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Abstract

Splatting is a classical volume rendering technique that has recently gained in
popularity for the visualisation of point-based surface models. Up to now, there
has been few publications on its adaptation to time-varying data. In this report,
we propose a novel frame-to-frame coherent view-aligned sheet-buffer splatting
of time-varying data, that tries to reduce as much as possible the memory load
and the rendering computations taking into account the similarity in the data and
in the images at successive instants of time. The results presented in the report
are encouraging and show that the proposed technique may be useful toexplore
data through time.

1 Introduction

In recent years, rendering time-varying volume data has proven to be a powerful tool
for the analysis of phenomena such as fluid dynamics, ultrasound motion and cardio-
vascular dynamics. Typically, there are two main approaches for the exploration of
time-varying data: either data are visualised as they are generated [RLGB94], or they
are first generated and stored and, next, they are rendered ina post-process. In this re-
port, we focus on the second approach. On one hand, a major problem of this approach
is that the large size of the datasets demands huge storage space and excessive amounts
of memory to manipulate the data. On the other hand, there is usually a high degree
of similarity between data at successive instants of time and even between successive
frames of the rendering. This temporal coherency can be conveniently exploited to
reduce the amount of data storage and memory load and to speedup rendering compu-
tations.

Several techniques have been published that render stored time-varying data: some
of them focusing on speeding up isosurfaces extraction for Indirect Volume Render-
ing (IVR) [WB98] [SCM99] ,[SH00] ,[BWC00] and others focusing at Direct Vol-
ume Rendering (DVR). Within this last category, there have been attempts to extend
to time-varying data to the four main rendering paradigms: ray-casting [YS93] [SJ94]
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[MSSS98] [SCM99] [WSK02] [LCL02] [RCS02] [MRS+03], splatting [BPRS98] [NM02],
shear-warp [AAW00] and 3D texture mapping [ECS00][LMC02]. However, it is ray-
casting that has centred the most attention. Ray-casting is indeed a powerful and flex-
ible volume rendering technique that provides high image quality and benefits from
different acceleration strategies. According to [MHB+00], splatting can give similar
image quality and it may be faster if the occupancy ratio of the model, i.e. the num-
ber of relevant voxels in relation to the total number of voxels, is low. In the five last
years, the interest for splatting has been renewed because it has proven to be suitable
for rendering point-based surfaces [RL00]. Surface splats based on EWA (Elliptical
Weighted Average) filtering provide high image quality [ZPvBG02] and they can be
implemented using hardware accelerations [CRZP04] [BHZK05] [NM05]. Despite of
this interest, the extension of splatting to time-varying data has been little addressed
in the bibliography. The main contribution to splatting time-varying data is that of
Neophitous and Mueller [NM02] that treat it as a particular case of the general prob-
lem of viewing n-dimensional data. In this report, we follow a different approach
specifically designed for time-varying data that exploits frame-to-frame coherency.

The report is organised as follows. In section 2, we review previous work on splat-
ting and on time-varying visualisation. In section 3 we present the results of a pre-
liminary study that we have realized in order to estimate thebenefits that exploiting
frame-to-frame coherence could provide. Based on the conclusions of this study, in
section 4 we propose a frame-to-frame coherent splatting algorithm. Finally, in section
7, we present the results of our implementation, previous tothe conclusions.

2 Background

2.1 Splatting

The splatting algorithm was proposed by Lee Westover [Wes89]. It considers the vol-
ume as an array of overlapping kernels that are projected into the screen plane in order
to compose the image. Splatting gains its speed by exploiting the similarity of the
kernel’s projection. In orthographic views, all the kernels have the same projection or
footprint. Thus, the footprint can be computed once, in a pre-process,stored as a look-
up-table and used for the projection of all the voxels. However, in perspective views,
the footprints must be distorted according to the distance of the voxels to the observer.

In the original approach of the algorithm, all the voxels aresplatted directly in
the image. This is why the algorithm is known ascomposite-every-sample. However,
this method may cause colour bleeding and sparkling artifacts because the visibility
ordering of the splats is imperfect. To correct this error, Westover [Wes90] proposed
the object-space sheet-buffer splattingthat splats the voxels slice-by-slice into sheet
planes of the voxel model most parallel to the image plane andcomposites each sheet
to the final image. This approach corrects colour bleeding but it introduces noticeable
popping up artifacts when the camera moves around the volume, because the sheet
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planes chosen change abruptly. Mueller and Crawfis [MC98] provided a solution to
this problem that also enhances the approximation of the light transport inside voxels:
the image-space sheet-buffer splatting. In this approach, the sheet buffers are parallel
to the image plane. Therefore, voxels can contribute to morethan one sheet. Different
footprints corresponding to different intersections of the voxels with the sheet slab
must be computed. When a voxel is splatted into a sheet plane, the proper footprint is
chosen according to a fast indexing scheme. In theimage-space sheet-buffer splatting
[MSHC99], sheet buffers can be composed Front-to-Back (FTB) inorder to apply
early splat elimination by subdividing the image into smalltiles and avoiding to splat
voxels that cover tiles that have already reached the maximum opacity. The detection
of opaque tiles is efficiently performed using a hardware assisted opacity convolution
filter.

