
Data-driven Tetrahedral Mesh Subdivision

Lyudmila Rodŕıguez, Isabel Navazo,̀Alvar Vinacua1

Email: {lyudmila, isabel, alvar}@lsi.upc.es

Universitat Polit̀ecnica de Catalunya
Departament de Llenguatges i Sistemes Informatics

Barcelona, Espãna
Abril, 2006

1This work was partially supported by project TIC-2000-1009 funded by the Spanish
Ministry of Science and Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction . 1
2 Previous Work . 2
3 Our proposal . 5

3.1 On the computation of discrepancies within a tetrahedron . 5
3.2 Subdivision scheme . 6

4 Implementation details . 15
5 Experimental Results . 19

5.1 Discrepancy analysis . 19
5.2 Performance for medical data 19

6 Conclusions . 23

1

List of Figures

1 The Rivara’s 4T subdivision approach 3
2 Configurations for triangle subdivision 7
3 Configurations for a tetrahedron subdivision 8
4 Quadrilateral region can be triangulated in two different ways . . . 9
5 Possible tetrahedrizations for Configuration 2a 10
6 Eight possible subdivision cases of a triangular prism 11
7 Two possible tetrahedrization for Configuration 3b 11
8 Tetrahedrization of Configuration 3c 13
9 Configuration 4a . 13
10 Configuration 4b . 14
11 Possible tetrahedrization of Configuration 5 14
12 Tetrahedrization of Configuration 6 15
13 Example of a subdivision process for Configuration 3b 17
14 Coherence of the subdivision . 18
15 Perfusion levels of a heart’s slice. (a) Original, (b) Original tetra-

hedral mesh, (c) Threshold=10%, (d) Threshold=5%, (e) Scaled
discrepancies by a factor of 20 21

16 Perfusion levels of a heart’s slice. (a) Original, (b) Original tetra-
hedral mesh, (c) Threshold=10%, (d) Threshold=5%, (e) Scaled
discrepancies by a factor of 15 23

2

Abstract

Given a tetrahedral mesh immersed in a voxel model, we present a method to
refine the mesh to reduce the discrepancy between interpolated values based on
either scheme at arbitrary locations. An advantage of the method presented is that
it requires few subdivisions and all decisions are made locally at each tetrahedron.
We discuss the algorithm’s performance and applications.

1 Introduction

There are a number of applications (especially in medical imaging, and scientific
visualization) that require support for alterations (deformations, cuts and time-
evolution) of volume data.

The volume data are often sampled on a regular rectangular grid in 3D space,
and stored in a voxel model. Each point on the grid has an associated (scalar or
vector) value of a property, that we can think of as a functionf whose domain con-
tains the portion of space that we are modelling. To support further computations,
or to afford topological flexibility, a simplicial-cells complex would be preferable,
and indeed one often immerses into the voxel space such a network of tetrahedra
for those purposes. These meshes may be a result of subdividing the voxels into
tetrahedra, or may result from tetrahedrizations of a volume extracted from the
model (for instance the volume bound by certain iso-surface).

When this kind of mixed models are used, one needs to address the difference
in the way voxel models and tetrahedral meshes compute property values away
from the sample points. In fact, in the case of voxels the most often used interpola-
tion method to compute values inside a cell is a trilinear interpolation of the sample
values known at the vertices of the cell. Analogously, for tetrahedral meshes the
most often used method to compute a value inside a tetrahedron is the linear inter-
polation of the four vertices of that tetrahedron.

It is obvious that even if the initial values assigned to the vertices of the tetra-
hedra in the immersed mesh are computed from the values in the original volume
data, these two different interpolation methods will yield different values of the
property at points interior to the tetrahedra.

In this paper we present an algorithm to adaptively subdivide a tetrahedral mesh
immersed in a voxel model in order to reduce the discrepancy of these two approx-
imations of the functionf below a user-specified toleranceε. Both the input and
output tetrahedral meshes are conformal (i.e. a conforming mesh is one in which
two tetrahedraTi ,T j , i 6= j of the mesh may only intersect at a vertex, along a
complete edge or have a common triangular face).

Our algorithm works by locally subdividing tetrahedra where the discrepancy
exceeds the tolerance. This paper presents the following contributions:

• Analysis of the discrepancy between the two interpolations within a tetrahe-
dron

• A scheme for locally subdividing tetrahedra with large discrepancies that
ensures a conformal resulting mesh and a reduction of the discrepancy within
the resulting tetrahedra

• The subdivision scheme aims at minimizing the number of tetrahedra needed
to meet the requirement

• The subdivision is designed to yield good quality tetrahedra (not too skinny
and elongated)

1

We have tested our algorithm over different samples of medical data. Section 5
gives a summary of these tests.

The rest of the paper starts by presenting an overview of previous work in the
next section, before presenting our proposed solution in Section 3, where we report
on our analysis of the locations of the largest discrepancies and the subdivision
patterns (see Section 3.2) used to achieve locality and convergence. Section 4 then
discusses some aspects of the implementation of this algorithm, before moving on
to the results on our test models, discussed in Section 5, and closing with some
conclusions.

2 Previous Work

A subdivision scheme can be seen as a procedure to construct a collection ofn
different meshesM =

{
M1 < M2 < .. . < Mn

}
, such that the meshMi+1 is ob-

tained from the previous one(Mi) by a local refinement. At each level, an element
is refined if it exceeds a preset error criterion (appropriate for the problem) at that
level.

In the context of finite elements, tetrahedral meshes are sometimes subdivided
to improve their quality or suitability for the computation at hand. In the related
literature a distinction is drawn between two kinds of subdivisions, regular and
irregular. Regular subdivision schemes give rise to subtetrahedra that are similar
to the tetrahedron being subdivided, whereas irregular schemes do not. At any
rate, in order to preserve conformance, when a regular subdivision is performed
locally, an irregular scheme must be used to stitch the tetrahedra resulting from the
subdivision with their neighbors.

One of the first subdivision schemes that was proposed for two-dimensional
triangle meshes, is the red/green or regular/irregular method, by Bank and Sher-
man [1]. In thered phase, triangles are subdivided into four similar triangles by
splitting all three sides at their midpoint. Thegreenphase is subsequently applied
to all the neighboring elements that have not been subdivided, but which share ex-
actly one edge with a subdivided triangle. These triangles are split in two joining
the midpoint of the edge they share with a subdivided triangle with the opposite
vertex. Triangles that have not been subdivided but that share more than one edge
with a subdivided triangle are then subdivided using thered strategy, and a subse-
quentgreenpass is needed to blend them properly with their neighbors.

