent calculus besides the algebra introduced above (like [ML97] and [CT98b]). [GMR98] presents a query language to define the expected workload for the Data Warehouse. We have not included it in table 3 since it can not be compared smoothly to algebraic operators one per one. Anyway, analyzing it, we can deduce many of our reference algebraic operators are also supported by their model like Selection, Projection, Roll-up, Union and even a partial Drill-across as they allow to overlap fact schemes.

3.3 Discussion

As seen in section 2 , to carry out our work we need a multidimensional framework in which to compare the different multidimensional algebras available nowadays. We have chosen $\mathbf{Y A M}^{2}$ algebra as our reference framework since, as presented in section 3.2, it embraces all the data operators presented up to now in the literature, allowing us to carry out the comparison among multidimensional algebras, as well as the comparison with the relational algebra, without loss of generality.

Along this section, we would like to underline the necessity to work in terms of a multidimensional algebra. As showed in section 3.1, the multidimensional data manipulation should be performed by a restricted subset of the relational algebraic operators; that is, an specific simplification. Therefore, we can not use the whole relational algebra expression power and it must be restricted and conditioned in order to be adapted to multidimensionality. Otherwise, the results of the operations performed either would not form a Cube (since they are not closed with regard to the multidimensional model) or would introduce aggregation problems (see section 6 for further details). For instance, we can not talk about "cartesian product" in the multidimensional model, and we must be restricted to "joins" to avoid double-counting instances (i.e. to preserve disjointness). In other words, the multidimensional algebra represents the relational algebra subset applicable to multidimensionality. Furthermore, a multidimensional algebra would allow us to develop easier and amicable front-ends as demanded in OLAP tools, since it would provide us with a set of operators to apply over data. For instance, we could create a front-end assigning to each operator just a button; something rather complicate to develop with declarative languages like SQL or MDX.

Moreover, as seen in section 3.2 by means of a comparison between our framework and the rest of multidimensional algebras introduced, we could not use any of those multidimensional algebras as the standard framework if we would like to embrace all data operators presented in the literature. However, in that comparison we have been able to identify some significant general trends. Firstly, Selection, Roll-up and Drill-down operators are considered in all the algebras. It is
quite reasonable since Roll-up is the main operator of multidimensionality and Selection is a basic one, allowing us to select a subset of multidimensional points of interest out of the whole n-dimensional space. Projection, Drill-across and Union are included in most of the algebras presented. In fact, along the time, just two of the first algebras presented did not include Projection and Drillacross, but since then, the rest of algebras considered them somehow. About Union, it depends on the transformations that the model allows us to perform over data and indeed, it is a personal decision to make. However, we do believe that to unite (intersect, difference) two Cubes is a kind of navigation desired and easily extensible to all the algebras presented.

Finally, changeBase is also considered in most of the algebras. Specifically, they agree on the necessity of modifying the n-multidimensional space adding / removing Dimensions, and they include it as a first class citizen operator. However, unlike $\mathbf{Y A M}^{2}$, they do not present any alternative way to rearrange the multidimensional space. Our framework proposed allows two additional alternatives: to change the multidimensional space Base (either replacing a Dimension with another one or changing the whole Base by an alternative one), and "pivoting", as presented in [FBSV00]. In general, we can always rearrange the multidimensional space in any way, if we preserve the functional dependencies of the cells with regard to the Levels conforming the Cube Base; that is, if the replaced Dimension(s) and the new one(s) are related through a one-to-one relationship. Anyway, the changeBase operator subsumes the "Add" / "Remove Dimension" operator considered in the literature and raises up new desirable alternatives to handle data.

Consequently, the comparative presented reveals many implicit agreements among all the multidimensional algebras and in fact, there are many points in common about how multidimensional data should be handled. Actually, like in the conceptual multidimensional modeling issue, we strongly believe it could be feasible to agree on a reference multidimensional algebra; crucial for the evolution of the area. Ideally, the standard multidimensional algebra would need to be subsumed by the relational algebra and, at the same time, subsuming all the multidimensional algebras. In that case, it would give support to all the multidimensional data operators presented in the literature.

4 Correspondence Between the Multidimensional Algebra and SQL

This section presents in detail how the $\mathbf{Y A M}^{2}$ multidimensional algebra should be translated to SQL. With this aim, we first present the template query (also known as cube-query), using the standard SQL'92, to retrieve a Cell of data from the RDBMS:

```
SELECT 1 1 .ID, ..., 1 1 . ID, [ F(]c.Measure 1[ ) ], ..
FROM Cell c, Level 1 1 1 , ,., Level n 1 1n
WHERE c.key =1 |.ID AND ... AND c.key n=1 n.ID [ AND 1 l .attr Op. K ]
[ GROUP BY 1 1 .ID, ..., 1 1n.ID ]
[ ORDER BY 1 1 .ID, ..., 1 1n.ID ]
```

The FROM clause contains the "Cell table" and the "Level tables". These tables are properly linked in the WHERE clause as well as logic clauses restricting an specific Level attribute (i.e. a Descriptor) to a constant \mathcal{K} by means of a comparison operator (i.e. equality, inequality, major, minor, etc.). The GROUP BY clause shows the identifiers of the Levels at which we want to aggregate data. Those columns in the grouping must also be in the SELECT clause in order to identify the values in the result. Finally, the ORDER BY clause is intended to sort the output of the query by these identifiers. Notice the GROUP BY clause forces to aggregate Measures by means of aggregation functions, if present. Otherwise, the GROUP BY clause is not necessary and it would be redundant, since no data aggregation is performed.

This template allows us to retrieve all cells of a Cell which conform a Cube that can be manipulated through the multidimensional operators, which will modify appropriately the initial cube-query. Hence, we talk about atomic cubequery when it just retrieves a Cube of data not yet manipulated by multidimensional operations.

Next, we present how each multidimensional operator (presented previously in section 2.2) modifies the atomic cube-query, summarized in table 4.

Clause	ChangeBase	Drill-across	Selection	Roll-up	Projection	Union
SELECT	Replace (LevelID)	Add (Measure)		Replace (LevelID)	Remove (Measure)	
FROM	Add (Levels)	Add (Cedl)				Union (Cells and Levels)
WHERE	Add (links)	Add (links)	AND (conditions)			Union (links)
(conditions)						

Table 4. SQL query sentence modifications according to each multidimensional operation

- Selection: In SQL, it means to and the corresponding clause to the WHERE clause. For instance, as presented in table 5.a, we can select those Weekly Stocks referring to cookies in the Product Dimension.
- Roll-up: In SQL, it changes the identifier in the GROUP BY clause by that of the parent Level. Thus, SELECT and ORDER BY clauses must be modified accordingly, so that the Descriptors coincide in all three. Measures in the SELECT clause must also be summarized using an aggregation function. To roll up to Level All, all Descriptors of a Dimension are removed from the GROUP BY, and "All" is placed in the corresponding place in SELECT clause. Going on, we can Roll-up from City to Level All along Place Dimension (Table 5.b).
- ChangeBase: In SQL it can be performed in two different ways. Firstly, it means to reorder Level identifiers in ORDER BY and SELECT clauses when "pivoting". Secondly, in case of changing to another Base, it means
to add the new Level tables to the FROM and the corresponding links to the WHERE clause. Moreover, identifiers in the SELECT, ORDER BY and GROUP BY clauses must be replaced consonantly. Following with the same example, we can change from (Product \times Week \times All) to (Product \times Week) Base and therefore, preserving the functional dependence and not losing cells (Table 5.c).
- Drill-across: In SQL, it means to add a new Cell table to the FROM, its Measures to the SELECT, and the corresponding links to the WHERE clause. In general, if we are not using any semantic relationship, a new Cell table can always be added to the FROM clause if the attributes composing the identifier of the desired Cell point to the already used Level tables. For instance, in the same example, we could Drill-down to Daily Stock and directly Drill-across to Daily Profit (Table 5.d).
- Projection: In SQL it removes Measures from the SELECT clause. Following our example, we can remove the Stock Measure (Table 5.e).
- Union: In SQL, we unite both FROM clauses, WHERE links, and finally or conditions of WHERE clauses. Hence, we can unite our example query to one identical but querying for chocolate instead of cookies (Table 5.f). As previously stated in section 2.2 , these considerations can be easily extended to Difference and Intersection.

Table 5. Example of $\mathbf{Y A M}^{2}$ algebra translation to SQL

5 From SQL To Multidimensionality

As presented in section 3, the multidimensional algebra conceptually maps to an specific subset of the relational one. Our aim in this section is to clearly define this mapping at a logical level, going one step beyond and thoroughly analyzing the multidimensional algebra expressiveness with regard to SQL (a short version of this work can be found in [RA06]). Hence, we would be able

Fig. 3. Cell - Cell, Cell - Level and Level - Level relationships
to ask the following questions: Which subset of the relational algebra can be expressed in terms of the multidimensional one? Given a correct SQL query, does it make multidimensional sense?

Consequently, we determine if a correct SQL query is a valid cube-query. As we will see, an at first-sight syntactically correct cube-query following the multidimensional query pattern presented in section 4 , may not make multidimensional sense. In fact, there are many other implicit restrictions to be guaranteed, and this pattern only guarantees the syntactic correctness of the query, not assuring its multidimensional validness. With this aim, we present those characteristics that an SQL query must enforce to make sense as a sequence of multidimensional operations. Hence, from here on, we consider a valid cubequery to be both semantically and syntactically correct in the multidimensional model.

To validate an SQL query as a cube-query we will need to find if it fits a valid multidimensional schema. Therefore, given an SQL query, our main objective will be to generate the set of multidimensional schemas validating that query. If the set obtained is empty then, it is not a valid cube-query. Otherwise, it is, and we can always find a sequence of multidimensional operations retrieving the same data than our SQL query.