One of the major advantage of splatting is that only relevantvoxels must be splatted
and empty and non-selected voxels can be skipped. This idea was first suggested by
Yagel et al. [YESK95] for rendering Computational Fluid Dynamics (CFD). They
suggested to construct afuzzy setcomposed by an array of planes of the model and,
for each plane, a list of voxels with their associated coordinated in the plane and their
value. Crawfis [Cra96] introduced the idea of theListSplat, a list of isosurface voxels
that can be splatted directly without depth sorting becausethey are supposed to all be
a homogeneous colour. Mueller at al. [MSHC99] enhanced the efficiency of the view-
aligned sheet-buffer splatting by organising the selectedvoxels in buckets, each one
corresponding to a sheet-buffer. The selection of the voxels for their insertion in the
buckets is fast, based on a binary search in a per-value ordered list of voxels similarly
to the work of Ihm at al. [IL95]. More recently, Orchard and Möller [OM01], proposed
to use a list of adjacency data structure, such that each non-empty voxel in a scan list
is linked to the next non empty voxel in the scan-line. Finally, Kilthau and M̈oller
[KM01] proposed to use run-length encoding (RLE) of the volume in order to skip
empty voxels. They construct 24 RLE replications of the volume, which allows them
to orderly traverse the volume according to any of the 48 orders. The main drawback
to these two last approaches is their storage overhead.

Many efforts have been done in accelerating splatting usinghardware. One of
the first proposed method [LH91] [WG91] consists of approximating the splat by a
collection of polygons, thus taking profit of the hardware-supported polygon render-
ing pipeline. Crawfis and Max [CM93] replaced the polygons by a 2D texture map.
These approaches were tested incomposite-every-sampletraversals and orthographic
projections in which only one footprint is necessary. Huanget al. [HMSC00] argued
that image-space sheet-buffer splattingrequires at least 128 footprint sections, which
supposes over than 8MB texture maps storage. For radially symmetric splats, they
propose to use a less-memory consuming one-dimensional table that holds the values
of the splat along a radial line from the splat centre. Moreover, they explore directly
copying into the image the block of pixels of a 2D footprint using BitBLT, but conclude
that the image quality of this strategy is low. More recently, Xue and Crawfis [XC04]
proposed two splatting strategies that work on the GPU. The first strategy consists of
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using a vertex shader program to generate and render quadrilaterals centred around
the voxels centre. This strategy works on previous generation hardware. In addition, it
requires sorting the voxels along the viewing direction andit has high memory require-
ments. The second strategy, point-convolution rendering,first projects all the voxels
as point primitives into an off-screen P-Buffer with additive blending. Next, the GL
convolution flag is activated and a texture is copied from theP-Buffer usingglTex-
SubImage2Dsuch that each texel is a convolution between the P-Buffer pixel and the
kernel filter. This strategy is very efficient in terms of computational cost but it only
renders x-ray style images for orthographic views. Very recently, Vega-Figueroa et al.
[VHFG05] propose to usePoint Spritesto render neurovascular data. This reduces to
one point per voxel the geometric processing tasks instead of the four-points needed
for the quadrilaterals. This idea is also exploited in the GPU-based implementation of
the image-space sheet-buffer splattingproposed by Neophitou and Mueller [NM05].
In addition, this paper proposes to use an OpenGL PBuffer object to store the buffers.
It first splats onto an auxiliary buffer the density value of all the voxels of a slice using
textured point sprites. Then, it classifies and shades all the pixels of the buffer using
a fragment shader that computes the gradient vectors at the pixels on the basis of their
density central difference. Finally, it composes the buffer into the final image. The
authors use the early z-rejection test to eliminate empty-space pixels and those that
are already opaque before the fragment processing. A comparison between different
hardware and software-based optimisations of splatting can be found in [VGT06]

2.2 Time-varying direct volume rendering

We here address direct volume rendering. A survey on the use of temporal coherence
to speed up for direct and indirect volume rendering can be found in [ACF+05]. Pre-
vious work on direct time-varying volume rendering typically fall into categories: one
that treats separately the time dimension from the spatial dimensions [YS93] [SJ94]
[SCM99] [AAW00] [Wes95] [LMC02], and the other (4D rendering) that treats time-
varying data as a special case of an n-D model [BPRS98], [ECS00][NM02] [WWS03].
Our approach belongs to the first group.