Another group of algorithms focuses on the edges, rather than the triangles.
This is the case of the work of Rivara [16, 17, 18], in the two-dimensional case.
They iteratively apply the longest edge bisection technique. In [16] they use it in
its pure form, where the longest edge of each triangle that needs to be subdivided
is split at the midpoint, adding an edge to the opposite vertex and resulting in an
irregular scheme. In [18] they use instead the 4-Triangles subdivision, where af-
ter subdividing a triangle by its longest edge, the midpoint of the longest edge is
also joined with two additional edges with the midpoints of the other two edges,

2

resulting in a subdivision into 4 triangles (and a regular scheme). Figure 1 shows
how this subdivision is performed on a single triangle. Both schemes are supple-
mented by a pass to insure conformacy, where non-conformant edges are searched,
and their coarse neighbors subdivided to achieve conformancy. This needs to be
iterated until the mesh is conformant. The authors show numerical evidence that
both strategies yield irregular (but conformant) triangulations of good quality.

Initial triangle Longest-edge bisection 4T subdivisionInitial triangle Longest-edge bisection 4T subdivision

Figure 1: The Rivara’s 4T subdivision approach

These strategies have subsequently been extended to the three-dimensional
case. Zhang [23], Bey [2], Liu and Joe [10] have extended the strategy of Bank
and Sherman [1] to the 3D case. In the regular phase, they subdivide a tetrahe-
dron in eight subtetrahedra. Four subtetrahedra similar to the one being subdivided
result from cutting out the four corners of the tetrahedron, at the midpoint of the
edges. The remaining four are obtained by subdividing the central octahedron that
results from this corner-cutting. The way in which this octahedron is subdivided,
and the irregular schemes used to conformally blend the subdivided part of the
mesh with its unsubdivided neighbors are the elements that differentiate the pro-
posals listed above. Zhang splits the octahedron by inserting the shortest of its
three diagonals (and splitting the volume in four tetrahedra sharing this diagonal
in the obvious manner). He shows that this election tends to minimize the degen-
eracy of the new tetrahedra. Despite being a stable subdivision, for elements with
at least one obtuse triangle it can give rise to several different kinds of tetrahedra
after successive subdivisions. On the other hand, Bey choose a diagonal implicitly
characterized by the order of vertices. In contrast, Liu and Joe map the tetrahe-
dra onto a canonical one, and insert a diagonal joining the midpoints of the two
edges mapped onto the longest edges of this canonical one. In relation with the
irregular schemes, the patterns presented in [2, 10] are incomplete. In [23], ir-
regular scheme are not considered. More recently Greiner and Grosso [7] used a
similar regular/irregular scheme, but the interior octahedron is subdivided into six
octahedra and eight tetrahedra on demand.

The edge bisection methods discussed for two dimensions have also been ex-
tended into 3D. Rivara and Levin [19] extended first the pure bisection method by
simply bisecting tetrahedra by splitting the longest edge and joining the split point
with the opposite vertices of the adjacent faces. Liu and Joe [9] later showed by nu-
merical experiments that this may lead to the bisection of many tetrahedra, which
not only increases the cost of the subdivision, but more importantly may severely
impact the finite elements computation. Instead, they propose to map the tetrahe-
dron onto a canonical one, and show how to use this to subdivide the tetrahedron

3

into eight similar pieces, in a three steps process.
Plaza and Carey [12, 13] have extended to three dimensions the 4-Triangle al-

gorithm. After selecting the set of tetrahedra that needs to be refined, they insert
new vertices at the midpoint of each edge. Then they explore the neighbors to ver-
ify it conformity. If the tetrahedron is non conforming, insert new vertices at the
midpoint of the longest edge of each non conforming face and add a new vertex
to the midpoint of the longest edge of the tetrahedra. From this points, it makes
the subdivision of each face using the 4-Triangle algorithm, obtaining the skele-
ton. Once the set of faces have been consistently triangulated in this way, they
complete the subdivision of the interior of the tetrahedra based on a set of 51 dif-
ferent precomputed patterns. More recently, they do a new proposal denominated
“8-Tetrahedra longest edge partition” [15, 14].

In Computer Graphics applications, refinement algorithms used for multires-
olution purposes are intended to allow the acceleration of the visualization and
interaction processes. They subdivide the volume data in tetrahedral meshes with
different levels of detail (LoD). These algorithms use both subdivision and fusion
techniques [4, 24]. In Danovaro et al.’s work [4], two multiresolution strategies
with different refinement rules are compared. Regular meshes are refined by using
the bisection rule, and unstructured meshes are refined with vertex split rule. On
the other hand, Zhou et al. [24] propose a hierarchy of tetrahedra obtained by a re-
cursive subdivision of the volume. Three subdivision rules and an error saturation
strategy are defined for the multiresolution.

On the other hand, adaptive subdivision of triangle meshes for deformable
models is presented by Ruprecht et al. [21]. They apply adaptive subdivision for
deformable models used in volumetric data matching or volumetric morphing. The
subdivision is carried out when the distance between the edge midpoints in real
space and the same points in the deformed space is greater than certainε. They use
this adaptive subdivision strategy in [22], to subdivide tetrahedral meshes. Their
subdivision scheme is similar to the one we propose, although we solve differently
the cases with additional degrees of freedom.

Yet another field of application where a need for these subdivisions arises is
surgery simulation. Here one wants to simulate cuts into volumetric models based
on tetrahedral meshes. Cuts are simulated by subdividing the tetrahedra intersected
with the virtual scalpel. These techniques differ slightly from the previous methods
because the subdivision points are given by the user interaction, and have to be
duplicated in order to separate the mesh along the cutting line [6, 3, 5, 11].

Neither of the previous subdivision techniques takes into account in the sub-
division process the volumetric information contained in the interior of the tetra-
hedra. In our application we focus on the extraction of a tetrahedral mesh from
the volume data, and are therefore concerned with how well does the extracted
mesh agree with the model in terms of the estimates of the property of interest in
its interior points. Thus, we define the subdivision rules according to the interior
information of the volumetric data. We are not aware of previous results in the
literature that address this problem in these terms.

4

3 Our proposal

We are interested in the case where we have a hybrid model, consisting on volume
data in the form of a voxelization, and a tetrahedrization of a portion of the same
volume, where the vertices of the tetrahedrization are in arbitrary positions within
the volume. For instance, these tetrahedrization may come from the computation of
an active-contour-like triangle mesh delimiting a portion of interest of the volume,
followed by a subdivision of that volume compatible with the triangulation of the
boundary.

Notice that in this general setup a tetrahedron may span several voxels, or sev-
eral tetrahedra may be completely contained inside a voxel. The discrepancies that
we want to minimize may therefore come strictly from the difference in interpola-
tion (in the second case), or may originate in rapidly varying volume data (in the
first case).

