
Facilitating the Definition of General Constraints in UML1

(extended version)

Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya

{dolors, cristina, aqueralt, raventos, teniente}@lsi.upc.edu

Abstract. One important aspect in the specification of conceptual schemas is

the definition of general constraints that cannot be expressed by the predefined

constructs provided by conceptual modeling languages. In general this is done

by means of general-purpose languages, like OCL. In this paper we propose a

new approach to facilitate the definition of such general constraints in UML.

More precisely, we define a profile that extends the set of UML predefined

constraints with some types of constraints that are used very frequently in

conceptual schemas. We also study the application of our ideas to the

specification of two real-life applications and we show how results in

constraint-related problems may be easily incorporated to our proposal.

1. Introduction

An information system maintains a representation of the state of a domain in its

information base (IB). The conceptual schema of an information system must include

all relevant knowledge about the domain. Hence, the structural conceptual schema

defines the structure of the IB while the behavioral conceptual schema defines how

the IB changes when events occur. In UML, structural conceptual schemas are

represented by means of class diagrams [RJB05].

A complete structural conceptual schema must include the definition of all relevant

integrity constraints [ISO82]. The form of the definition of such constraints depends

on the conceptual modeling language used [Oli03]. Some constraints are inherent in

the conceptual model in which the language is based. This is the case, for example, of

referential integrity constraints in UML class diagrams. Nevertheless, almost all

constraints require an explicit definition. Most conceptual modeling languages offer a

number of special constructs for defining some of them. In particular, UML offers

graphical constructs for constraints such as multiplicity and also provides a set of

predefined constraints which includes, for instance, association “xor” constraints and

“disjoint” constraints.

However, there are many types of constraints that cannot be expressed using those

special constructs provided by conceptual modelling languages. These are general

constraints whose definition requires the use of a general-purpose sublanguage. With

this objective, UML provides OCL [OMG05]. The use of OCL is not mandatory and

1 This work has been partially supported by the Ministerio de Ciencia y Tecnologia under

project TIN2005-06053.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

the UML designer may use other languages for writing general constraints such as

Java or C++ or even natural language.

There are some problems associated to the definition of general constraints through

general-purpose languages. Constraints defined in natural language are often

imprecise and ambiguous. Editing OCL constraints manually, although providing the

means to write constraints with a precise semantics, is time-consuming and error-

prone and OCL expressions may be difficult to understand for non-technical readers.

Moreover, an automatic treatment of those constraints (either for reasoning or for

automatic code generation) may be difficult to achieve.

For these reasons, it becomes necessary to reduce the extent of cases in which

constraints must be defined through general-purpose languages. In this sense, we

propose to extend the set of UML predefined constraints with some types of

constraints that are used very frequently in conceptual schemas. We make the

extension by defining a UML profile, the standard mechanism that UML establishes

to incorporate new constructs to the language. The application of this profile has been

studied in the specification of two real-life applications: the EU-Rent Car Rentals

system [FQO03] and a conceptual schema for e-marketplaces [QT05].

Our proposal facilitates the definition of general constraints in UML since it

decreases significantly the number of constraints that must be defined and,

consequently, it reduces the scope of the problems associated to their use.

Our approach provides also important advantages regarding the automatic

treatment of integrity constraints. In particular, our profile allows incorporating easily

previous results on reasoning about constraint-related problems (such as satisfiability

or redundancy) and facilitates obtaining an automatic implementation of the

constraints defined in the conceptual schema. In this way, another contribution of our

work is to show the significant advantages provided by the use of constraint

stereotypes in conceptual modelling.

The rest of the paper is organised as follows. Next section illustrates the problems

regarding the definition of general constraints. Section 3 presents our profile, whose

application to two case studies is discussed in Section 4. Section 5 shows how to

reason about the constraints specified in our profile. Section 6 reviews related work

while, finally, Section 7 presents our conclusions and points out future work.

2. Problems in the Definition of General Constraints

There are some problems associated to the definition of general constraints. We will

illustrate them according to the example in Figure 1 which refers to a fragment of a

system that supports teaching activities of a University. The structural schema shows

the definition of courses and their sections. It also contains information on teachers,

their course of expertise and their assignment to sections. The structural schema

includes eight general constraints, whose specification as OCL invariants is given in

Figure 1:

1) Courses are identified by their name

2) Courses are identified by their code

3) Teachers are identified by the union of their name and last name

Facilitating the Definition of General Constraints in UML (extended version) 3

4) Each section is identified by its number within each course

5) There are no cycles in the recursive association IsPrerequisiteOf, i.e., a course

cannot be directly or indirectly prerequisite of itself.

6) Teachers assigned to sections of a course must be experts in that course

7) The size of sections, in any case, cannot be greater than 80

8) Courses must have at least a lecturer or a professor

Fig. 1. Fragment of the class diagram for the example application

If general constraints are defined in natural language, they are often imprecise and

ambiguous and their interpretation and treatment remain as a human responsibility. In

our example, the previous descriptions of the constraints may be subject to wrong

interpretations because they do not establish unambiguously their precise meaning.

This problem may be avoided by using formal general-purpose languages such as

OCL. Formal languages provide the means to write constraints with precise

semantics. Nevertheless, we can also identify some disadvantages of using them:

− Difficulty of understanding for non-technical readers. For example, previous

constraints would not be easy for readers not familiar with OCL.

− Time-consuming definition: the designer must define explicitly the underlying

semantics of each particular constraint. Additionally, in the frequent case in which

there are groups of constraints that can be considered of the same type and that

share common semantic aspects, the complete semantics of all the constraints of

the same type must be defined for each individual constraint. This happens, for

example, in the definition of textual constraints nameUnique, codeUnique,

nameLastNameUnique and courseNumberUnique of Figure 1.

− Error-prone definition: formal languages are sometimes difficult to use for the

designers inducing the possibility of mistakes. For instance, the constraint

isPrerequisitOfIsAcyclic is not easily defined in OCL. Moreover, the designer

could use ‘includes’ instead of ‘includesAll’ in constraint

sectionTeacherMustBeExpert and then the expression would be wrong.

4 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

− Difficulty of automatic treatment: constraints expressed by means of general-

purpose languages are very difficult to interpret automatically since they do not

have a pre-established interpretation that can be easily incorporated to CASE tools.

The lack of easy automatic interpretation has the following consequences on the

automatic treatments that may be performed:

� Some well-studied rules that allow reasoning about the constraints cannot

be automatically applied.

� Constraint semantics are difficult to incorporate to subsequent models

generated automatically and, in particular, to code generation. This is a

drawback towards obtaining one of the goals of the MDA, i.e., making the

transformation from platform-independent models (PIMs) to platform-

specific models (PSMs) as automatic as possible [OMG03].

From the above listed difficulties, we can conclude that it is interesting to reduce

the extent of cases in which UML constraints must be defined using general-purpose

languages. Next section presents our proposal in this direction.

3. Predefining Constraints

A constraint is a condition expressed in natural language or in a machine readable

language to add some semantics to an element. UML offers a number of special

constructs to define some common constraints, such as multiplicity. In addition,

certain kinds of constraints, such as a disjoint constraint, are predefined in UML, but

there are many others that cannot be expressed using these constructs and their

definition requires the use of a specific language, such as OCL.

There are, however, some kinds of user-defined constraints that occur very

frequently in conceptual schemas. For instance, a very prominent kind of constraint is

the identifier constraint [Hal01, MB02], which may have several realizations such as

nameUnique or codeUnique for a given class, i.e., either the attribute name or the

attribute code uniquely identify instances of said class.

In this section we present our proposal to extend the set of predefined constraints

offered by UML. We use the standard extension mechanism provided by UML, the

definition of a profile [RJB05, OMG05], to achieve this goal. In particular, we define

a set of stereotypes that provide some additional semantics to UML constraints that

play the role of invariants.

We have defined stereotypes for some of the most frequent generic kinds of

constraint, namely uniqueness, recursive association, path comparison and value

comparison constraints. The use of these stereotypes prevents the designer from

having to define explicit expressions to specify the corresponding constraints every

time they appear. Instead, these constraints can be graphically represented in the class

diagram, and, optionally, to be generated automatically in OCL.