Papers of the first group exploit temporal coherence in different ways. Most of
them focus on the ray-casting strategy. Specifically, various papers address ray-casting
a static model from a continuously moving camera. They exploit the reprojection tech-
niquethat computes an image using the previous one, by reprojecting the first visible
voxel of each ray according to the new visualisation matrix [GR90]. This technique
has been extended to polygonal mesh scenes [AH95]. In both cases, it presents two
main drawbacks: first, the presence of holes at pixels onto which no voxels reproject
and second, the overlapping of several reprojected points onto one pixel. In order to
apply reprojections, Yagel and Shi [YS93] propose to store in aC-Buffer the coordi-
nates of the first non-transparent voxel encountered by the ray emitted at each pixel.
If the light conditions or the transfer function changes in successive frames, the ray
sampling can start at this location and skip the previous empty voxels. Moreover, the
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C-Buffercan be re-used for reprojection if the camera rotates. This strategy works for
perspective projections as well as parallel ones, by opposite to that of Gudmundson
et al. [GR90], restricted to parallel projections, specifically y-axis rotations. Wan et
al. [WSK02] enhance the reprojection by using cells instead of points and using the
Distance To Boundary(DTB), i.e. the distance of every voxel to the nearest boundary
voxel [WTK+99]. This strategy increases the memory requirements but itreduces un-
desirable holes in the reprojected image. Recently, Klein atal. [KSSE05] use these
ideas in a GPU-based implementation of ray-casting [KW03] [SSKE05]. They imple-
ment theC-Bufferas a render target to store thehit position, and, whenever the camera
moves, they reproject the hitpoints stored in this render target using OpenGL viewing
matrices. The holes in the reprojected image are avoided by using enlarged points. The
authors also propose a selective super-sampling object space antialiasing technique.

Yoon et al. [YDKN97] uses ray-casting for isosurface rendering. They use a data
structure calledimage cachecontaining a ray-casted image of the volume enriched
with 3D information on the visible points. At the next cameraposition, they project
each ray on the image cache and analyse the contents of the pixels of the ray raster-
ization on the image cache to quickly discard non-intersecting rays and reproject hit
positions. For changes in the isovalue of the surface, they store for each ray a piece-
wise linear approximation of the volume changes along the ray, called isomap, that
helps them to quickly find the desired isovalue position along the ray.

Shen and Johnson’s ray-casting address time-varying volumes instead of camera
changes [SJ94]. They encode differences between consecutive volumes and recast
only modified rays. Liao et al. [LCL02] improve this techniqueby computing an
additional differential file that stores the changed pixelspositions. The TSPTemporal
Space Tree[SCM99] is a spatial octree that stores at each node a binary tree that
represents the evolution of the subtree through time. The TSP tree can store partial
sub-images to accelerate ray-casting rendering, and it hasalso been used to speed
up texture-based rendering [ECS00]. Finally, in a recent paper, [TGFP06], we have
proposed a frame-frame coherent strategy based on a double structure: in image-space,
a temporal buffer that stores for each pixel the next instantof time in which the pixel
must be recomputed, and in object-space a Temporal Run-Length Encoding of the
voxel values through time. The algorithm skips empty and unchanged pixels through
three different space-leaping strategies. It can compute the images sequentially in time
or generate them simultaneously in batch. In addition, it can handle simultaneously
several data modalities. Finally, an on-purpose out-of-core strategy is used to handle
large datasets.

The temporal extension of the shear-warp technique [LL94] proposed by Anagnos-
tou et al. [AAW00] uses an incremental Run-Length Encoding (RLE) of the volume.
Whenever a change is detected over time, the RLE is updated by properly inserting the
modified runs in the volume scan-line. In addition, the volume is processed by slabs,
recomputing only the modified slabs and compositing them with the unchanged slabs.
Finally, Lum et al’s approach [LMC02] is based on hardware assisted texture mapping.
The time-varying volume over a given span of time is compressed using the Discrete
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Cosine Transform (DCT). Every sample within the span is encoded as a single index.
The volume is represented as a set of 2D paletted textures. The textures are decoded
using a time-varying palette. In order to keep a constant frame rate, the texture slices
re-encoding at the end of each time-span is interleaved.

Finally, Ma et al. [MSSS98] propose a technique suitable forray-casting as well
as for splatting. They merge Branch-On-Need Octrees (BONO) [WG94] computed
for every instant of time into one structure, the Temporal BONO (T-BONO). This data
structure is used together with an auxiliary octree, that stores at each node the partial
image corresponding to the subtree. At successive frames, only modified subtrees
are visited, and their sub-image is recomputed and composited at the parent level in
the hierarchy. The splatting algorithm proposed by Neophitou and Mueller [NM02]
belongs to the 4-D rendering approach. They use a 4D Boby Centered Cubic (BCC)
grid [TMG01] instead of the traditional 4D cartesian Grid (CC)because it provides
compression to about 50% of the original size of the models. At an instant, a hyperslice
of the 4D model is first computed by interpolation and next, rendered with a view-
aligned sheet-buffer splatting. The hyperslice is encodedinto an RLE list which is
traversed each time the transfer function or the viewing parameters change in order to
toss the voxels into the array of buckets.

3 Preliminary Analysis

We have started our work by investigating the maximum speed up that can be expected
if coherence is used to avoid recomputing some of the steps ofthe image-aligned sheet-
buffered splatting pipeline.