Notice this analysis could have also been performed over the relational algebra instead of SQL since it is well-known how to extract the syntactic tree from a valid SQL query. However, for the sake of comprehension, we believe it is easier for the reader to reason in terms of SQL since it directly emulates the translation process a ROLAP tool would perform.

5.1 Valid Multidimensional Conceptual Relationships

Our first aim is to analyze which kind of relationships between multidimensional concepts can be found in the multidimensional schema. These relationships will be those used later by the multidimensional operators to manipulate data. Here, we first analyze them from a conceptual point of view whereas next section studies how to find and identify these relationships in a logical schema (in our case, a relational schema).

In a multidimensional schema we semantically relate Cells and Levels to analyze data contained in the firsts (Measures) with regard to data contained in the second ones (Descriptors). Therefore, we can find three kind of relationships: Level - Level, Cell - Cell and Cell-Level relationships.

Figure 3 summarizes all the possible relationships we can find between Cells and Levels, and an specific relationship is crossed out if it does not make sense. We say a relationship does not make sense if it violates any of the integrity constraints presented in section 2.3. Notice we have not taken into account the semantics of the relationship (for instance, an "aggregation", "association", "generalization", "derivation" or "flow" relationships as presented in [ASS06]) but it does consider the relationship multiplicity between both concepts (one-to-one, one-to-many or many-to-one) and if the relationship endings allow zeros. Keep in mind we will need to look for these relationships in a relational schema and therefore, relationships semantics will be lost but multiplicity will not. Consequently, we do not mind semantics of the relationship but if it is a valid relationship, and in this case, multiplicity is a key feature to spot the correctness of a relationship as discussed below. Moreover, notice we do not even draw many-to-many relationships since they always cause summarizability problems in the multidimensional model.

CELL - CELL relationships: Here we consider those relationships between Cells depicted in figure 3.1. We have conceptually divided them into two different columns based on the relationship multiplicity.

First column shows possible one-to-one relationships. It means, one instance is related with, at most, one instance from the other Cell, never raising summarizability problems. These cases are only possible relating both Cells through their Bases, and therefore, if they are sharing exactly the same multidimensional space. For instance, these kind of relationships are typically used by a Drill-across.

Second column summarizes, according to the navigation order between Cells, the one-to-many and the many-to-one relationships. In these cases, since one instance of a Cell matches many instances from the other one, these relationships may cause summarizability problems when aggregating Measures through them. However, we can avoid these problems and allow these relationships in the schema, ensuring Measures of the origin Cell are not selected by the user when navigating through them. That is, if they have been projected out. With this constraint, to navigate trough one-to-many relationships must be forbidden, since it is meaningless to Drill-across to another Cell to just get rid of its Measures. Consequently, unlike one-to-one relationships, these relationships set up an strict navigation order (i.e. from many to one) between both Cells. Notice we talk about navigation order between Cells since they contain multidimensional data and relating them, we are implicitly setting which is the initial and the destination Cell of the navigation (i.e. of the Drill-across).

Finally, when navigating to any kind of relationship end allowing zeros (see cases 1.1, 1.3, 1.5 and 1.7), we need to bear in mind that we may lose instances from the origin Cell. In general, and similarly in the rest of upcoming cases, ROLAP tools should preserve the multidimensional space when navigating to a side allowing zeros.

CELL - LEVEL relationships: These relationships, presented in figure 3.2, are the most common multidimensional relationships in the schema. They are intended to show the Cell data depending on its analysis Levels perspective and, unlike previous cases, these relationships semantics do not set up a navigation order.

First column shows those one-to-one relationships. One Cell instance is related to at most one Level instance (something necessary to ensure that the analysis Levels do define the multidimensional space), and one Level instance is just related to one Cell instance. Although nothing prevents us from having a one-to-one Level - Cell relationship, these are rather rare. Anyway, they are possible, except for 2.2 and 2.4 cases since every Cell instance has to be related, at least, to a Level instance.

Second column is completely forbidden. Relating one Cell instance to many Level instances would imply double-counting instances when aggregating this Cell Measures. At most, a Cell instance must match one Level instance to ensure it is uniquely identified in the multidimensional space.

Finally, last column shows many-to-one relationships. These are the most common and typical relationships between Cells and Levels. One cell is related to just one Level instance and one Level instance may be related to many different Cell instances. Similar to cases 2.2 and 2.4, cases 2.10 and 2.12 cannot be found in a multidimensional schema.

LEVEL - LEVEL relationships: Figure 3.3 shows all possible Level - Level relationships. Levels analyze data (i.e. Cells Measures) from a conceptual perspective of view. Cell data related to them is aggregated accordingly, and as presented below, they may cause potential aggregation problems depending on the Cells placement.

In the first column we find the one-to-one relationships. Each Level instance matches with at most one instance of the other Level, avoiding summarizability problems. Therefore, they are always valid regardless of the Cells placement. As previously discussed, cases 3.1 and 3.3 require special attention to avoid losing cells. These relationships are typically used by a ChangeBase.

Second column shows the one-to-many and many-to-one relationships. These relationships may cause aggregation problems depending on the Cells placement. However, at this time, we are only analyzing the relationship between both Levels, and a priori, all of them should be allowed. In fact, many-toone relationships are typically used by Roll-ups whereas one-to-many ones are commonly used by Drill-downs. Furthermore, notice some of the many-to-one relationships are surely pointing out some bad conceptual design decisions. Cases 3.5 and 3.7 represent those cases where some Level instances may not be aggregated along the other one, raising up incomplete aggregations. In this case, best solution is to include in the destination Level an "others" instance embracing them, avoiding to deal with zeros. Finally, again, notice cases 3.5 and 3.7 need special attention to preserve the multidimensional space.

5.2 Multidimensional Relationships at a Relational Level

Once we have determined which conceptual relationships among multidimensional concepts are allowed, we need to analyze how they can be modeled at a logical level; that is, in our case, in the relational model.

As presented in section 2.1, multidimensionality would be modeled by means of Cell and Level tables, where Level tables may be partially or totally denormalized according to the implementation approach followed (i.e. an snowflake, star or hybrid schema). Therefore, we need to look for those patterns in the organizational relational schemas in order to point multidimensional concepts out. Moreover, when navigating through data by means of the relational algebra, conceptual relationships presented will give rise to "joins" between relational tables. Consequently, in this section, we present those features any relational join must satisfy to model a valid relationship among multidimensional concepts. That is, if it models one of those valid relationships presented in figure 3.

First feature is about semantics, essential in multidimensionality. When joining two relation attributes, we should guarantee they have been defined over compatible "semantic domains" and therefore, they are semantically overlapped. For instance, it is meaningless to join city names with providers names despite being defined over the same data type. ORDBMS (Object Relational Database Management Systems) provide us with semantic domains, where we can guarantee the semantic correctness of a join, but the relational model does not enrich data with semantics and therefore, we are restricted to syntactic domains. However, relational systems allow us to guarantee the semantic compatibility between two attributes defining a FK (Foreign Key) with regard to a CK (Candidate Key). In our approach, we assume those joins whose semantics can not be automatically validated are also correct; since the SQL query to analyze expresses users requirements.

$C K_{o}$	$C K_{d}$	$F K_{o}$	$F K_{d}$	$N N_{o}$	$N N_{d}$	Relationship	Multiplicity
\times	\times	\times	\times	$?$	$?$	Attr. \rightarrow Attr.	$N-N$
\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	$C K \rightarrow F K+N N$	1 -o N
\checkmark	\times	\times	$?$	\checkmark	$?$	$C K \rightarrow$ Attr.	1 o-o N
\times	\checkmark	\checkmark	\times	\checkmark	\checkmark	$F K+N N \rightarrow C K$	N o- 1
\times	\checkmark	$?$	\times	$?$	\checkmark	Attr. $\rightarrow C K$	N o-o 1
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$C K+F K \rightarrow F K+C K$	$1-1$
\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	$C K+F K \rightarrow C K$	1 o- 1
\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	$C K \rightarrow C K+F K$	1 -o 1
\checkmark	\checkmark	\times	\times	\checkmark	\checkmark	$C K \rightarrow C K$	1 o-o 1

Table 6. Relationship multiplicities in the relational model.

Next, to find out which conceptual relationships may appear in the relational model we first focus on their multiplicity. In the relational model, multiplicity

Multiplicity	$L-L$	$C-C$	$L-C$	$C-L$
1 - 1	\checkmark	\checkmark	\checkmark	\checkmark
1 o- 1	\checkmark	\checkmark	\times	\checkmark
$N-1$	\checkmark	\checkmark	\times	\checkmark
N o- 1	\checkmark	\checkmark	\times	\checkmark
N o-o 1	\checkmark	\checkmark	\times	\times
N-o 1	\checkmark	\checkmark	\times	\times
1 o-o 1	\checkmark	\checkmark	\times	\times

Table 7. Valid multidimensional relationships in a relational schema.
of a relationship depends on how attributes involved are defined in the schema. That is, if they play the role of a relation CK and / or if they are defined as a FK to the other attribute and / or if they allow null values. Joining to a CK guarantees to match at most one instance of the relation. Otherwise it may match many of them. Similarly, an attribute not allowing null values and being defined as FK will surely match one and just one instance. Otherwise, it may introduce zeros. Table 6 summarizes all those relationship multiplicities that we may find in the relational model with regard to the definition of the attributes involved. There, each row represents an specific relationship between tables (i.e. a kind of join).

The notation used is the following; first six columns represent all possible combinations with regard to the constraints of each join attribute: As CK, as a FK pointing to the other attribute or as a NN (not null) attribute, not allowing null values. If an specific cell is \checkmark, the attribute is constrained accordingly to that column. Otherwise, it is marked with a \times mark. Notice not all the combinations are correct and some columns determine the following ones. For instance, a CK attribute can not accept null values. Moreover, a cell is marked with a ? mark if previous rows determine a certain multiplicity, meaning its value does not affect the result obtained. Finally, two last columns tell us the specific join depicted as well as its multiplicity with regard to previous columns. There, an Attr. represents an unconstrained attribute; that is, not defined neither CK nor FK and allowing null values.