Once applied our stereotypes to the example in Figure 1, seven out of the eight

textual constraints (all except the last one) could be expressed graphically in the class

diagram, making unnecessary their definition in natural language or in OCL.

Facilitating the Definition of General Constraints in UML (extended version) 5

3.1 UML Profile for Predefined Constraints

Our profile contains a set of stereotypes that extend the semantics of a constraint.

Thus, the metaclass Constraint of the UML metamodel is extended by means of

several stereotypes representing generic kinds of constraints, divided in four groups

according to their semantics. The metaclass Constraint refers to a set of

constrainedElement, i.e. those elements required to evaluate the constraint. The

context of Constraint may be used as a namespace for interpreting names used in the

expression. Each constraint has an associated OpaqueExpression that includes the

constraint expression and the language used to define it. Each instance of Constraint

represents a user-defined constraint, which may play the role of invariant,

precondition, postcondition or body condition of an operation.

Figure 2 shows the abstract stereotype PredefinedConstraint, with six subtypes:

Uniqueness, RecursiveAssociation, PathComparison, ValueComparison,

MandatoryDisjoint and CardinalityAssoc stereotypes.

Fig. 2. UML Profile for Predefined Constraints

In order to describe each stereotype defined in this profile, we adopt a uniform and

consistent template which includes the following sections: (1) Name of the constraint.

(2) Semantics: describes the meaning of the constraint. (3) Stereotype Description:

description of the relevant structural aspects of the stereotype proposed as solution to

the constraint. (4) Attributes: contains a list of the attributes that are defined for the

stereotype. (5) Constraints: defines well-formedness rules that apply to the stereotype.

(6) Notation: gives the basic notational forms used to represent and use the stereotype

in class diagrams. (7) Example: includes additional illustrations of the application of

the stereotype and its notation.

6 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

3.1.1 PredefinedConstraint

Semantics
PredefinedConstraint defines those features shared by all constraints that are

instances of this stereotype. Instances of this stereotype are the union of instances of

the stereotypes presented in next sections. Each instance of this stereotype represents

a constraint over a set of elements that can be generated automatically in OCL

Stereotype Description
PredefinedConstraint is an abstract stereotype of Constraint.. The

constrainedElement of this stereotype is a set of elements and the language of the

associated OpaqueExpression may be either OCL (if the designer chooses to represent

the constraint also in this language) or it is left empty (if only the graphical

representation is selected).

Constraints
[1] An instance of this stereotype cannot be a precondition or a postcondition of an

operation.

3.1.2 Uniqueness Constraint

Semantics
A uniqueness constraint defines a uniqueness condition over the population of a class.

It captures some conditions that apply to the values of attributes of ints instances. In

particular, we distinguish two types of uniqueness constraints: the identifier constraint

i.e., a set of attributes of a class that uniquely identifies it; and the weak identifier,

constraint, i.e., a set of attributes of a class combined with another class associated to

the former that uniquely identifies the instances of such a class.

Stereotype Description
Uniqueness is an abstract stereotype of Constraint and a subclass of

PredefinedConstraint. An instance of this stereotype represents a constraint over a

class that defines a uniqueness condition over its population.

3.1.3 Identifier Constraint

Semantics

An identifier is a set of one or more attributes of a class that uniquely distinguishes

each instance of such a class.

Let A be a class with a set of attributes {a1,...,an}. An identifier constraint specifies

that a subset {ai,...,aj} of those attributes uniquely identifies the instances of A. This

constraint may be expressed in OCL as follows:

context A inv: A.allInstances()->isUnique(Tuple{cai:ai,...,caj:aj})

Facilitating the Definition of General Constraints in UML (extended version) 7

Stereotype Description
Identifier is a concrete stereotype of Constraint and a subclass of Uniqueness. An

instance of this stereotype represents a uniqueness condition over a set of attributes of

a class. The constrainedElement must be of type Property.

Constraints
[1] None of the constrainedElement has the lower bound of their multiplicity equal

to zero.

[2] There cannot be two instances of Identifier such that constrainedElement be a

subset of the other constrainedElement.

[3] There cannot be an instance of WeakIdentifier such that constrainedElement be

the same as constrainedElement of Identifier.

Notation
The notation for an identifier constraint is a constraint with stereotype «Identifier».

There is a dashed line between the stereotyped constraint and its constrained

elements.

Example
An example of the identifier constraint is nameLastNameUnique, shown in Figure 1.

It states that instances of Teacher are identified by the union of their name and

lastName. Figure 3 shows the use of the «Identifier» stereotype to represent the

constraints nameLastNameUnique.

Fig. 3. Example of the use of Identifier and WeakIdentifier stereotypes

3.1.4 Weak Identifier Constraint

Semantics
A weak identifier is a set of one or more attributes of a class that with the combination

of another associated class uniquely distinguishes each instance of the former class.

Let A be a class with a set of attributes {a1,...,an} and associated, via the member end

b, to a class B. A weak identifier constraint specifies that a subset {ai,...,aj} of those

attributes, combined with B, uniquely identifies the instances of A. This constraint

may be formally expressed in OCL as follows:

context A inv: A.allInstances()->isUnique(Tuple{cb:B,cai:ai,...,caj:aj})

8 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Stereotype Description
WeakIdentifier is a concrete stereotype of Constraint and a subclass of Uniqueness.

An instance of this stereotype represents a constraint over a class that defines which

set of attributes combined with an associated former class uniquely identifies the

instances of such a class.

Constraints

[1] None of the constrainedElement has the lower bound of their multiplicity equal

to zero.

[2] One of the constrainedElement corresponds to a property associated to the class

that owns the other constrained elements and multiplicity 1.

Notation
The notation for a weak identifier constraint is a constraint with stereotype

«WeakIdentifier».There is a dashed line between the stereotyped constraint and its

constrained elements.

Example
An example of the weak identifier constraint is courseNumber shown in Figure 1. It

states that each instance of Section is identified by its number within each instance of

Course. Figure 3 shows the use of «WeakIdentifier» stereotype to represent the

constraints courseNumberUnique stated above. There is a dashed line between the

constraint with the corresponding stereotype and its constrained elements.

3.1.5 Recursive Association Constraint

Semantics
Recursive association constraints, called ring constraints in [Hal01], are a type of

constraints that apply over a recursive binary association, guaranteeing that the

association fulfills a certain property. We consider five types of those constraints:

irreflexive, symmetric, antisymmetric, asymmetric and acyclic constraints.

Stereotype Description

RecursiveAssociation is an abstract stereotype of Constraint and a subclass of

PredefinedConstraint. An instance of this stereotype represents a constraint over a

binary and recursive association that defines a condition over its population.

Constraints
[1] A recursive association invariant has as constrainedElement an association.

[2] The constrainedElement association must be binary and recursive.

[3] An instance of recursive association constraint must have as a namespace one of

the member end class of the association.

[4] There cannot be two instances of the same recursive association constraint for

the same association.

Facilitating the Definition of General Constraints in UML (extended version) 9

3.1.6 Irreflexive Constraint

Semantics

An irreflexive constraint represents a constraint over a recursive association. This

restriction constrains the extension of the association defining it as irreflexive. Let A

be a class and R a recursive association over A, with r1 and r2 member ends. An

irreflexive constraint over R guarantees that if a is instance of A then a is never R-

related to itself. This constraint may be formally expressed in OCL as follows:

context A inv: self.r2->excludes(self)

Stereotype Description
Irreflexive is a concrete stereotype of Constraint and a subclass of

RecursiveAssociation. Each instance of the stereotype represents the constraint related

to a recursive association that defines it as irreflexive.

Constraints
[1] There cannot be another instance of asymmetric nor acyclic constraint for the

same association2.

Notation
The notation for an irreflexive constraint is a constraint with stereotype «Irreflexive».

Example
See the example in Figure 4. The recursive association playMatch between two

football teams is restricted by an irreflexive constraint. This means that local team t1

cannot play a match with visitor team t1.

