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Abstract. One important aspect in the specification of conceptual schemas is 

the definition of general constraints that cannot be expressed by the predefined 

constructs provided by conceptual modeling languages. In general this is done 

by means of general-purpose languages, like OCL. In this paper we propose a 

new approach to facilitate the definition of such general constraints in UML. 

More precisely, we define a profile that extends the set of UML predefined 

constraints with some types of constraints that are used very frequently in 

conceptual schemas. We also study the application of our ideas to the 

specification of two real-life applications and we show how results in 

constraint-related problems may be easily incorporated to our proposal. 

1. Introduction 

An information system maintains a representation of the state of a domain in its 

information base (IB). The conceptual schema of an information system must include 

all relevant knowledge about the domain. Hence, the structural conceptual schema 

defines the structure of the IB while the behavioral conceptual schema defines how 

the IB changes when events occur. In UML, structural conceptual schemas are 

represented by means of class diagrams [RJB05]. 

A complete structural conceptual schema must include the definition of all relevant 

integrity constraints [ISO82]. The form of the definition of such constraints depends 

on the conceptual modeling language used [Oli03]. Some constraints are inherent in 

the conceptual model in which the language is based. This is the case, for example, of 

referential integrity constraints in UML class diagrams. Nevertheless, almost all 

constraints require an explicit definition. Most conceptual modeling languages offer a 

number of special constructs for defining some of them. In particular, UML offers 

graphical constructs for constraints such as multiplicity and also provides a set of 

predefined constraints which includes, for instance, association “xor” constraints and 

“disjoint” constraints.  

However, there are many types of constraints that cannot be expressed using those 

special constructs provided by conceptual modelling languages. These are general 

constraints whose definition requires the use of a general-purpose sublanguage. With 

this objective, UML provides OCL [OMG05]. The use of OCL is not mandatory and 
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the UML designer may use other languages for writing general constraints such as 

Java or C++ or even natural language. 

There are some problems associated to the definition of general constraints through 

general-purpose languages. Constraints defined in natural language are often 

imprecise and ambiguous. Editing OCL constraints manually, although providing the 

means to write constraints with a precise semantics, is time-consuming and error-

prone and OCL expressions may be difficult to understand for non-technical readers. 

Moreover, an automatic treatment of those constraints (either for reasoning or for 

automatic code generation) may be difficult to achieve. 

For these reasons, it becomes necessary to reduce the extent of cases in which 

constraints must be defined through general-purpose languages. In this sense, we 

propose to extend the set of UML predefined constraints with some types of 

constraints that are used very frequently in conceptual schemas. We make the 

extension by defining a UML profile, the standard mechanism that UML establishes 

to incorporate new constructs to the language. The application of this profile has been 

studied in the specification of two real-life applications: the EU-Rent Car Rentals 

system [FQO03] and a conceptual schema for e-marketplaces [QT05].  

Our proposal facilitates the definition of general constraints in UML since it 

decreases significantly the number of constraints that must be defined and, 

consequently, it reduces the scope of the problems associated to their use.  

Our approach provides also important advantages regarding the automatic 

treatment of integrity constraints. In particular, our profile allows incorporating easily 

previous results on reasoning about constraint-related problems (such as satisfiability 

or redundancy) and facilitates obtaining an automatic implementation of the 

constraints defined in the conceptual schema. In this way, another contribution of our 

work is to show the significant advantages provided by the use of constraint 

stereotypes in conceptual modelling. 

The rest of the paper is organised as follows. Next section illustrates the problems 

regarding the definition of general constraints. Section 3 presents our profile, whose 

application to two case studies is discussed in Section 4. Section 5 shows how to 

reason about the constraints specified in our profile. Section 6 reviews related work 

while, finally, Section 7 presents our conclusions and points out future work.  

2.   Problems in the Definition of General Constraints 

There are some problems associated to the definition of general constraints. We will 

illustrate them according to the example in Figure 1 which refers to a fragment of a 

system that supports teaching activities of a University. The structural schema shows 

the definition of courses and their sections. It also contains information on teachers, 

their course of expertise and their assignment to sections. The structural schema 

includes eight general constraints, whose specification as OCL invariants is given in 

Figure 1:  

1) Courses are identified by their name 

2) Courses are identified by their code 

3) Teachers are identified by the union of their name and last name 
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4) Each section is identified by its number within each course 

5) There are no cycles in the recursive association IsPrerequisiteOf, i.e., a course 

cannot be directly or indirectly prerequisite of itself. 

6) Teachers assigned to sections of a course must be experts in that course 

7) The size of sections, in any case, cannot be greater than 80 

8) Courses must have at least a lecturer or a professor 

Fig. 1. Fragment of the class diagram for the example application  

If general constraints are defined in natural language, they are often imprecise and 

ambiguous and their interpretation and treatment remain as a human responsibility. In 

our example, the previous descriptions of the constraints may be subject to wrong 

interpretations because they do not establish unambiguously their precise meaning. 

This problem may be avoided by using formal general-purpose languages such as 

OCL. Formal languages provide the means to write constraints with precise 

semantics. Nevertheless, we can also identify some disadvantages of using them: 

− Difficulty of understanding for non-technical readers. For example, previous 

constraints would not be easy for readers not familiar with OCL. 

− Time-consuming definition: the designer must define explicitly the underlying 

semantics of each particular constraint. Additionally, in the frequent case in which 

there are groups of constraints that can be considered of the same type and that 

share common semantic aspects, the complete semantics of all the constraints of 

the same type must be defined for each individual constraint. This happens, for 

example, in the definition of textual constraints nameUnique, codeUnique, 

nameLastNameUnique and courseNumberUnique of Figure 1. 

− Error-prone definition: formal languages are sometimes difficult to use for the 

designers inducing the possibility of mistakes. For instance, the constraint 

isPrerequisitOfIsAcyclic is not easily defined in OCL. Moreover, the designer 

could use ‘includes’ instead of ‘includesAll’ in constraint 

sectionTeacherMustBeExpert and then the expression would be wrong. 
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− Difficulty of automatic treatment: constraints expressed by means of general-

purpose languages are very difficult to interpret automatically since they do not 

have a pre-established interpretation that can be easily incorporated to CASE tools. 

The lack of easy automatic interpretation has the following consequences on the 

automatic treatments that may be performed: 

� Some well-studied rules that allow reasoning about the constraints cannot 

be automatically applied. 

� Constraint semantics are difficult to incorporate to subsequent models 

generated automatically and, in particular, to code generation. This is a 

drawback towards obtaining one of the goals of the MDA, i.e., making the 

transformation from platform-independent models (PIMs) to platform-

specific models (PSMs) as automatic as possible [OMG03]. 

From the above listed difficulties, we can conclude that it is interesting to reduce 

the extent of cases in which UML constraints must be defined using general-purpose 

languages. Next section presents our proposal in this direction.   

3. Predefining Constraints 

A constraint is a condition expressed in natural language or in a machine readable 

language to add some semantics to an element. UML offers a number of special 

constructs to define some common constraints, such as multiplicity. In addition, 

certain kinds of constraints, such as a disjoint constraint, are predefined in UML, but 

there are many others that cannot be expressed using these constructs and their 

definition requires the use of a specific language, such as OCL.  

There are, however, some kinds of user-defined constraints that occur very 

frequently in conceptual schemas. For instance, a very prominent kind of constraint is 

the identifier constraint [Hal01, MB02], which may have several realizations such as 

nameUnique or codeUnique for a given class, i.e., either the attribute name or the 

attribute code uniquely identify instances of said class. 

In this section we present our proposal to extend the set of predefined constraints 

offered by UML. We use the standard extension mechanism provided by UML, the 

definition of a profile [RJB05, OMG05], to achieve this goal. In particular, we define 

a set of stereotypes that provide some additional semantics to UML constraints that 

play the role of invariants. 

We have defined stereotypes for some of the most frequent generic kinds of 

constraint, namely uniqueness, recursive association, path comparison and value 

comparison constraints. The use of these stereotypes prevents the designer from 

having to define explicit expressions to specify the corresponding constraints every 

time they appear. Instead, these constraints can be graphically represented in the class 

diagram, and, optionally, to be generated automatically in OCL. 