The next subsection discusses the nature of these discrepancies in a formal
way. However, we have not reached a useful closed-form solution for the optimal
way to subdivide tetrahedra, therefore we have resorted to experiments, which are
discussed in Section 5. From these numerical experiments, we have seen that most
of the time the point of maximum discrepancy happens near the midpoint of a face
or edge. When the maximum occurs at the midpoint of a face, a similar value of the
discrepancy appears near the midpoint of at least one of its edges. For this reason,
and in the interest of speed, we chose to analyze only the edge midpoints of the
given tetrahedra, splitting an edge at its midpoint if the discrepancy there exceeds
a threshold. This has the interesting property of providing a completely local test.
In the subsection 3.2 we discuss the possible configurations and present a scheme
for subdividing the tetrahedra that minimizes the number of resulting tetrahedra,
and is based exclusively on these local computations (therefore there is no need to
propagate subdivisions, as decisions in neighboring tetrahedra are guaranteed to be
consistent and yield a valid tetrahedrization). When an edge is split at its midpoint
Q (also called here asplitting point), Q is assigned a new property value equal to
realValue(Q). We find that the discrepancies in the new tetrahedra decrease, and
the scheme quickly converges.

3.1 On the computation of discrepancies within a tetrahedron

Let M be a tetrahedral mesh immersed in a voxel modelV . Let us further assume
that we assign to each vertexv∈M a property value obtained by trilinear interpo-
lation of the corners of the cell that containsv in the voxel model. A tetrahedron
T ∈M is called agood predictorif for any pointP∈T the discrepancy between
the property value computed atP from the voxel model (by trilinear interpolation
of the vertices of the cell that contains it) and from the tetrahedral mesh (by linear
interpolation of the property values at the vertices ofT) is below a user-specified
thresholdε .

That is, ifP has coordinates(x,y,z) within its cell (i.e.x,y,z∈ [0,1]), then we

5

define

realValue(P) = (1−x)(1−y)(1−z)I000+(x)(1−y)(1−z)I100+
(1−x)(y)(1−z)I010+(x)(y)(1−z)I110+
(1−x)(1−y)(z)I001+(x)(1−y)(z)I101+
(1−x)(y)(z)I011+(x)(y)(z)I111 (1)

where theIi jk , denote the values at the corresponding corners of the cell.
Moreover, letbi , i = 0. . .3 be the barycentric coordinates of the pointP with

respect to its tetrahedronT (which satisfy0≤ bi ≤ 1∀i andb0+b1+b2+b3 = 1),
and letIvi be the values assigned to the vertices ofT . Then we define

aproxValue(P) = b0Iv0 +b1Iv1 +b2Iv2 +b3Iv3. (2)

The condition thatT is a good predictor can then be written as

∀P∈T :
|realValue(P)−aproxValue(P)|

normCoe f f
≤ ε (3)

wherenormCoeffis a normalization coefficient so that all values are in[0,1] (and
discrepancies measure relative error).

We shall also denote the discrepancy at a pointP by error(P) = |realValue−
aproxValue|/normCoeff. If error > ε the tetrahedron is not a good predictor and
must be subdivided. Choosingε is relatively straightforward for the user, as it
represents relative error. A value of 0.1, for example, indicates that errors below
10%are acceptable.

3.2 Subdivision scheme

We need to consider the different configurations of edges of a tetrahedron that need
to be split. We would like to achieve a scheme that does not impose a subdivision
of an edge that was not marked for splitting to begin with. This is both related to
minimizing the number of resulting tetrahedra and to making the scheme local (an
edge needs to be split based on an intrinsic property, and not on the configuration
of its neighbors).

Let us first linger for a moment in the simpler two-dimensional case, where
triangles are subdivided by breaking their edges. Since a triangle has three edges,
there are23 = 8 different configurations. The extreme configurations, in which no
edge is subdivided and all three edges are subdivided, only happen once each one.
The cases where only one edge is subdivided and where two edges are subdivided
occur three times each. The 8 configurations are thus reduced to 4 due to sym-
metries, shown in Figure 2. Notice that the quadrilateral region in case 2 can be
triangulated in two different ways. Some authors solve the ambiguity by using the
memory addresses of the different vertices. Instead, we choose to add the shortest
of the two diagonals of the quadrilateral region to split it into two triangles. This
yields better shaped tetrahedra (see [16]).

6

0 2 310 2 31

Figure 2: Configurations for triangle subdivision

We can therefore construct a LUT with eight entries (indexed by the vertex
classification), sorting the different configurations into one of the four cases de-
picted above. However, when we reach configuration number two, we need to also
compute the shortest diagonal of the quadrilateral portion in order to decide the
sub-case applicable. This yields a total of 11 possible triangulations:

TotalPatterns =
3

∑
i=0

2NQRi ∗NEi (4)

= 20∗1+20∗3+21∗3+20∗1

= 11

HereNQRis the number of quadrilateral regions (0 or 1) andNE is the number
of distinct rotations of the configuration.

Let us now consider the three-dimensional case. Our tetrahedron subdivision
scheme will produce exactly these subdivisions on the faces of the tetrahedra it
subdivides. Since neighboring tetrahedra share a face, and they both get subdivided
in a way that is consistent with that face, the result is automatically conformal.

Tetrahedra have 6 edges, so there are26 = 64possible edge refinement patterns.
Removing cases that differ by a symmetry or a rigid motion, the 64 cases are re-
duced to 11 different configurations, shown in Figure 3. As in the two-dimensional
case, we compute the length of both diagonals of the quadrilateral region, and then
split the quadrilateral along the shortest diagonal. This yields better triangles, and
therefore tetrahedra with better quality. If both diagonals have equal length, the
one containing the vertex with smaller id on the mesh data structure is selected.
This allows us to guarantee that these faces, when shared by two tetrahedra, are
triangulated without ambiguity, as shown in Figure 4. Let us now examine these
configurations in detail.

Configuration 0 in Figure 3 corresponds to the trivial case where no edge
needs refining, and the tetrahedron is not subdivided further. Almost as simple
is the case ofConfiguration 1, where a single edge needs subdividing. Two sub-
tetrahedra are obtained by joining the new midpoint with the opposite vertices. No-
tice that the solution adopted influences only faces sharing the edge with excessive
error, which is relevant to ensure that the resulting scheme is local, as neighbors
will automatically make consistent decisions.

There are two distinct cases where two different edges need to be subdivided:

7

0

3c3b3a

2b2a1

4a 4b 5 6

0

3c3b3a

2b2a1

4a 4b 5 6

Figure 3: Configurations for a tetrahedron subdivision

Configuration 2a: The two edges belong to the same face. This case yields a
subdivision into three tetrahedra. Figure 5 shows the two different tetra-
hedrizations that may result from this step.