3.1 Image-aligned sheet-buffered splatting pipeline

Figure 1 shows the pipeline of the basic image-aligned sheet-buffered splatting. As
mentioned in Section 2, the voxel model can be defined as a set of non-disjoint regions,
being one of them the empty space. Often, users don’t want to see all the volume,
but only a subset of its regions. We callselection, the specification of this subset.
There are different ways of defining a selection. In the original algorithm [MC98], the
authors actually define only two regions: the empty one and the selected one defined
as one range of property values. Other ways of doing it consist of using auxiliary data
structures such as run-length encoding [FPT05] and skeletons [SSC03]. In this report,
we have used a set of property ranges. Thus, the input parameters of the pipeline are
the voxel model, the selection, and, for shading, the transfer function and eventually a
set of lights.

The pipeline is clearly divided in two parts: first, the bucket constructions and fill-
ing (BC) and second, the sheets projection and composition steps (SC). As mentioned
in Section 2, the first part is done on the CPU whereas, different GPU-based strategies
have been proposed for the second part. Changing camera, selection or data values im-
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Figure 1: Image-aligned sheet-buffered splatting pipeline.

plies recomputing all the pipeline. Changing the transfer function implies recomputing
only the second part.

3.2 Analysis of the use of coherence for BC

The brute force implementation of the pipeline depicted in Section 3.1 is to recom-
pute all the BC step at each frame, independently of changes. We call this Bucket-
Construction Brute-Force(BC-BF) (see Figure 1). Table 1 contains the names of the
different algorithms and their acronyms. However, if the camera and the selection do
not change, we can avoid recomputing this part of the pipeline. This is theBucket-
Construction with Bucket Coherence(BC-BCh) strategy (it uses the same pipeline, see
Figure 1). A third approach is to insert all the voxels in the buckets. In this case, the
rendering stage processes all the voxels and does not take profit of the natural capa-
bility of splatting to perform space-leaping (see Section 2.1). However, the buckets
need only to be recomputed if the camera changes, because a change in the selection
causes that non-selected property values are assigned to a zero opacity in the trans-
fer function. In this way, we translate the selection step into the second part of the
pipeline, that can be done in the GPU. We call this strategyBucket-Construction with
Bucket Coherence and No Space Leaping(BC-BCh-NSL) because it uses the coher-
ence of the bucket,i.e. being constant if the camera does notchange, and because it
does not perform space-leaping (see Figure 2). Finally, a fourth option is to construct
an auxiliary array containing the selected voxels. If the selection does not change, the
array remains the same. Thus, if the camera moves, it is the array that is traversed
instead of the full voxel model to insert the voxels in the buckets. Thus, this strat-
egy exploits array coherence and, as the two first methods, space-leaping. We call it
Bucket-Construction with Array Coherence(BC-ACh) (see Figure 3).
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Figure 2: BC-BCh-NSL pipeline.

Figure 3: BC-ACh pipeline.

3.3 Analysis of the use of coherence for SC

The second part of the pipeline, sheets projection and imagecomposition, needs nec-
essarily to be re-done if the buckets change. However, if they don’t change, i.e., if they
are composed of the same voxels, the corresponding sheets may be different from the
previous instant only if the voxels projected in them changetheir value. Obviously,
exploiting this sheet-to-sheet coherence requires to stores the sheets from instant to
instant. However, generally, all buckets change at least ina few voxel values. Thus,
previous sheets would hardly be re-usable. Nevertheless, large parts of the sheets re-
main the same, as for instance, those corresponding to emptyspace or static parts of
the data. As mentioned in Section 2.1, static image-alignedsheet-buffered splatting
exploits early splat termination by subdividing the image into tiles and splatting only
voxels that project onto tiles that have not reach the maximum opacity. This idea could
be extended further by applying the same tile subdivision tothe sheets. Therefore,
voxels of a bucket that project onto an unchanged tile could be skipped.
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Abbreviation Strategy

BC-BF Bucket-Construction Brute-Force
BC-BCh Bucket-Construction with Bucket Coherence

BC-BCh-NSL Bucket Coherence and No Space Leaping
BC-ACh Bucket-Construction with Array Coherence

FCh-Alg-Tile Frame-to-Frame Coherence Splatting Algorithm
BF-Alg Brute-Force Splatting Algorithm

Table 1: Name and acronym of the different strategies.

In order to assess the expected benefit of skipping voxels projected on unchanged
tiles, we have evaluated the number of tiles that remain unchanged in two animation
sequences and the expected reduction in the cost of this partof splatting. Again, this
is the maximum cost reduction that could be obtained in a frame-to-frame coherent
approach of this part of the pipeline, without taking into account the inherent overhead
that detecting and processing these buckets and keeping sheets from frame-to-frame.

3.4 Results

We have performed a set of simulations to evaluate the performance of the proposed
techniques. All the simulations results shown in the tablesare expressed in seconds.
They have been measured on a PC Dual Core 3.2 GHz with 3GB of RAM and NVidia
7800 GTX.