First row represents a join between two attributes not defined as CK's. Therefore, they can not be defined as FK's to the other attribute and it does not matter if they allow not null values since they will always raise a many-to-many relationship, not allowed in multidimensionality. Following two rows identify those joins where the origin attribute is defined as a CK but not the destination one. In this case, every instance of the destination table matches, at most, one instance from the origin one. Furthermore, if the destination attribute is defined as a FK not allowing nulls we can also ensure it matches, at least, one instance from the origin table. Otherwise, it may give rise to zeros in the right-side of the relationship. Finally, notice $1-N$ and 1 o- N relationships can not be enforced in the relational model just checking the schema (we do not consider neither as-
sertions nor triggers). Next rows represent an unconstrained attribute linked to a CK. That is, the same two previous relationships presented but the other way around, giving rise to the same considerations. Last four rows identify those relationships among two CK's, raising up one-to-one relationships. In these cases, depending on the FK's defined we may introduce zeros to each relationship side.

Once we know which relationships multiplicity can be found in a relational schema, we need to validate them according to the roles played by the tables involved. Table 7 summarizes those multidimensional relationships we can find in a relational schema. There, columns present all possible relations between Cell and Level tables (see section 5.1 for more details) whereas rows represent those multiplicities we may face in the relational model. An specific cell is marked with a \checkmark mark if that multidimensional relationship along with the stated multiplicity makes multidimensional sense. Otherwise, it is marked by a \times, meaning it must be avoided. Therefore, notice this table merges results presented in figure 3 and table 6.

As discussed previously, we can not differentiate between a 1 - N and 1 -o N relationship or a 1 o- N and a 1 o-o N relationship just looking at a relational schema. However, as presented in table 7, they give rise to the same results (i.e. rows 3-4 and rows 5-6 are identical), not affecting our process at all. Furthermore, as presented in section 5.1, when navigating to a relationship side allowing zeros, we must enforce the user to "left-outer join" both tables in order to preserve the multidimensional space.

5.3 Analyzing the Cube-Query

In this section we validate a syntactically correct SQL query as a valid cubequery. To do so, we need to find if it fits a multidimensional schema. Therefore, starting from an input SQL query, we automatically generate the set of multidimensional schemas validating that query. If the input query is not multidimensional (i.e. it does not represent multidimensional requirements) we will not be able to propose any schema. Multidimensional schemas proposed will be inferred from those implicit restrictions the SQL query needs to guarantee to make multidimensional sense. Furthermore, in this process, the organizational database schemas will play a key role as we will see.

To start this process we first create what we call the multidimensional graph; that is, a graph representing the multidimensional query. Representing the query by means of a graph will help us to facilitate the validation of the query, since it concisely stores relevant information about the query.

The graph is deployed along four steps and it is composed of nodes, representing tables involved in the query and edges, relating nodes (i.e. tables) joined in the query. As stated in section 2.1, in the relational model multidimensionality is modeled through Cell and Level tables. Therefore, tables appearing in a cube-query would play either a Cell or a Level role.

Moreover, each node contains three properties needed along the validation process. The name property stores the table name, and will be used as its identifier along the process. The type property identifies that node as a Cell if labeled
with a \mathcal{C}, as a Cell with selected Measures (i.e. at least one of its Measures appear in the SELECT clause), if labeled with a $\mathcal{C M}$ or as a Level table if labeled with an \mathcal{L}. Finally, the attribute list property stores all those table attributes selected in the query. Analogously, for each edge we also need to store three properties. The navigation property sets up the navigation order (i.e. a directed arrow or a bidirectional one); the valid relationships list property setting those allowed relationships between nodes related and at last, the join attributes property, storing those attributes involved in the join.

Next, we present the steps to create such multidimensional graph. Each step is aimed to validate each clause in the cube-query and to extract relevant knowledge from it to be represented in the graph. Notice we do not validate it syntactically, since we assume it is a correct SQL query and consequently, interpretable by a RDBMS. Therefore, we focus on its multidimensional semantics correctness. Finally, since this process is thought to be performed automatically, we present it all together with an algorithm, described in pseudo code.

```
1. For each table in the FROM clause do
    (a) Create a node;
    (b) Initialize node properties;
2. For each attribute in the GROUP BY clause do
    (a) node = get_node(attribute);
    (b) if (!defined_as_part_of_o__CK(attribute)) then
            1. Set node type property as Level;
    (c) else if (!degenerate dimensions allowed) then
            i. FK = get_FK(attribute);
            1i. node dest = node;
            item a}\mathrm{ ttributes FK= attribute
            iii. while chain_of_FKs_follows(FK) and FK_in_WHERE_clause(FK) do
                A. FK = get_next_chained_FK(FK);
                B. node_dest = get_node(get_table(FK));
            iv. /* We must also - check #attributes selected matches #attributes at the end of the chain. *
            iv. ** We must also check #attributes selected matches #attributes at the end of 
                A. Set node_dest type property as Level;
For each attribute in the SELECT clause not in the GROUP BY clause do
    (a) node = get_node(attribute);
```

Fig. 4. Three first steps of the process.

Step 1, the FROM clause: As stated in figure 4, for each table in the FROM clause we create a node setting its name property to the table name, its type property to the ? mark (i.e. unknown) and its attribute list property to the empty set. Along the process, our main objective will be to label nodes according to its role played. In a certain moment, if a node has been already labeled and we need to label it with a different tag, we finish the process and point out the contradiction stated.

Step 2, the GROUP BY clause: This clause contains those attributes depicting the multidimensional space (i.e. the current Cube Base composed by those Dimensions of analysis fully functionally determining data). We consider a Cell table to always point out to its Dimensions of analysis, as
typically assumed when modeling multidimensionality (for instance, in an star schema). Therefore, if an attribute is not defined as FK or it is but we are able to follow a FK's chain defined in the schema that is also present in the WHERE clause, we can state for sure that the table where the FK's chain ends plays a Level role. Conversely, if it is part of a CK, we can directly state that that table is a Level.
Notice we allow multiattribute FK's. In that case, the whole FK must appear properly linked and those attributes reached at the end of the FK's chain must match (in number of attributes) those in the GROUP BY.

Step 3, the SELECT clause: Since a syntactically correct SQL query forces both the GROUP BY and SELECT clauses to share the same attributes, we can assure those attributes in the GROUP BY represent the Cube Base whereas those aggregated attributes in the SELECT clause not present in the GROUP BY point out Measures. Hence, those aggregated attributes in the SELECT clause not present in the GROUP BY clause surely play a Measure role. Therefore, we set the node type property with the $\mathcal{C} \mathcal{M}$ label, denoting, unequivocally, it is a Cell with selected Measures.

```
4. For each comparison in the WHERE clause do
    (a) node = get_node(attribute);
            i. Set node type property as Level;
    (c) else if (!degenerate dimensions allowed) then
        1. attribute = get attribute(comparison);
        ii. FK = get_FK(attribute);
        iii. node_dest}=\mathrm{ get_node(attribute);
        iv. attri\overline{butes_FK = attribute;}
            v. while chain_of_FKs_follows(FK) and FK_in_WHERE_clause(FK) do
                A. FK = get_next_chained_FK(FK);
                C. attributes FK= get attributes(FK);
                if (FK == N\overline{ULL} and #a\overline{trributes(attribute) == #attributes(attributes_FK)) then}
                if (FK == N Set node dest type property as Level;
```

Fig. 5. Fourth step of the process.

Step 4, selection comparisons in the WHERE clause: In a WHERE clause we can find two different kinds of clauses; comparisons over the table columns and links to join tables. In this step we focus on the first ones, whereas next step focus on the joins performed. Comparison clauses are intended to select data constraining a Descriptor to a concrete value or set of values, and must be constituted of one attribute comparisons. That means, we can only find equality (column $=\mathrm{K}$), inequality (column $<>$ K) major (column $>\mathrm{K}$) and minor (column $<\mathrm{K}$) comparisons, where K is a constant. In this case, as presented in figure 5, we can identify Levels following FK's as stated in the second step. However, notice this step will only detect new Levels (i.e. not detected in previous step) if the attribute compared is not included in the SELECT or the query does not contain a GROUP BY clause.

```
5. For each join in the WHERE clause do
    (a) /* Notice a conceptual relationship between tables may be modeled by several joins in the WHERE */
    set_of_joins=look_for_related_joins(join);
    (c) multiplicity = get_multiplicity(set_of_joins)
    ting = {}
    For each relationship in get allowed relationships(multiplicity) do
        i. if (!contradiction_with_graph\overline{(relationship)) then}
            A. relationships fitting = relationships fitting + {relationship};
    (f) if (!sizeof(relationshipsfitting)) then
        i. return notify_fail("Tablesrelationshipnotallowed");
    (g) Create an edge(get_join_attributes(set_of_joins));
    Set edge valid
    (i) if (unequivocal knowledge inferred(relationships fitting)) then
        i. propagate knowledge;
```

Fig. 6. Fourth step of the process.