Once applied our stereotypes to the example in Figure 1, seven out of the eight 

textual constraints (all except the last one) could be expressed graphically in the class 

diagram, making unnecessary their definition in natural language or in OCL. 
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3.1 UML Profile for Predefined Constraints 

Our profile contains a set of stereotypes that extend the semantics of a constraint. 

Thus, the metaclass Constraint of the UML metamodel is extended by means of 

several stereotypes representing generic kinds of constraints, divided in four groups 

according to their semantics. The metaclass Constraint refers to a set of 

constrainedElement, i.e. those elements required to evaluate the constraint. The 

context of Constraint may be used as a namespace for interpreting names used in the 

expression. Each constraint has an associated OpaqueExpression that includes the 

constraint expression and the language used to define it. Each instance of Constraint 

represents a user-defined constraint, which may play the role of invariant, 

precondition, postcondition or body condition of an operation. 

Figure 2 shows the abstract stereotype PredefinedConstraint, with six subtypes: 

Uniqueness, RecursiveAssociation, PathComparison, ValueComparison, 

MandatoryDisjoint and CardinalityAssoc stereotypes.  

 
 

Fig. 2. UML Profile for Predefined Constraints 

In order to describe each stereotype defined in this profile, we adopt a uniform and 

consistent template which includes the following sections: (1) Name of the constraint. 

(2) Semantics: describes the meaning of the constraint. (3) Stereotype Description: 

description of the relevant structural aspects of the stereotype proposed as solution to 

the constraint. (4) Attributes: contains a list of the attributes that are defined for the 

stereotype. (5) Constraints: defines well-formedness rules that apply to the stereotype.  

(6) Notation: gives the basic notational forms used to represent and use the stereotype 

in class diagrams. (7) Example: includes additional illustrations of the application of 

the stereotype and its notation. 
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3.1.1  PredefinedConstraint 

Semantics 
PredefinedConstraint defines those features shared by all constraints that are 

instances of this stereotype. Instances of this stereotype are the union of instances of 

the stereotypes presented in next sections. Each instance of this stereotype represents 

a constraint over a set of elements that can be generated automatically in OCL 

Stereotype Description 
PredefinedConstraint is an abstract stereotype of Constraint.. The 

constrainedElement of this stereotype is a set of elements and the language of the 

associated OpaqueExpression may be either OCL (if the designer chooses to represent 

the constraint also in this language) or it is left empty (if only the graphical 

representation is selected).  

Constraints  
[1] An instance of this stereotype cannot be a precondition or a postcondition of an 

operation.  

3.1.2 Uniqueness Constraint 

Semantics 
A uniqueness constraint defines a uniqueness condition over the population of a class.  

It captures some conditions that apply to the values of attributes of ints instances. In 

particular, we distinguish two types of uniqueness constraints: the identifier constraint 

i.e., a set of attributes of a class that uniquely identifies it; and the weak identifier, 

constraint, i.e., a set of attributes of a class combined with another class associated to 

the former that uniquely identifies the instances of such a class. 

Stereotype Description 
Uniqueness is an abstract stereotype of Constraint and a subclass of 

PredefinedConstraint. An instance of this stereotype represents a constraint over a 

class that defines a uniqueness condition over its population.  

3.1.3 Identifier Constraint 

Semantics 

An identifier is a set of one or more attributes of a class that uniquely distinguishes 

each instance of such a class. 

Let A be a class with a set of attributes {a1,...,an}. An identifier constraint specifies 

that a subset {ai,...,aj} of those attributes uniquely identifies the instances of A. This 

constraint may be expressed in OCL as follows: 

context A inv: A.allInstances()->isUnique(Tuple{cai:ai,...,caj:aj}) 
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Stereotype Description 
Identifier is a concrete stereotype of Constraint and a subclass of Uniqueness. An 

instance of this stereotype represents a uniqueness condition over a set of attributes of 

a class. The constrainedElement must be of type Property. 

Constraints  
[1] None of the constrainedElement has the lower bound of their multiplicity equal 

to zero. 

[2] There cannot be two instances of Identifier such that constrainedElement be a 

subset of the other constrainedElement.  

[3] There cannot be an instance of WeakIdentifier such that constrainedElement be 

the same as constrainedElement of Identifier.  

Notation 
The notation for an identifier constraint is a constraint with stereotype «Identifier». 

There is a dashed line between the stereotyped constraint and its constrained 

elements. 

Example  
An example of the identifier constraint is nameLastNameUnique, shown in Figure 1. 

It states that instances of Teacher are identified by the union of their name and 

lastName. Figure 3 shows the use of the «Identifier» stereotype to represent the 

constraints nameLastNameUnique. 

 

Fig. 3. Example of the use of Identifier and WeakIdentifier stereotypes 

3.1.4 Weak Identifier Constraint 

Semantics 
A weak identifier is a set of one or more attributes of a class that with the combination 

of another associated class uniquely distinguishes each instance of the former class. 

Let A be a class with a set of attributes {a1,...,an} and associated, via the member end 

b, to a class B. A weak identifier constraint specifies that a subset {ai,...,aj} of those 

attributes, combined with B, uniquely identifies the instances of A. This constraint 

may be formally expressed in OCL as follows:  

context A inv: A.allInstances()->isUnique(Tuple{cb:B,cai:ai,...,caj:aj}) 
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Stereotype Description 
WeakIdentifier is a concrete stereotype of Constraint and a subclass of Uniqueness. 

An instance of this stereotype represents a constraint over a class that defines which 

set of attributes combined with an associated former class uniquely identifies the 

instances of such a class. 

Constraints  

[1] None of the constrainedElement has the lower bound of their multiplicity equal 

to zero. 

[2] One of the constrainedElement corresponds to a property associated to the class 

that owns the other constrained elements and multiplicity 1. 

Notation 
The notation for a weak identifier constraint is a constraint with stereotype 

«WeakIdentifier».There is a dashed line between the stereotyped constraint and its 

constrained elements. 

Example  
An example of the weak identifier constraint is courseNumber shown in Figure 1. It 

states that each instance of Section is identified by its number within each instance of 

Course. Figure 3 shows the use of «WeakIdentifier» stereotype to represent the 

constraints courseNumberUnique stated above. There is a dashed line between the 

constraint with the corresponding stereotype and its constrained elements.  

3.1.5 Recursive Association Constraint 

Semantics 
Recursive association constraints, called ring constraints in [Hal01], are a type of 

constraints that apply over a recursive binary association, guaranteeing that the 

association fulfills a certain property. We consider five types of those constraints: 

irreflexive, symmetric, antisymmetric, asymmetric and acyclic constraints.  

Stereotype Description 

RecursiveAssociation is an abstract stereotype of Constraint and a subclass of 

PredefinedConstraint. An instance of this stereotype represents a constraint over a 

binary and recursive association that defines a condition over its population.  

Constraints  
[1] A recursive association invariant has as constrainedElement an association.  

[2] The constrainedElement association must be binary and recursive. 

[3] An instance of recursive association constraint must have as a namespace one of 

the member end class of the association.  

[4] There cannot be two instances of the same recursive association constraint for 

the same association. 
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3.1.6 Irreflexive Constraint 

Semantics 

An irreflexive constraint represents a constraint over a recursive association. This 

restriction constrains the extension of the association defining it as irreflexive. Let A 

be a class and R a recursive association over A, with r1 and r2 member ends. An 

irreflexive constraint over R guarantees that if a is instance of A then a is never R-

related to itself. This constraint may be formally expressed in OCL as follows: 

context A inv: self.r2->excludes(self ) 

Stereotype Description 
Irreflexive is a concrete stereotype of Constraint and a subclass of 

RecursiveAssociation. Each instance of the stereotype represents the constraint related 

to a recursive association that defines it as irreflexive.  

Constraints  
[1] There cannot be another instance of asymmetric nor acyclic constraint for the 

same association2. 

Notation 
The notation for an irreflexive constraint is a constraint with stereotype «Irreflexive». 

