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Abstract

Splatting is a classical volume rendering technique that has recently gained in
popularity for the visualisation of point-based surface models. Up to n@#e th
has been few publications on its adaptation to time-varying data. In this report,
we propose a novel frame-to-frame coherent view-aligned shefsrigyfiatting
of time-varying data, that tries to reduce as much as possible the memory load
and the rendering computations taking into account the similarity in the data and
in the images at successive instants of time. The results presented in thte repo
are encouraging and show that the proposed technique may be usexplaoe
data through time.

1 Introduction

In recent years, rendering time-varying volume data haggoréo be a powerful tool
for the analysis of phenomena such as fluid dynamics, ultrasonotion and cardio-
vascular dynamics. Typically, there are two main approadbethe exploration of
time-varying data: either data are visualised as they anergéed [RLGB94], or they
are first generated and stored and, next, they are rendeagoost-process. In this re-
port, we focus on the second approach. On one hand, a majudeprof this approach
is that the large size of the datasets demands huge storageapd excessive amounts
of memory to manipulate the data. On the other hand, thersually a high degree
of similarity between data at successive instants of tintkemen between successive
frames of the rendering. This temporal coherency can beeroartly exploited to
reduce the amount of data storage and memory load and to speeddering compu-
tations.

Several techniques have been published that render stored/arying data: some
of them focusing on speeding up isosurfaces extractionrfdiréct Volume Render-
ing (IVR) [WB98] [SCM99] ,[SHO00] ,[BWCO00] and others focusing at Bat \Vol-
ume Rendering (DVR). Within this last category, there haventagempts to extend
to time-varying data to the four main rendering paradigrag:casting [YS93] [SJ94]
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[MSSS98][SCM99] [WSKO02] [LCL02] [RCS02] [MRS03], splatting [BPRS98] [NM02],
shear-warp [AAWO0O0] and 3D texture mapping [ECSO0][LMCO02]. Hwer, it is ray-
casting that has centred the most attention. Ray-castimgléed a powerful and flex-
ible volume rendering technique that provides high imagaliuand benefits from
different acceleration strategies. According to [MHB], splatting can give similar
image quality and it may be faster if the occupancy ratio efrodel, i.e. the num-
ber of relevant voxels in relation to the total number of uexes low. In the five last
years, the interest for splatting has been renewed bectlias proven to be suitable
for rendering point-based surfaces [RLOO]. Surface splaseth on EWA (Elliptical
Weighted Average) filtering provide high image quality [B%&02] and they can be
implemented using hardware accelerations [CRZP04] [BHZKRB]J(5]. Despite of
this interest, the extension of splatting to time-varyirsdadhas been little addressed
in the bibliography. The main contribution to splatting émaarying data is that of
Neophitous and Mueller [NM02] that treat it as a particulase of the general prob-
lem of viewing n-dimensional data. In this report, we follow a different eggch
specifically designed for time-varying data that explaigsrie-to-frame coherency.

The report is organised as follows. In section 2, we reviesvipus work on splat-
ting and on time-varying visualisation. In section 3 we préshe results of a pre-
liminary study that we have realized in order to estimateltéeefits that exploiting
frame-to-frame coherence could provide. Based on the csiocis of this study, in
section 4 we propose a frame-to-frame coherent splattgayigthm. Finally, in section
7, we present the results of our implementation, previodkeaonclusions.

2 Background

2.1 Splatting

The splatting algorithm was proposed by Lee Westover [Wed86onsiders the vol-
ume as an array of overlapping kernels that are projectedhietscreen plane in order
to compose the image. Splatting gains its speed by expjoitie similarity of the
kernel's projection. In orthographic views, all the kemkhave the same projection or
footprint Thus, the footprint can be computed once, in a pre-proses®d as a look-
up-table and used for the projection of all the voxels. Havein perspective views,
the footprints must be distorted according to the distari¢leeovoxels to the observer.
In the original approach of the algorithm, all the voxels aptatted directly in
the image. This is why the algorithm is known@smposite-every-samplélowever,
this method may cause colour bleeding and sparkling attifaecause the visibility
ordering of the splats is imperfect. To correct this errogstver [Wes90] proposed
the object-space sheet-buffer splattitttat splats the voxels slice-by-slice into sheet
planes of the voxel model most parallel to the image planecangposites each sheet
to the final image. This approach corrects colour bleedingtlitroduces noticeable
popping up artifacts when the camera moves around the volbewause the sheet



planes chosen change abruptly. Mueller and Crawfis [MC98]igealva solution to
this problem that also enhances the approximation of tlin tignsport inside voxels:
theimage-space sheet-buffer splattiig this approach, the sheet buffers are parallel
to the image plane. Therefore, voxels can contribute to rti@e one sheet. Different
footprints corresponding to different intersections o thoxels with the sheet slab
must be computed. When a voxel is splatted into a sheet plaa@roper footprint is
chosen according to a fast indexing scheme. Inrniege-space sheet-buffer splatting
[MSHC99], sheet buffers can be composed Front-to-Back (FTB)rder to apply
early splat elimination by subdividing the image into snidls and avoiding to splat
voxels that cover tiles that have already reached the maxiopacity. The detection
of opaque tiles is efficiently performed using a hardwarésgss opacity convolution
filter.