Fig. 4. Example of a Recursive Association with stereotype «Irreflexive»

3.1.7 Symmetric Constraint

Semantics

A symmetric constraint represents a constraint over a recursive association. This

restriction constrains the extension of the association defining it as symmetric. Let A

be a class and R a recursive association over A, with r1 and r2 member ends. A

symmetric constraint over R guarantees that if a and b are instances of A and a is R-

related to b then b is R-related to a. Formally, in OCL:

context A inv: self.r2.r2->includes(self)

2 This constraint is defined to avoid redundancy between recursive association invariants

10 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Stereotype Description
Symmetric is a concrete stereotype of Constraint and a subclass of

RecursiveAssociation. Each instance of the stereotype represents the constraint related

to a recursive association that defines it as symmetric.

Constraints
[1] There cannot be another instance of acyclic, asymmetric nor antisymmetric

constraint for the same association3.

Notation

The notation for a symmetric constraint is a constraint with stereotype «Symmetric».

Example

See the example in Figure 5. The recursive association isMarriedTo between two

people is constrained by a symmetric constraint. This means that if person p1 is

married to person p2 then person p2 is married to person p1.

Fig. 5. Example of a Recursive Association with stereotype «Symmetric»

3.1.8 Antisymmetric Constraint

Semantics
An antisymmetric constraint represents a constraint over a recursive association. This

restriction constrains the extension of the association defining it as antisymmetric. Let

A be a class and R a recursive association over A, with r1 and r2 member ends. An

antisymmetric constraint over R guarantees that if a and b are instances of A, a is R-

related to b and b is R-related to a, then a and b are the same instance. In OCL:

context A inv: self.r2->excludes(self) implies self.r2.r2->excludes(self)

Stereotype Description
Antisymmetric is a concrete stereotype of Constraint and a subclass of

RecursiveAssociation. Each instance of the stereotype represents the constraint related

to a recursive association that defines it as antisymmetric.

Constraints
[1] There cannot be another instance of symmetric constraint for the same

association3.

3 This constraint is defined to validate interactions between recursive association invariants

Facilitating the Definition of General Constraints in UML (extended version) 11

[2] There cannot be another instance of asymmetric nor acyclic constraint for the

same association2.

Notation
The notation for an antisymmetric constraint is a constraint with stereotype

«Antisymmetric».

Example
See the example in Figure 6. The recursive association follows_or_hasSamePosition

between two people in a classification is constrained by an antisymmetric constraint.

This means that if person p1 and person p2 are different then if person p1 follows or

has the same position in a classification as person p2 then person p2 cannot follows or

has the same position as person p1.

Fig. 6. Example of a Recursive Association with stereotype «Antisymmetric»

3.1.9 Asymmetric Constraint

Semantics
An asymmetric constraint represents a constraint over a recursive association. This

restriction constrains the extension of the association defining it as asymmetric. Let A

be a class and R a recursive association over A, with r1 and r2 member ends. An

asymmetric constraint guarantees that if a and b are instances of A and a is R-related

to b then b is not R-related to a. Observe that this constraint is equivalent to the union

of antisymmetric an irreflexive constraints. It may be expressed in OCL as follows:

context A inv: self.r2.r2->excludes(self)

Stereotype Description

Asymmetric is a concrete stereotype of Constraint and a subclass of

RecursiveAssociation. Each instance of the stereotype represents the constraint related

to a recursive association that defines it as asymmetric.

Constraints
[1] There cannot be another instance of symmetric constraint for the same

association3.

[2] There cannot be instances of antisymmetric nor irreflexive nor acyclic

constraints for the same association2.

12 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Notation
The notation for an asymmetric constraint is a constraint with stereotype

«Asymmetric».

Example
See the example in Figure 7. The recursive association supervises between a

supervisor and a supervised employee is constrained by an asymmetric constraint.

This means that if employee e1 is a supervisor of employee e2 then employee e2

cannot be a supervisor of employee e1.

Employee

supervisor

supervised

*

*

supervises

{«Asymmetric»}

Fig. 7. Example of a Recursive Association with stereotype «Asymmetric»

3.1.10 Acyclic Constraint

Semantics
An acyclic constraint represents a constraint over a recursive association. This

restriction constrains the extension of the association defining it as asymmetric. Let A

be a class and R a recursive association over A, with r1 and r2 member ends. An

acyclic constraint guarantees that if a and b are instances of A and a is R-related to b

then b or instances R-related directly or indirectly to b are not R-related to a.

Formally, in OCL:

context A

def: successors(): Set(A) = self.r2->union(self.r2.successors())

inv: self.successors()->excludes(self)

Stereotype Description
Acyclic is a concrete stereotype of Constraint and a subclass of RecursiveAssociation.

Each instance of the stereotype represents the constraint related to a recursive

association that defines it as acyclic.

Constraints
[3] There cannot be another instance of symmetric constraint for the same

association3.

[4] There cannot be instances of asymmetric nor antisymmetric nor irreflexive

constraints for the same association2.

Notation
The notation for an acyclic constraint is a constraint with stereotype «Acyclic».

Facilitating the Definition of General Constraints in UML (extended version) 13

Example
In the example of Figure 1, isPrerequisiteOfIsAcyclic is a constraint of this type that

applies to the recursive association isPrerequisiteOf. Figure 8 shows the definition of

this constraint as an instance of the Acyclic stereotype.

Fig. 8. Applying Acyclic, PathInclusion and ValueComparison stereotypes

3.1.11 Path Comparison Constraint

Semantics
Path comparison constraints restrict the way the population of one role or role

sequence (path for short) relates to the population of another [Hal01]. Constraints

belonging to this type are path inclusion, path exclusion and path equality. They all

apply to a class A related to a class B via two different paths r1...ri, rj...rn. We

consider three types of those constraints: path inclusion, path exclusion and path

equality constraints.

Stereotype Description
PathComparison is an abstract stereotype of Constraint and a subclass of

PredefinedConstraint. An instance of this stereotype represents a constraint that

defines a set comparison over two paths. The constrainedElement of this stereotype is

the start class of both paths.

Attributes

• path1, path2: String [1..*] {ordered} Specify the paths to be compared.

Constraints

[1] The constrainedElement associated to an instance of PathsComparison is an

element of type Class.

[2] path1 and path2 correspond to valid paths.

[3] The first element of each path corresponds to a property of the constrained class.

14 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

[4] The classes reached by each path are the same.

[5] There cannot be two instances of PathComparison with the same paths.

3.1.12 Path Inclusion Constraint

Semantics
Let A and B be two classes related via two different paths r1...ri and rj...rn. A path

inclusion constraint guarantees that if a is an instance of A, the set of instances of B

related to a via r1...ri includes the set of instances of B related to a via rj...rn. It can

be expressed in OCL as follows:

context A inv: self.r1...ri->includesAll(self.rj...rn)

Stereotype Description

PathInclusion is a concrete stereotype of Constraint and a subclass of

PathComparison. Each instance of the stereotype represents a constraint that defines

an inclusion relationship between the sets of instances at the end of two paths.

Notation
The notation for path inclusion constraints is a constraint with stereotype

«PathInclusion». Values of path1 and path2 attributes are shown in a note attached to

the constraint.

Example
See the example in Figure 8. Class Course has a PathInclusion constraint meaning

that the teachers assigned to sections of a course must be expert in that course.

3.1.13 Path Exclusion Constraint

Semantics
Let A and B be two classes related via two different paths r1...ri and rj...rn. A path

exclusion constraint guarantees that if a is an instance of A, the set of instances of B

related to a via r1...ri does not contain any of the instances of B related to a via rj...rn.

Formally, in OCL:
context A inv: self.r1...ri->excludesAll(self.rj...rn)

Stereotype Description

PathExclusion is a concrete stereotype of Constraint and a subclass of

PathComparison. Each instance of the stereotype represents a constraint that defines

an exclusion relationship between the sets of instances at the end of two paths.

Notation
The notation for path exclusion invariants is a constraint with stereotype

«PathExclusion». Values of path1 and path2 attributes are shown in a note attached to

the constraint.

Facilitating the Definition of General Constraints in UML (extended version) 15

Example
See the example in Figure 9. Class Course has a PathExclusion constraint meaning

that the teachers assigned to sections of a course cannot be beginners in that course.