Example  
See the example in Figure 4. The recursive association playMatch between two 

football teams is restricted by an irreflexive constraint. This means that local team t1 

cannot play a match with visitor team t1.  

 
Fig. 4. Example of a Recursive Association with stereotype «Irreflexive» 

3.1.7 Symmetric Constraint 

Semantics 

A symmetric constraint represents a constraint over a recursive association. This 

restriction constrains the extension of the association defining it as symmetric. Let A 

be a class and R a recursive association over A, with r1 and r2 member ends. A 

symmetric constraint over R guarantees that if a and b are instances of A and a is R-

related to b then b is R-related to a. Formally, in OCL: 

context A inv: self.r2.r2->includes(self)  

                                                           
2 This constraint is defined to avoid redundancy between recursive association invariants 
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Stereotype Description 
Symmetric is a concrete stereotype of Constraint and a subclass of 

RecursiveAssociation. Each instance of the stereotype represents the constraint related 

to a recursive association that defines it as symmetric.  

Constraints  
[1] There cannot be another instance of acyclic, asymmetric nor antisymmetric 

constraint for the same association3.  

Notation 

The notation for a symmetric constraint is a constraint with stereotype «Symmetric». 

Example  

See the example in Figure 5. The recursive association isMarriedTo between two 

people is constrained by a symmetric constraint. This means that if person p1 is 

married to person p2 then person p2 is married to person p1.  

 
Fig. 5. Example of a Recursive Association with stereotype «Symmetric» 

3.1.8 Antisymmetric Constraint 

Semantics 
An antisymmetric constraint represents a constraint over a recursive association. This 

restriction constrains the extension of the association defining it as antisymmetric. Let 

A be a class and R a recursive association over A, with r1 and r2 member ends. An 

antisymmetric constraint over R guarantees that if a and b are instances of A, a is R-

related to b and b is R-related to a, then a and b are the same instance. In OCL: 

context A inv: self.r2->excludes(self) implies self.r2.r2->excludes(self) 

Stereotype Description 
Antisymmetric is a concrete stereotype of Constraint and a subclass of 

RecursiveAssociation. Each instance of the stereotype represents the constraint related 

to a recursive association that defines it as antisymmetric.  

Constraints  
[1] There cannot be another instance of symmetric constraint for the same 

association3.  

                                                           
3 This constraint is defined to validate interactions between recursive association invariants 
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[2] There cannot be another instance of asymmetric nor acyclic constraint for the 

same association2. 

Notation 
The notation for an antisymmetric constraint is a constraint with stereotype 

«Antisymmetric». 

Example  
See the example in Figure 6. The recursive association follows_or_hasSamePosition 

between two people in a classification is constrained by an antisymmetric constraint. 

This means that if person p1 and person p2 are different then if person p1 follows or 

has the same position in a classification as person p2 then person p2 cannot follows or 

has the same position as person p1.  

 
Fig. 6. Example of a Recursive Association with stereotype «Antisymmetric» 

3.1.9 Asymmetric Constraint 

Semantics 
An asymmetric constraint represents a constraint over a recursive association. This 

restriction constrains the extension of the association defining it as asymmetric. Let A 

be a class and R a recursive association over A, with r1 and r2 member ends. An 

asymmetric constraint guarantees that if a and b are instances of A and a is R-related 

to b then b is not R-related to a. Observe that this constraint is equivalent to the union 

of antisymmetric an irreflexive constraints. It may be expressed in OCL as follows: 

context A inv: self.r2.r2->excludes(self) 

Stereotype Description 

Asymmetric is a concrete stereotype of Constraint and a subclass of 

RecursiveAssociation. Each instance of the stereotype represents the constraint related 

to a recursive association that defines it as asymmetric.  

Constraints  
[1] There cannot be another instance of symmetric constraint for the same 

association3.  

[2] There cannot be instances of antisymmetric nor irreflexive nor acyclic 

constraints for the same association2. 



12      Dolors Costal, Cristina Gómez, Anna Queralt, Ruth Raventós and Ernest Teniente 

Notation 
The notation for an asymmetric constraint is a constraint with stereotype 

«Asymmetric». 

Example  
See the example in Figure 7. The recursive association supervises between a 

supervisor and a supervised employee is constrained by an asymmetric constraint. 

This means that if employee e1 is a supervisor of employee e2 then employee e2 

cannot be a supervisor of employee e1. 

Employee

supervisor

supervised

*

*

supervises

{«Asymmetric»}

 
Fig. 7. Example of a Recursive Association with stereotype «Asymmetric» 

3.1.10 Acyclic Constraint 

Semantics 
An acyclic constraint represents a constraint over a recursive association. This 

restriction constrains the extension of the association defining it as asymmetric. Let A 

be a class and R a recursive association over A, with r1 and r2 member ends. An 

acyclic constraint guarantees that if a and b are instances of A and a is R-related to b 

then b or instances R-related directly or indirectly to b are not R-related to a. 

Formally, in OCL: 

context A  

def: successors(): Set(A) = self.r2->union(self.r2.successors()) 

inv: self.successors()->excludes(self) 

Stereotype Description 
Acyclic is a concrete stereotype of Constraint and a subclass of RecursiveAssociation. 

Each instance of the stereotype represents the constraint related to a recursive 

association that defines it as acyclic.  

Constraints  
[3] There cannot be another instance of symmetric constraint for the same 

association3.  

[4] There cannot be instances of asymmetric nor antisymmetric nor irreflexive 

constraints for the same association2. 

Notation 
The notation for an acyclic constraint is a constraint with stereotype «Acyclic». 
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Example  
In the example of Figure 1, isPrerequisiteOfIsAcyclic is a constraint of this type that 

applies to the recursive association isPrerequisiteOf. Figure 8 shows the definition of 

this constraint as an instance of the Acyclic stereotype. 

Fig. 8. Applying Acyclic, PathInclusion and ValueComparison stereotypes 

3.1.11 Path Comparison Constraint 

Semantics 
Path comparison constraints restrict the way the population of one role or role 

sequence (path for short) relates to the population of another [Hal01]. Constraints 

belonging to this type are path inclusion, path exclusion and path equality. They all 

apply to a class A related to a class B via two different paths r1...ri, rj...rn. We 

consider three types of those constraints: path inclusion, path exclusion and path 

equality constraints.  

Stereotype Description 
PathComparison is an abstract stereotype of Constraint and a subclass of 

PredefinedConstraint. An instance of this stereotype represents a constraint that 

defines a set comparison over two paths. The constrainedElement of this stereotype is 

the start class of both paths. 

Attributes 

• path1, path2: String [1..*] {ordered}  Specify the paths to be compared. 

Constraints 

[1] The constrainedElement associated to an instance of PathsComparison is an 

element of type Class. 

[2] path1 and path2 correspond to valid paths. 

[3] The first element of each path corresponds to a property of the constrained class. 
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[4] The classes reached by each path are the same. 

[5] There cannot be two instances of PathComparison with the same paths. 

3.1.12 Path Inclusion Constraint 

Semantics 
Let A and B be two classes related via two different paths r1...ri and rj...rn. A path 

inclusion constraint guarantees that if a is an instance of A, the set of instances of B 

related to a via r1...ri includes the set of instances of B related to a via rj...rn.  It can 

be expressed in OCL as follows:  

context A inv: self.r1...ri->includesAll(self.rj...rn) 

Stereotype Description 

PathInclusion is a concrete stereotype of Constraint and a subclass of 

PathComparison. Each instance of the stereotype represents a constraint that defines 

an inclusion relationship between the sets of instances at the end of two paths. 

Notation  
The notation for path inclusion constraints is a constraint with stereotype 

«PathInclusion». Values of path1 and path2 attributes are shown in a note attached to 

the constraint. 

Example 
See the example in Figure 8. Class Course has a PathInclusion constraint meaning 

that the teachers assigned to sections of a course must be expert in that course. 