One of the major advantage of splatting is that only relevaréls must be splatted
and empty and non-selected voxels can be skipped. This idedimst suggested by
Yagel et al. [YESK95] for rendering Computational Fluid Dymas (CFD). They
suggested to constructfazzy secomposed by an array of planes of the model and,
for each plane, a list of voxels with their associated cowtid in the plane and their
value. Crawfis [Cra96] introduced the idea of thistSplaf a list of isosurface voxels
that can be splatted directly without depth sorting bec#usg are supposed to all be
a homogeneous colour. Mueller at al. [MSHC99] enhanced fimezfcy of the view-
aligned sheet-buffer splatting by organising the seleetectls in buckets, each one
corresponding to a sheet-buffer. The selection of the ol their insertion in the
buckets is fast, based on a binary search in a per-valueeatdist of voxels similarly
to the work of Ihnm at al. [IL95]. More recently, Orchard an@Nér [OMO1], proposed
to use a list of adjacency data structure, such that eactengaty voxel in a scan list
is linked to the next non empty voxel in the scan-line. Fiallilthau and Moller
[KMO1] proposed to use run-length encoding (RLE) of the voduim order to skip
empty voxels. They construct 24 RLE replications of the vaumhich allows them
to orderly traverse the volume according to any of the 48 std€he main drawback
to these two last approaches is their storage overhead.

Many efforts have been done in accelerating splatting ubsrglware. One of
the first proposed method [LH91] [WG91] consists of approXintathe splat by a
collection of polygons, thus taking profit of the hardwatgysorted polygon render-
ing pipeline. Crawfis and Max [CM93] replaced the polygons byDat@ture map.
These approaches were tested@mposite-every-sampteaversals and orthographic
projections in which only one footprint is necessary. Huahgl. [HMSCO00] argued
thatimage-space sheet-buffer splattiregjuires at least 128 footprint sections, which
supposes over than 8MB texture maps storage. For radiaflyrstric splats, they
propose to use a less-memory consuming one-dimensionalttedi holds the values
of the splat along a radial line from the splat centre. Moegpthey explore directly
copying into the image the block of pixels of a 2D footpriningsBitBLT, but conclude
that the image quality of this strategy is low. More recenflye and Crawfis [XC04]
proposed two splatting strategies that work on the GPU. Thedirategy consists of



using a vertex shader program to generate and render catadals centred around
the voxels centre. This strategy works on previous germrdardware. In addition, it
requires sorting the voxels along the viewing direction iuhds high memory require-
ments. The second strategy, point-convolution rendefirgj, projects all the voxels
as point primitives into an off-screen P-Buffer with additiolending. Next, the GL
convolution flag is activated and a texture is copied from RRBuffer usingglTex-
Sublmage2Buch that each texel is a convolution between the P-Buffex pimd the
kernel filter. This strategy is very efficient in terms of camgtional cost but it only
renders x-ray style images for orthographic views. Vergntly, Vega-Figueroa et al.
[VHFGO5] propose to usPoint Spritego render neurovascular data. This reduces to
one point per voxel the geometric processing tasks insté#tedour-points needed
for the quadrilaterals. This idea is also exploited in theJd¥ased implementation of
theimage-space sheet-buffer splattipgpposed by Neophitou and Mueller [NMO5].
In addition, this paper proposes to use an OpenGL PBuffecbtiestore the buffers.
It first splats onto an auxiliary buffer the density value btlae voxels of a slice using
textured point sprites. Then, it classifies and shades alpikels of the buffer using
a fragment shader that computes the gradient vectors atdbls pn the basis of their
density central difference. Finally, it composes the huiiféo the final image. The
authors use the early z-rejection test to eliminate empéags pixels and those that
are already opaque before the fragment processing. A casoparetween different
hardware and software-based optimisations of splattingpegfound in [VGTO06]

2.2 Time-varyingdirect volumerendering

We here address direct volume rendering. A survey on the fusenporal coherence
to speed up for direct and indirect volume rendering can baddn [ACFt05]. Pre-
vious work on direct time-varying volume rendering typlgdall into categories: one
that treats separately the time dimension from the spatiatigsions [YS93] [SJ94]
[SCM99] [AAWOO0] [Wes95] [LMCO02], and the other (4D renderindyet treats time-
varying data as a special case of an n-D model [BPRS98], [ECSMYR] [WWSO03].
Our approach belongs to the first group.