We have realized the analysis of BC using static datasets, taking into account only
changes in the camera, the transfer function and the set of selected voxels. When data
values also vary, the coherence decreases. Therefore, the static case indicates the max-
imum expectable speed up. For SC, we have used time-varying datasets. The static
datasets are (engine, aneurysm, mushroomandskull), and the time-varying ones are
(funmushroomandfive jets). The datasets come from the repository http://www.gris.uni-
tuebingen.de/areas/scivis/volren/datasets and http://www.cs.ucdavis.edu/ ma/ITR/tvdr.html.
We have constructed the datasetfunmushroomby varying the property values of the in-
ternal voxels of themushroomdataset. Tables 2 and 3 summarise the characteristics of
the datasets. Figures 4 and 5 show a rendered image of the static datasets and a few
frames of the time-varying ones.

Dataset Dimensions Size Type Oc.ratio

Aneurism 256*256*256 16777216 char 0.37%
Skull 256*256*256 16777216 char 5.70%

Engine 256*256*128 8388608 char 20.17%
Mushroom 80*87*59 410640 char 19.22%

Table 2: Characteristics of the static datasets, from left toright: name, size, property
value type and occupancy ratio of selected voxels.
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Dataset Dimensions Size Frames Type Oc.ratio

Five Jets 128*128*128 2097152 40 char 11.64%
FunMushroom 80*87*59 410640 26 char 14.05%

Table 3: Characteristics of the temporal datasets, from leftto right: name, size, number
of frames, property value type and occupancy ratio of selected voxels.

Figure 4: Rendered image of the datasets. Left column from topto bottom: mushroom,
engine, aneurysm and skull.

3.4.1 Results for BC

Tables 4, 5 and 6 show the costs in seconds of rendering the different datasets with
the four BC methods. The step of projection of the buckets is the same for all four
methods except that BC-BCh-NSL projects all the voxels instead of the selected ones.
We have separate the costs of each step. Tables 7, 8, 9 and 10 show for each dataset the
average cost per frame of the four methods for a 100 frames animation with changes
in the camera and the selection.

From these tables we can conclude that taking profit of bucketcoherence and ar-
ray coherence, i.e recomputing the voxel arrays only for changes in the selection and
recomputing the buckets only for changes in the camera and selection reduces the ren-
dering cost. Specifically, exploiting the two types of coherence together reduces the
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Figure 5: 4 frames of fivejets.

Engine Aneurysm Mushroom Skull

BC 2.45 3.6 0.13 4.11
SC 8.62 3.24 0.80 7.65
SC (GL) 0.81 0.11 0.06 0.58

Table 4: Costs in seconds of the differents steps of the splatting for BC-BF and BC-
BCh strategies for the static datasets.

cost up to 24% using GPU for the projection step and up to 76% for the CPU-based
projection. Using array coherence supposes a 48% (GPU) and 19% (CPU) of that
benefit.

Finally, putting all the voxels in the buckets in order to avoid the selection changes
is clearly a bad solution, because the occupancy ratio of thedatasets is generally low.
Even if the projection step is done on the GPU by opposite to the selection changes
step, which is CPU-based, the overall cost in the best case is still 6% (GPU) and 18%
(CPU) higher than the basic method.

3.4.2 Results for SC

Tables 11 and 12 show the number of sheet tiles that remain constant in the animation
sequence of thefunmushroomandfive jetsdatasets.

These results show that the use of tiles can reduce sheet projection up to 96%
on funmushroomand 74% onfivejets. As expected, the smaller the tiles, the higher
the coherency, but the more computationally expensive the tiles management. For

Engine Aneurysm Mushroom Skull

BC 4.22 9.38 0.20 9.15
SC 12.98 9.10 0.91 12.87
SC (GL) 3.42 6.19 0.16 6.01

Table 5: Costs in seconds of the differents steps of the splatting for BC-BCh-NSL
strategy for the static datasets.
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Engine Aneurysm Mushroom Skull

Array Creation 2.25 4.8 0.07 4.46
BC 0.62 0.05 0.03 0.46
SC 8.62 3.24 0.80 7.65
SC (GL) 0.81 0.11 0.06 0.58

Table 6: Costs in seconds of the differents steps of the splatting for BC-ACh strategy
for the static datasets.

Camera changes Selection changes BC-BF BC-BCh BC-BCh-NSL BC-ACh

0 0 11.07| 3.26 08.64| 0.83 13.02| 3.46 08.65| 0.84
25 0 11.07| 3.26 09.23| 1.42 14.04| 4.48 08.80| 0.99
50 0 11.07| 3.26 09.85| 2.04 15.09| 5.53 08.95| 1.14
100 0 11.07| 3.26 11.07| 3.26 17.20| 7.64 09.26| 1.45
0 25 11.07| 3.26 09.23| 1.42 13.02| 3.46 09.34| 1.53
0 50 11.07| 3.26 09.85| 2.04 13.02| 3.46 10.06| 2.25
0 100 11.07| 3.26 11.07| 3.26 13.02| 3.46 11.50| 3.69
50 50 11.07| 3.26 10.46| 2.65 15.09| 5.53 10.21| 2.40
100 100 11.07| 3.26 11.07| 3.26 17.20| 7.64 11.50| 3.69

Table 7: Cost per frame in a 100 frames animation for the enginedataset. Each strategy
has the cost in seconds using SC CPU-based and SC GL.

example, in thefunmushroomwe have the same reduction using tiles of 64x64 than
32x32, but we increase the cost of management of all tiles three times.