3.1.13 Path Exclusion Constraint 

Semantics 
Let A and B be two classes related via two different paths r1...ri and rj...rn. A path 

exclusion constraint guarantees that if a is an instance of A, the set of instances of B 

related to a via r1...ri does not contain any of the instances of B related to a via rj...rn. 

Formally, in OCL: 
context A inv: self.r1...ri->excludesAll(self.rj...rn) 

Stereotype Description 

PathExclusion is a concrete stereotype of Constraint and a subclass of 

PathComparison. Each instance of the stereotype represents a constraint that defines 

an exclusion relationship between the sets of instances at the end of two paths. 

Notation  
The notation for path exclusion invariants is a constraint with stereotype 

«PathExclusion». Values of path1 and path2 attributes are shown in a note attached to 

the constraint. 
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Example 
See the example in Figure 9. Class Course has a PathExclusion constraint meaning 

that the teachers assigned to sections of a course cannot be beginners in that course. 

 

Section

Teacher

Course
1

*

1

*

*

*
beginner

         «PathExclusion»

path1 = {"section","teacher"}

path2 = {"beginner"}

{«PathExclusion»}

 

Fig. 9. Example of a Class with stereotype «PathExclusion» 

3.1.14 Path Equality Constraint 

Semantics 
Let A and B be two classes related via two different paths r1...ri and rj...rn. A path 

equality invariant guarantees that if a is an instance of A, the set of instances of B 

related to a via r1...ri coincides with the instances of B related to a via rj...rn. In OCL, 

this constraint is expressed as follows: 

context A inv: self.r1...ri = self.rj...rn 

Stereotype Description 
PathEquality is a concrete stereotype of Constraint and a subclass of 

PathComparison. Each instance of the stereotype represents a constraint that defines 

an equality relationship between the sets of instances at the end of two paths. 

Notation  
The notation for path equality invariants is a constraint with stereotype 

«PathEquality». Values of path1 and path2 attributes are shown in a note attached to 

the constraint. 

Example 
See the example in Figure 10. Class Course has a PathEquality constraint meaning 

that all the teachers that belong to a course must be assigned to a section of that 

course. 
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Section

Teacher

Course
1

*

1

*

*

*
beginner

         «PathEquality»

path1 = {"teacher"}

path2 = {"section","teacher"}

{«PathEquality»}

 
Fig. 10. Example of a Class with stereotype «PathEquality» 

3.1.15 Value Comparison Constraint 

Semantics 
Value comparison constraints restrict the possible values of an attribute, either by 

comparing it to a constant or to the value of another attribute [Ack05]. 

Let A be a class, let a1 be an attribute of A, let v be either a constant or the value of 

an attribute accessible from A and let op be an operator of kind <, >, =, <>, ≤, or ≥. A 

value comparison constraint restricts the possible values of a1 regarding the value of 

v. This constraint can be formally expressed in OCL as follows: 

context A inv: self.a1 op v 

Stereotype Description 
ValueComparison is a concrete stereotype of Constraint and a subclass of 

PredefinedInv. An instance of this stereotype represents a constraint that restricts the 

value of an attribute. 

Attributes 

• operator: OperatorKind 

 

• value: String[1..*] {ordered} 

Specifies the operator to be used in the 

comparison. 

Specifies the value to be compared to the 

attribute. It can be either a path or a constant. 

Constraints 

[1] The constrainedElement associated to an instance of ValueComparison is an 

element of type Property, not belonging to an association. 

[2] The constrained attribute has multiplicity 1. 

[3] The attribute value represents either a valid path starting from the class that 

owns the constrained attribute, or a constant. 

[4] If value is a path, its last element is an attribute with multiplicity 1. 

[5] The type of the value represented in value conforms to the type of the 

constrained attribute.  

[6] If the constrained attribute is of type Boolean, the operator can only be = or <> 

[7] There cannot be two instances of ValueComparison referring to the same 

attribute and value.   
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Notation  
The notation for value comparison constraints is a constraint with stereotype 

«ValueComparison» attached to an attribute. Values of operator and value attributes 

are shown in a note attached to the constraint. 

Example 
See the example in Figure 8. Attribute age has a ValueComparison constraint 

meaning that the number of students of a section must be lower than 80. 

3.1.17 Mandatory Disjoint Constraint 

Semantics 
A mandatory disjoint constraint restricts that the disjunction of a set of attributes is 

mandatory {{158 Halpin, T. 2001; }}.  

Let A be a class with a set of attributes, {at1,...,atn}. Mandatory disjoint invariant 

allows to specify that at least values of one of disjoint set of attributes 

{{ati,...,atj},…,{atp,...,atq}}, where {ati,...,atj},…,{atp,...,atq} are disjoint subsets of  

{at1,...,atn}, are mandatory. This constraint may be expressed, formally, in OCL as 

follows: 

context A inv: 

(ati->notEmpty() and … and atj->notEmpty()) or …or (atp->notEmpty() and … 

and atq->notEmpty()) 

Stereotype Description 
MandatoryDisjoint is a concrete stereotype of Constraint. An instance of this 

stereotype represents a constraint over a class that defines for any instance of a class 

which values of disjoint set of attributes are mandatory. 

Attributes 

• disjointGroups:Set(String)[2..*] 

 

 

Specifies two or more disjoint groups of sets 

of strings.

Constraints  
[1] The constrainedElement associated to MandatoryDisjoint is an element of type 

Class. 

[2] There cannot be two instances of MandatoryDisjoint with the same 

disjointGroups. 

[3] The disjointGroups attribute corresponds to the name of disjoint subsets of 

 attributes of the constrainedElement class. 

[4] None of groups of disjointGroups can be empty. 

[5] At least, one of the attributes of each group of disjointGroups has 0 as 

minimum multiplicity. 

[6] An instance of mandatory disjoint constraint must have as a namespace the 

same class as constrainedElement class. 
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Notation 
The notation for a mandatory disjoint constraint is a constraint with stereotype 

«MandatoryDisjoint». Values of disjointGroups attribute that is a set of 2 or more 

sets of 1 or more strings are shown in a note attached to the constraint. 

Example  
See the example in figure 11. The class Person has a mandatory disjoint invariant 

which ensures that either name, lastname or SSNumber are mandatory. 

 

 

Fig. 11. Example of a class with stereotype «MandatoryDisjoint» 

3.1.16 Cardinality Association Constraint 

Semantics 
A cardinality association constraint represents a restriction over an n-ary association, 

i.e. association that has three or more ends.  

Let R be an association and let fixedEnds and relatedEnds be disjoint subsets of 

the end properties related by R shown in Figure 12. A cardinality association 

constraint for fixedEnds and relatedEnds restricts the minimum and maximum 

number of instances of R that relate any combination of objects, such that the 

combination includes an object that is instance of each one of the owner end classes 

of the properties in fixedEnds, with a different combination of objects that are 

instance of each one of the owner end classes of the properties in relatedEnds.  

Observe that when relatedEnds has a single property and fixedEnds has the rest of 

properties related by the association, the corresponding cardinality constraint can be 

expressed graphically in UML class diagrams by means of the multiplicity of the 

association ends. Nevertheless, the rest of cardinality constraints of an n-ary 

association can not be expressed graphically in UML class diagrams.  
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...

 

Fig. 12. Example of an n-ary association 

Assume that association R of Figure 12 has a cardinality association constraint 

where: 

- fixedEnds = {r1,r2…,ri}. 

- relatedEnds = {ri+1,…,rk}. 

- min is the minimum cardinality established by the constraint. 

- max is the maximum cardinality established by the constraint.  

Then, the corresponding cardinality association constraint can be expressed, 

formally, in OCL as follows: 

context A1 inv: 

A1.allInstances()->forAll(vr1|A2.allInstances()->forAll(vr2| …Ai.allInstances()-> 

forAll(vri| R.allInstances()->select(t| t.r1=vr1 and t.r2=vr2 and … and t.ri=vri))…))-

> collect(t| Tuple{cri+1=t.ri+1, …, crk=t.rk})->asSet()->size()>= min and 

A1.allInstances()->forAll(vr1|A2.allInstances()->forAll(vr2| …Ai.allInstances()-> 

forAll(vri| R.allInstances()->select(t| t.r1=vr1 and t.r2=vr2 and … and t.ri=vri))…))-

> collect(t| Tuple{cri+1=t.ri+1, …, crk=t.rk}) ->asSet()->size()<= max 

Stereotype Description 
CardinalityAssoc is a concrete stereotype of Constraint. Each instance of this 

stereotype represents constraint related to an n-ary association that restricts its 

cardinality. 