Papers of the first group exploit temporal coherence in iffeways. Most of
them focus on the ray-casting strategy. Specifically, verpapers address ray-casting
a static model from a continuously moving camera. They ekitile reprojection tech-
niquethat computes an image using the previous one, by repnogettie first visible
voxel of each ray according to the new visualisation mat@RpP0]. This technique
has been extended to polygonal mesh scenes [AH95]. In betscéd presents two
main drawbacks: first, the presence of holes at pixels oniohwio voxels reproject
and second, the overlapping of several reprojected pomntts ane pixel. In order to
apply reprojections, Yagel and Shi [YS93] propose to stora C-Bufferthe coordi-
nates of the first non-transparent voxel encountered byaphemitted at each pixel.
If the light conditions or the transfer function changes urceessive frames, the ray
sampling can start at this location and skip the previoustgmwgxels. Moreover, the
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C-Buffercan be re-used for reprojection if the camera rotates. Trasegy works for
perspective projections as well as parallel ones, by opptsithat of Gudmundson
et al. [GR90], restricted to parallel projections, specilicg-axis rotations. Wan et
al. [WSKO02] enhance the reprojection by using cells instefggomts and using the
Distance To Boundar{DTB), i.e. the distance of every voxel to the nearest boundar
voxel [WTK™99]. This strategy increases the memory requirements beditces un-
desirable holes in the reprojected image. Recently, Kleal.afKSSEO05] use these
ideas in a GPU-based implementation of ray-casting [KWOSKEO5]. They imple-
ment theC-Bufferas a render target to store thi¢ position and, whenever the camera
moves, they reproject the hitpoints stored in this rendgetausing OpenGL viewing
matrices. The holes in the reprojected image are avoideding enlarged points. The
authors also propose a selective super-sampling object spdialiasing technique.

Yoon et al. [YDKN97] uses ray-casting for isosurface remgr They use a data
structure calledmage cachecontaining a ray-casted image of the volume enriched
with 3D information on the visible points. At the next camg@@sition, they project
each ray on the image cache and analyse the contents of #le pixthe ray raster-
ization on the image cache to quickly discard non-intersgatays and reproject hit
positions. For changes in the isovalue of the surface, ttag $or each ray a piece-
wise linear approximation of the volume changes along tgeaalledisomap that
helps them to quickly find the desired isovalue position gltre ray.

Shen and Johnson’s ray-casting address time-varying \esdunstead of camera
changes [SJ94]. They encode differences between conseaatiumes and recast
only modified rays. Liao et al. [LCLO2] improve this technighbg computing an
additional differential file that stores the changed pix®sitions. The TSHemporal
Space TredSCM99] is a spatial octree that stores at each node a binaeythat
represents the evolution of the subtree through time. THhe ff& can store partial
sub-images to accelerate ray-casting rendering, and ialsasbeen used to speed
up texture-based rendering [ECSO00]. Finally, in a recenepdp GFP06], we have
proposed a frame-frame coherent strategy based on a déuldtise: in image-space,
a temporal buffer that stores for each pixel the next insd&time in which the pixel
must be recomputed, and in object-space a Temporal Runthdfgtoding of the
voxel values through time. The algorithm skips empty anchanged pixels through
three different space-leaping strategies. It can compgtertages sequentially in time
or generate them simultaneously in batch. In addition, it lsandle simultaneously
several data modalities. Finally, an on-purpose out-oé&irategy is used to handle
large datasets.

The temporal extension of the shear-warp technique [LL8dppsed by Anagnos-
tou et al. [AAWO0O] uses an incremental Run-Length Encoding (RafEhe volume.
Whenever a change is detected over time, the RLE is updatedpenty inserting the
modified runs in the volume scan-line. In addition, the vaduisiprocessed by slabs,
recomputing only the modified slabs and compositing therh thié unchanged slabs.
Finally, Lum et al's approach [LMCO02] is based on hardwarésésd texture mapping.
The time-varying volume over a given span of time is commésssing the Discrete



Cosine Transform (DCT). Every sample within the span is end@dea single index.
The volume is represented as a set of 2D paletted texturestektures are decoded
using a time-varying palette. In order to keep a constamiéraate, the texture slices
re-encoding at the end of each time-span is interleaved.

Finally, Ma et al. [MSSS98] propose a technique suitabledgrcasting as well
as for splatting. They merge Branch-On-Need Octrees (BONO) ¥ @omputed
for every instant of time into one structure, the Temporal EDN-BONO). This data
structure is used together with an auxiliary octree, thatest at each node the partial
image corresponding to the subtree. At successive franmdg,noodified subtrees
are visited, and their sub-image is recomputed and conggbsit the parent level in
the hierarchy. The splatting algorithm proposed by Neaphénd Mueller [NMO02]
belongs to the 4-D rendering approach. They use a 4D Boby @eh@ubic (BCC)
grid [TMGO01] instead of the traditional 4D cartesian Grid (Qi&cause it provides
compression to about 50% of the original size of the modelsinAnstant, a hyperslice
of the 4D model is first computed by interpolation and nextdered with a view-
aligned sheet-buffer splatting. The hyperslice is encademlan RLE list which is
traversed each time the transfer function or the viewingupeters change in order to
toss the voxels into the array of buckets.

3 Preliminary Analysis

We have started our work by investigating the maximum spgdtiat can be expected
if coherence is used to avoid recomputing some of the steppe @inage-aligned sheet-
buffered splatting pipeline.