4 A frame-to-frame coherent splatting

In the previous section, we saw that there exists coherence between consecutive frames
in all the steps of the pipeline and that the prediction of this coherence can be useful to
reduce the cost of the process. The first part of the pipeline (BC) has these inputs pa-
rameters: camera, selection and the dataset. Coherence detection between consecutive
frames in this part consists of checking changes in the inputs parameters. To predict
any change on camera or selection is not difficult and the consequences are explained
in Section 3.2. Any change of a voxel value of the dataset implies that this voxel could
modify its selected status. This fact implies that one voxelvalue change invalidates the
current buckets and a new Bucket Insertion is required. The temporal datasets usually
change some voxel value every frame. The results of the previous section denote that
doing a Bucket Insertion at every frame is very computationally expensive. Two pos-
sible strategies can be adopted. First, the Bucket Insertioncan be done incrementally
by adding at each frame the new selected voxels and removing from them those that
are not selected at that frame. An alternative, is to insert in the buckets all the voxels
whose value is selected at some of the frames. In that second case, the opacity of vox-
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Camera changes Selection changes BC-BF BC-BCh BC-BCh-NSL BC-ACh

0 0 6.84| 3.71 3.28| 0.15 09.19| 06.28 3.28| 0.15
25 0 6.84| 3.71 4.14| 1.01 11.45| 08.54 3.30| 0.17
50 0 6.84| 3.71 5.04| 1.91 13.79| 10.88 3.31| 0.18
100 0 6.84| 3.71 6.84| 3.71 18.48| 15.57 3.33| 0.20
0 25 6.84| 3.71 4.14| 1.01 09.19| 06.28 4.36| 1.23
0 50 6.84| 3.71 5.04| 1.91 09.19| 06.28 5.47| 2.34
0 100 6.84| 3.71 6.84| 3.71 09.19| 06.28 7.70| 4.57
50 50 6.84| 3.71 5.94| 2.81 13.79| 10.88 5.48| 2.35
100 100 6.84| 3.71 6.84| 3.71 18.48| 15.57 7.70| 4.57

Table 8: Cost per frame in a 100 frames animation for the aneurysm dataset. Each
strategy has the cost in seconds using SC CPU-based and SC GL.

Camera changes Selection changes BC-BF BC-BCh BC-BCh-NSL BC-ACh

0 0 0.93| 0.19 0.80| 0.06 0.91| 0.16 0.80| 0.06
25 0 0.93| 0.19 0.83| 0.09 0.96| 0.21 0.81| 0.07
50 0 0.93| 0.19 0.87| 0.13 1.01| 0.26 0.82| 0.08
100 0 0.93| 0.19 0.93| 0.19 1.11| 0.36 0.83| 0.09
0 25 0.93| 0.19 0.83| 0.09 0.91| 0.16 0.83| 0.08
0 50 0.93| 0.19 0.87| 0.13 0.91| 0.16 0.85| 0.11
0 100 0.93| 0.19 0.93| 0.19 0.91| 0.16 0.90| 0.16
50 50 0.93| 0.19 0.90| 0.16 1.01| 0.26 0.86| 0.12
100 100 0.93| 0.19 0.93| 0.19 1.11| 0.36 0.90| 0.16

Table 9: Cost per frame in a 100 frames animation for the mushroom dataset. Each
strategy has the cost in seconds using SC CPU-based and SC GL.

els of the bucket that are not selected at the current frame should always be set to zero.
In this report, we have implemented the second strategy.

Exploiting the frame-to-frame coherence in the second part(SC) implies to detect
unchanged sheet tiles and to avoid their projection. A tile remains constant while of
all its selected voxel values remain constant. Therefore, the next instant of change of
a tile corresponds to the first instant in which there is a change in the selected status of
one of its voxels or a change of value of one selected voxel. Inorder to implement this
idea, we encode the time-varying volume as a Temporal Run-Length. This encoding
allows us to quickly compute at any time the next instant of change of any voxel. Using
this new structure in the Sheet Projection we can compute howmany frames this tile
will remain constant if there is no change in the previous BC steps or in the SC inputs
parameters (transfer function or lighting in surface shading).
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Camera changes Selection changes BC-BF BC-BCh BC-BCh-NSL BC-ACh