Section

Teacher

Course
1

*

1

*

*

*
beginner

 «PathExclusion»

path1 = {"section","teacher"}

path2 = {"beginner"}

{«PathExclusion»}

Fig. 9. Example of a Class with stereotype «PathExclusion»

3.1.14 Path Equality Constraint

Semantics
Let A and B be two classes related via two different paths r1...ri and rj...rn. A path

equality invariant guarantees that if a is an instance of A, the set of instances of B

related to a via r1...ri coincides with the instances of B related to a via rj...rn. In OCL,

this constraint is expressed as follows:

context A inv: self.r1...ri = self.rj...rn

Stereotype Description
PathEquality is a concrete stereotype of Constraint and a subclass of

PathComparison. Each instance of the stereotype represents a constraint that defines

an equality relationship between the sets of instances at the end of two paths.

Notation
The notation for path equality invariants is a constraint with stereotype

«PathEquality». Values of path1 and path2 attributes are shown in a note attached to

the constraint.

Example
See the example in Figure 10. Class Course has a PathEquality constraint meaning

that all the teachers that belong to a course must be assigned to a section of that

course.

16 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Section

Teacher

Course
1

*

1

*

*

*
beginner

 «PathEquality»

path1 = {"teacher"}

path2 = {"section","teacher"}

{«PathEquality»}

Fig. 10. Example of a Class with stereotype «PathEquality»

3.1.15 Value Comparison Constraint

Semantics
Value comparison constraints restrict the possible values of an attribute, either by

comparing it to a constant or to the value of another attribute [Ack05].

Let A be a class, let a1 be an attribute of A, let v be either a constant or the value of

an attribute accessible from A and let op be an operator of kind <, >, =, <>, ≤, or ≥. A

value comparison constraint restricts the possible values of a1 regarding the value of

v. This constraint can be formally expressed in OCL as follows:

context A inv: self.a1 op v

Stereotype Description
ValueComparison is a concrete stereotype of Constraint and a subclass of

PredefinedInv. An instance of this stereotype represents a constraint that restricts the

value of an attribute.

Attributes

• operator: OperatorKind

• value: String[1..*] {ordered}

Specifies the operator to be used in the

comparison.

Specifies the value to be compared to the

attribute. It can be either a path or a constant.

Constraints

[1] The constrainedElement associated to an instance of ValueComparison is an

element of type Property, not belonging to an association.

[2] The constrained attribute has multiplicity 1.

[3] The attribute value represents either a valid path starting from the class that

owns the constrained attribute, or a constant.

[4] If value is a path, its last element is an attribute with multiplicity 1.

[5] The type of the value represented in value conforms to the type of the

constrained attribute.

[6] If the constrained attribute is of type Boolean, the operator can only be = or <>

[7] There cannot be two instances of ValueComparison referring to the same

attribute and value.

Facilitating the Definition of General Constraints in UML (extended version) 17

Notation
The notation for value comparison constraints is a constraint with stereotype

«ValueComparison» attached to an attribute. Values of operator and value attributes

are shown in a note attached to the constraint.

Example
See the example in Figure 8. Attribute age has a ValueComparison constraint

meaning that the number of students of a section must be lower than 80.

3.1.17 Mandatory Disjoint Constraint

Semantics
A mandatory disjoint constraint restricts that the disjunction of a set of attributes is

mandatory {{158 Halpin, T. 2001; }}.

Let A be a class with a set of attributes, {at1,...,atn}. Mandatory disjoint invariant

allows to specify that at least values of one of disjoint set of attributes

{{ati,...,atj},…,{atp,...,atq}}, where {ati,...,atj},…,{atp,...,atq} are disjoint subsets of

{at1,...,atn}, are mandatory. This constraint may be expressed, formally, in OCL as

follows:

context A inv:

(ati->notEmpty() and … and atj->notEmpty()) or …or (atp->notEmpty() and …

and atq->notEmpty())

Stereotype Description
MandatoryDisjoint is a concrete stereotype of Constraint. An instance of this

stereotype represents a constraint over a class that defines for any instance of a class

which values of disjoint set of attributes are mandatory.

Attributes

• disjointGroups:Set(String)[2..*]

Specifies two or more disjoint groups of sets

of strings.

Constraints
[1] The constrainedElement associated to MandatoryDisjoint is an element of type

Class.

[2] There cannot be two instances of MandatoryDisjoint with the same

disjointGroups.

[3] The disjointGroups attribute corresponds to the name of disjoint subsets of

 attributes of the constrainedElement class.

[4] None of groups of disjointGroups can be empty.

[5] At least, one of the attributes of each group of disjointGroups has 0 as

minimum multiplicity.

[6] An instance of mandatory disjoint constraint must have as a namespace the

same class as constrainedElement class.

18 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Notation
The notation for a mandatory disjoint constraint is a constraint with stereotype

«MandatoryDisjoint». Values of disjointGroups attribute that is a set of 2 or more

sets of 1 or more strings are shown in a note attached to the constraint.

Example
See the example in figure 11. The class Person has a mandatory disjoint invariant

which ensures that either name, lastname or SSNumber are mandatory.

Fig. 11. Example of a class with stereotype «MandatoryDisjoint»

3.1.16 Cardinality Association Constraint

Semantics
A cardinality association constraint represents a restriction over an n-ary association,

i.e. association that has three or more ends.

Let R be an association and let fixedEnds and relatedEnds be disjoint subsets of

the end properties related by R shown in Figure 12. A cardinality association

constraint for fixedEnds and relatedEnds restricts the minimum and maximum

number of instances of R that relate any combination of objects, such that the

combination includes an object that is instance of each one of the owner end classes

of the properties in fixedEnds, with a different combination of objects that are

instance of each one of the owner end classes of the properties in relatedEnds.

Observe that when relatedEnds has a single property and fixedEnds has the rest of

properties related by the association, the corresponding cardinality constraint can be

expressed graphically in UML class diagrams by means of the multiplicity of the

association ends. Nevertheless, the rest of cardinality constraints of an n-ary

association can not be expressed graphically in UML class diagrams.

Facilitating the Definition of General Constraints in UML (extended version) 19

...

Fig. 12. Example of an n-ary association

Assume that association R of Figure 12 has a cardinality association constraint

where:

- fixedEnds = {r1,r2…,ri}.

- relatedEnds = {ri+1,…,rk}.

- min is the minimum cardinality established by the constraint.

- max is the maximum cardinality established by the constraint.

Then, the corresponding cardinality association constraint can be expressed,

formally, in OCL as follows:

context A1 inv:

A1.allInstances()->forAll(vr1|A2.allInstances()->forAll(vr2| …Ai.allInstances()->

forAll(vri| R.allInstances()->select(t| t.r1=vr1 and t.r2=vr2 and … and t.ri=vri))…))-

> collect(t| Tuple{cri+1=t.ri+1, …, crk=t.rk})->asSet()->size()>= min and

A1.allInstances()->forAll(vr1|A2.allInstances()->forAll(vr2| …Ai.allInstances()->

forAll(vri| R.allInstances()->select(t| t.r1=vr1 and t.r2=vr2 and … and t.ri=vri))…))-

> collect(t| Tuple{cri+1=t.ri+1, …, crk=t.rk}) ->asSet()->size()<= max

Stereotype Description
CardinalityAssoc is a concrete stereotype of Constraint. Each instance of this

stereotype represents constraint related to an n-ary association that restricts its

cardinality.

Attributes
fixedEnds: String[1..*]{ordered,unique}

 Specifies a subset of the end properties of the

association that constitute the fixedEnds of the

cardinality constraint.

relatedEnds: String[1..*]{unique}

Specifies a subset of the end properties of the

association that constitute the relatedEnds of the

cardinality constraint.

minCard: String Specifies the minimum cardinality permitted by the

cardinality association constraint.

20 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

maxCard: String Specifies the maximum cardinality permitted by the

cardinality association constraint.

Constraints
[1] A cardinality association constraint has as constrainedElement an association.

[2] The constrainedElement association must be n-ary (association that has three or

more ends).

[3] minCard must represent a non-negative integer.

[4] maxCard must be ‘*’ and, otherwise, must represent a positive integer.

[5] If maxCard is different from ‘*’ then the value it represents must be greater

than the value represented by minCard.

[6] Properties represented by values in fixedEnds must be end properties of the

constrainedElement association.

[7] Properties represented by values in relatedEnds must be end properties of the

constrainedElement association.