Attributes 
fixedEnds: String[1..*]{ordered,unique} 

 Specifies a subset of the end properties of the 

association that constitute the fixedEnds of the 

cardinality constraint. 

relatedEnds: String[1..*]{unique}  

Specifies a subset of the end properties of the 

association that constitute the relatedEnds of the 

cardinality constraint. 

minCard: String Specifies the minimum cardinality permitted by the 

cardinality association constraint.  
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maxCard: String Specifies the maximum cardinality permitted by the 

cardinality association constraint.  

Constraints  
[1] A cardinality association constraint has as constrainedElement an association.  

[2] The constrainedElement association must be n-ary (association that has three or 

more ends). 

[3] minCard must represent a non-negative integer. 

[4] maxCard must be ‘*’ and, otherwise, must represent a positive integer. 

[5] If maxCard is different from ‘*’ then the value it represents must be greater 

than the value represented by minCard. 

[6] Properties represented by values in fixedEnds must be end properties of the 

constrainedElement association. 

[7] Properties represented by values in relatedEnds must be end properties of the 

constrainedElement association. 

[8] fixedEnds and relatedEnds must be disjoint. 

[9] If relatedEnds has a single element then the number of elements of relatedEnds 

must be less than the number of ends of the constrainedElement association 

minus 1. Otherwise the constraint could be graphically represented in UML. 

[10] There cannot be another instance of cardinality association constraint such that 

has as constrainedElement the same association and that properties represented 

in fixedEnds and relatedEnds are the same, respectively. 

[11] A cardinality association constraint must have as namespace the end class that 

owns the property that corresponds to the first element in fixedEnds. 

Notation  
The notation for a cardinality association constraint is a constraint with stereotype 

«CardinalityAssoc». Values of fixedEnds, relatedEnds, minCard and maxCard 

attributes are shown in a note attached to the constraint. 

Examples 
See the example in Figure 13. The n-ary association Supply has a cardinality 

association constraint which establishes that for any building under construction and 

day, the maximum number of supplies of different products and suppliers is 50. 
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Fig. 13. Example of a n-ary association with stereotype «CardinalityAssoc» 

See the example in Figure 14. The n-ary association Uses, which represents the skills 

used by employees in the projects where they participate, has a cardinality constraint 

invariant which establishes that the maximum number of projects where an employee 

may participate is 5. 

 

Fig. 14. Example of a n-ary association with stereotype «CardinalityAssoc» 

3.2 Creating the Instances of an Stereotype 

To be able to specify new predefined constraints, for each stereotype we have also 

defined an operation that allows creating its instances. This operation associates to 

each new instance its corresponding context, constrained elements and specification. 

This specification has an empty body attribute if the designer only desires a graphical 

representation. Otherwise, if the designer also requires the definition of the OCL 

expression, the operation assigns to the body attribute the expression automatically 

generated according to the type of constraint.  

The specification of the operations to create instances of the stereotypes defined 

above is given in next subsections. 
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3.2.1 NewIdentifier Operation 
The operation newIdentifier results in the creation of an instance of the stereotype 

Identifier. 

The parameters needed are a class, the set of attributes that identify each of its 

instances, the name of the constraint and the way to represent this constraint in the 

schema which is an enumeration of two values ocl and graphically. The value ocl 

indicates that the constraint will be represented graphically and textually in OCL and 

the value graphically indicates that the representation will be only graphical. The 

postconditions guarantee that a new instance of Identifier will be created, the 

constrained elements will be the set of properties and the namespace will be the 

indicated class. This operation can be defined in OCL as follows: 

context Identifier::newIdentifier(c:Class, a:Set(Property), name:String[0..1], 

representation:RepresentationType) 

let ident = 'Tuple{'.concat(Sequence{1..a->size()}-> iterate(pn; s: String = '' | s.concat((if 

(pn>1) then ', ' else'' endif).concat ('c').concat(a->at(pn). name).concat (': ').concat 

(a-> at(pn). name)))).concat('}') in 

 post: id.oclIsNew() and id.oclIsTypeOf(Identifier) and id.name=name and 

 id.constrainedElement -> includesAll(a.name) and  

 c.ownedRule->includes(id) and 

 expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

 id.specification = expr and 

 representation=RepresentationType::ocl implies 

expr.language = 'OCL' and expr.body = 'context '.concat(id.context.name). 

concat(' inv ').concat(name).concat(': ').concat(c.name).concat('.allInstances()-> 

isUnique('). concat(ident).concat(')') 

3.2.2 NewWeakIdentifier Operation 
The operation newWeakIdentifier results in the creation of an instance of the 

stereotype WeakIdentifier. 

The parameters needed are a class, the set of properties (attributes and the associated 

class) that identify each instances of the former class, the name of the constraint and 

the way to represent this constraint in the schema. The postconditions guarantee that 

a new instance of WeakIdentifier will be created, the constrained elements will be the 

set of properties and the namespace will be the indicated class. This operation can be 

defined in OCL as follows: 

context WeakIdentifier::newWeakIdentifier(c:Class, a:Set(Property), name:String[0..1], 

representation:RepresentationType) 

let ident = 'Tuple{'.concat(Sequence{1..a->size()}-> iterate(pn; s: String = '' | s.concat((if 

(pn>1) then ', ' else'' endif).concat ('c').concat(a->at(pn). name).concat (': ').concat 

(a-> at(pn). name)))).concat('}') in 

 post: id.oclIsNew() and id.oclIsTypeOf(WeakIdentifier) and id.name=name and 

 id.constrainedElement -> includesAll(a.name) and c.ownedRule->includes(id) and 

 expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

 id.specification = expr and 

 representation=RepresentationType::ocl implies 

expr.language = 'OCL' and expr.body = 'context '.concat(id.context.name). 

concat(' inv ').concat(name).concat(': ').concat(c.name).concat('.allInstances()-> 

isUnique('). concat(ident).concat(')') 
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3.2.3 NewIrreflexive Operation 
The operation newIrreflexive results in the creation of an instance of the stereotype 

Irreflexive. 

The parameters needed are an association, the name of the constraint and the way to 

represent this constraint in the schema. The postconditions guarantee that a new 

instance of Irreflexive will be created, the constrained elements and the namespace 

will be the association. This operation can be defined in OCL as follows: 

 

context Irreflexive:: newIrreflexive (a:Association, name:String[0..1], 

representation:RepresentationType)  

let rol:String =  if a.memberEnd->last().name->isEmpty()  

then a.memberEnd-> last().class.name  

else a.memberEnd->last().name 

in 
post: irref.oclIsNew() and irref.oclIsTypeOf(Irreflexive) and irref.name=name and 

irref.constrainedElement->includes(a) and 

a.memberEnd->last().class.ownedRule->includes(irref) and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

irref.specification=expr and 

 representation=RepresentationType::ocl implies 

expr.language='OCL' and 

expr.body='context '.concat(irref.context.name).concat(' inv'). concat(name). 

concat(': self.').concat(rol).concat('<>self')  

3.2.4 NewSymmetric Operation 
The operation newSymmetric results in the creation of an instance of the stereotype 

Symmetric. 