Configuration 2b: The two edges to divide are opposite edges of the tetrahedron.
This case can be solved by applying the solution for configuration 1 twice
in succession. In this way the tetrahedron is split in four sub-tetrahedra, as
shown in Figure 3

In the case where three edges exhibit errors above the chosen threshold, three
different configurations may arise:

Configuration 3a: the three edges needing subdivision belong to the same face.
The face is divided in four triangles with new edges connecting the error
points. Each new triangle is joined with the opposite vertex and the tetrahe-
dron is thus subdivided into four sub-tetrahedra.

Configuration 3b: The three edges have a common vertex. All three triangu-
lar faces sharing that common vertex have two edges with errors above the
threshold value. A sub-tetrahedron is formed by that vertex and the three
midpoints of the converging edges. The remaining prism can be subdivided
in eight different ways, depending on the lengths of the diagonals of each

8

Dist(v2, p03)<Dist(v3, p02) Dist(v3, p02)<Dist(v2, p03)Dist(v2, p03)=Dist(v2, p03)
a: if Ident(v2)<Ident(v3)
b: if Ident(v3)<Ident(v2)

v0

v2

v1 v3

p03

p02

p03p02

v0

v3v2

a b?

p03p02

v0

v3v2

p03p02

v0

v3v2

Dist(v2, p03)<Dist(v3, p02) Dist(v3, p02)<Dist(v2, p03)Dist(v2, p03)=Dist(v2, p03)
a: if Ident(v2)<Ident(v3)
b: if Ident(v3)<Ident(v2)

v0

v2

v1 v3

p03

p02

v0

v2

v1 v3

v0

v2

v1 v3

p03

p02

p03

p02

p03p02

v0

v3v2

p03p02

v0

v3v2

p03p02

v0

v3v2

a b?

p03p02

v0

v3v2

a b?

p03p02

v0

v3v2

p03p02

v0

v3v2

p03p02

v0

v3v2

p03p02

v0

v3v2

Figure 4: Quadrilateral region can be triangulated in two different ways

quadrilateral face of the prism (see Figure 6). An example of two base re-
sulting cases are shown in Figure 7 at right. The first one (the top right
sub-figure) arises when two of the shorter diagonals converge at a splitting
point (p03 in the figure). In that case the prism is subdivided into three
tetrahedra (i.e. in the figure, the tetrahedra with vertices(v2, p01, p02, p03),
(v1,v2, p01, p03), and(v1,v2,v3, p03)).

The second possibility (down right sub-figure) occurs when no two of the
shorter diagonals of the three quadrilaterals begin/finish at the same point
(x= /0 in the Algorithm 1). In this case, an untetrahedralizable region known
as a Scḧonhardt prism is formed. This prism cannot be broken up into tetra-
hedra whose vertices are vertices of the prism unless the triangulation of one
of the three quadrilateral facets is changed by doing an edge flip [20]. We
want our tetrahedron subdivision to depend only on local information, so
we cannot afford this edge flip (which would go unnoticed to the neighbor
tetrahedron). Instead, we add a Steiner point inside the prism to guarantee
coherence of the subdivision. Then, each triangular face is joined with the
Steiner point. As a result, the prism is subdivided into eight tetrahedra. A
pseudo-algorithm to resolve this case is shown in Algorithm 1.

Configuration 3c: Two of the three edges where the error exceeds the threshold
are opposed. The third edge shares two different facets of the tetrahedron,
one with each of these two opposed edges, as shown in Figure 8 at left. We
break up these tetrahedra in five sub-tetrahedra as follows: first, consider

9

v2

v1 v3

p03

v0

v2

v1 v3

p03p01

v0

p03p01

v2

p01
p03

p01p01

v2

v1 v3

v2v2

v1 v3

p03

v2

v1 v3

p03

v0

v2

v1 v3

p03p01

v0

v2

v1 v3

p03p01

v0

v2

v1 v3

v0

v2

v1 v3

p03p01

v0

p03p01

v2

v0

p03p01

v2

p01
p03

p01p01

v2

v1 v3

v2

p03
p01p01

v2

v1 v3

v2

Figure 5: Possible tetrahedrizations for Configuration 2a

the facets of the tetrahedron that have only one splitting point (v0,v1,v2 and
v1,v2,v3 in the figure), and split these faces adding an edge from the splitting
point to the opposite vertex. We thus obtain the first sub-tetrahedron, whose
edges are these four points (v1,v2, p01 andp23 in the figure). What remains is
the union of two pyramids with apices at these two splitting points (p01 and
p23), and with quadrangular bases (v0,v2, p23, p03 andv3,v1, p01, p03 respec-
tively). These two pyramids share a triangular face whose vertices are the
three splitting points as shown on the right of Figure 8. Each of these pyra-
mids is broken up into two tetrahedra by splitting its base along the shortest
diagonal.

There are two different cases where four edges need to be subdivided:

Configuration 4a: In this case three of the four edges with split points belong
to the same face of the tetrahedron. The fourth one necessarily shares one
vertex with that face. This configuration is depicted on the left side of Fig-
ure 9. It is sort of a mixture of the configurations 3a and 3b discussed
above. We subdivide this configuration by forming two tetrahedra sharing
the trianglep01, p02, p03 in the figure (i.e. the triangle formed by the split
points on three converging edges). These tetrahedra are(v0, p01, p02, p03)
and(p01, p02, p03, p12) in Figure 9. The remaining volume within the tetra-
hedron consists again of two pyramids with quadrangular bases separated
by the trianglep12, p03,v3. These pyramids are finally subdivided into two
tetrahedra each one using the shortest diagonal criterion. The right side of
Figure 9 shows a blow-up of these two pyramids.

Configuration 4b: Each face of the tetrahedron has exactly two edges with split
points. The split points are the vertices of a quadrangle that splits the tetra-
hedron into two similar prisms (see Figure 10).

10

Case 4

Case 3

Case 2

Case 1

Case 8

Case 7

Case 6

Case 5

Left Back Right

Case 4

Case 3

Case 2

Case 1

Case 8

Case 7

Case 6

Case 5

Left Back Right

Figure 6: Eight possible subdivision cases of a triangular prism

v2

v1 v3

p01 p03

p02

v0

v2

v1 v3

p01 p03

p02

v0

v2

v1 v3

p01 p03

p02

v2

v1 v3

p01 p03

v2

v1 v3

p01 p03

p02

v2

v1 v3

p01 p03

p02

v0

v2

v1 v3

v0

v2

v1 v3

p01 p03

p02

p01 p03

p02

v0

v2

v1 v3

p01 p03

p02

v2

v1 v3

p01 p03

p02

v2

v1 v3

p01 p03

v2

v1 v3

p01 p03

Figure 7: Two possible tetrahedrization for Configuration 3b

11

Algorithm 1 Prism tetrahedrization for Configuration 3b
a = ShorterDiagonal(v1, p02,v2, p01)≡ (va, pa)
b = ShorterDiagonal(v2, p03,v3, p02)≡ (vb, pb)
c = ShorterDiagonal(v3, p01,v1, p03)≡ (vc, pc)
x = (a∩b)∪ (a∩c)∪ (b∩c)≡ (vx, px)
y = (a∪b∪c)−x≡ (vy, py)
if (x 6= /0) then