3.1 Image-aligned sheet-buffered splatting pipeline

Figure 1 shows the pipeline of the basic image-aligned dhafétred splatting. As
mentioned in Section 2, the voxel model can be defined as & sehedisjoint regions,
being one of them the empty space. Often, users don’'t warnédaah the volume,
but only a subset of its regions. We caklection the specification of this subset.
There are different ways of defining a selection. In the aagalgorithm [MC98], the
authors actually define only two regions: the empty one aads#tected one defined
as one range of property values. Other ways of doing it cobobissing auxiliary data
structures such as run-length encoding [FPTO05] and sked¢®SCO03]. In this report,
we have used a set of property ranges. Thus, the input pagesyadtthe pipeline are
the voxel model, the selection, and, for shading, the tearfshction and eventually a
set of lights.

The pipeline is clearly divided in two parts: first, the buc&enstructions and fill-
ing (BC) and second, the sheets projection and compositips §8C). As mentioned
in Section 2, the first part is done on the CPU whereas, dift€s€U-based strategies
have been proposed for the second part. Changing camertj@ela data values im-
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Figure 1: Image-aligned sheet-buffered splatting pigelin

plies recomputing all the pipeline. Changing the transfacfion implies recomputing
only the second part.

3.2 Analysisof the use of coherencefor BC

The brute force implementation of the pipeline depicted écti®n 3.1 is to recom-
pute all the BC step at each frame, independently of changescall/this Bucket-
Construction Brute-ForcéBC-BF) (see Figure 1). Table 1 contains the names of the
different algorithms and their acronyms. However, if theneaa and the selection do
not change, we can avoid recomputing this part of the pipelifihis is theBucket-
Construction with Bucket Coheren(®C-BCh) strategy (it uses the same pipeline, see
Figure 1). A third approach is to insert all the voxels in thekets. In this case, the
rendering stage processes all the voxels and does not takegirthe natural capa-
bility of splatting to perform space-leaping (see Sectiah).2 However, the buckets
need only to be recomputed if the camera changes, becausamgecim the selection
causes that non-selected property values are assignedeio ®@pacity in the trans-
fer function. In this way, we translate the selection stdp the second part of the
pipeline, that can be done in the GPU. We call this strat&ggket-Construction with
Bucket Coherence and No Space LeadiBG-BCh-NSL) because it uses the coher-
ence of the bucket,i.e. being constant if the camera doeshaotge, and because it
does not perform space-leaping (see Figure 2). Finallyugtticption is to construct
an auxiliary array containing the selected voxels. If tHeden does not change, the
array remains the same. Thus, if the camera moves, it is tag #rat is traversed
instead of the full voxel model to insert the voxels in the kmts. Thus, this strat-
egy exploits array coherence and, as the two first methodsedeaping. We call it
Bucket-Construction with Array Coheren(@C-ACh) (see Figure 3).
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Figure 2: BC-BCh-NSL pipeline.
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Figure 3: BC-ACh pipeline.

3.3 Analysisof the use of coherence for SC

The second part of the pipeline, sheets projection and imaggosition, needs nec-
essarily to be re-done if the buckets change. However, yfdoa't change, i.e., if they
are composed of the same voxels, the corresponding shegtsenthfferent from the
previous instant only if the voxels projected in them chatigar value. Obviously,
exploiting this sheet-to-sheet coherence requires t@sttire sheets from instant to
instant. However, generally, all buckets change at leaatfew voxel values. Thus,
previous sheets would hardly be re-usable. Neverthelegge parts of the sheets re-
main the same, as for instance, those corresponding to esppte or static parts of
the data. As mentioned in Section 2.1, static image-alighetbt-buffered splatting
exploits early splat termination by subdividing the imagmitiles and splatting only
voxels that project onto tiles that have not reach the mamirapacity. This idea could
be extended further by applying the same tile subdivisiothtosheets. Therefore,
voxels of a bucket that project onto an unchanged tile coaldkipped.
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| Abbreviation | Strategy |

BC-BF Bucket-Construction Brute-Force
BC-BCh Bucket-Construction with Bucket Coherence
BC-BCh-NSL Bucket Coherence and No Space Leaping
BC-ACh Bucket-Construction with Array Coherence
FCh-Alg-Tile | Frame-to-Frame Coherence Splatting Algorithm
BF-Alg Brute-Force Splatting Algorithm

Table 1: Name and acronym of the different strategies.

In order to assess the expected benefit of skipping voxejJeqieml on unchanged
tiles, we have evaluated the number of tiles that remain amgéd in two animation
sequences and the expected reduction in the cost of thigfsptatting. Again, this
is the maximum cost reduction that could be obtained in a érémrframe coherent
approach of this part of the pipeline, without taking inta@aent the inherent overhead
that detecting and processing these buckets and keepiats$han frame-to-frame.

3.4 Reaults

We have performed a set of simulations to evaluate the pa#oce of the proposed
techniques. All the simulations results shown in the tablesexpressed in seconds.
They have been measured on a PC Dual Core 3.2 GHz with 3GB of RANN&idia
7800 GTX.