The parameters needed are an association, the name of the constraint and the way to 

represent this constraint in the schema. The postconditions guarantee that a new 

instance of Symmetric will be created, the constrained elements and the namespace 

will be the association. This operation can be defined in OCL as follows: 

 

context Symmetric:: newSymmetric (a:Association, name:String[0..1], 

representation:RepresentationType)  

let rol:String = if a.memberEnd->last().name->isEmpty() 

then a.memberEnd-> last().class.name  

else a.memberEnd->last().name 

in 
post:  sym.oclIsNew() and sym.oclIsTypeOf(Symmetric) and sym.name=name and 

sym.constrainedElement->includes(a) and 

a.memberEnd->last().class.ownedRule->includes(sym) and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

sym.specification=expr and 

 representation=RepresentationType::ocl implies 

expr.language='OCL' and 

expr.body='context '.concat(sym.context.name). and 

concat(' inv').concat(name).concat(': self.'). concat(rol).  

concat('. ').concat(rol).concat('->includes(self) ')  
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3.2.5 NewAntisymmetric Operation 
The operation newAntisymmetric results in the creation of an instance of the 

stereotype Antisymmetric. 

The parameters needed are an association, the name of the constraint and the way to 

represent this constraint in the schema. The postconditions guarantee that a new 

instance of Antisymmetric will be created, the constrained elements and the 

namespace will be the association. This operation can be defined in OCL as follows: 

 

context Antisymmetric:: newAntisymmetric (a:Association, name:String[0..1], 

representation:RepresentationType)  

let rol:String = if a.memberEnd->last().name->isEmpty() 

then a.memberEnd-> last().class.name  

else a.memberEnd->last().name 

in 
post:  antisym.oclIsNew() and antisym.oclIsTypeOf(Antisymmetric) and 

antisym.name=name and 

antisym.constrainedElement->includes(a) and 

a.memberEnd->last().class.ownedRule->includes(antisym) and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

antisym.specification=expr and 

 representation=RepresentationType::ocl implies 

expr.language='OCL' and 

expr.body='context '.concat(antisym.context.name). concat(' inv'). 

concat(name).concat(': self.').concat(rol).concat(<>self implies 

self.).concat(rol).concat('.'). concat(rol).concat('->excludes(self)') 

3.2.6 NewAsymmetric Operation 
The operation newAsymmetric results in the creation of an instance of the stereotype 

Asymmetric. 

The parameters needed are an association, the name of the constraint and the way to 

represent this constraint in the schema. The postconditions guarantee that a new 

instance of Asymmetric will be created, the constrained elements and the namespace 

will be the association. This operation can be defined in OCL as follows: 

 

context Asymmetric:: newAsymmetric (a:Association, name:String[0..1], 

representation:RepresentationType)  

let rol:String = if a.memberEnd->last().name->isEmpty() 

then a.memberEnd-> last().class.name  

else a.memberEnd->last().name 

in 
post: asym.oclIsNew() and asym.oclIsTypeOf(Asymmetric) and asym.name=name and 

asym.constrainedElement->includes(a) and 

a.memberEnd->last().class.ownedRule->includes(asym) and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

asym.specification=expr and 

 representation=RepresentationType::ocl implies 

expr.language='OCL' and 

expr.body='context '.concat(asym.context.name). concat(' inv'). concat(name). 

concat(': self.').concat(rol).concat('.').concat(rol).concat('->excludes(self)')  
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3.2.7 NewAcyclic Operation 
The operation newAcyclic results in the creation of an instance of the stereotype 

Acyclic. 

The parameters needed are an association, the name of the constraint and the way to 

represent this constraint in the schema. The postconditions guarantee that a new 

instance of Acyclic will be created, the constrained elements and the namespace will 

be the association. This operation can be defined in OCL as follows: 

 

context Acyclic:: newAcyclic (a:Association, name:String[0..1], 

representation:RepresentationType)  

let rol:String = if a.memberEnd->last().name->isEmpty() 

then a.memberEnd-> last().class.name  

else a.memberEnd->last().name 

in 
post: acyc.oclIsNew() and acyc.oclIsTypeOf(Acyclic) and acyc.name=name and 

acyc.constrainedElement->includes(a) and 

a.memberEnd->last().class.ownedRule->includes(acyc) and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

acyc.specification=expr and 

 representation=RepresentationType::ocl implies 

expr.language='OCL' and 

expr.body='context '.concat(acyc.context.name).concat(' def:  

successors():Set(').concat(acyc.context.name).concat(') =self.').concat(rol). 

concat('->union(self.').concat(rol).concat('.successors()) context'). 

concat(acyc.context.name).concat(' inv'). concat(name). 

concat(': self.successors()->excludes(self)') 

3.2.8 NewPathInclusion Operation 

Additional Operations 

We define an additional operation that, given a sequence of properties, returns a 

String representing the corresponding path. This operation is defined in the abstract 

stereotype PathComparison and will be used when constructing the OCL expressions 

of the concrete path comparison constraints. 

 
context PathComparison 

def: givePath(path: Sequence(Property)): String = 'self'.concat(path->  

iterate(p:String; expr: String | '. '.concat(expr.concat(p.name))) 

Creation Operation 

The operation newPathInclusion results in the creation of an instance of the 

stereotype PathInclusion. 

The parameters needed are a class, two sequences of properties that represent the 

paths, the name of the constraint and the way to represent this constraint in the 

schema. The postconditions guarantee that a new instance of PathInclusion will be 

created, and that the constrained element and the namespace will be the given class. 

This operation can be defined in OCL as follows: 
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context PathInclusion::newPathInclusion (start: Class, path1: Sequence(Property),  

path2: Sequence(Property), name:String[0..1], representation: RepresentationType)  

post: pi.oclIsNew() and pi.oclIsTypeOf(PathExclusion) and pi.name=name and 

pi.constrainedElement->includes(start) and 

start.ownedRule->includes(pi) and 

pi.path1 = path1.name and pi.path2 = path2.name and  

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

pi.specification=expr and 

representation= RepresentationType::ocl implies 

expr.language=’OCL’ and 

expr.body='context '.concat(start.name).concat(' inv: '). 

concat(givePath(path1)).concat('-> includesAll(').concat(givePath(path2)). 

concat(')') 

3.2.9 NewPathExclusion Operation 
The operation newPathExclusion results in the creation of an instance of the 

stereotype PathExclusion. 

The parameters needed are a class, two sequences of properties that represent the 

paths, the name of the constraint and the way to represent this constraint in the 

schema. The postconditions guarantee that a new instance of PathExclusion will be 

created, and that the constrained element and the namespace will be the given class. 

This operation can be defined in OCL as follows: 

 
context PathExclusion::newPathExclusion (start: Class, path1: Sequence(Property),  

path2: Sequence(Property), name:String[0..1], representation: RepresentationType)  

post: pe.oclIsNew() and pe.oclIsTypeOf(PathExclusion) and pe.name=name and 

pe.constrainedElement->includes(start) and 

start.ownedRule->includes(pe) and 

pe.path1 = path1.name and pe.path2 = path2.name and  

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

pe.specification=expr and 

representation= RepresentationType::ocl implies 

expr.language=’OCL’ and 

expr.body='context '.concat(start.name).concat(' inv: '). 

concat(givePath(path1)).concat('-> excludesAll(').concat(givePath(path2)). 

concat(')') 

3.2.10 NewPathEquality Operation 
The operation newPathEquality results in the creation of an instance of the stereotype 

PathEquality. 

The parameters needed are a class, two sequences of properties that represent the 

paths, the name of the constraint and the way to represent this constraint in the 

schema. The postconditions guarantee that a new instance of PathEquality will be 

created, and that the constrained element and the namespace will be the given class. 

This operation can be defined in OCL as follows: 
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context PathEquality::newPathEquality (start: Class, path1: Sequence(Property),  

path2: Sequence(Property), name:String[0..1], representation: RepresentationType)  

post: pe.oclIsNew() and pe.oclIsTypeOf(PathExclusion) and pe.name=name and 

pe.constrainedElement->includes(start) and 

start.ownedRule->includes(pe) and 

pe.path1 = path1.name and pe.path2 = path2.name and  

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

pe.specification=expr and 

representation= RepresentationType::ocl implies 

expr.language=’OCL’ and 

expr.body='context '.concat(start.name).concat(' inv: '). 

concat(givePath(path1)). concat('=').concat(givePath(path2)) 

3.2.11 NewValueComparison Operation 

Additional Operations 
We define an additional operation that, given a sequence of properties, returns a 

String representing the corresponding path: 

 
context ValueComparison 

def: giveExpression(value: Sequence(TypedElement)): String =  

if value->size() = 1 then value.name  

else 'self'.concat(value->  

iterate(v:String; expr: String | '. '.concat(expr.concat(v.name))) 

Creation Operation 
The operation newValueComparison results in the creation of an instance of the 

stereotype ValueComparison. 