AddTetra(p01, p02, p03,vx)
AddTetra(px, py,vy,vx)
AddTetra(px,v1,v2,v3)

else{x = /0⇒Scḧonhardt prism}
steinerPoint= (v1 +v2 +v3 + p01+ p02+ p03)/6.0
AddTetra(va, p02, p01,steinerPoint)
AddTetra(va,vb, p02,steinerPoint)
AddTetra(vb, p03, p02,steinerPoint)
AddTetra(vb,vc, p03,steinerPoint)
AddTetra(vc, p01, p03,steinerPoint)
AddTetra(vc,va, p01,steinerPoint)
AddTetra(p01, p02, p03,steinerPoint)
AddTetra(vb,va,vc,steinerPoint)

end if

To tetrahedrize each of the two prisms, we consider the shortest diagonal of
each of the quadrangular faces contained in the boundary of the tetrahedron.
For the first prism to be tetrahedrized, two cases are possible, depending on
whether its two shorter diagonals of the exterior quadrangles have a point in
common or not. If they do (Figure 10, top right) then we are still free to split
the central quadrangle, so we look at the tetrahedrization of the second prism,
in order to minimize the probability of producing Schönhardt prisms. If they
do not (Figure 10, down right) then the interior quadrangle is split joining
the endpoints of these diagonals. The second prism will inherit the choice
of diagonal for the interior quadrangle. If it forms a Schönhardt prism, we
have no degree of freedom left, and we must introduce a Steiner point to
tetrahedrize it.

Configuration 5: This is the case where there are five split points on the edges
of the tetrahedron (see Figure 11). The figure shows how the tetrahedron
is naturally split into a prism like one of those in Configuration 4b, a pyra-
mid with quadrangular base, and two tetrahedra. The prism is tetrahedrized
like the first prism in Configuration 4b, determining the diagonal to use in
the interior quadrangle shaded in grey, which determines the splitting of the
pyramid and hence the whole tetrahedrization.

Configuration 6: All six edges of the tetrahedron contain a split point. Joining

12

v0

v2

v1 v3

p01

p23

p03

v2

v1

p01

p23

v0

v2

p01 p03

p23

v1

p01

p23

p03

v3

v0

v2

v1 v3

v0

v2

v1 v3

p01

p23

p03p01

p23

p03

v2

v1

p01

p23

v2

v1

p01

p23

v0

v2

p01 p03

p23

v0

v2

p01 p03

p23

v1

p01

p23

p03

v3v1

p01

p23

p03

v3

Figure 8: Tetrahedrization of Configuration 3c

v0

p03p01

v1

p01
p03

p12

p12

v0

v2

v1 v3

p01 p03

p02

p01 p03

p02

v2

v3

p12

p03

p02

v0

p03p01

v0v0

p03p01

v1

p01
p03

p12

v1

p01
p03

p12

p12

v0

v2

v1 v3

p01 p03

p02

p12

v0

v2

v1 v3

p01 p03

p02

p01 p03

p02

p01 p03

p02

v2

v3

p12

p03

p02

v2

v3

p12

p03

p02

Figure 9: Configuration 4a

the split points on the edges that converge to each vertex of the tetrahedron,
we obtain four small corner tetrahedra, and a central octahedron. The octa-
hedron is tetrahedrized inserting the shortest of the three internal diagonals
that join split points on opposed edges, and thus dividing it into four more
tetrahedra (see Figure 12).

An analysis of the different cases just discussed will convince the reader that
when a triangular facet is shared by two tetrahedra, the splitting on both neighbors
will be consistent at the facet: every facet with just one splitting point will have
been broken up in two triangles by joining that splitting point with the vertex op-
posed to it; every facet with two splitting points will have been broken up into three
triangles, by adding an edge joining the two splitting points, plus the shortest of the
two diagonals of the remaining quadrangle; and every facet with a splitting point on

13

v0

v2

v1 v3

p01

p23

p13

p02

v2

v1

p01

p23

p13

v0

v3

p01

p23

p02

v2

v1

p01

p23

v2

v1

p01

p23

p13

v0

v2

v1 v3

p01

p23

p13

p02

v0

v2

v1 v3

p01

p23

p13

p02

v2

v1

p01

p23

p13

v2

v1

p01

p23

p13

v0

v3

p01

p23

p02

v0

v3

p01

p23

p02

v0

v3

p01

p23

p02

v2

v1

p01

p23
v2

v1

p01

p23

v2

v1

p01

p23

p13

v2

v1

p01

p23

p13

Figure 10: Configuration 4b

p02

v0

v2

v1 v3

p01

p23

p03

v2

v1

p01

p23

p13

p01

p02

p03

p23

v3

p23

p03

v0

p01
p03

p13

p02

p03

p23

p01
p03

p13

p13

v1

p01

p02

p13

v2

p02

p23v2

v1 p13

p02

p02

v0

v2

v1 v3

p01

p23

p03

p02

v0

v2

v1 v3

p01

p23

p03

v2

v1

p01

p23

p13

v2

v1

p01

p23

p13

p01

p02

p03

p23

p01

p02

p03

p23

v3

p23

p03

v3

p23

p03

v0

p01
p03

v0

p01
p03

p13

p02

p03

p23

p01
p03

p13

p13

v1

p01

p02

p13

v2

p02

p23v2

v1 p13

p02

p13

p02

p03

p23

p13

p02

p03

p23

p01
p03

p13

p01
p03

p13

p13

v1

p01

p02

p13

v1

p01

p02

p13

v2

p02

p23

p13

v2

p02

p23v2

v1 p13

p02

v2

v1 p13

p02

Figure 11: Possible tetrahedrization of Configuration 5

14

p13

v0

v2

v1 v3

p01

p23p12

p03 p02

p12

v1

p01

p13

p12

p01

p23

p03

p13

v3

p23

p03

p13

v0

p02

p01 p03

p12

v2

p02

p23

p13

v0

v2

v1 v3

p01

p23p12

p03

p13

v0

v2

v1 v3

p01

p23p12

p03 p02

p12

v1

p01

p13

p12

p01

p23

p03

p13

v3

p23

p03

p13

v0

p02

p01 p03

p12

v2

p02

p23

p02

p12

v1

p01

p13

p12

p01

p23

p03

p13

v3

p23

p03

p13

v0

p02

p01 p03

p12

v2

p02

p23

Figure 12: Tetrahedrization of Configuration 6

each edge will have been broken up into four triangles by adding the three edges
defined by the three splitting points. Therefore this subdivision scheme allows
for completely local decisions and automatically produces conformal tetrahedriza-
tions. Note that the discrepancies along edges will coincide regardless of which
tetrahedron is used to compute them, so indeed all neighboring tetrahedra see the
same configuration and therefore consistent decisions are made on all neighbors.