0 0 11.76| 4.69 07.69| 0.62 12.96| 06.10 07.70| 0.63
25 0 11.76| 4.69 08.68| 1.61 15.16| 08.30 07.81| 0.74
50 0 11.76| 4.69 09.71| 2.64 17.45| 10.59 07.92| 0.85
100 0 11.76| 4.69 11.76| 4.69 22.02| 15.16 08.15| 1.08
0 25 11.76| 4.69 08.68| 1.61 12.96| 06.10 08.88| 1.81
0 50 11.76| 4.69 09.71| 2.64 12.96| 06.10 10.11| 3.04
0 100 11.76| 4.69 11.76| 4.69 12.96| 06.10 12.57| 5.50
50 50 11.76| 4.69 10.73| 3.66 17.45| 10.59 10.23| 3.16
100 100 11.76| 4.69 11.76| 4.69 22.02| 15.16 12.57| 5.50

Table 10: Cost per frame in a 100 frames animation for the skulldataset. Each strategy
has the cost in seconds using SC CPU-based and SC GL.

Tiles 256x256 Tiles 128x128 Tiles 64x64 Tiles 32x32

number tiles 9256 37024 148096 592384
recomputed tiles 2555 4296 10156 32609
ratio 0.18 0.08 0.04 0.04

Table 11: Analysis of SC forfunmushroom. This example has 89 buckets.

5 Data structures

5.1 Buckets

In static algorithms, the buckets only store their voxels. We subdivide each bucket into
tiles, and each tile stores those voxels that project on it. We also store the sheet tiles
and the number of frames that they remain constant.

5.2 Temporal Run-Length

The Temporal Run-Length(TRL) representation stores for every voxelvi a sequence
of codes composed of the voxel value and the next frame at which this value changes:

codes(vi) = < valuek, tnextk >,k = 1...ncodes(vi).

The query for the value of a voxelvi at a given framet requires, with this structure,

Tiles 256x256 Tiles 128x128 Tiles 64x64 Tiles 32x32

number tiles 21120 84480 337920 1351680
recomputed tiles 17744 31957 95990 351437
ratio 0.84 0.38 0.28 0.26

Table 12: Analysis of SC forfivejets. This example has 132 buckets.
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a search incodes(vi) of the code whose time span contains framet. In order to avoid
this search and access directly to the searched code, we add to the structure a pointer
that is set to the first code at the beginning of the sequence and that is updated to the
current code during the traversal. Therefore, assuming that a simple byte is sufficient
to store the number of frames of the codes and that the pointerto the current code is
also a byte, the occupancy in bytes of the TRL structure for a modality m occupying
nbm bytes per voxel of a voxel model composed ofnvm voxels is:

Occup(TRLm) = ∑nvm
i=1(1+ncodes(vi)∗ (nbm+1))

This occupancy can be compared to the occupancy of the regular voxel model along
time:

Occup(VoxelModelm) = nvm∗n fm∗nbm,

beingn fm the number of frames of modalitym.
We call rocc the ratio between the occupancy of the TRL and the regular voxel

model:

rocc = Occup(TRL)
Occup(VoxelModel) .

This ratio has a direct relationship with the temporal coherency of the voxel model,
since it depends on the number of voxels that change. As it is obvious, the TRL cannot
be constructed on static models, composed of one frame, because it would triplicate
their occupancy. In the worst case, for an animated model allthe voxels change at
every frame and, thus, the ratio of occupancy is:

rocc = 1+ nbm+n fm+1
nbm∗n fm

more than 2 when the bytes per property of modalitym is nbm = 1. However, this
is less than the worst case of the incremental model proposedin [SJ94] which can be
four times more the original one.

Nevertheless, if the temporal coherency is high, this ratiocan be very small . In
these cases, the TRL is a compressed representation of the temporal evolution of the
model.

The TRL is computed in a pre-process that first loads the voxel model correspond-
ing to the first frame and initialises the list of codes for every voxel. Next, the voxel
models at the following frames are loaded one-by-one and traversed. For every voxel,
the value of the current code in the TRL is compared to the valueof the loaded voxel
model. If the two values are equal, the frame of the current code is updated, otherwise
a new code is constructed. Variations of the property valuesof empty voxels are not
considered for the creation of new codes. Therefore, if a voxel has a variable value, but
empty through all the sequence, it has a unique code. This pre-processing has a cost
complexityCostPP = O(nvm∗n fm).
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6 Algorithm

As mentioned in Section 4, the proposed frame-to-frame coherent strategy tries to skip
all the steps that remains unchanged from previous instant.The Bucket Creation is
done only if the camera changes. The Array Construction is recomputed in case that
selection is modified. The execution of any of the two previous steps implies a new
Bucket Insertion. Before the SC part, the transfer function ismodified in order to
assign to zero the opacity of the values non selected at the current frame. Finally,
this strategy traverses each tile of a bucket and projects itonly when it needs to be
recomputed or a change in a previous step has happened. Algorithm 1 shows all the
process.