Step 5, joins in the WHERE clause: Previous steps are mainly aimed to label nodes whereas this step labels edges. Relationships between tables give us relevant information we need to exploit in order to validate those joins performed in the WHERE clause by means of table 7 (see sections 5.1 and 5.2 for further details). Hence, as presented in figure 6, for each join performed, we first infer the relationship multiplicity with regard to the definition of the join attributes in the schema (i.e. as FK's, CK's or Not Null). According to the relationship multiplicity, we look for those allowed relationships (with a \checkmark mark in that row) depicted in table 7 . For each allowed relationship for this multiplicity, we see if it contradicts our previous knowledge, that is if (1) it asks for labeling a node already labeled with a different tag. If it (2) does not preserve the multidimensional space (see section 5.1), however, we do not invalidate the query but inform the user to solve that problem. That is, in the relational model, to outer join when navigating to a relationship end allowing zeros. Otherwise, we add it to the edge multidimensional relationships property. After checking all of them, if the allowed relationships set is empty we can state this query does not make multidimensional sense. Otherwise, we set the edge joining attributes property to those attributes involved in the join. Furthermore, if we are considering just one possible valid relationship, or we can infer unequivocal knowledge (i.e. despite having some different alternatives, we can assure that origin/destination/both node(s) must be a Cell or a Level), we update the graph labeling the nodes accordingly. If we update one such node, we must propagate in cascade new knowledge inferred to those edges and nodes directly related to those elements updated.

Finally, we focus on some additional considerations. These considerations affect the process somehow and despite being rather unusual, they must be taken into account:

Queries without GROUP BY clause: If data retrieved (i.e. Measures) is not grouped by, we are not forced to aggregate them by means of aggregation functions in the SELECT clause and therefore, step two would not be able to point them out. Therefore, an unconstrained attribute in the SELECT clause could be either a Measure or a Descriptor. Furthermore, we would not be
able to follow FK chains either, since Measures could be also modeled, in the source operational schema, as FK's (for instance, to semantically restrict their values).
In addition, if the query contains a GROUP BY clause, notice every Cell detected after step two is automatically labeled with a \mathcal{C} tag. Conversely, it does not happen if no GROUP BY clause is stated, and therefore, we could set up its type property either to \mathcal{C} or to $\mathcal{C} \mathcal{M}$. If the Cell attribute list property is not empty (i.e. some of its attributes are selected), we may identify any of these attributes to be a Measure if it is not defined as part of a CK. Otherwise, we can assure it does not select any of its Measures.
Degenerate Dimensions: Up to now, as discussed in 2.1 and presented in [KRTR98], we have considered a Cell CK points to its analysis Levels CK's by means of FK's. However, in a non-multidimensional relational schema this may not happen. For some reason, we could have a table attribute representing a Dimension not pointing to any table. For instance, dates or control numbers (like invoice number, bill of landing, etc.) are good candidates. Furthermore, it could also happen if the schema is not well-formed (i.e. the table exists but they are not linked by means of a FK). This situation, despite being rather unusual, can also appear in the multidimensional model giving rise to "degenerate dimensions" ([KRTR98]). "Degenerate dimensions" represent those Dimensions without Descriptors (maybe because their related attributes gave rise to other Dimensions) that are still useful for grouping data. Consequently, they are directly modeled in the Cell table.
If the relational schema allows "degenerate dimensions" we can not assume anymore FK's end up in Level tables. Consequently, steps two and three of the process are directly affected as depicted in figure 4 (step 2c) and figure 5 (step 4c) respectively.

5.4 Validating the multidimensional graph

Once the multidimensional graph has been deployed, we need to validate if it represents a correct multidimensional schema as a whole. However, notice the graph construction may have not labeled all the nodes. By means of backtracking, we first look for all those valid labeling alternatives, and any labeling giving rise to contradictions (see previous subsection) is eluded. If the process ends without being able to label all the nodes at least once, we can assure there is not any multidimensional schema validating the input query. Otherwise, this retrieves all those multidimensional graphs composed of valid edges, and each one of them needs to be validated as a whole (see figure 7).

Following, we present those steps aimed to validate the multidimensional graph:

Step 6, the graph must be connected: In general, the multidimensional graph must be connected to avoid the "Cartesian Product" among tables involved in the query. Furthermore, the graph must look like as the one presented in

```
6. If !connected(graph) then
    (a) return notify_fail("Graph not connected.");
7. For each subgraph of Levels in the multidimensional graph do
    (a) if (redundant_descriptors_selected(subgraph) |
        selecting_desc
            i. return notify_\overline{sugges}\overline{stion("Descriptors subset chosen must be reconsidered");}
    (b) if contains_cycles(subgraph) then
                i. /* Alternative paths must be semantically equivalent and hence raising the same multiplicity. */
                if contradiction_about_paths_multiplicities(subgraph) then
                A. return noti\overline{f}y fail}\overline{l}("Cyclescannotbeusedtoselectdata.")
                else
                A. ask user for semantical validation;
    (c) if exists_two_Levels_related_same_Cell(cycle) then
```



```
    (d) For each relationship in get_1_to_N_Level_Level_relationships(subgraph) do
        i. if left_related_to_a_- C\overline{ell_}
                A. return notifif_- f\overline{a}il("Aggregation Problems.");
8. For each Cell pair in the multidimensional graph do
    (a) For each 1_1_correspondence(Cellpair) do
        i. Create context edge between Cell pair;
    (b) For each 1 N correspondence(Cellpair) do
        i. Create directed context edge between Cell pair;
    If exists other correspondence(Cellpair) then
                i. return notify_fail("Invalid correspondence between Cells.");
9. if contains_cycles(Cells path) then
    (a) if contradiction_about_paths_multiplicities(Cells path) then
    i. return notify_fail("Cycles can not be used to select data.");
    (b) else
                ask user for semantical validation;
                i. Create context nodes(Cells path);
10. For each element in get_1_to_N_context_edges_and_nodes(Cells path) do
    (a) If CM_at_left(element) then
    return notify_fail("Aggregation problems among Measures.");
11. If exists two 1 to N alternative branches(Cells path) then
    (a) return notify__
```

Fig. 7. Process to validate the multidimensional graph.
figure 8; that is, the graph must be composed of valid edges giving rise to a path among Cells and connected subgraphs of Levels surrounding it. There, Cells contain multidimensional data to be retrieved whereas subgraphs of Levels point the multidimensional space out (i.e. depicting the Dimensions of analysis). In next steps, we will formally validate these features in detail.

Step 7, validating subgraphs of Levels: Dimensions of analysis should be orthogonal. Despite it could be possible to find Dimensions determining others in the schema, it must be avoided among Dimensions arranging the multidimensional space in a cube-query, in order to guarantee cells are fully functionally determined by Dimensions ([Abe02]). Unfortunately, relational schemas do not capture all data semantics and we are not able to assure that Dimensions selected are orthogonal. Consequently, we may select any Level Descriptor in a subgraph of Levels. However, as checked in step 7a, once we have shown (i.e. selected) a Level Descriptor, showing others related to this by a one-to-many relationship is absolutely redundant. Furthermore, two alternative branches in the subgraph selecting Descriptors (see subgraph LS3 or LS5 in figure 8) clearly state that those Dimension tables conform a hierarchy to be reconsidered (in fact, we are selecting the "Cartesian Product" of both selected Levels).

Fig. 8. A Multidimensional Graph.

If the subgraph contains a Levels cycle (see subgraph LS3 in figure 8), we must assure that exist two Levels (conceptually the top and bottom of the hierarchy) so that every path between them must be semantically equivalent (step 7b). It would mean that such a cycle represents a valid Dimension hierarchy. If the subgraph contains more than one cycle, we just need to focus on the biggest one embracing the rest of cycles and validate it, since contained cycles will just represent new alternative paths to be validated. Consequently, to validate cycles we must be able to spot the origin and destination nodes of the cycle so that every instance in the origin node matches the same instances in the destination node, for every possible path between them. Otherwise, they would be selecting data retrieved equally by those paths. Conceptually, the origin and destination node represent, respectively, the top and bottom Levels in the hierarchy of Levels depicted by that cycle. Therefore, despite we can not automatically validate cycles semantically (the user must confirm the cycle correctness), both nodes (i.e. the origin and destination) must be related by the same multiplicity for every possible path between them. This constraint could be relaxed depending on the DW criteria and allow cycles not being semantically equivalent to select data. However, in any case, we must tell the user that those joins in the WHERE clause are, indeed, a selection, and it should be performed by means of comparison clauses.
Once we have validated the subgraph of Levels per se, we focus on validate them with regard to Cells (specifically, to those Cells with Measures selected). Those subgraphs are aimed to place data in the multidimensional space and therefore, we need to assure that the data placement is free of summarizability problems.
As discussed in section 5.1, one-to-one relationships between Levels never raise summarizability problems, but similar to Cell relationships, one-tomany Level - Level relationships may cause aggregation problems depending on the Cells placement with regard to them. Specifically, if a Cell is related to the right side of a one-to-many Level - Level relationship (see step 7d), every Cell instance would be related to at most one instance of the left-side Level, avoiding them to be counted more than once. Conversely, if the Cell is related to the left side, it will always raise problems invalidat-
ing it: if data is grouped by means of a Descriptor of the left-side Level, it would cause summarizability problems. In this case, we may only navigate through these relationships if we ensure no data (i.e. the Measures) of that Cell is selected. Oppositely, if data is grouped by a Descriptor of the right-side Level, we would be asking to decompose data into a lower level of granularity that we can not provide (i.e. when Drill-downing we need that data to be materialized). Finally, since each connected subgraph of Levels represents a single perspective of view to analyze data, two different Levels in a subgraph can not be related to the same Cell (see step 7c); otherwise they would not be orthogonal, violating the Base integrity constraint.