[8] fixedEnds and relatedEnds must be disjoint.

[9] If relatedEnds has a single element then the number of elements of relatedEnds

must be less than the number of ends of the constrainedElement association

minus 1. Otherwise the constraint could be graphically represented in UML.

[10] There cannot be another instance of cardinality association constraint such that

has as constrainedElement the same association and that properties represented

in fixedEnds and relatedEnds are the same, respectively.

[11] A cardinality association constraint must have as namespace the end class that

owns the property that corresponds to the first element in fixedEnds.

Notation
The notation for a cardinality association constraint is a constraint with stereotype

«CardinalityAssoc». Values of fixedEnds, relatedEnds, minCard and maxCard

attributes are shown in a note attached to the constraint.

Examples
See the example in Figure 13. The n-ary association Supply has a cardinality

association constraint which establishes that for any building under construction and

day, the maximum number of supplies of different products and suppliers is 50.

Facilitating the Definition of General Constraints in UML (extended version) 21

Fig. 13. Example of a n-ary association with stereotype «CardinalityAssoc»

See the example in Figure 14. The n-ary association Uses, which represents the skills

used by employees in the projects where they participate, has a cardinality constraint

invariant which establishes that the maximum number of projects where an employee

may participate is 5.

Fig. 14. Example of a n-ary association with stereotype «CardinalityAssoc»

3.2 Creating the Instances of an Stereotype

To be able to specify new predefined constraints, for each stereotype we have also

defined an operation that allows creating its instances. This operation associates to

each new instance its corresponding context, constrained elements and specification.

This specification has an empty body attribute if the designer only desires a graphical

representation. Otherwise, if the designer also requires the definition of the OCL

expression, the operation assigns to the body attribute the expression automatically

generated according to the type of constraint.

The specification of the operations to create instances of the stereotypes defined

above is given in next subsections.

22 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

3.2.1 NewIdentifier Operation
The operation newIdentifier results in the creation of an instance of the stereotype

Identifier.

The parameters needed are a class, the set of attributes that identify each of its

instances, the name of the constraint and the way to represent this constraint in the

schema which is an enumeration of two values ocl and graphically. The value ocl

indicates that the constraint will be represented graphically and textually in OCL and

the value graphically indicates that the representation will be only graphical. The

postconditions guarantee that a new instance of Identifier will be created, the

constrained elements will be the set of properties and the namespace will be the

indicated class. This operation can be defined in OCL as follows:

context Identifier::newIdentifier(c:Class, a:Set(Property), name:String[0..1],

representation:RepresentationType)

let ident = 'Tuple{'.concat(Sequence{1..a->size()}-> iterate(pn; s: String = '' | s.concat((if

(pn>1) then ', ' else'' endif).concat ('c').concat(a->at(pn). name).concat (': ').concat

(a-> at(pn). name)))).concat('}') in

 post: id.oclIsNew() and id.oclIsTypeOf(Identifier) and id.name=name and

 id.constrainedElement -> includesAll(a.name) and

 c.ownedRule->includes(id) and

 expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

 id.specification = expr and

 representation=RepresentationType::ocl implies

expr.language = 'OCL' and expr.body = 'context '.concat(id.context.name).

concat(' inv ').concat(name).concat(': ').concat(c.name).concat('.allInstances()->

isUnique('). concat(ident).concat(')')

3.2.2 NewWeakIdentifier Operation
The operation newWeakIdentifier results in the creation of an instance of the

stereotype WeakIdentifier.

The parameters needed are a class, the set of properties (attributes and the associated

class) that identify each instances of the former class, the name of the constraint and

the way to represent this constraint in the schema. The postconditions guarantee that

a new instance of WeakIdentifier will be created, the constrained elements will be the

set of properties and the namespace will be the indicated class. This operation can be

defined in OCL as follows:

context WeakIdentifier::newWeakIdentifier(c:Class, a:Set(Property), name:String[0..1],

representation:RepresentationType)

let ident = 'Tuple{'.concat(Sequence{1..a->size()}-> iterate(pn; s: String = '' | s.concat((if

(pn>1) then ', ' else'' endif).concat ('c').concat(a->at(pn). name).concat (': ').concat

(a-> at(pn). name)))).concat('}') in

 post: id.oclIsNew() and id.oclIsTypeOf(WeakIdentifier) and id.name=name and

 id.constrainedElement -> includesAll(a.name) and c.ownedRule->includes(id) and

 expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

 id.specification = expr and

 representation=RepresentationType::ocl implies

expr.language = 'OCL' and expr.body = 'context '.concat(id.context.name).

concat(' inv ').concat(name).concat(': ').concat(c.name).concat('.allInstances()->

isUnique('). concat(ident).concat(')')

Facilitating the Definition of General Constraints in UML (extended version) 23

3.2.3 NewIrreflexive Operation
The operation newIrreflexive results in the creation of an instance of the stereotype

Irreflexive.

The parameters needed are an association, the name of the constraint and the way to

represent this constraint in the schema. The postconditions guarantee that a new

instance of Irreflexive will be created, the constrained elements and the namespace

will be the association. This operation can be defined in OCL as follows:

context Irreflexive:: newIrreflexive (a:Association, name:String[0..1],

representation:RepresentationType)

let rol:String = if a.memberEnd->last().name->isEmpty()

then a.memberEnd-> last().class.name

else a.memberEnd->last().name

in
post: irref.oclIsNew() and irref.oclIsTypeOf(Irreflexive) and irref.name=name and

irref.constrainedElement->includes(a) and

a.memberEnd->last().class.ownedRule->includes(irref) and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

irref.specification=expr and

 representation=RepresentationType::ocl implies

expr.language='OCL' and

expr.body='context '.concat(irref.context.name).concat(' inv'). concat(name).

concat(': self.').concat(rol).concat('<>self')

3.2.4 NewSymmetric Operation
The operation newSymmetric results in the creation of an instance of the stereotype

Symmetric.

The parameters needed are an association, the name of the constraint and the way to

represent this constraint in the schema. The postconditions guarantee that a new

instance of Symmetric will be created, the constrained elements and the namespace

will be the association. This operation can be defined in OCL as follows:

context Symmetric:: newSymmetric (a:Association, name:String[0..1],

representation:RepresentationType)

let rol:String = if a.memberEnd->last().name->isEmpty()

then a.memberEnd-> last().class.name

else a.memberEnd->last().name

in
post: sym.oclIsNew() and sym.oclIsTypeOf(Symmetric) and sym.name=name and

sym.constrainedElement->includes(a) and

a.memberEnd->last().class.ownedRule->includes(sym) and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

sym.specification=expr and

 representation=RepresentationType::ocl implies

expr.language='OCL' and

expr.body='context '.concat(sym.context.name). and

concat(' inv').concat(name).concat(': self.'). concat(rol).

concat('. ').concat(rol).concat('->includes(self) ')

24 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

3.2.5 NewAntisymmetric Operation
The operation newAntisymmetric results in the creation of an instance of the

stereotype Antisymmetric.

The parameters needed are an association, the name of the constraint and the way to

represent this constraint in the schema. The postconditions guarantee that a new

instance of Antisymmetric will be created, the constrained elements and the

namespace will be the association. This operation can be defined in OCL as follows:

context Antisymmetric:: newAntisymmetric (a:Association, name:String[0..1],

representation:RepresentationType)

let rol:String = if a.memberEnd->last().name->isEmpty()

then a.memberEnd-> last().class.name

else a.memberEnd->last().name

in
post: antisym.oclIsNew() and antisym.oclIsTypeOf(Antisymmetric) and

antisym.name=name and

antisym.constrainedElement->includes(a) and

a.memberEnd->last().class.ownedRule->includes(antisym) and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

antisym.specification=expr and

 representation=RepresentationType::ocl implies

expr.language='OCL' and

expr.body='context '.concat(antisym.context.name). concat(' inv').

concat(name).concat(': self.').concat(rol).concat(<>self implies

self.).concat(rol).concat('.'). concat(rol).concat('->excludes(self)')

3.2.6 NewAsymmetric Operation
The operation newAsymmetric results in the creation of an instance of the stereotype

Asymmetric.