Algorithm 1 Frame-to-frame Coherent Algorithm
for all framef do

bucketinsertion = false
if CameraChange()then

CreateBuckets()
bucketinsertion = true

end if
if SelectionChange()then

CreateArray()
bucketinsertion = true

end if
if bucketinsertionthen

InsertVoxelsBuckets()
tile projection = true

else
tile projection = false

end if
ModifyTransferFunction()
for all bucketb do

SheetInit(b)
for all tile t of b do

if TileChange(t) or tileprojectionthen
ProjectTileSheet(t)

end if
ComposeTileSheet(t,b)

end for
end for

end for
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7 Results

We have performed a set of simulations to evaluate the performance of the proposed
techniques. The simulations are done with the same hardwareas in Section 3.4 and
using the same temporal datasets described there (fivejetsandfunmushroom).

We call the coherent algorithmFCh-Alg-Tile, whereTile is the size of the tiles used,
i.e. BCh-Alg-128x128. In order to evaluate the benefits of the proposed strategy, we
have compared it with a brute-force strategy that we have called BF-Alg. This brute
force approach does not use the voxel array, it performs the Bucket Insertion of the
current selected voxels at each frame, and it does not use sheet tiles.

Algorithm 2 BC-BCh Algorithm
for all framef do

if CameraChange()then
CreateBuckets()

end if
InsertSelectedVoxelsBuckets()
for all bucketb do

SheetInit(b)
ProjectSheet(t)
ComposeSheet(t,b)

end for
end for

Tables 13 and 14 show the costs in seconds of rendering the different steps of the
pipeline for each algorithm. We have measured the case best and worst case costs for
CPU-based and GPU-based SC step. The best case implies that there is no change in
selection and camera, and consequently the tiles that remain constant are not projected.
The worst case is when all the tiles require to be projected.

Array Construcion Bucket Insertion SC SC GL

BF-Alg 0 0.08 0.89 0.05
FCh-Alg-256x256 1.85 0.14 0.83| 1.08 0.05| 0.11
FCh-Alg-128x128 1.85 0.47 0.79| 1.11 0.06| 0.20
FCh-Alg-64x64 1.85 1.82 0.71| 1.14 0.08| 0.60

Table 13: Cost per frame in seconds for thefunmushroomdataset animation. Steps of
SC for the proposed strategy has the value of the using the coherence of the model for
the unchanged tiles and the recomputing all the tiles every frame.

The results forfunmushroomdataset show that in the best case the cost of SC is
reduced in 20%, but in the worst case the overhead cost of management increases the
cost of SC in 28%. However, in the simulations, we have not applied early termination.
Therefore, all sheets are processed and divided into tiles.This can be simplified and
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many of this tiles can become useless if early termination isapplied. With the GPU-
based SC strategy, the results are not satisfactory in any case because the management
of the coherence is done in the CPU. Therefore, the goal is to perform the proposed
strategy entirely in the GPU.

Array Construcion Bucket Insertion SC SC GL

BF-Alg 0 0.39 1.29 0.12
FCh-Alg-256x256 4.94 3.35 1.89| 2.08 0.75| 0.94
FCh-Alg-128x128 4.94 11.47 1.73| 2.00 0.79| 1.03
FCh-Alg-64x64 4.94 43.50 1.60| 1.94 0.95| 1.05

Table 14: Cost per frame in seconds for thefivejetsdataset animation. Steps of SC
for the proposed strategy has the value of the using the coherence of the model for the
unchanged tiles and the recomputing all the tiles every frame.

The results forfivejetsdataset show the significance of the coherence of the dataset.
The funmushroomdataset has a high coherence, because the selected voxels have a
selected value during a large part of instants. Thefivejetsdataset are less coherent.
Therefore, a large number of voxels are on the buckets but notmuch contribute to
the projection because they have opacity zero. The proposedalgorithm cannot skip
these voxels because they are taken into account for computing the tile duration. This
problem can be avoided by performing an incremental Bucket Insertion step. This is
the next step of our research.

8 Conclusions

In this report, we have analysed the possibility of exploiting frame-to-frame coherence
in image-aligned sheet-buffered splatting. First, we haveperformed a set of empirical
tests to determine the weight of each step of the algorithm inthe overall cost and
how this cost is affected by the variation of input parameters of the rendering pipeline
(camera, transfer function and selection) and by the variation of data values through
time. This analysis has shown that exploiting temporal coherence could lead to high
reductions of the computational cost and therefore it is worth to investigate means of
taking profit of this coherence.

In the second part of report, we have proposed a first version of a frame-to-frame
coherent splatting algorithm. The results are encouragingbut, the method presented
has a high overhead cost and it needs to be improved. Consequently, we will continue
our research in three directions. First, we will investigate how to compute the buckets
incrementally instead of inserting in them at the beginningof the sequence all the
voxels that can be useful at some instant. Next, we will perform more tests using early
splat termination and trying to avoid the management of all the tiles. Furthermore,
we will investigate how to group consecutive buckets that use shared tiles in order to
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reduce the high number of tiles stored and computed. Finally, once the method will be
tuned in software, we plan to design a strategy to perform allthe process in the GPU.

A step further in our research is to extend this strategy to large volumes of time-
varying data by designing out-of-core approaches to reducethe memory management
overhead.
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