Fig. 9. Examples of Cells paths of context edges and nodes

Step 8, pointing out the Cells path: Cells determine multidimensional data and therefore, they must be related somehow (by means of direct links or / and through subgraphs of Levels). Otherwise, they would not retrieve a single Cube of data. Consequently, for every two Cells in the graph, we aim to validate those paths between them as a whole, inferring and validating the multiplicity raised by all those paths together, as follows: if exists a one-toone correspondence between two Cells, we replace all relationships involved in that correspondence, by a one-to-one context edge between both Cells (see step 8a). Notice a context edge replaces that subgraph corresponding to the one-to-one correspondence between both Cells. Specifically, as depicted in figure 9.1, it means that there are a set of relationships linking, as a whole, a Cell CK, also linked by one-to-one paths to a whole CK of the other Cell. Otherwise, if both CK's are related by means of one-to-many paths or the first CK matches the second one partially, we replace involved relationships by a one-to-many directed context edge (see step 8 b). Notice that these correspondences must consider Selections performed in the WHERE since an equality comparison fixes that Dimension to a unique value. For instance, a CK matching partially another CK whose unrelated attributes are fixed to a value by means of an equality, would raise a one-to-one context edge instead of a one-to-many. Any other case invalidates the graph (see step 8c) since, as presented in section 5.1, we only allow one-to-one and one-to-many relationships between Cells. Eventually, we will have replaced all the graph edges by context edges.

At this moment, this step has validated and represented as context edges every multidimensional conceptual relationships between Cells stated in the query. However, we still need to validate the whole Cells path constituted by these edges with regard to multidimensionality integrity constraints, along next three steps.
Step 9, validating Cells cycles: Firstly, we must validate cycles like we have previously presented when validating Levels cycles. That is, we must assure that every possible path in the cycle is semantically equivalent (again, the user must confirm the cycle semantical correctness). Therefore, we must be able to point out the origin and destination nodes, and every path between them must raise up the same multiplicity. Once the cycle has been validated, Cells involved are clustered in a context node as showed in figure 9.2. Finally, we label that node with the multiplicity between the origin and the destination nodes. That is, either one-to-one or one-to-many. In the latter, we also add the navigation order. Notice that, again, we are replacing that subgraph by a node depicting the whole correspondence.

Step 10, validating the Cells path: Secondly, as discussed in section 5.1, if there are any one-to-many context edge or node in the path, any Cell at the left-side of that edge (or node) can not select Measures. That is, we propagate the one-to-many Cell - Cell relationship constraint by transitivity. Notice this constraint must also be satisfied by those Cells clustered in a context node.

Step 11, validating alternative paths: Finally, notice the Cells path may conform a "tree", as presented in figure 9.2. In this case, as depicted in the figure, if more than one alternative branch contains a one-to-many context edge or node, we may face summarizability problems, since Cells at the right-side of the one-to-many relationships would be related through a many-to-many relationship.

5.5 A practical example

In this section, we present a practical example of the method presented along this paper. In this example, we consider figure 10 (where CK's are underlined and FK's dash-underlined) to depict the organizational relational schema. Therefore, given the following requirement: "Retrieve benefits obtained with regard to supplier ABC, per month", it could be expressible in SQL as:

SELECT m.month, my.supplier, SUM(mp.profit)
From Month m, Monthly sales ms, Monthly supply my, Monthly profit mp, Supplier s, Prodtype pt, Product p

GROUP BY m.month, my.supplier
ORDER BY m.month, my.supplier

To validate that multidimensional requirement, we will follow the algorithm presented along previous section. First, we start constructing the multidimen-

```
Prodtype (prodtype)
Supplier(supplier, name, city)
Product(product, prodtype ( }->\mathrm{ prodtype.prodtype), discount)
Month(month, numdays, season)
Monthly profit(month_ ( }->\mathrm{ month.month), product( }->\mathrm{ product.product), profit)
Monthly sales(month ( }->\mathrm{ month month), product ( }->\mathrm{ product product), sales)
Monthly supply(month( }->\mathrm{ month.month), prodtype( ( 
```

Fig. 10. The organizational relational database schema
sional graph. In our case, we do not consider degenerate dimensions (see section 5.3):

Step 1: We first create a node for each table in the FROM clause. Initially, they are labeled as unknown (?) nodes.
Step 2: First, for each attribute in the GROUP BY clause, we try to identify the role played by those tables which they belong to.

- m.month: This attribute belongs to the Month table. Since it is not part of a FK, we can directly label that node as a Level.
- my.supplier: This attribute belonging to the Monthly supply table is defined as a FK pointing to the supplier attribute in the Supplier table. This equality can be also found in the WHERE clause, and therefore, we can follow the FK chain to the Supplier node, where the FK chain ends. Consequently, we label the Supplier node as a Level.
Step 3: For each attribute in the SELECT not in the GROUP BY (i.e. mp.profit), we identify the node it belongs to as a Cell with Measures selected.
Step 4: In this step, we analyze the s.supplier $=$ ' ABC ' comparison clause. First, we extract the attribute compared (supplier) and identify the table it belongs to (Supplier). Since it is not part of a FK, this table must be labeled as a Level. However, since it has been already labeled and there is no contradiction, the algorithm goes on without modifying the graph.
Step 5: For each join in the WHERE clause, we firstly infer the relationship multiplicity according to table 6 . For instance, mp.month $=$ ms.month joins two attributes that are part of two CK's in their respective tables. Therefore, we first look if the whole CK's are linked. In this case, this is true since mp. product $=\mathrm{ms}$. product also appears in the WHERE clause. Consequently, we are joining two CK's, raising up a 1 o-o 1 relationship. Since this relationship asks to preserve the multidimensional space due to zeros, at this moment, we should suggest to the user to outer-join properly both tables.
Secondly, according to the multiplicity inferred, we look at table 7 looking for those allowed multidimensional relationships between both nodes. That is, $C-C$ or $L-L$. However, last alternative raises a contradiction, since it asks to label the Monthly profit node as a Level when it has been already labeled as a Cell with Measures. Consequently, it is eluded. Since the set of relationships allowed is not empty, we create an edge and we label it accordingly.

Fig. 11. The multidimensional graph deployed

Finally, we propagate current knowledge. That is, according to that edge, the monthly sales table must also be a Cell, and therefore, it is labeled as a Cell without selected Measures. After repeating this process for every join, we would obtain, at the end of this step, the graph depicted in figure 11.

At this moment, we have deployed the multidimensional graph that in next steps, we want to validate. However, since some nodes have not been labeled, we previously find out all the valid alternatives by means of a backtracking algorithm. For instance, if the Product node was labeled as a Level, according to the edge between Product and Prodtype, the latter should be also labeled as a Level. Moreover, the Monthly supply node may be labeled as a Cell or a Level. The backtracking algorithm ends retrieving all those valid labeling alternatives depicted in table 8. Notice those crossed out are eluded in this step since they raise up contradictions.

For each labeling alternative retrieved by the backtracking algorithm, we try to validate the graph. For instance, we will follow in detail the validation

Monthly supply	Prodtype	Product	Remarks
C	C	C	Illegal context edge
L	L	C	Invalid subgraph of Levels
C	L	C	Illegal context edge
L	L	L	Non-orthogonal dimensions
C	L	L	\checkmark
C	C	L	\times
L	C	C	\times
L	C	L	\times

Table 8. Labeling alternatives retrieved
algorithm with the first alternative, where all three unknown nodes are labeled as Cells:

Step 6: First, we check if the graph is connected (in this case, it is).
Step 7: In this step we validate each subgraph of Levels (those two depicted in figure 11). Since they do not contain cycles of Levels (step 7b) nor contain alternative branches (step 7a), both are correct. Next, we validate subgraphs of Levels with regard to Cells. There is neither two Levels in the same subgraph related to the same Cell (step 7c) nor Level-Level relationships (step 7d), both are correct again.
Step 8: Here, we create the context edges between Cells. In this case, we are not able to replace all the edges, since the Monthly supply and Monthly sales unique correspondence (thorugh the Month node) can not be replaced by a context edge (step 8c).

Since we have found a contradiction, we elude this labeling and try the next one. We address the reader to follow the algorithm with the rest of alternatives. Second labeling is forbidden because of step 7d, since it raises a one-to-many Level - Level (i.e. Monthly supply - Month) where the one side is related to a Cell with selected Measures (i.e. Monthly profit). Third alternative raises the same problem than the first one whereas the fourth one relates two Levels of the subgraph with the same Cell (see step 7c). Finally, the last alternative is valid, since we are able to replace Monthly supply and Monthly sales correspondence by a one-to-many directed context edge -see step 8b- (in fact, they are related by joins raising a many-to-many relationship, but the comparison over the supplier field in the WHERE clause turns it into a one-to-many). Furthermore, the Cells path do not conform a cycle (step 9); Cells at the left side of the one-to-many context edge (i.e. Monthly supply) do not select Measures (step 10) and there are not alternative branches with one-to-many context edges or nodes each (step 11) either.

Summing up, the algorithm would propose the Monthly supply, Monthly profit and Monthly sales as factual data whereas Supplier, Product and Prodtype, and Month would conform the dimensional data.

5.6 Discussion

In this section we have presented a method to validate an end-user multidimensional requirement expressed as an SQL query. In our approach that query is represented by means of a multidimensional graph that lately, is validated as a whole. That is, if we are able to find an implicit multidimensional schema fitting it. With this aim, our work is based on the following criteria:

The cube-query template: We look for that template all over the user query identifying multidimensional concepts. Therefore, it is used to construct the multidimensional graph along steps 1 to 5 .

The Base integrity constraint: Levels depicted in the query must identify the multidimensional data. Therefore, they must be orthogonal. It has been used in step 2 to deploy the multidimensional graph, as well as in steps 7 a and 7 c , in the validation steps.
The correct data summarization integrity constraint: We have followed the three necessary conditions introduced by [LS97] and also introduced in section 2.3:

- Disjointness and Completeness: Used in step 5 to validate the multidimensional conceptual relationships as well as to validate the whole graph (step 6), Levels subgraph with regards to the Cells placement (step $7 \mathrm{~d})$ and the Cells path depicted by the context edges (steps 10 to 11). Moreover, the completeness condition has given rise to preserve the multidimensional space when treating with multidimensional relationships allowing zeros (step 5).
- Compatibility: Unfortunately, we have not been able to validate this constraint since that metadata is not captured by the relational schemas. We should ask the user to validate it or ask for a list of valid alternatives.