We have realized the analysis of BC using static dataseisgtaito account only
changes in the camera, the transfer function and the selaaited voxels. When data
values also vary, the coherence decreases. Thereforeativecase indicates the max-
imum expectable speed up. For SC, we have used time-varybiageda. The static
datasets areefiging aneurysmmushroomandskull), and the time-varying ones are
(funmushroonandfive jet3. The datasets come from the repository http://www.gnis.u
tuebingen.de/areas/scivis/volren/datasets and mitpwics.ucdavis.edu/ ma/ITR/tvdr.html.
We have constructed the dataketmushrooniy varying the property values of the in-
ternal voxels of thenushroondataset. Tables 2 and 3 summarise the characteristics of
the datasets. Figures 4 and 5 show a rendered image of tled#ttsets and a few
frames of the time-varying ones.

| Dataset | Dimensions | Size [ Type | Oc.ratio |
Aneurism | 256*256*256 | 16777216| char | 0.37%
Skull 256*256*256 | 16777216| char | 5.70%

Engine | 256*256*128| 8388608 | char | 20.17%
Mushroom| 80*87*59 410640 | char | 19.22%

Table 2: Characteristics of the static datasets, from lefigiot: name, size, property
value type and occupancy ratio of selected voxels.



\ Dataset | Dimensions | Size | Frames| Type | Oc.ratio |

Five Jets 128*128*128 | 2097152 40 char | 11.64%
FunMushroom| 80*87*59 410640 26 char | 14.05%

Table 3: Characteristics of the temporal datasets, frontdefght: name, size, number
of frames, property value type and occupancy ratio of setbebxels.

Figure 4: Rendered image of the datasets. Left column frortotbpttom: mushroom,
engine, aneurysm and skull.

3.4.1 Resultsfor BC

Tables 4, 5 and 6 show the costs in seconds of rendering tfezedif datasets with
the four BC methods. The step of projection of the bucketsasstiime for all four
methods except that BC-BCh-NSL projects all the voxels instédfuecselected ones.
We have separate the costs of each step. Tables 7, 8, 9 anavt@sleach dataset the
average cost per frame of the four methods for a 100 framesadioin with changes
in the camera and the selection.

From these tables we can conclude that taking profit of buotdeérence and ar-
ray coherence, i.e recomputing the voxel arrays only fongka in the selection and
recomputing the buckets only for changes in the camera dedt®a reduces the ren-
dering cost. Specifically, exploiting the two types of carere together reduces the
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Figure 5: 4 frames of fivejets.

| Engine | Aneurysm| Mushroom| Skull |

BC 2.45 3.6 0.13 411
SC 8.62 3.24 0.80 7.65
SC(GL)| 0.81 0.11 0.06 0.58

Table 4: Costs in seconds of the differents steps of the setir BC-BF and BC-
BCh strategies for the static datasets.

cost up to 24% using GPU for the projection step and up to 76%hi CPU-based
projection. Using array coherence supposes a 48% (GPU) @¥d(CPU) of that
benefit.

Finally, putting all the voxels in the buckets in order to iaMte selection changes
is clearly a bad solution, because the occupancy ratio afidftesets is generally low.
Even if the projection step is done on the GPU by opposite ¢osttlection changes
step, which is CPU-based, the overall cost in the best casd 8% (GPU) and 18%
(CPU) higher than the basic method.

3.4.2 Resultsfor SC

Tables 11 and 12 show the number of sheet tiles that remastamarin the animation
sequence of theinmushroonandfive jetsdatasets.

These results show that the use of tiles can reduce sheeicpon up to 96%
on funmushroomand 74% orfivejets As expected, the smaller the tiles, the higher
the coherency, but the more computationally expensiveilég management. For

| | Engine [ Aneurysm| Mushroom|[ Skull |

BC 4.22 9.38 0.20 9.15
SC 12.98 9.10 0.91 12.87
SC(GL)| 3.42 6.19 0.16 6.01

Table 5: Costs in seconds of the differents steps of the spafibor BC-BCh-NSL

strategy for the static datasets.
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| Engine | Aneurysm| Mushroom| Skull |

Array Creation| 2.25 4.8 0.07 4.46
BC 0.62 0.05 0.03 0.46
SC 8.62 3.24 0.80 7.65
SC (GL) 0.81 0.11 0.06 0.58

Table 6: Costs in seconds of the differents steps of the sgdtir BC-ACh strategy
for the static datasets.

| Camera changef Selection changes BC-BF | BC-BCh | BC-BCh-NSL| BC-ACh |
0 0 11.07|3.26 | 08.64|0.83 | 13.02|3.46 | 08.65|0.84

25 0 11.07|3.26 | 09.23|1.42| 14.04|4.48 | 08.80| 0.99

50 0 11.07|3.26 | 09.85/2.04| 15.09|5.53 | 08.95|1.14

100 0 11.07|3.26 | 11.07|3.26 | 17.20|7.64 | 09.26| 1.45

0 25 11.07|3.26 | 09.23|1.42| 13.02|3.46 | 09.34|1.53

0 50 11.07| 3.26 | 09.85|2.04 | 13.02|3.46 | 10.06| 2.25

0 100 11.07|3.26 | 11.07| 3.26 | 13.02| 3.46 | 11.50] 3.69

50 50 11.07| 3.26 | 10.46|2.65| 15.09|5.53 | 10.21|2.40

100 100 11.07|3.26 | 11.07|3.26 | 17.20|7.64 | 11.50| 3.69

Table 7: Cost per frame in a 100 frames animation for the erdateset. Each strategy
has the cost in seconds using SC CPU-based and SC GL.

example, in thdunmushroonwe have the same reduction using tiles of 64x64 than
32x32, but we increase the cost of management of all tileetimes.