4 Implementation details

Our implementation uses a lookup table indexed by the 64 possible arrangements
of splitting points on a tetrahedron. Each entry contains a specific case and the
order in which the vertices must be processed. Table 1 summarizes the possible
cases:

Here the column labeled “Case” lists the configuration number as in the dis-
cussion of the previous section and in Figure 3 above. The second column shows
the number of sub-tetrahedra into which the tetrahedron being considered is split.
In cases 3b and 4b, where a Shönhardt prism may arise, include in parenthesis the
number of tetrahedra needed in that case. The third column indicates the num-
ber of entries in the lookup table (NE) corresponding to each base case (taking
symmetries and rigid motions into account), and adds up to the 64 relevant cases
mentioned above. The last column, finally, indicates the number of different tetra-
hedrizations (NDT) that can arise in each base case because of the different possi-
ble subdivisions of the quadrangular facets. In cases 4b and 5, NDT is not a power
of two because the subdivision of the interior quadrilateral is not always free.

The proposed 11 subdivision patterns yield thus 269 different tetrahedrizations,
all based on local criteria and guaranteeing the conformity of the result.

Our algorithm proceeds as follows. Initially, we compute values for each ver-

15

Case ‖T ‖ NE NDT

0 1 1 1
1 2 6 1
2a 3 12 2
2b 4 3 1
3a 4 4 1
3b 4 (9) 4 8
3c 5 12 4
4a 6 12 4
4b 6 (11) 3 22
5 7 6 6
6 8 1 1

Table 1: Summary of the lookup table

tex of the given tetrahedrization from the voxel data, using trilinear interpolation.
Then the error at the midpoint of each edge is computed and compared with the
threshold. For each tetrahedron, the collection of edges exceeding the threshold de-
termines an index into the lookup table. If a subdivision is required (all cases except
configuration 0), the tetrahedron is removed, and replaced by the sub-tetrahedra de-
scribed above (in those configurations which involve quadrangular sub-facets, the
shortest diagonals are computed to determine the appropriate subdivision). The
lookup table store five different values. The first value represents the subdivision
case. The remaining four values are the order in which the vertices must be sorted
so as to match the standard configuration for that case. This maps each possible
rotation or symmetry onto a canonical position so the algorithm not worry about
these transformations. A pseudo-code description of the algorithm is shown in
Algorithm. 2.

Figure 13 shows an example of the program at work with a tetrahedron with
configuration 3b. The example shows how the code computes the resulting subdi-
vision without computing the transformation from the given setting to the standard
configuration. Instead, intrinsic properties are used to find the vertices of the new
tetrahedra, greatly simplifying the code.

Let us again stress that the subdivision defined gives consistent subdivisions
to neighboring tetrahedra, based on the analysis of the common facet alone (see
Figure 14). This is the reason why we have chosen to add an extra vertex in config-
urations 3b and 4b to tetrahedrize the Schönhardt prism, instead of trying to avoid
it, despite the greater number of tetrahedra required in this (certainly infrequent)
case.

16

011001→ 25

v0

v2

v1 v3

v0

v2

v1 v3

lookUpEntry = 25

case =lookUpTable[25][0]

order[] =lookUpTable[25]
= [v1,v2,v0,v3]
= [v0,v1,v2,v3]

v0

v2

v1 v3

p01 p03

p02

v0

v2

v1 v3

v0

v2

v1 v3

p01 p03

p02

p01 p03

p02

EraseTetra(idTetra)

AddTetra(v0, p01, p02, p03)

v2

v1 v3

p01 p03

p02

v2

v1 v3

p01 p03

p02

a= ShorterDiagonal(v1, p02,v2, p01)≡ (v2, p01)
b= ShorterDiagonal(v2, p03,v3, p02)≡ (v2, p03)
c= ShorterDiagonal(v3, p01,v1, p03)≡ (v1, p03)

x= (a∩b)∪ (a∩c)∪ (b∩c)≡ (v2, p03)
y= (a∪b∪c)−x≡ (v1, p01)

AddTetra(p01, p02, p03,v2)
AddTetra(p03, p01,v1,v2)
AddTetra(p03,v1,v2,v3)

v2

p03

p02

v0

p01

v3

p03

v2

p03

v1

p01

v2

p02

p03

v2

p03

p02

v0v0

p01

v3

p03

v2

v3

p03

v2

p03

v1

p01

v2

v1

p01

v2

p02

p03

Final subdivision: 4 tetrahedra

Figure 13: Example of a subdivision process for Configuration 3b

17

Algorithm 2 General algorithm
for all tetrahedronT ∈M do

errorEdges← /0
for all i such that0≤ i < 6 do {each edge of the tetrahedron}

realValue= CalculateRealValue(split pointi) {with eq. 1}
aproxValue= CalculateAproxValue(split pointi) {with eq. 2}
error = |realValue−aproxValue|/normCoe f f
if error > ε then

errorEdges← errorEdges∪edgei
end if

end for
if errorEdges.size() > 0 then

lookU pEntry= LookU pCode(errorEdges)
SubdivisionProcess(lookU pEntry)

end if
end for

Figure 14: Coherence of the subdivision

18

5 Experimental Results

We have performed two different kinds of experiments. The first one was addressed
at studying the distribution of the discrepancy inside tetrahedra, and the second at
measuring the performance of our subdivision algorithm on real testcases.

5.1 Discrepancy analysis

To determine the behaviour of the discrepancy within a tetrahedron, we computed
the value of the left-hand side of inequality (3) at regularly spaced points (those
with barycentric coordinates of the form(i

n, j
n, n−i− j

n), i, j ∈ {0, . . . ,n}).
First we tested regular subdivisions of voxels —into five tetrahedra each— to

measure the part of the discrepancy due to the difference in interpolation schemes.
We estimated the error in each tetrahedron by sampling 165 equally spaced points
(n = 8 in the formula above).

In this experiment, 93% of the time the maximum discrepancy happened at
the midpoint of one of the edges. In the remaining cases the maximum occurred
at a face of the tetrahedron (i.e. one of the barycentric coordinates was zero). In
these cases, however, at least one of the edges of the face exhibiting the maximum
discrepancy had a discrepancy of the same order.

To assess the contribution to the discrepancy coming from the higher sampling
rate of the voxels, we run further tests with coarse tetrahedrizations of volume
models. We set a threshold for the relative error such that discrepancies below that
threshold were ignored. The results obviously presented more variability. How-
ever, for a threshold of 0.001, we still found that in over 73% of the cases (again
computed takingn= 8), the maximum discrepancy occured large at the midpoint of
some edge or in a point near to this one. Increasing the threshold to 0.05 increased
the number of hits to 85%.