The parameters needed are an association, the name of the constraint and the way to

represent this constraint in the schema. The postconditions guarantee that a new

instance of Asymmetric will be created, the constrained elements and the namespace

will be the association. This operation can be defined in OCL as follows:

context Asymmetric:: newAsymmetric (a:Association, name:String[0..1],

representation:RepresentationType)

let rol:String = if a.memberEnd->last().name->isEmpty()

then a.memberEnd-> last().class.name

else a.memberEnd->last().name

in
post: asym.oclIsNew() and asym.oclIsTypeOf(Asymmetric) and asym.name=name and

asym.constrainedElement->includes(a) and

a.memberEnd->last().class.ownedRule->includes(asym) and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

asym.specification=expr and

 representation=RepresentationType::ocl implies

expr.language='OCL' and

expr.body='context '.concat(asym.context.name). concat(' inv'). concat(name).

concat(': self.').concat(rol).concat('.').concat(rol).concat('->excludes(self)')

Facilitating the Definition of General Constraints in UML (extended version) 25

3.2.7 NewAcyclic Operation
The operation newAcyclic results in the creation of an instance of the stereotype

Acyclic.

The parameters needed are an association, the name of the constraint and the way to

represent this constraint in the schema. The postconditions guarantee that a new

instance of Acyclic will be created, the constrained elements and the namespace will

be the association. This operation can be defined in OCL as follows:

context Acyclic:: newAcyclic (a:Association, name:String[0..1],

representation:RepresentationType)

let rol:String = if a.memberEnd->last().name->isEmpty()

then a.memberEnd-> last().class.name

else a.memberEnd->last().name

in
post: acyc.oclIsNew() and acyc.oclIsTypeOf(Acyclic) and acyc.name=name and

acyc.constrainedElement->includes(a) and

a.memberEnd->last().class.ownedRule->includes(acyc) and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

acyc.specification=expr and

 representation=RepresentationType::ocl implies

expr.language='OCL' and

expr.body='context '.concat(acyc.context.name).concat(' def:

successors():Set(').concat(acyc.context.name).concat(') =self.').concat(rol).

concat('->union(self.').concat(rol).concat('.successors()) context').

concat(acyc.context.name).concat(' inv'). concat(name).

concat(': self.successors()->excludes(self)')

3.2.8 NewPathInclusion Operation

Additional Operations

We define an additional operation that, given a sequence of properties, returns a

String representing the corresponding path. This operation is defined in the abstract

stereotype PathComparison and will be used when constructing the OCL expressions

of the concrete path comparison constraints.

context PathComparison

def: givePath(path: Sequence(Property)): String = 'self'.concat(path->

iterate(p:String; expr: String | '. '.concat(expr.concat(p.name)))

Creation Operation

The operation newPathInclusion results in the creation of an instance of the

stereotype PathInclusion.

The parameters needed are a class, two sequences of properties that represent the

paths, the name of the constraint and the way to represent this constraint in the

schema. The postconditions guarantee that a new instance of PathInclusion will be

created, and that the constrained element and the namespace will be the given class.

This operation can be defined in OCL as follows:

26 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

context PathInclusion::newPathInclusion (start: Class, path1: Sequence(Property),

path2: Sequence(Property), name:String[0..1], representation: RepresentationType)

post: pi.oclIsNew() and pi.oclIsTypeOf(PathExclusion) and pi.name=name and

pi.constrainedElement->includes(start) and

start.ownedRule->includes(pi) and

pi.path1 = path1.name and pi.path2 = path2.name and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

pi.specification=expr and

representation= RepresentationType::ocl implies

expr.language=’OCL’ and

expr.body='context '.concat(start.name).concat(' inv: ').

concat(givePath(path1)).concat('-> includesAll(').concat(givePath(path2)).

concat(')')

3.2.9 NewPathExclusion Operation
The operation newPathExclusion results in the creation of an instance of the

stereotype PathExclusion.

The parameters needed are a class, two sequences of properties that represent the

paths, the name of the constraint and the way to represent this constraint in the

schema. The postconditions guarantee that a new instance of PathExclusion will be

created, and that the constrained element and the namespace will be the given class.

This operation can be defined in OCL as follows:

context PathExclusion::newPathExclusion (start: Class, path1: Sequence(Property),

path2: Sequence(Property), name:String[0..1], representation: RepresentationType)

post: pe.oclIsNew() and pe.oclIsTypeOf(PathExclusion) and pe.name=name and

pe.constrainedElement->includes(start) and

start.ownedRule->includes(pe) and

pe.path1 = path1.name and pe.path2 = path2.name and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

pe.specification=expr and

representation= RepresentationType::ocl implies

expr.language=’OCL’ and

expr.body='context '.concat(start.name).concat(' inv: ').

concat(givePath(path1)).concat('-> excludesAll(').concat(givePath(path2)).

concat(')')

3.2.10 NewPathEquality Operation
The operation newPathEquality results in the creation of an instance of the stereotype

PathEquality.

The parameters needed are a class, two sequences of properties that represent the

paths, the name of the constraint and the way to represent this constraint in the

schema. The postconditions guarantee that a new instance of PathEquality will be

created, and that the constrained element and the namespace will be the given class.

This operation can be defined in OCL as follows:

Facilitating the Definition of General Constraints in UML (extended version) 27

context PathEquality::newPathEquality (start: Class, path1: Sequence(Property),

path2: Sequence(Property), name:String[0..1], representation: RepresentationType)

post: pe.oclIsNew() and pe.oclIsTypeOf(PathExclusion) and pe.name=name and

pe.constrainedElement->includes(start) and

start.ownedRule->includes(pe) and

pe.path1 = path1.name and pe.path2 = path2.name and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

pe.specification=expr and

representation= RepresentationType::ocl implies

expr.language=’OCL’ and

expr.body='context '.concat(start.name).concat(' inv: ').

concat(givePath(path1)). concat('=').concat(givePath(path2))

3.2.11 NewValueComparison Operation

Additional Operations
We define an additional operation that, given a sequence of properties, returns a

String representing the corresponding path:

context ValueComparison

def: giveExpression(value: Sequence(TypedElement)): String =

if value->size() = 1 then value.name

else 'self'.concat(value->

iterate(v:String; expr: String | '. '.concat(expr.concat(v.name)))

Creation Operation
The operation newValueComparison results in the creation of an instance of the

stereotype ValueComparison.

The parameters needed are a property, the operator, the value, the name of the

constraint and the way to represent this constraint in the schema. Note that value is of

type Sequence(TypedElement) including either a constant or a path. The

postconditions guarantee that a new instance of ValueComparison will be created,

that the constrained element will be the indicated property and the namespace will be

the class that the property belongs to. This operation can be defined in OCL as

follows:

context ValueComparison:: newValueComparison (attr: Property, op: ValueOperator,

value: Sequence(TypedElement), name:String[0..1], representation:

RepresentationType)

post: vc.oclIsNew() and vc.oclIsTypeOf(ValueComparison) and vc.name=name and

vc.constrainedElement->includes(attr) and

attr.class.ownedRule->includes(vc) and

vc.operator = op and vc.value=value.name and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

vc.specification=expr and

representation= RepresentationType::ocl implies

expr.language=’OCL’ and

 expr.body='context '.concat(attr.class.name).concat(' inv: ').

concat(attr.name).concat(op).concat(giveExpression(value))

28 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

3.2.12 NewMandatoryDisjoint Operation
The operation newMandatoryDisjoint results in the creation of an instance of the

stereotype MandatoryDisjoint.

context MandatoryDisjoint:: newMandatoryDisjoint(c: Class, a:Set(Set(Property)),

representation:RepresentationType)

post: manDis.oclIsNew() and manDis.oclIsTypeOf(MandatoryDisjoint) and

manDis.name=name and

manDis.constrainedElement -> includes(c) and

manDis.disjointGroups -> includes(a) and

c.ownedRule->includes(manDis) and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

manDis.specification = expr and

representation=RepresentationType::ocl implies

expr.language = 'OCL' and

expr.body= 'context '.concat(manDis.context.name).

concat(' inv:').concat(Sequence{1.a->size()}-> iterate (pn; s: String = '' |

s.concat((if (pn>1) then ') or ' else'' endif).

concat(a->at(pn)->Sequence{1.a->at(pn)->size()}->

iterate (qn; s2: String = '(' |s2.concat((if (qn>1) then ' and '

else'' endif).concat(a->at(pn)->at(qn).name).

concat('->notEmpty() '))))))).concat(')')

3.2.13 NewCardinalityAssoc Operation

Additional Operations
We define an additional operation that, given a property, returns a String that

represents its name or, in case it is empty, the name of its owner class.

context CardinalityAssoc

def: giveName(p:Property):String=if p.name->isEmpty()

then p.class.name

else p.name endif

Creation Operation
The operation newCardinalityAssoc results in the creation of an instance of the

stereotype CardinalityAssoc.