Therefore, if we can verify that the SQL query given follows the cube-query template; it does not cause summarizability problems and data retrieved is unequivocally identified in the space, we would be able to assure it makes multidimensional sense. Moreover, there are other optional criteria to be used depending on the DW expert:

- Selection: If we want to force the user to select data by means of selection comparisons in the WHERE clause, we can validate Levels and Cells cycles semantics as proposed in steps 7 b and 9 .
- Degenerate dimensions: Multidimensionality is typically modeled in the relational model forcing Cells to be related to its analysis Dimensions. Therefore, we can assume it when looking for potential multidimensional concepts over the relational databases (obtaining more information). Otherwise, we must bear it in mind as depicted in steps 2 and 4 .

6 From Multidimensionality to SQL

This section analyzes the implicit and automatic translation process every ROLAP tool must perform. A preliminary version of this job can be found in [RA05]. Specifically, an end-user would perform navigational and analytical tasks over the organizational data by means of the multidimensional algebra. The set of operations performed in this semantic layer will be automatically processed by the ROLAP tool that will translate it to SQL and therefore, to the relational algebra. The SQL translation of an isolated operation does not represent a problem, but when mixing up the modifications brought about by a set of operations in a single cube-query, some conflicts could emerge depending on the operations involved. Therefore, if these problems are not detected and treated appropriately, the automatic translation can retrieve unexpected results. In this section,

Operation/Source	\emptyset	Selection	Roll-up	Projection	Drill-across	ChangeBase	Union
Selection							
Roll-up	X	X	X		X		
Projection							
Drill-across	X		X		X		
ChangeBase							
Union							

Table 9. Conflicts summary
we define and classify conflicts raised when automatically translating a multidimensional algebra to SQL, and analyze how to solve or minimize their impact.

In section 4 we have presented how an atomic cube-query should be modified when applying an isolated operation over it, but many times end users demand to navigate from Cube to Cube not just applying isolated operations but performing sequences of operations. Thus, a user chooses a source Cube from where starting to operate. Automatically, the ROLAP tool will conform a cube-query to retrieve this Cube. Notice this Cube is our start point so that it has not been yet manipulated by any operation. Consequently, it is placing a Cell of data on the n-dimensional space conformed by its analysis Dimensions. This Cell, as stated in section 4, could have been materialized or not. If it was, ROLAP tool will retrieve it from an atomic cube-query and if not, it will look for an appropriate Cell, in a lower aggregation Level, from where obtaining the needed Cell by means of Roll-ups. For instance, according to figure 1, we could start our analysis from a materialized Cell (i.e. Monthly Profit) or from a non materialized one (i.e. Annual Profit). As Annual Profit is not materialized, we need to perform an implicit Roll-up over Monthly Profit from Month to Year to get needed data.

As presented in table 9 , certain operations may pop up a conflict when combined with an specific source cube-query. We refer to a source cube-query as an atomic cube-query modified by a sequence of operations. If no operation has been performed over the atomic cube-query we consider the empty sequence (\emptyset). Hence, a cell is crossed (\times) when the sequence of operations in the source cubequery contains an specific operation that may cause a conflict with next one to be performed. For instance, it may happen if our source cube-query includes a Selection and next operation to be carried out is a Roll-up.

Anyhow, any kind of conflict could be avoided using one subquery per multidimensional operation, but we only use subqueries if strictly necessary, shunning the materialization of partial results and easing the RDBMS query optimizer job. Specifically, as presented in [RG03], an important point to note about nested queries (i.e. subqueries) is that a typical optimizer is likely to do a poor job, because of the limited approach to nested queries optimization. In fact, from an efficiency standpoint, they advise us to consider not using nested queries. Main reasons are:

- The nested subquery is fully evaluated in the first step. Consequently, temporal materialization of results may be needed, as well as some good evaluation plans are missed according to the order imposed by nesting. For instance, some proper indexes would never be considered.
- Many times, the query optimizer is not smart enough to find the optimal strategy (for instance, which join algorithm use) and the typical join method used is the "index nested loops" (see [RG03] for more details). Therefore, this approach eludes other join methods that could lead to optimal plans. Moreover, if the nested query is correlated (i.e. a variable from the top-level query also appears in the nested subquery), the nested subquery is evaluated once per outer tuple (i.e. it will be evaluated many times if the correlation field matches many outer tuples).
- If there are several levels of nesting in the query (like in our case if translating each multidimensional operation to one subquery), same approach is considered as presented above just evaluating such queries from the innermost to the outermost and preserving correlation. That is, a correlated subquery may be evaluated once per each high-level query referring to it.

Nevertheless, a nested query often has an equivalent query without nesting, as well as a correlated query often can be many times turned into a decorrelated query. A typical SQL optimizer is likely to find a much better evaluation strategy if it is given the unnested or decorrelated version of the query. However, many of these optimizers are not able to identify that equivalence and transform the initial query to its optimal form.

Notice all conflicts pointed out in table 9 are caused by data aggregation anomalies. In fact, the standard SQL language (and therefore, the relational algebra) will not ever introduce any kind of conflicts. However, as presented in section 3.1, we need to extend the relational algebra in order to support proper data aggregation as demanded in the multidimensional model, giving rise to what is called as the grouping algebra. As introduced in [LS97] and discussed in section 2.3 , operations performed must satisfy the disjointness, completeness and compatibility of data handled to guarantee its correct summarization. Otherwise, two operations that, as a whole, do not preserve those three conditions will raise up a conflict. However, since we are trying to avoid subqueries, we need to aggregate in just one SQL query the multiple aggregation of data performed, implicitly or explicitly, by different multidimensional operators.

Therefore, as presented in table 1, Roll-up is the only operator performing data aggregation and consequently, it is the only one that may directly raise up conflicts when performed along with other operators. Nevertheless, Roll-up is the most important multidimensional operator since it allows us to modify data granularity and for that reason, it is crucial for a ROLAP tool to properly detect and avoid any potential conflict. Specifically, according to table 9, all conflicts are related to Roll-up and Drill-across. The rest of operations except for Selection, propagate conflicts if already present in the cube-query but do not introduce new ones. Consequently, Projection, Union and ChangeBase never raise a conflict. Intuitively, Projection removes Measures from the SE-

Fig. 12. Example of a hierarchy of Cells

LECT clause and dropping a Measure just means to omit a "Cell table" column; Union ores conditions of two Cubes with the same n-dimensional space not removing / adding any point; and ChangeBase always asks for a one-to-one relationship in order to be performed, avoiding conflicts due to its own nature. Conversely, Drill-across and Selection may introduce conflicts in the operators sequence. As presented below, Drill-across asks for a one-to-one relationship but sometimes, a one-to-many relationship is enough. In these cases, due to not materialized Cells, we need to perform implicit Roll-ups to get the necessary one-to-one relationship and being able to raise up the same conflicts caused by a Roll-up. Similarly, it may happen with atomic cube-queries not materialized that would need to perform implicit Roll-ups. A Selection may cause an specific conflict along with a Roll-up if we select a subset of points of the Cube and later we Roll-up, avoiding to take advantage of potential pre-aggregated data. Consequently, notice it is enough to analyze potential conflicts between each pair of operators, since all of them are caused by conciliating multiple aggregations of data in just one SQL query and therefore, order performed among operations does not matter.

Since all conflicts are due to data aggregation anomalies, we have classified conflicts introduced above in three groups according to the three necessary conditions needed to guarantee a correct data summarizability: those performing multiple aggregation functions in a query (not preserving compatibility of data), those due to hidden many-to-many relationships (not preserving disjointness) and finally, those related to the selection granularity (not preserving completeness).

6.1 The Multiple Aggregation Problem

First problem is about functions used to aggregate data. This case typically arises when combining more than one Roll-up in the same cube-query. To analyze this problem, we conceptually divide a combination of two Roll-ups in two categories depending on whether both were performed over the same Dimension or over different ones.

In the first case, we can always solve the problem disregarding first Roll-up and just performing the second one, because in a certain moment of time, multidimensional data can only be showed in a certain aggregation Level for each Dimension. Notice it can always be assumed since, in the worst case, we can
perform a Roll-up from the atomic Level. Oppositely, when performed over different Dimensions we have to compulsory aggregate data for each Dimension. Since SQL does not allow us to aggregate data by means of two different functions in the same query this conflict can not be solved in a single cube-query. For instance, if we carry out a Roll-up from Week to Year Level in the Weekly Stock Cell, and later we Roll-up from Year to Level All, the whole sequence of both Roll-ups can be directly expressed as:

SELECT p.ID, "All", c.ID, SUM(s.Stock)
FROM weeklyStock s, Product p, City c
c
WHERE s.key 1 = p.ID AND s.key 3 = c.ID
GROUP BY p.ID, c.ID
ORDER BY p.ID, c.ID

On the contrary, if we just carry out first Roll-up, and later another one from City to Country along the Place Dimension, nested queries are compulsory:

SELECT p.ID, co.ID, y.ID, SUM(s.Stock)
FROM (SELECT p.ID, c.ID, y.ID, AVG(s.Stock)
FROM weeklyStock s, Product p,
$\begin{aligned} & \text { City c, Week w, Year y } \\ & \text { WHERE s.key } \\ & =\text { p.ID AND s.key } \\ & 2\end{aligned}=$ c.ID
AND s.key3 = w.ID AND w.fkey $=\mathrm{y}$. ID
GRoup By p.ID, c.ID, y.ID
ORDER BY p.ID, c.ID, y.ID), Country co
WHERE s. $\mathrm{key}_{1}=\mathrm{p}$.ID AND s.key ${ }_{2}=\mathrm{c}$.ID
AND s.key $3=$ w.ID AND c.fkey $=c o$.ID
GROUP BY P.ID, co.ID, y.ID

Even if SQL allowed us to perform more than one aggregation function in the same query, we would face another problem: the order between aggregation functions. Consider the Stock Cell hierarchy detailed in figure 12 extracted from the example presented in figure 1. In this case, Stock is analyzed through two Dimensions (Place and Time), and for each possible combination of its Levels we got a different Cell. For instance, City Weekly Stock (containing cells on a Week-City granularity Level), Country Annual Stock (Country-Year), City Daily Stock (City-Day), etc. Thus, it is important to realize that our own multidimensional conceptual design fixes the order of aggregation functions when navigating along Cells hierarchy. If we want to Roll-up from City Daily Stock to Country Annual Stock we have to first aggregate by means of sum (it means, Roll-up from City to Country Level) and later aggregate by means of average (Roll-up from Day to Year). So that, order does really matter since sum of averages is different from an average of sums (latter happens when navigating through City Weekly Stock). Both orders are possible, but semantics chosen when designing our schema forces us to follow a certain order.