4 A frame-to-frame coherent splatting

In the previous section, we saw that there exists coheresgtegelen consecutive frames
in all the steps of the pipeline and that the prediction of ttherence can be useful to
reduce the cost of the process. The first part of the pipeB®) fas these inputs pa-
rameters: camera, selection and the dataset. Coherencéatet®tween consecutive
frames in this part consists of checking changes in the smpatameters. To predict
any change on camera or selection is not difficult and theemprences are explained
in Section 3.2. Any change of a voxel value of the datasetiegphat this voxel could
modify its selected status. This fact implies that one verétle change invalidates the
current buckets and a new Bucket Insertion is required. Tin@deal datasets usually
change some voxel value every frame. The results of thequs\section denote that
doing a Bucket Insertion at every frame is very computatigretpensive. Two pos-
sible strategies can be adopted. First, the Bucket Inseciarbe done incrementally
by adding at each frame the new selected voxels and remornong them those that
are not selected at that frame. An alternative, is to ingettié buckets all the voxels
whose value is selected at some of the frames. In that seesad the opacity of vox-
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| Camera changep Selection changes BC-BF | BC-BCh |

BC-BCh-NSL| BC-ACh |

0 0 6.84[3.71] 3.28/0.15| 09.19/06.28 | 3.28]0.15
25 0 6.84/3.71| 4.14[1.01 | 11.45/08.54 | 3.30[0.17
50 0 6.84/3.71| 5.04/1.91| 13.79/10.88 | 3.31|0.18
100 0 6.84/3.71| 6.84/3.71 | 18.48/15.57 | 3.33]0.20
0 25 6.84/3.71 | 4.14[1.01 | 09.19/06.28 | 4.36] 1.23
0 50 6.84/3.71| 5.04/1.91| 09.19/06.28 | 5.47|2.34
0 100 6.84/3.71 | 6.84/3.71| 09.19/06.28 | 7.70| 4.57
50 50 6.84/3.71| 5.94/2.81 | 13.79/10.88 | 5.48]2.35
100 100 6.84/3.71| 6.84|3.71| 18.48/15.57 | 7.70| 4.57

Table 8: Cost per frame in a 100 frames animation for the aseunjataset. Each
strategy has the cost in seconds using SC CPU-based and SC GL.

| Camera changep Selection changes BC-BF | BC-BCh | BC-BCh-NSL | BC-ACh |

0 0 0.93/0.19 0.80[0.06 | 0.91]0.16 | 0.80] 0.06
25 0 0.93/0.19| 0.83[0.09| 0.96/0.21 | 0.81]0.07
50 0 0.93/0.19| 0.87|0.13| 1.01]0.26 | 0.82]0.08
100 0 0.93/0.19| 0.93(0.19| 1.11]0.36 | 0.83]0.09
0 25 0.93/0.19| 0.83/0.09| 0.91/0.16 | 0.83]0.08
0 50 0.93/0.19| 0.87[0.13| 0.91/0.16 | 0.85/0.11
0 100 0.93/0.19| 0.93(0.19| 0.91/0.16 | 0.90|0.16
50 50 0.93/0.19 | 0.90/0.16 | 1.01|0.26 | 0.86]0.12
100 100 0.93/0.19| 0.93(0.19| 1.11/0.36 | 0.90|0.16

Table 9: Cost per frame in a 100 frames animation for the mushrdataset. Each
strategy has the cost in seconds using SC CPU-based and SC GL.

els of the bucket that are not selected at the current framddkalways be set to zero.
In this report, we have implemented the second strategy.

Exploiting the frame-to-frame coherence in the second (&) implies to detect
unchanged sheet tiles and to avoid their projection. A @l@ains constant while of
all its selected voxel values remain constant. Thereftwenext instant of change of
a tile corresponds to the first instant in which there is a gban the selected status of
one of its voxels or a change of value of one selected voxarder to implement this
idea, we encode the time-varying volume as a Temporal RuigtherThis encoding
allows us to quickly compute at any time the next instant aingje of any voxel. Using
this new structure in the Sheet Projection we can computerhany frames this tile
will remain constant if there is no change in the previous Bfpstor in the SC inputs
parameters (transfer function or lighting in surface shgyi
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| Camera changep Selection changes BC-BF BC-BCh [ BC-BCh-NSL| BC-ACh |
0 0 11.76| 4.69 | 07.69| 0.62 | 12.96| 06.10 | 07.70| 0.63
25 0 11.76/4.69 | 08.68|1.61 | 15.16|08.30 | 07.81| 0.74
50 0 11.76]/4.69 | 09.71| 2.64 | 17.45|10.59 | 07.92| 0.85
100 0 11.76|4.69 | 11.76| 4.69 | 22.02| 15.16 | 08.15| 1.08
0 25 11.76|4.69 | 08.68| 1.61| 12.96|06.10 | 08.88| 1.81
0 50 11.76|4.69 | 09.71| 2.64 | 12.96| 06.10 | 10.11| 3.04
0 100 11.76|4.69 | 11.76/4.69 | 12.96| 06.10 | 12.57| 5.50
50 50 11.76]/4.69 | 10.73| 3.66 | 17.45|10.59 | 10.23| 3.16
100 100 11.76[4.69 | 11.76/4.69 | 22.02[15.16 | 12.57|5.50