The parameters needed are an association, the name of the constraint and the way to

represent this constraint in the schema. The postconditions guarantee that a new

instance of CardinalityAssoc will be created, the constrained elements and the

namespace will be the association. This operation can be defined in OCL as follows:

context CardinalityAssoc:: newCardinalityAssoc (a:Association, fe:OrderedSet(Property),

re:Set(Property), min:String, max:String, name:String[0..1],

 representation:RepresentationType))

let forAllfe:String=fe->iterate(e:Property;acc:String=''|

acc.concat(a.memberEnd-> select(m|m=e).class.name).

concat('.allInstances()->forAll(v').concat(giveName(e)).concat('|'))

let assoc:String=a.name.concat('.allInstances()')

Facilitating the Definition of General Constraints in UML (extended version) 29

let sel1:String='->select(t|t. '.concat(giveName(fe.first())).concat('=v').

concat(giveName(fe.first())).concat(' ')

let sel2:String=fe->subOrderedSet(2,fe->size())->

iterate(e:Property;acc:String=' '|acc.concat('and t. ').concat(giveName(e)).

concat('=v').concat(giveName(e)).concat(' '))

let pars:String=fe->iterate(e:Property;acc:String=' '|acc.concat(') '))

let collect1:String='->collect(t|Tuple{'

let auxcollect2:String=re->iterate(e:Property;acc:String='' |

acc.concat('c').concat(giveName(e)).concat('=t. ').concat(giveName(e)).

concat(', '))

in
let collect2:String=auxcollect2.substring(1,auxcollect2.size()-1)

let collect3:String='})'

in

post: cainv.oclIsNew() and cainv.oclIsTypeOf(CardinalityAssocInv)

and cainv.name=name and

cainv.constrainedElement->includes(a) and

a.memberEnd->select(m|m=fe.first()).class.ownedRule->includes(cainv) and

cainv.fixedEnds=fe->iterate(e:Property acc:OrderedSet(String)=

OrderedSet{}| acc.append(giveName(e))) and

cainv.relatedEnds=re->iterate(e:Property acc:Set(String)=

Set{}| acc.including(giveName(e))) and

cainv.minCard=min and

cainv.maxCard=max and

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and

cainv.specification=expr and

 representation=RepresentationType::ocl implies

expr.language='OCL' and

expr.body='context '.concat(cainv.context.name).concat(' inv: ').

concat(forallfe).concat(assoc).concat(sel1).concat(sel2).concat(pars).

concat(collect1).concat(collect2).concat(collect3).

concat('->asSet()->size()>=').concat(min).concat(' and ').

concat(forallfe).concat(assoc).concat(sel1).concat(sel2).concat(pars).

concat(collect1).concat(collect2).concat(collect3).

concat('->asSet()->size()<=').concat(max)

30 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

4. Case Study

This section summarises the results obtained from the application of our profile to the

specification of two real-life applications. The analysis of both schemas allows us to

stress the advantages of using the profile. In particular, we have analysed a

conceptual schema for the well-known EU-Rent Car Rentls system [FQO03] and we

have also studied a generic conceptual schema for the e-marketplace domain [QT05].

EU-Rent is a (fictitious) car rental company with branches in several countries.

The company rents cars to its customers who may be individuals or companies.

Different models of cars are offered, organized into groups and cars within a group

are charged at the same rates. The class diagram we have studied consists of 59

classes, 50 associations and 40 constraints that require an explicit definition. Our

profile prevents us from specifying in OCL a considerable amount of said

constraints. Only 14 out of 40 do not correspond to any of our stereotypes and, thus,

a specific OCL expression needs to be constructed to specify them.

Figure 15 shows a small fragment of the EU-Rent class diagram (10 classes and

16 constraints) to further illustrate the conclusions we have drawn from the

development of this case study. The first seven constraints may be specified by

applying the Identifier stereotype since they state the attributes that identify each

class. Constraints 8 and 9 may be specified by applying the ValueComparison

stereotype.

Fig. 15. Fragment of EU-Rent class diagram

Facilitating the Definition of General Constraints in UML (extended version) 31

Constraints 10 and 11 correspond to the PathInclusion stereotype; 12 corresponds

to the PathEquality stereotype and 13 corresponds to the Acyclic stereotype. Finally,

constraints 14, 15 and 16 do not match any of our predefined constraints and thus an

ad-hoc OCL expression must be built to specify them.

The second case study consists of the specification of a generic conceptual schema

for the e-marketplace domain [QT05] which covers the main functionalities provided

by an e-marketplace: determining product offerings, searching for products and price

discovery. The whole specification includes 40 classes, 15 associations and 41

constraints that require an explicit definition. After analysing the constraints, the

results obtained are quite similar to those obtained with EU-Rent. In this case, the

success rate is a bit lower, about 54% instead of 65% as before, but still interesting.

This means that we have to specify manually only 19 out of 41 OCL constraints.

From the results of both case studies, we see that it has been possible to use our

stereotypes almost in 60% of the constraints, by reducing the number of OCL

expressions from 81 to 33.

5. Reasoning and Generating Code

One of the main benefits of the proposed profile is the ability of reasoning about

constraints represented as instances of our stereotypes and their automatic code

generation into a given technological platform. In the following we show how our

profile facilitates reasoning about constraint satisfiability and constraint redundancy.

We outline also how to use the profile to generate code for checking those constraints

in a relational database.

5.1 Constraint Satisfiability

A conceptual schema is satisfiable if it admits at least one legal instance of the IB.

For some constraints it may happen that only the empty or non-finite IBs satisfy

them. In conceptual modeling, the IBs of interest are finite and may be populated.

We then say that a schema is strongly satisfiable if there is at least one fully

populated (i.e each class and association has at least one instance) instance of the IB

satisfying all the constraints [LN90]. Otherwise, the schema is incorrect.

Constraint satisfiability has received a lot of attention in conceptual modeling. For

instance, [Hal01] presents in the Euler diagram in Figure 16 the relationships

between recursive association constraints. Some satisfiability rules can be deduced

from the figure. For instance, a recursive association with an acyclic and a symmetric

invariant is not strongly satisfiable because there can not exist instances in the IB of

the corresponding association that satisfy, at the same time, both invariants.

Fig. 16. Relationships between recursive association constraints

32 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

Unfortunately, and as a consequence of problems associated to the definition of

general constraints, known results in constraint satisfiability checking cannot be

applied to the definition of constraints by means of general-purpose languages. For

example, in Figure 1, the designer could define another constraint that defines the

association isPrerequisiteOf as symmetric. As explained before, this new invariant

makes the schema incorrect.

Our proposal allows us incorporating easily some of these results. In fact, the

definition of predefined constraints as stereotypes permits to attach new constraints

that represent well-studied satisfiability rules that detect if a set of constraints is

strongly satisfiable. Table 1 summarizes the stereotypes and the constraints we have

attached to them to incorporate the results presented in [Hal01]. Other known results

for constraint satisfiability can be incorporated in the same way.

Table 1. Validation of recursive association constraints

Stereotype Constraint attached to the stereotype

Symmetric There cannot be another instance of acyclic, asymmetric nor antisymmetric

constraint for the same association

Antisymmetric There cannot be another instance of symmetric constraint for the same

association

Asymmetric There cannot be another instance of symmetric constraint for the same

association

Acyclic There cannot be another instance of symmetric constraint for the same

association

5.2 Constraint Redundancy

A conceptual schema is redundant if an aspect of the schema is defined more than

once [CST02]. For instance, a constraint is redundant with respect to another

constraint if in each state of the IB that violates the latter, the former is also violated.