As said, above conflict could be avoided if SQL allowed us to perform more than one aggregation function per query and set up an order between them. For instance, as showed below, an SQL extension stating explicitly two GROUP BY's (very similar to SQL'99 GROUPING SETS modus operandi), would avoid using nested queries when combining more than one conflictive Roll-up. First GROUP BY would be related to first aggregation function and analogously to second one:

SELECT p.ID, co.ID, y.ID, AVG(SUM(s.Stock))
FROM weeklyStock s, Product p, City c, Week w, Year y, Country co
WHERE s.key ${ }_{1}=$ p.ID AND s.key ${ }_{2}=\mathrm{c}$. ID
AND s.key $3=\mathrm{w} . \mathrm{ID}$ AND $\mathrm{w} . \mathrm{fkey}=\mathrm{y} \cdot \mathrm{ID}$ AND c.fkey $=\mathrm{co} . \mathrm{ID}$
GROUP BY p.ID, c.ID, y.ID
GROUP BY p.ID, co.ID, y.ID
ORDER BY p.ID, c.ID, y.ID
Although this problem has been presented as a Roll-up plus Roll-up problem, it goes far beyond as it is crucial when obtaining non materialized Cells from materialized ones. For instance, if we have to work with the City Weekly Stock Cell that has not been materialized, ROLAP tools will have to perform a Roll-up from Day to Week over City Daily Stock to obtain needed data. So that, we have already performed an implicit Roll-up that could arise conflicts already presented if we next perform just one explicit Roll-up. Similarly, as presented in 6.2, implicit Roll-ups can also appear when carrying out a Drill-across (also in a ChangeBase, but in this case it is raised over the same Dimension avoiding any kind of conflict as stated earlier in this section) from a non materialized Cell.

Meanwhile, best solution to minimize this problem is to choose with care appropriate Cells to be materialized. An extreme solution would be to materialize all of them, but since it is an exponential space problem, it is not feasible. Hence, in addition to traditional criteria like how frequently would be a Cell queried, this problem emphasizes another criterion to decide the usefulness of a given materialized view. According to semantics related to our Cells hierarchy, those Cells whose data can be used as pre-aggregated data to calculate above Cells are good candidates (for instance, in case presented, to materialize Country Daily Stock instead of City Weekly Stock, since Country Annual Stock can only be calculated through the former).

Two possible criterions to decide which Cells materialize could be how frequently would be a Cell queried and, according to semantics related to our Cells hierarchy, choose those ones whose data can be used as pre-aggregated data to calculate above Cells (for instance, in case presented, to materialize Country Daily Stock instead of City Weekly Stock, since Country Annual Stock can only be calculated through the former).

6.2 The Fan-Shaped Problem

In this section we introduce a family of problems that are caused because disjointness is not preserved when aggregating data in certain situations. It typically appears related to Drill-across, either through semantic relationships or shared Dimensions. Drill-across asks for a one-to-one relationship, but sometimes a one-to-many relationship is enough. For instance, after dropping the Place Dimension (by means of Roll-up and ChangeBase) we can Drill-across from Annual Stock to Annual Profit. Conceptually, the one-to-one relationship is quite clear but in fact, we really have a one-to-many relationship since both Cells are not materialized and Weekly Stock and Monthly Profit are related to different Levels in the Time Dimension. We can get the needed one-toone relationship by means of internal Roll-ups (from Month to Year over both

Cells). Since Year is not materialized, its descriptors are included along with its children Levels in the Time Dimension hierarchy, given raise to the following query:

SELECT p.ID, y.ID, AVG(s.Stock), SUM(m.Profit)
FROM weeklyStock s, monthlyProfit m, Product p
Month mo, Week w, Year y
${\text { WHERE } m \cdot \text { key }_{1}=\text { p.ID AND m. key }}_{2}=$ mo.ID
AND s.key ${ }_{1}=$ p.ID AND s.key $2=$ w.ID
AND mo.yearID = w. yearid
ORDER BY p.ID, y.ID
As enounced in [LS97], the aggregation of data must be disjoint, and in this case, it is not. In fact, what should be a one-to-one relationship turns into a many-to-many one calling up a fan-shaped matching. Thus, we should use a nested query performing first one Roll-up and later, the other one, being the "join" last performed. Hence, this problem could be solved if SQL allowed us to state a priority between "joins" and GROUP BY's. However, to minimize its impact it is important, again, to choose with care which Cells should be materialized. Therefore, this is another criterion to bear in mind when deciding the usefulness of a given materialized view.

Finally, also notice that when carrying out a Drill-across to a non materialized Cell, a ROLAP tool may need to perform internal Roll-ups to obtain data to where Drill-across. Internal Roll-ups followed by an explicit Roll-up can cause the same conflict stated in subsection 6.1.

6.3 The Selection Granularity Problem

This problem is closely tied to Selection and raises when completeness is not guaranteed. Selection allows us to reduce current n-dimensional space by means of a logic clause over a certain Descriptor. For instance, selecting those cells of Daily Stock related to Barcelona in the Place Dimension. Now, if we Roll-up from Day to Week we cannot change Daily Stock to Weekly Stock Cell in the cube-query to take advantage of pre-aggregated data, since aggregation in Weekly Stock is complete and in our current Cell it is not (we only have those points related to Barcelona). In general, we cannot take advantage of any pre-aggregated data in a materialized Cell when translating to SQL if a Selection has been carried out over a lower Level Descriptor in any of its analysis Dimensions. Using appropriate granularity Cell and performing internal Roll-ups is mandatory. Only way to solve this problem is considering it in the multidimensional schema. For instance, using semantic relationships and creating an specialization of Daily Stock (i.e. Barcelona Daily Stock) and another on Weekly Stock (i.e. Barcelona Weekly Stock). Between those Cells, aggregation is complete and we can use the pre-aggregated data without problems.

6.4 Discussion

When analyzing in detail the automatic and implicit translation process a ROLAP tool performs between the multidimensional algebra and SQL, we realize
that there are some additional considerations to be made if we want this process to be free of summarizability problems. Specifically, according to [RG03], it is worth enough to avoid subqueries in order to ease the job of the RDBMS query optimizer, and therefore to conciliate in a single query the SQL translation of multiple multidimensional operators. However, it may embrace to conciliate multiple data summarization in a single query and therefore, we may face potential summarizability problems because of Roll-up and not materialized Cells.

Since all conflicts depend on summarizability anomalies, Roll-up is the only operator that can explicitly cause them. Nevertheless, due to not materialized Cells, other operators can raise them by means of implicit Roll-ups. Consequently, we have analyzed each possible combination of multidimensional operators to classify these problems. Notice, since each multidimensional operator translation to SQL is embedded in a single query all along with the rest of multidimensional operators performed in the sequence of operations carried out by the end-user, order between operators does not matter at all. That is, analyzing conflicts raised by each pair of multidimensional operators is enough to detect all of them.

We classify those potential summarizability problems according to the three necessary conditions to assure a correct aggregation of data presented in [LS97]; namely: the multiple aggregation problem (not preserving compatibility of data), the fan-shaped problem (not preserving disjointness) and the selection granularity problem (not preserving completeness). Along these problems, we presented how to solve, or at least, smooth them.

Summing up, to guarantee a better performance, these problems must drive the design of the multidimensional schema as well as they must be taken into account when deploying the SQL query in the translation process every ROLAP tool must perform.

7 Conclusions and Future Work

In this paper we have analyzed in detail the mismatch between the multidimensional and the relational model focusing on the implicit translation process a ROLAP tool performs between the multidimensional algebra and SQL (and eventually, to the relational algebra). To do so, we have presented two welldifferentiated studies.

First, by means of a conceptual comparative between the multidimensional and the relational algebra, we have remarked the necessity to work in terms of an standard multidimensional algebra. On one hand, we have presented why the relational algebra does not directly fit to multidimensionality. The multidimensional data manipulation should be performed by a restricted subset of the relational algebraic operators; that is, an specific simplification avoiding aggregation problems and defining a closed set of operations. Our main result of this comparative has been the identification of such subset of the relational algebra. On the other hand, we have presented a detailed comparison among the multidimensional algebras introduced in the literature. To the best of our
knowledge, it has been the first comparative about multidimensional algebras carried out. There, we have been able to identify some significant general trends: Selection, Roll-up and Drill-down operators are considered in all the algebras, whereas Projection, Drill-across and Union are included in most of them. Finally, changeBase is also considered in the majority of algebras, since most of them agree on the necessity of modifying the n-multidimensional space adding/removing Dimensions. Consequently, we strongly believe it could be feasible to agree on a reference multidimensional algebra subsumed by the relational algebra.