The parameters needed are a property, the operator, the value, the name of the 

constraint and the way to represent this constraint in the schema. Note that value is of 

type Sequence(TypedElement) including either a constant or a path. The 

postconditions guarantee that a new instance of ValueComparison will be created, 

that the constrained element will be the indicated property and the namespace will be 

the class that the property belongs to. This operation can be defined in OCL as 

follows: 
 

context ValueComparison:: newValueComparison (attr: Property, op: ValueOperator, 

value: Sequence(TypedElement), name:String[0..1], representation: 

RepresentationType) 

post: vc.oclIsNew() and vc.oclIsTypeOf(ValueComparison) and vc.name=name and 

vc.constrainedElement->includes(attr) and 

attr.class.ownedRule->includes(vc) and 

vc.operator = op and vc.value=value.name and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

vc.specification=expr and 

representation= RepresentationType::ocl implies 

expr.language=’OCL’ and 

 expr.body='context '.concat(attr.class.name).concat(' inv: '). 

concat(attr.name).concat(op).concat(giveExpression(value)) 
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3.2.12 NewMandatoryDisjoint Operation 
The operation newMandatoryDisjoint results in the creation of an instance of the 

stereotype MandatoryDisjoint. 
 
context MandatoryDisjoint:: newMandatoryDisjoint(c: Class, a:Set(Set(Property)), 

representation:RepresentationType) 

post:  manDis.oclIsNew() and manDis.oclIsTypeOf(MandatoryDisjoint) and 

manDis.name=name and 

manDis.constrainedElement -> includes(c) and  

manDis.disjointGroups -> includes(a) and 

c.ownedRule->includes(manDis) and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

manDis.specification = expr and 

representation=RepresentationType::ocl implies 

expr.language = 'OCL' and  

expr.body= 'context '.concat(manDis.context.name). 

concat(' inv:').concat(Sequence{1.a->size()}-> iterate (pn; s: String = '' | 

s.concat((if (pn>1) then ') or ' else'' endif). 

concat(a->at(pn)->Sequence{1.a->at(pn)->size()}->  

iterate (qn; s2: String = '(' |s2.concat((if (qn>1) then ' and '  

else'' endif).concat(a->at(pn)->at(qn).name). 

concat('->notEmpty() '))))))).concat(')') 

3.2.13 NewCardinalityAssoc Operation 

Additional Operations 
We define an additional operation that, given a property, returns a String that 

represents its name or, in case it is empty, the name of its owner class. 

context CardinalityAssoc 

def: giveName(p:Property):String=if p.name->isEmpty()  

then p.class.name  

else p.name endif 

Creation Operation 
The operation newCardinalityAssoc results in the creation of an instance of the 

stereotype CardinalityAssoc.  

The parameters needed are an association, the name of the constraint and the way to 

represent this constraint in the schema. The postconditions guarantee that a new 

instance of CardinalityAssoc will be created, the constrained elements and the 

namespace will be the association. This operation can be defined in OCL as follows: 

context CardinalityAssoc:: newCardinalityAssoc (a:Association, fe:OrderedSet(Property), 

re:Set(Property), min:String, max:String, name:String[0..1], 

 representation:RepresentationType))  

let forAllfe:String=fe->iterate(e:Property;acc:String=''|  

acc.concat(a.memberEnd-> select(m|m=e).class.name).  

concat('.allInstances()->forAll(v').concat(giveName(e)).concat('|')) 

let assoc:String=a.name.concat('.allInstances()') 
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let sel1:String='->select(t|t. '.concat(giveName(fe.first())).concat('=v'). 

concat(giveName(fe.first())).concat(' ') 

let sel2:String=fe->subOrderedSet(2,fe->size())-> 

iterate(e:Property;acc:String=' '|acc.concat('and t. ').concat(giveName(e)). 

concat('=v').concat(giveName(e)).concat(' ')) 

let pars:String=fe->iterate(e:Property;acc:String=' '|acc.concat(') ')) 

let collect1:String='->collect(t|Tuple{' 

let auxcollect2:String=re->iterate(e:Property;acc:String='' | 

acc.concat('c').concat(giveName(e)).concat('=t. ').concat(giveName(e)). 

concat(', ')) 

in 
let collect2:String=auxcollect2.substring(1,auxcollect2.size()-1) 

let collect3:String='})' 

in 

post: cainv.oclIsNew() and cainv.oclIsTypeOf(CardinalityAssocInv)  

and cainv.name=name and 

cainv.constrainedElement->includes(a) and 

a.memberEnd->select(m|m=fe.first()).class.ownedRule->includes(cainv) and 

cainv.fixedEnds=fe->iterate(e:Property acc:OrderedSet(String)= 

OrderedSet{}| acc.append(giveName(e))) and 

cainv.relatedEnds=re->iterate(e:Property acc:Set(String)= 

Set{}| acc.including(giveName(e))) and 

cainv.minCard=min and 

cainv.maxCard=max and 

expr.oclIsNew() and expr.oclIsTypeOf(OpaqueExpression) and 

cainv.specification=expr and 

 representation=RepresentationType::ocl implies 

expr.language='OCL' and 

expr.body='context '.concat(cainv.context.name).concat(' inv: '). 

concat(forallfe).concat(assoc).concat(sel1).concat(sel2).concat(pars). 

concat(collect1).concat(collect2).concat(collect3). 

concat('->asSet()->size()>=').concat(min).concat(' and ').  

concat(forallfe).concat(assoc).concat(sel1).concat(sel2).concat(pars). 

concat(collect1).concat(collect2).concat(collect3). 

concat('->asSet()->size()<=').concat(max) 
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4. Case Study 

This section summarises the results obtained from the application of our profile to the 

specification of two real-life applications. The analysis of both schemas allows us to 

stress the advantages of using the profile. In particular, we have analysed a 

conceptual schema for the well-known EU-Rent Car Rentls system [FQO03] and we 

have also studied a generic conceptual schema for the e-marketplace domain [QT05]. 

EU-Rent is a (fictitious) car rental company with branches in several countries. 

The company rents cars to its customers who may be individuals or companies. 

Different models of cars are offered, organized into groups and cars within a group 

are charged at the same rates. The class diagram we have studied consists of 59 

classes, 50 associations and 40 constraints that require an explicit definition. Our 

profile prevents us from specifying in OCL a considerable amount of said 

constraints. Only 14 out of 40 do not correspond to any of our stereotypes and, thus, 

a specific OCL expression needs to be constructed to specify them.  

Figure 15 shows a small fragment of the EU-Rent class diagram (10 classes and 

16 constraints) to further illustrate the conclusions we have drawn from the 

development of this case study. The first seven constraints may be specified by 

applying the Identifier stereotype since they state the attributes that identify each 

class. Constraints 8 and 9 may be specified by applying the ValueComparison 

stereotype. 

 
 

Fig. 15. Fragment of EU-Rent class diagram 
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Constraints 10 and 11 correspond to the PathInclusion stereotype; 12 corresponds 

to the PathEquality stereotype and 13 corresponds to the Acyclic stereotype. Finally, 

constraints 14, 15 and 16 do not match any of our predefined constraints and thus an 

ad-hoc OCL expression must be built to specify them. 

The second case study consists of the specification of a generic conceptual schema 

for the e-marketplace domain [QT05] which covers the main functionalities provided 

by an e-marketplace: determining product offerings, searching for products and price 

discovery. The whole specification includes 40 classes, 15 associations and 41 

constraints that require an explicit definition. After analysing the constraints, the 

results obtained are quite similar to those obtained with EU-Rent. In this case, the 

success rate is a bit lower, about 54% instead of 65% as before, but still interesting. 

This means that we have to specify manually only 19 out of 41 OCL constraints. 