We may also draw from the diagram shown in Figure 6 some rules that permit to

detect some redundancies between recursive association constraints. For example, an

acyclic constraint is redundant with respect to an asymmetric constraint of the same

association because asymmetric associations are always acyclic.

Our proposal also allows incorporating easily results on constraint redundancy.

Table 2 summarizes the stereotypes and the constraints we have attached to them to

incorporate rules that detect redundancies between recursive association constraints.

Other results can be incorporated in a similar way.

Table 2. Redundancy of recursive association constraints

Stereotype Constraint attached to the stereotype

Irreflexive There cannot be another instance of asymmetric nor acyclic constraint for

the same association

Antisymmetric There cannot be another instance of asymmetric nor acyclic constraint for

the same association

Asymmetric There cannot be another instance of antisymmetric nor irreflexive nor

acyclic constraint for the same association

Acyclic There cannot be another instance of asymmetric nor antisymmetric nor

irreflexive constraints for the same association

Facilitating the Definition of General Constraints in UML (extended version) 33

5.3 Automatic Code Generation

Many UML CASE tools offer code generation capabilities. However, most of them

do not generate the code required to check whether constraints defined in general-

purpose languages are violated by the execution of a transaction. We outline in this

section how our profile may be used to facilitate such important task.

As we have seen, each stereotype explicitly states a precise semantics for the type

of constraints it defines. Semantics may be taken into account during code generation

to determine the most adequate translation from the conceptual schema to a particular

technology. Thus, assuming an implementation on a relational database, identifier

constraints could be translated into primary key or unique constraints; weak

identifiers into foreign key plus primary key constraints; value comparisons into

check constraints and other constraints by means of triggers or stored procedures. For

example, classes Course, Section and their constraints would be translated as follows:

CREATE TABLE Course (

 name char(30) PRIMARY KEY,

 code char(30) UNIQUE,

 creditsNumber int NOT NULL)

CREATE TABLE Section (

 nameCourse char(30),

 number int,

 numbOfStud int,

 PRIMARY KEY (nameCourse, number),

 CONSTRAINT fkSect FOREIGN KEY (nameCourse)

 REFERENCES Course(name))

6. Related Work

In this section, we analyze other works that contribute to facilitating the definition of

general constraints in UML.

Executable UML (xUML) is a profile of UML that allows defining an information

system in sufficient detail that it can be executed [MB02]. As part of its proposal,

xUML extends the set of constraints that can be graphically specified. In particular, it

covers our uniqueness constraints and some kinds of path comparison constraints, i.e.

path equality and path inclusion. Considering the EU-Rent and the e-marketplace case

studies, xUML would cover only 28% of the constraints instead of the 60% covered

by our proposal. Moreover, we provide the profile definition in terms of the UML 2.0

metamodel including the definition of the creation operations that permit to add

instances to the stereotypes.

Ackermann [Ack05] proposes a set of OCL specification patterns that facilitate the

definition of some UML integrity constraints, namely what we call identifier

constraints and a subset of value comparison constraints. When applied to our case

studies it covers only 26% of the constraints. This approach is based on the automatic

generation of OCL expressions from a set of patterns and, thus, it does not extend the

language via a profile definition as we propose. Consequently, it does not extend the

set of UML predefined constraints which facilitates their graphical representation.

Furthermore, it does not use the established mechanisms to extend the language and,

thus, it can not be directly incorporated to UML CASE tools.

In [MN05] a large taxonomy of integrity constraints (which includes constraints

that are inherent, graphical and user-defined in UML) is analyzed. The authors

34 Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente

advocate the definition of stereotypes for some of them. They leave the stereotype

definition for future work but propose that model elements such as associations and

attributes should be taken as base class for their definition. We think instead that all

the proposed stereotypes should be stereotypes of Constraint. The reasons are that the

semantics of Constraint corresponds to the purpose of the stereotypes, it permits to

graphically represent the incorporated constraints similarly as predefined constraints

and, finally, it facilitates a uniform treatment of the incorporated constraints together

with the rest of constraints of a UML class diagram.

In addition to already stated drawbacks of previous proposals, we must note that

none of them deals with the ability of reasoning about the general constraints they

may handle.

7. Conclusions and Future Work

We have proposed a new approach to facilitate the definition of general constraints in

the UML. Our approach is based on the use of constraint stereotypes in conceptual

modelling and it allows defining as predefined UML constraints some types of

general constraints that are frequently used, instead of having to specify them by

means of a general-purpose sublanguage such as OCL.

Being able to specify general constraints as predefined constraints we overcome

the limitations of having to define them manually which may usually imply a time-

consuming and error-prone definition, difficulty of understanding (since the reader

may not be familiar with the formal language used to define the general constraint)

and difficulty of automatic treatment (since general constraints do not have a pre-

established interpretation while predefined ones do).

We have applied our approach to the specification of two real-life applications: the

EU-Rent Car Rentals system [FQO03] and a conceptual schema for the e-marketplace

domain [QT05], and we have seen that 60% of the general constraints of those case

studies may have been defined as predefined by means of our stereotypes.

Finally, we have also incorporated into our stereotypes previous results regarding

constraint satisfiability and constraint redundancy checking. This has been easily done

by attaching to our stereotypes well-established rules that detect whether a set of

constraints is strongly satisfiable [Hal01] and redundancies between recursive

association constraints. We have also outlined how to automate code generation from

our profile to check integrity constraints in a relational database.

Since one of the main goals of our paper has been to illustrate the advantages

provided by the use of constraint stereotypes, we have not intended to be exhaustive

in the extent of predefined constraints considered. Future work may involve the

definition of other types of frequent general constraints. We also plan to incorporate

into our stereotypes other known results for reasoning about constraints and to further

develop the automatic code generation from our stereotypes.

Facilitating the Definition of General Constraints in UML (extended version) 35

References

[Ack05] Ackermann, J. Formal Description of OCL Specification Patterns for

Behavioral Specification of Software Components, MoDELS Workshop on

Tool Support for OCL and Related Formalisms - Needs and Trends, EPFL

- Technical Report LGL-REPORT-2005-001, pp. 15-29, 2005.

[CST02] Costal, D., Sancho, M. R., Teniente, E., Understanding Redundancy in

UML Models for Object-Oriented Analysis. 14th Int. Conf. on Advanced

Information Systems Engineering (CAiSE’02), LNCS 2348, 659-674.

[FQO03] Frías, L., Queralt, A., Olivé, A., EU-Rent Car Rentals Specification.

Departament de LSI, UPC, Technical Report LSI-03-59-R, 2003.

[Hal01] Halpin, T. Information Modeling and Relational Databases: From

Conceptual Analysis to Logical Design. Morgan Kaufmann. 2001.

[ISO82] ISO/TC97/SC5/WG3, J.J. van Griethuysen (Ed.). Concepts and

Terminology for the Conceptual Schema and the Information Base, 1982.

[LN90] Lenzerini, M., Nobili, P.: On the Satisfiability of Dependency Constraints

in Entity-Relationship Schemata. Information Systems(4), pp. 453-461

1990.

[MB02] Mellor, S.J; Balcer, M.J. Executable UML: A Foundation for Model-

Driven Architecture. Object Technology Ed. Addison-Wesley. 2002.

[MN05] Miliauskait÷, E; Nemurait÷, L. Representation of Integrity Constraints in

Conceptual Models. Information Technology and Control, 34(4), 2005.

[Oli03] Olivé, A. “Integrity Constraints Definition in Object-Oriented Conceptual

Modeling Languages”, In Proc. ER’03, LNCS 2813, pp.349-362.

[OMG03] OMG. “MDA Guide Version 1.0.1”, OMG, omg/2003-06-01, 2003.

[OMG05] OMG. “UML2.0 OCL Specification”, OMG Adopted Specification, 2005.

[QT05] Queralt, A., Teniente, E., A Platform Independent Model for the Electronic

Marketplace Domain. Departament de LSI, UPC, Technical Report LSI-

05-9-R, 2005.

[RJB05] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Language

Reference Manual, Second Edition, Addison-Wesley, 2005.

[WK03] Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your

Models Ready for MDA. 2nd edn. Addison-Wesley Professional, 2003.