Later, we have presented a detailed analysis of the implicit translation a ROLAP tool performs from the multidimensional algebra to SQL. On one hand, we have identified those features a cube-query must enforce to also be semantically correct, analyzing the multidimensional algebra expressiveness with regard to SQL. Based on the criteria that an SQL query must enforce to make multidimensional sense, we have presented an automatic method to validate an SQL as a valid cube-query. Our approach is divided into two main phases: first one creates the multidimensional graph storing relevant multidimensional information about the query, that will facilitate the query validation along the second phase. Such graph represents tables involved in the query and its relationships, and our aim is to label each table as factual data or dimensional data. A correct labeling of all the tables gives rise to a multidimensional schema fitting the input query. Thus, if we are not able to generate any correct labeling, the input query would not make multidimensional sense. Moreover, this approach can be used for multidimensional modeling by examples if we are able to express the multidimensional requirements as SQL queries, as presented in [RA06]. As output, the process will propose, automatically, those multidimensional schemas fitting the input requirements; giving support in the multidimensional design process. On the other hand, we have presented how an atomic cube-query should be modified when applying an isolated operation over it. But many times, end users demand to navigate from Cube to Cube not just applying isolated operations but performing sequences of operations to be translated in a single cube-query. Certain operations may pop up conflicts due to data aggregation anomalies when combined with an specific source cube-query (a preliminary version of this job can also be found in [RA05]). With this aim, we have classified and analyzed those potential problems in three groups: those performing multiple aggregation functions in a query (not preserving compatibility of data), those due to hidden many-to-many relationships (not preserving disjointness) and finally, those related to the selection granularity (not preserving completeness). We have also presented how to solve or at least smooth these problems avoiding subqueries. These problems have also given rise to two new criteria to decide the usefulness of a given materialized view: according to semantics related to our Cells hierarchy and avoiding hidden many-to-many relationships.

As future work, we will focus on how to conciliate those labeling proposed by our automatic method aimed to validate multidimensional requirements expressed in SQL queries. Given a set of SQL queries, representing each one dif-
ferent multidimensional requirements, the process proposes a set of multidimensional schemas fitting that requirement. With this improvement, the process would also automatically conciliate all those schemas proposed in a set of noncontradictory schemas, conforming an alternative design methodology by examples. Furthermore, one of our future efforts will focus on implementing this method. Finally, next step would consist on generalize those features a cubequery must guarantee to make multidimensional sense, in a generic multidimensional pattern. That pattern would allow us to face an ambitious goal translating it to OWL (Web Ontology Language) or Description Logics and develop a design multidimensional methodology over ontologies representing our organization transactional schemas.

Acknowledgments. This work has been partly supported by the Spanish Ministerio de Educación y Ciencia under project TIN 2005-05406.

References

[Abe02] A. Abelló. YAM ${ }^{2}$: A Multidimensional Conceptual Model. PhD thesis, Universitat Politècnica de Catalunya, 2002.
[AGS97] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional Databases. In Proc. of the 13th Int. Conf. on Data Engineering (ICDE 1997), pages 232-243. IEEE, 1997.
[ASS03] A. Abelló, J. Samos, and F. Saltor. Implementing Operations to Navigate Semantic Star Schemas. In Proc. of 6th Int. Workshop on Data Warehousing and OLAP (DOLAP 2003), pages 56-62. ACM, 2003.
[ASS06] A. Abelló, J. Samos, and F. Saltor. YAM ${ }^{2}$ (Yet Another Multidimensional Model): An extension of UML. Information Systems, 31(6):541-567, 2006.
[Cod72] E. F. Codd. Relational completeness of data base sublanguages. Database Systems, pages 65-98, 1972.
[CT97] L. Cabibbo and R. Torlone. Querying Multidimensional Databases. In Proc. of the 6th International Workshop on Database Programming Languages (DBPL 1997), volume 1369 of $L C N S$, pages 319-335. Springer, 1997.
[CT98a] L. Cabibbo and R. Torlone. A Logical Approach to Multidimensional Databases. In Proc. of 6th Int. Conf. on Extending Database Technology (EDBT 1998), volume 1377 of $L N C S$, pages 183-197. Springer, 1998.
[CT98b] L. Cabibbo and R. Torlone. From a Procedural to a Visual Query Language for OLAP. In Proc. of the 10th Int. Conf. on Scientific and Statistical Database Management (SSDBM 1998), pages 74-83. IEEE, 1998.
[FBSV00] E. Franconi, F. Baader, U. Sattler, and P. Vassiliadis. Fundamentals of Data Warehousing, chapter Multidimensional Data Models and Aggregation. Springer, 2000. M. Jarke, M. Lenzerini, Y. Vassilious and P. Vassiliadis editors.
[FK04] E. Franconi and A. Kamble. The GMD Data Model and Algebra for Multidimensional Information. In Proc. of the 16th Int. Conf. on Advanced Information Systems Engineering (CAiSE 2004), volume 3084 of LNCS, pages 446-462. Springer, 2004.
[GMR98] M. Golfarelli, D. Maio, and S. Rizzi. The Dimensional Fact Model: A Conceptual Model for Data Warehouses. Int. Journals of Cooperative Information Systems (IJCIS), 7(2-3):215-247, 1998.
[HS97] M-S. Hacid and U. Sattler. An Object-Centered Multi-dimensional Data Model with Hierarchically Structured Dimensions. In Proc. of IEEE Knowledge and Data Engineering Exchange Workshop (KDEX 1997). IEEE, 1997.
[HS98] M-S. Hacid and U. Sattler. Modeling Multidimensional Database: A formal object-centered approach. In Proc. of the 6th European Conference on Information Systems (ECIS 1998), 1998.
[Klu82] A. Klug. Equivalence of relational algebra and relational calculus query languages having aggregate functions. Journal of the Association for Computing Machinery., 29(3):699-717, 1982.
[KRTR98] R. Kimball, L. Reeves, W. Thornthwaite, and M. Ross. The Data Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data Warehouses. John Wiley \& Sons, Inc., 1998.
[Lar99] K.S. Larsen. On grouping in relational algebra. Int. Journal of Foundations of Computer Science., 10(3):301-311, 1999.
[Leh98] W. Lehner. Modelling Large Scale OLAP Scenarios. In Proc. of 6th Int. Conf. on Extending Database Technology (EDBT 1998), volume 1377 of LNCS, pages 153-167. Springer, 1998.
[LS97] H.J. Lenz and A. Shoshani. Summarizability in OLAP and Statistical Data Bases. In Proc. of SSDBM'1997. IEEE, 1997.
[LW96] C. Li and X.S. Wang. A Data Model for Supporting On-Line Analytical Processing. In Proc. of 5th Int. Conf. on Information and Knowledge Management (CIKM 1996), pages 81-88. ACM, 1996.
[Mic] Microsoft. MDX Specification. http://msdn.microsoft.com/library/default.asp ?url=/library/en-us/olapdmad/agmdxbasics_04qg.asp. Last access: 3/24/2006.
[MK00] D.L. Moody and M.A. Kortink. From Enterprise Models to Dimensional Models: A Methodology for Data Warehouse and Data Mart Design. In Proc. of DMDW'2000. CEUR-WS.org, 2000.
[ML97] M. and L. Lakshmanan. A foundation for multi-dimensional databases. In Proc. of 23rd Int. Conf. on Very Large Data Bases (VLDB 1997), pages 106-115. Morgan Kaufmann, 1997.
[Ped00] T.B. Pedersen. Aspects of Data Modeling and Query Processing for Complex Multidimensional Data. PhD thesis, Faculty of Engineering and Science, 2000.
[PJ01] T.B. Pedersen and C.S. Jensen. Multidimensional Database Technology. IEEE Computer, 34(12):40-46, 2001.
[RA05] O. Romero and A. Abelló. Improving Automatic SQL Translation for ROLAP Tools. Proc. of 9th Jornadas en Ingeniería del Software y Bases de Datos (JISBD 2005), 284(5):123-130, 2005.
[RA06] O. Romero and A. Abelló. Multidimensional Design by Examples. In Proc. of 8th Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK 2006). Springer, 2006. To be published in September 2006.
[RG03] R. Ramakrishnan and Johannes Gehrke, editors. Database Management Systems. McGraw Hill, 2003.
[TBC99] N. Tryfona, F. Busborg, and J.G.B. Christiansen. starER: A Conceptual Model for Data Warehouse Design. In Proc. of 2nd Int. Workshop on Data Warehousing and OLAP (DOLAP 1999). ACM, 1999.
[TD97] H. Thomas and A. Datta. A Conceptual Model and Algebra for On-Line Analytical Processing in Data Warehouses. In Proc. of the 7th Workshop on Information Technologies and Systems (WITS 1997), pages 91-100, 1997.
[TD01] H. Thomas and A. Datta. A Conceptual Model and Algebra for On-Line Analytical Processing in Decision Support Databases. Information Systems, 12(1):83-102, 2001.
[TPGS01] J. Trujillo, M. Palomar, J. Gómez, and I.-Y. Song. Designing Data Warehouses with OO Conceptual Models. IEEE Computer, 34(12), IEEE, 2001.
[Vas98] P. Vassiliadis. Modeling Multidimensional Databases, Cubes and Cube operations. In Proc. of the 10th Statistical and Scientific Database Management (SSDBM 1998), pages 53-62. IEEE, 1998.
[Vas00] P. Vassiliadis. Data Warehouse Modeling and Quality Issues. PhD thesis, Dept. of Electrical and Computer Engineering (National Technical University of Athens), 2000.
[VS99] P. Vassiliadis and T.K. Sellis. A Survey of Logical Models for OLAP Databases. SIGMOD Record, 28(4):64-69, ACM, 1999.
[YP04] X. Yin and T.B. Pedersen. Evaluating XML-extended OLAP queries based on a physical algebra. In Proc. of 7th Int. Workshop on Data Warehousing and OLAP (DOLAP 2004). ACM, 2004.