Based on these results we concluded that a more precise estimation of the po-
sition of maximum discrepancy would probably not yield substantial performance
benefits, and decided to proceed with a straightforward test based on comparing the
errors at the midpoints of the tetrahedra to decide wich edges to split. This choice
seems to be confirmed by experiments on medical datasets that are the subject of
the next subsection.

5.2 Performance for medical data

We have tested our algorithm on several medical datasets. The heart models were
obtained with SPECT and the liver was obtained with MRI. The MRI model has
been undersampled to a low resolution. Table 2 shows the resolutions and voxel
sizes for three of these models.

For the heart data we also had reconstructions of the inner and outer surfaces of
the ventricle, and proceeded to build a tetrahedrization between them, as presented
in [20]. For the liver model, a tetrahedrization of the voxels was performed instead.

19

Resolution voxel size (in mm.)

heart1 64x64x24 2.87x2.87x5.74
heart2 32x32x11 10.776x10.776x10.776
liver 16x16x16 24.5624x24.5624x3.19998

Table 2: Medical data sets used

Case heart1 heart2 liver
Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter.2 Iter. 3

0 231 2453 4452 244 2744 3990 7307 17149 24739
1 110 348 31 117 327 33 984 1793 566
2a 130 212 12 145 148 20 638 1354 246
2b 2 9 1 3 0 0 40 157 1
3a 1 0 0 3 0 0 15 9 0
3b 325 114 0 280 28 0 1355 11 0
3c 36 21 0 29 12 0 120 7 0
4a 13 0 0 15 0 0 89 1 0
4b 97 19 0 143 4 0 331 1 0
5 14 0 0 9 0 0 75 0 0
6 0 0 0 0 0 0 1 0 0

SP 7 0 0 10 1 0 0 0 0

Table 3: Distribution of tetrahedra among the different configurations at each iter-
ation. Threshold=10%

We tested all models with two different thresholds: 0.1 (i.e. a relative error of
10%), and 0.05 (or a relative error of 5%). Tables 3 and 4 summarize the results
obtained in these two cases for the three models listed above.

These tables show the number of tetrahedra of each type found for each of the
first three iterations of our algorithm, and for each of the example models. Notice
that the first row corresponds to case zero, where no further subdivision is required.
The last row in these tables indicates the number of Shönhardt prisms found in each
iteration.

Notice that after the second subdivision, most of the tetrahedra that require fur-
ther subdivision correspond to the cases in which the subdivision process produces
fewer tetrahedra (refer to the discussion in Section 3.2). Nonetheless the discrep-
ancy quickly decreases below the specified threshold, as shown in Tables 5 and 6.
In these tables INT designate the number of tetrahedra at the beginning of each
iteration, and FNT the number of tetrahedra after one step of subdivision. NTwE
shows the number of tetrahedra that exceed the threshold and must be subdivided.
Finally, “max. error” and “av. error” columns show the maximum relative discrep-
ancy in the model at the start of the iteration and the average of the relative error.

20

Case heart1 heart2 liver
Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter. 2 Iter. 3 Iter. 1 Iter.2 Iter. 3

0 104 2152 7857 56 1860 9562 3534 23151 41687
1 94 580 433 97 786 616 1741 4213 2552
2a 111 500 209 128 649 161 1714 3397 1758
2b 2 10 10 11 24 23 94 479 67
3a 3 6 1 4 3 0 64 84 1
3b 407 477 28 291 616 16 1971 187 28
3c 37 110 23 52 145 9 424 178 67
4a 65 24 3 103 7 0 430 21 5
4b 142 158 18 163 231 4 509 68 41
5 42 23 0 76 11 0 440 2 0
6 2 0 0 7 0 0 34 0 0

SP 6 1 0 8 30 0 0 0 0

Table 4: Distribution of tetrahedra among the different configurations at each iter-
ation. Threshold=5%

Also notice that for the chosen thresholds, it is reasonable that the average errors
to stop decreasing as shown.

In order to visualize the meaning of these discrepancies, Figures 15 and 16
show perfusion levels at two slices of a heart model. In each case, subfigure (a)
displays the original perfusion levels stored in a voxel model, and subfigures (b)
the linear interpolation with the initial tetrahedral mesh. In subfigures (c) we show
the result after four iterations of our algorithm with a threshold of 10%, and in (d)
the result after four iterations for a threshold of 5%. Notice that the subfigures (d)
are in both cases very similar to the original (in (a)), showing the quick convergence
of the algorithm. The extreme right subfigures show the discrepancies between (a)
and (d), scaled by a factor of 20 in figure 15 and by a factor of 15 in figure 16.

(a) (b) (c) (d) (e)

Figure 15: Perfusion levels of a heart’s slice. (a) Original, (b) Original tetrahedral
mesh, (c) Threshold=10%, (d) Threshold=5%, (e) Scaled discrepancies by a factor
of 20

21

INT FNT NTwE max. error av. error

Iter. 1 1009 3176 728 0.471722 0.179860
heart1 Iter. 2 3176 4496 723 0.259945 0.072018

Iter. 3 4496 4554 44 0.183811 0.049100
Iter. 4 4554 4566 10 0.138826 0.048729
Iter. 1 988 3263 744 0.530826 0.199676

heart2 Iter. 2 3263 4043 519 0.257719 0.071939
Iter. 3 4043 4116 53 0.235371 0.061403
Iter. 4 4116 4162 30 0.184703 0.060667
Iter. 1 10955 20482 3648 0.540841 0.107953

liver Iter. 2 20482 25552 3333 0.443069 0.061281
Iter. 3 25552 26613 813 0.239975 0.050338
Iter. 4 26613 26836 171 0.166551 0.048441

Table 5: Evolution of discrepancies at each iteration (Threshold = 10%)

INT FNT NTwE max. error av. error

Iter. 1 1009 4040 905 0.471772 0.179860
heart1 Iter. 2 4040 8592 1888 0.322032 0.060891

Iter. 3 8592 9757 725 0.156437 0.028232
Iter. 4 9757 10047 180 0.138826 0.025605
Iter. 1 988 4342 932 0.530826 0.199676

heart2 Iter. 2 4342 10391 2482 0.257719 0.062552
Iter. 3 10391 11502 829 0.180630 0.032707
Iter. 4 11502 12033 331 0.154164 0.030557
Iter. 1 10955 31780 7421 0.540841 0.107953

liver Iter. 2 31780 46206 8629 0.497772 0.045310
Iter. 3 46206 53060 4519 0.210582 0.032588
Iter. 4 53060 56605 2382 0.168926 0.029993