Table 10: Cost per frame in a 100 frames animation for the slatliset. Each strategy
has the cost in seconds using SC CPU-based and SC GL.

| | Tiles 256x256| Tiles 128x128| Tiles 64x64 | Tiles 32x32|

number tiles 9256 37024 148096 592384
recomputed tileg 2555 4296 10156 32609
ratio 0.18 0.08 0.04 0.04

Table 11: Analysis of SC faiunmushroomThis example has 89 buckets.

5 Datastructures

5.1 Buckets

In static algorithms, the buckets only store their voxele stfbdivide each bucket into
tiles, and each tile stores those voxels that project on &.a§0 store the sheet tiles
and the number of frames that they remain constant.

5.2 Temporal Run-Length

The Temporal Run-LengtfiTRL) representation stores for every voxel sequence
of codes composed of the voxel value and the next frame atwthis value changes:

codesgv;) = < valug,tnexi >,k = 1...ncodesv;).

The query for the value of a voxel at a given frame requires, with this structure,

| | Tiles 256x256| Tiles 128x128| Tiles 64x64 | Tiles 32x32 |

number tiles 21120 84480 337920 1351680
recomputed tileg 17744 31957 95990 351437
ratio 0.84 0.38 0.28 0.26

Table 12: Analysis of SC fdiivejets This example has 132 buckets.
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a search ircodesyv;) of the code whose time span contains framin order to avoid
this search and access directly to the searched code, we #ddel structure a pointer
that is set to the first code at the beginning of the sequentehat is updated to the
current code during the traversal. Therefore, assumirtgatisample byte is sufficient
to store the number of frames of the codes and that the pdmtée current code is
also a byte, the occupancy in bytes of the TRL structure for datity m occupying
nby, bytes per voxel of a voxel model composedwef, voxels is:

Occuf{TRLy) = ¥ M(1+ncode$vi) x (Nbm+ 1))

This occupancy can be compared to the occupancy of the regidal model along
time:

OccupVVoxelMode}) = nviy * N fyy x Ny,

beingnfy, the number of frames of modality.
We call rocc the ratio between the occupancy of the TRL and the regularlvoxe
model:

[ — OccudTRL)
0CC ™ OccugVoxelMode] *

This ratio has a direct relationship with the temporal cehey of the voxel model,
since it depends on the number of voxels that change. Asliv®as, the TRL cannot
be constructed on static models, composed of one frameugedawould triplicate
their occupancy. In the worst case, for an animated modehallvoxels change at
every frame and, thus, the ratio of occupancy is:

oo L

more than 2 when the bytes per property of modatitis nb,, = 1. However, this
is less than the worst case of the incremental model propad&d94] which can be
four times more the original one.

Nevertheless, if the temporal coherency is high, this redin be very small . In
these cases, the TRL is a compressed representation of theredmevolution of the
model.

The TRL is computed in a pre-process that first loads the vorelaicorrespond-
ing to the first frame and initialises the list of codes formweoxel. Next, the voxel
models at the following frames are loaded one-by-one aneisad. For every voxel,
the value of the current code in the TRL is compared to the valuke loaded voxel
model. If the two values are equal, the frame of the currededs updated, otherwise
a new code is constructed. Variations of the property vatiesnpty voxels are not
considered for the creation of new codes. Therefore, if @Moas a variable value, but
empty through all the sequence, it has a unique code. Thiprpessing has a cost
complexityCospp = O(Nvip* N fry).
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6 Algorithm

As mentioned in Section 4, the proposed frame-to-framereshstrategy tries to skip
all the steps that remains unchanged from previous instéiné Bucket Creation is
done only if the camera changes. The Array Construction ism@cited in case that
selection is modified. The execution of any of the two presisteps implies a new
Bucket Insertion. Before the SC part, the transfer functiomadified in order to

assign to zero the opacity of the values non selected at thhenturame. Finally,

this strategy traverses each tile of a bucket and projeaslyt when it needs to be
recomputed or a change in a previous step has happened.itAigdr shows all the

process.

Algorithm 1 Frame-to-frame Coherent Algorithm
for all framef do
bucketinsertion = false
if CameraChange{hen
CreateBuckets()
bucketinsertion = true
end if
if SelectionChange(hen
CreateArray()
bucketinsertion = true
end if
if bucketinsertionthen
InsertVoxelsBuckets()
tile_projection = true
else
tile_projection = false
end if
ModifyTransferFunction()
for all bucketb do
Sheetlnit(b)
for all tile t of bdo
if TileChange(t) or tileprojectionthen
ProjectTileSheet(t)
end if
ComposeTileSheet(t,b)
end for
end for
end for
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7 Results

We have performed a set of simulations to evaluate the padoce of the proposed
techniques. The simulations are done with the same hardagie Section 3.4 and
using the same temporal datasets described theegetsandfunmushroom

We call the coherent algorithCh-Alg-Tile whereTile is the size of the tiles used,
i.e. BCh-Alg-128x1281In order to evaluate the benefits of the proposed strategy, w
have compared it with a brute-force strategy that we haved8F-Alg. This brute
force approach does not use the voxel array, it performs tleké8unsertion of the
current selected voxels at each frame, and it does not us¢tdkes.

Algorithm 2 BC-BCh Algorithm
for all framef do
if CameraChangethen
CreateBuckets()
end if
InsertSelectedVoxelsBuckets()
for all bucketb do
Sheetlnit(b)
ProjectSheet(t)
ComposeSheet(t,b)
end for
end for

Tables 13 and 14 show the costs in seconds of rendering tieeedtit steps of the
pipeline for each algorithm. We have measured the case hdstarst case costs for
CPU-based and GPU-based SC step. The best case impliesdtwistimo change in
selection and camera, and consequently the tiles that nesoastant are not projected.
The worst case is when all the tiles require to be projected.

| | Array Construcion| Bucket Insertion| SC | SCGL |
BF-Alg 0 0.08 0.89 0.05
FCh-Alg-256x256 1.85 0.14 0.83]1.08 | 0.05|0.11
FCh-Alg-128x128 1.85 0.47 0.79]1.11| 0.06|0.20
FCh-Alg-64x64 1.85 1.82 0.71|1.14| 0.08| 0.60

Table 13: Cost per frame in seconds for thbemushroondataset animation. Steps of
SC for the proposed strategy has the value of the using trerenbe of the model for
the unchanged tiles and the recomputing all the tiles evamé.

The results fofunmushroondataset show that in the best case the cost of SC is
reduced in 20%, but in the worst case the overhead cost of geament increases the
cost of SC in 28%. However, in the simulations, we have noliegearly termination.
Therefore, all sheets are processed and divided into filags can be simplified and
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many of this tiles can become useless if early terminatiaapdied. With the GPU-
based SC strategy, the results are not satisfactory in agylEcause the management
of the coherence is done in the CPU. Therefore, the goal isrforpe the proposed
strategy entirely in the GPU.

[ | Array Construcion| BucketInsertionf SC [ SCGL |
BF-Alg 0 0.39 1.29 0.12
FCh-Alg-256x256 4.94 3.35 1.89|2.08 | 0.75| 0.94
FCh-Alg-128x128 4.94 11.47 1.73|2.00 | 0.79] 1.03
FCh-Alg-64x64 4.94 43.50 1.60| 1.94 | 0.95]1.05

Table 14: Cost per frame in seconds for thesjetsdataset animation. Steps of SC
for the proposed strategy has the value of the using the enberof the model for the
unchanged tiles and the recomputing all the tiles everydram

The results fofivejetsdataset show the significance of the coherence of the dataset
The funmushroontdataset has a high coherence, because the selected voxela ha
selected value during a large part of instants. Tihejetsdataset are less coherent.
Therefore, a large number of voxels are on the buckets bubmaoh contribute to
the projection because they have opacity zero. The propalgedithm cannot skip
these voxels because they are taken into account for congyptlne tile duration. This
problem can be avoided by performing an incremental Buclsartion step. This is
the next step of our research.

8 Conclusions

In this report, we have analysed the possibility of exphgjtirame-to-frame coherence
in image-aligned sheet-buffered splatting. First, we hzerormed a set of empirical
tests to determine the weight of each step of the algorithithénoverall cost and
how this cost is affected by the variation of input paransetérthe rendering pipeline
(camera, transfer function and selection) and by the vanaif data values through
time. This analysis has shown that exploiting temporal cetee could lead to high
reductions of the computational cost and therefore it isthvtr investigate means of
taking profit of this coherence.

In the second part of report, we have proposed a first verdiarframe-to-frame
coherent splatting algorithm. The results are encouraguigthe method presented
has a high overhead cost and it needs to be improved. Congbguenwill continue
our research in three directions. First, we will investigabw to compute the buckets
incrementally instead of inserting in them at the beginnifighe sequence all the
voxels that can be useful at some instant. Next, we will perfoore tests using early
splat termination and trying to avoid the management oftadltiles. Furthermore,
we will investigate how to group consecutive buckets that slsared tiles in order to
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reduce the high number of tiles stored and computed. Firallge the method will be

tuned in software, we plan to design a strategy to perforrthalprocess in the GPU.
A step further in our research is to extend this strategy rgelaolumes of time-

varying data by designing out-of-core approaches to retheenemory management

overhead.
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