Table 6: Evolution of discrepancies at each iteration (Threshold = 5%)

22

Initial quality thrshld. 10% thrshld. 5%

heart1 0.565231 0.578719 0.574900
heart2 0.499718 0.508499 0.507415
liver 0.333292 0.313060 0.309224

Table 7: Quality of the meshes

(a) (b) (c) (d) (e)

Figure 16: Perfusion levels of a heart’s slice. (a) Original, (b) Original tetrahedral
mesh, (c) Threshold=10%, (d) Threshold=5%, (e) Scaled discrepancies by a factor
of 15

Finally, we conducted an experiment to measure the quality of the resulting
tetrahedra. We measure the quality of the tetrahedra in a standard way, using the
mean ratio, defined by Liu and Joe [8], that has the advantage of being invariant
under traslation, rotation and uniform scaling, and is efficient to compute. For a
tetrahedronT , its quality is defined asη = 12(3v)2/3/∑0≤i< j≤3 l2

i j , wherev is

the volume ofT and l2
i j are the lengths of their edges. This measure is always a

number between 0 and 1, where 1 corresponds to a regular tetrahedron.
Our last Table 7, shows the resulting qualities for the two threshold values used

in our experiments. Notice that in all cases the final qualities are similar (within
8%) to the initial qualities. This is all that can be expected of an algorithm designed
to minimize subdivision.

6 Conclusions

A method of adaptive subdivision has been developed to refine a tetrahedral mesh
immersed in a voxel model (and which inherits from the voxel model the property
values stored at its vertices) until the discrepancy of the volume property of interest
computed from the tetrahedral mesh and from the original volume data is below a
user-specified threshold.

The subdivision process is local, and requires no propagation from one cell to
another. As such, each iteration is computed in a single sweep of the model, and

23

requires no backtracking. Also for this reason, it does not require any additional
information about the connectivity of the tetrahedral mesh to be stored.

If the initial mesh is conformal, the algorithm produces a conformal mesh as
a result. Although the algorithm is local, its behavior on a facet of a tetrahedron
depends solely on the information within that facet, and not the rest of the tetra-
hedron, which ensures that neighboring tetrahedra will be handled in a consistent
way automatically.

The algorithm has shown a fast convergence to the desired discrepancy level in
all models tested.

24

Bibliography

[1] R. Bank, A. Sherman, and A. Weiser. Refinement algorithm and data struc-
tures for regular local mesh refinement.Scientific Computing, 44:3–17, 1983.

[2] J. Bey. Tetrahedral grid refinement.Computing, 55(4):355–378, 1995.

[3] D. Bielser and M. Gross. Interactive Simulation of Surgical Cuts. InProc. of
Pacific Graphics, pages 116–125. IEEE CS Press, 2000.

[4] E. Danovaro, L. De Floriani, M. Lee, and H. Samet. Multiresolution tetrahe-
dral meshes: an analysis and a comparison. InProc. Intern. Conference on
Shape Modeling, pages 83–91. IEEE CS Press, 2002.

[5] C. Forest, H. Delingette, and N. Ayache. Cutting simulation of manifold volu-
metric meshes. InMICCAI, volume 2489 ofLNCS, pages 235–244. Springer-
Verlag, 2002.

[6] F. Ganovelli, P. Cignoni, C. Montani, and R. Scopigno. Enabling cuts on
multiresolution representation. InComputer Graphics Intern., pages 183–
190. IEEE CS Press, 2000.

[7] G. Greiner and R. Grosso. Hierarchical tetrahedral-octaedral subdivision for
volume visualization.The Visual Computer, 16(6):357–369, 2000.

[8] A. Liu and B. Joe. On the shape of tetrahedra from bisection.Mathematics
of Computation, 63(207):141–154, 1994.

[9] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on
bisection.SIAM Journal on Scientific Computing, 16(6):1269–1291, 1995.

[10] A. Liu and B. Joe. Quality local refinement of tetrahedral meshes based on
8-subtetrahedron subdivision.Mathematics of Computation, 65(215):1183–
1200, 1996.

[11] A. Mor and T. Kanade. Modifying soft tissue models: Progressive cutting
with minimal new element creation. InMICCAI, volume 1935 ofLNCS,
pages 598–607. Springer-Verlag, 2000.

25

[12] A. Plaza and G. Carey. About local refinement of tetrahedral grids based
on bisection. InProc. Intern. Meshing Roundtable, pages 123–136. Sandia
Corporation, 1996.

[13] A. Plaza and G. Carey. Local refinement of simplicial grids based on skeleton.
Applied Numerical Mathematics, 32:195–218, 2000.

[14] A. Plaza, M.A. Padŕon, J.P. Súarez, and S. Falcón. The 8-tetrahedra longest-
edge partition of right-type tetrahedra.Finite Elements in Analysis and De-
sign, 41:253–265, 2004.

[15] A. Plaza and M. C. Rivara. Mesh refinement based on the 8-tetrahedra
longest-edge partition. InProc. Intern. Meshing Roundtable, pages 67–78.
Sandia Corporation, 2003.

[16] M.C. Rivara. Mesh refinement processes based on the generalized bisection
of simplices.SIAM Journal on Numerical Analysis, 21(3):604–613, 1984.

[17] M.C. Rivara. Selective refinement/derefinement algorithms for sequences of
nested triangulations.Intern. Journal for Numerical Methods in Engineering,
28:2889–2906, 1989.

[18] M.C. Rivara and G. Iribarren. The 4-Triangles longest-side partition of
triangles and linear refinement algorithms.Mathematics of Computation,
65(216):1485–1502, 1996.

[19] M.C. Rivara and C. Levin. A 3d refinement algorithm suitable for adaptive
and multigrid techniques.Communications in Applied Numerical Methods,
8:281–290, 1992.

[20] L. Rodŕıguez, I. Navazo, and́A. Vinacua. A tetrahedral model to represent
the left ventricle volume of the heart. InProc. Vision, Modeling and Visual-
ization, pages 249–256. IOS Press, 2002.

[21] D. Ruprecht, R. Nagel, and H. M̈uller. Spatial free form deformation with
scattered data interpolation methods.Computers & Graphics, 19(1):63–71,
1995.

[22] Detlef Ruprecht and Heinrich M̈uller. A scheme for edge-based adaptive
tetrahedron subdivision. InVisualization and Mathematics, pages 61–70.
Springer Verlag, 1998.

[23] S. Zhang. Successive subdivisions of tetrahedra and multigrid methods on
tetrahedral meshes.Houston Journal of Mathematics, 21(3):541–556, 1995.

[24] Y. Zhou, B. Chen, and A. Kaufman. Multiresolution tetrahedral framework
for visualizing regular volume data. InProc. IEEE Visualization conference,
pages 135–142, 1997.

26