From the results of both case studies, we see that it has been possible to use our 

stereotypes almost in 60% of the constraints, by reducing the number of OCL 

expressions from 81 to 33. 

5. Reasoning and Generating Code 

One of the main benefits of the proposed profile is the ability of reasoning about 

constraints represented as instances of our stereotypes and their automatic code 

generation into a given technological platform. In the following we show how our 

profile facilitates reasoning about constraint satisfiability and constraint redundancy. 

We outline also how to use the profile to generate code for checking those constraints 

in a relational database. 

5.1 Constraint Satisfiability 

A conceptual schema is satisfiable if it admits at least one legal instance of the IB. 

For some constraints it may happen that only the empty or non-finite IBs satisfy 

them. In conceptual modeling, the IBs of interest are finite and may be populated. 

We then say that a schema is strongly satisfiable if there is at least one fully 

populated (i.e  each class and association has at least one instance) instance of the IB 

satisfying all the constraints [LN90]. Otherwise, the schema is incorrect. 

Constraint satisfiability has received a lot of attention in conceptual modeling. For 

instance, [Hal01] presents in the Euler diagram in Figure 16 the relationships 

between recursive association constraints. Some satisfiability rules can be deduced 

from the figure. For instance, a recursive association with an acyclic and a symmetric 

invariant is not strongly satisfiable because there can not exist instances in the IB of 

the corresponding association that satisfy, at the same time, both invariants.  

 

Fig. 16. Relationships between recursive association constraints   
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Unfortunately, and as a consequence of problems associated to the definition of 

general constraints, known results in constraint satisfiability checking cannot be 

applied to the definition of constraints by means of general-purpose languages. For 

example, in Figure 1, the designer could define another constraint that defines the 

association isPrerequisiteOf as symmetric. As explained before, this new invariant 

makes the schema incorrect. 

Our proposal allows us incorporating easily some of these results. In fact, the 

definition of predefined constraints as stereotypes permits to attach new constraints 

that represent well-studied satisfiability rules that detect if a set of constraints is 

strongly satisfiable. Table 1 summarizes the stereotypes and the constraints we have 

attached to them to incorporate the results presented in [Hal01]. Other known results 

for constraint satisfiability can be incorporated in the same way. 

Table 1. Validation of recursive association constraints  

Stereotype Constraint attached to the stereotype 

Symmetric There cannot be another instance of acyclic, asymmetric nor antisymmetric 

constraint for the same association 

Antisymmetric There cannot be another instance of symmetric constraint for the same 

association 

Asymmetric There cannot be another instance of symmetric constraint for the same 

association 

Acyclic There cannot be another instance of symmetric constraint for the same 

association 

5.2 Constraint Redundancy 

A conceptual schema is redundant if an aspect of the schema is defined more than 

once [CST02]. For instance, a constraint is redundant with respect to another 

constraint if in each state of the IB that violates the latter, the former is also violated. 

We may also draw from the diagram shown in Figure 6 some rules that permit to 

detect some redundancies between recursive association constraints. For example, an 

acyclic constraint is redundant with respect to an asymmetric constraint of the same 

association because asymmetric associations are always acyclic. 

Our proposal also allows incorporating easily results on constraint redundancy. 

Table 2 summarizes the stereotypes and the constraints we have attached to them to 

incorporate rules that detect redundancies between recursive association constraints. 

Other results can be incorporated in a similar way. 

Table 2. Redundancy of recursive association constraints  

Stereotype Constraint attached to the stereotype 

Irreflexive There cannot be another instance of asymmetric nor acyclic constraint for 

the same association 

Antisymmetric There cannot be another instance of asymmetric nor acyclic constraint for 

the same association 

Asymmetric There cannot be another instance of antisymmetric nor irreflexive nor 

acyclic constraint for the same association 

Acyclic There cannot be another instance of asymmetric nor antisymmetric nor 

irreflexive constraints for the same association 
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5.3 Automatic Code Generation 

Many UML CASE tools offer code generation capabilities. However, most of them 

do not generate the code required to check whether constraints defined in general-

purpose languages are violated by the execution of a transaction. We outline in this 

section how our profile may be used to facilitate such important task. 

As we have seen, each stereotype explicitly states a precise semantics for the type 

of constraints it defines. Semantics may be taken into account during code generation 

to determine the most adequate translation from the conceptual schema to a particular 

technology. Thus, assuming an implementation on a relational database, identifier 

constraints could be translated into primary key or unique constraints; weak 

identifiers into foreign key plus primary key constraints; value comparisons into 

check constraints and other constraints by means of triggers or stored procedures. For 

example, classes Course, Section and their constraints would be translated as follows: 
 

CREATE TABLE Course ( 

    name    char(30)     PRIMARY KEY, 

    code     char(30)     UNIQUE, 

    creditsNumber  int   NOT NULL) 

 

 

 

CREATE TABLE Section ( 

    nameCourse     char(30), 

    number             int, 

    numbOfStud     int, 

    PRIMARY KEY (nameCourse, number), 

    CONSTRAINT fkSect  FOREIGN KEY (nameCourse)     

                                          REFERENCES Course(name) ) 

6. Related Work 

In this section, we analyze other works that contribute to facilitating the definition of 

general constraints in UML.  

Executable UML (xUML) is a profile of UML that allows defining an information 

system in sufficient detail that it can be executed [MB02]. As part of its proposal, 

xUML extends the set of constraints that can be graphically specified. In particular, it 

covers our uniqueness constraints and some kinds of path comparison constraints, i.e. 

path equality and path inclusion. Considering the EU-Rent and the e-marketplace case 

studies, xUML would cover only 28% of the constraints instead of the 60% covered 

by our proposal. Moreover, we provide the profile definition in terms of the UML 2.0 

metamodel including the definition of the creation operations that permit to add 

instances to the stereotypes. 

Ackermann [Ack05] proposes a set of OCL specification patterns that facilitate the 

definition of some UML integrity constraints, namely what we call identifier 

constraints and a subset of value comparison constraints. When applied to our case 

studies it covers only 26% of the constraints. This approach is based on the automatic 

generation of OCL expressions from a set of patterns and, thus, it does not extend the 

language via a profile definition as we propose. Consequently, it does not extend the 

set of UML predefined constraints which facilitates their graphical representation. 

Furthermore, it does not use the established mechanisms to extend the language and, 

thus, it can not be directly incorporated to UML CASE tools. 

In [MN05] a large taxonomy of integrity constraints (which includes constraints 

that are inherent, graphical and user-defined in UML) is analyzed. The authors 
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advocate the definition of stereotypes for some of them. They leave the stereotype 

definition for future work but propose that model elements such as associations and 

attributes should be taken as base class for their definition. We think instead that all 

the proposed stereotypes should be stereotypes of Constraint. The reasons are that the 

semantics of Constraint corresponds to the purpose of the stereotypes, it permits to 

graphically represent the incorporated constraints similarly as predefined constraints 

and, finally, it facilitates a uniform treatment of the incorporated constraints together 

with the rest of constraints of a UML class diagram. 

In addition to already stated drawbacks of previous proposals, we must note that 

none of them deals with the ability of reasoning about the general constraints they 

may handle. 

7. Conclusions and Future Work 

We have proposed a new approach to facilitate the definition of general constraints in 

the UML. Our approach is based on the use of constraint stereotypes in conceptual 

modelling and it allows defining as predefined UML constraints some types of 

general constraints that are frequently used, instead of having to specify them by 

means of a general-purpose sublanguage such as OCL.  

Being able to specify general constraints as predefined constraints we overcome 

the limitations of having to define them manually which may usually imply a time-

consuming and error-prone definition, difficulty of understanding (since the reader 

may not be familiar with the formal language used to define the general constraint) 

and difficulty of automatic treatment (since general constraints do not have a pre-

established interpretation while predefined ones do). 

We have applied our approach to the specification of two real-life applications: the 

EU-Rent Car Rentals system [FQO03] and a conceptual schema for the e-marketplace 

domain [QT05], and we have seen that 60% of the general constraints of those case 

studies may have been defined as predefined by means of our stereotypes. 

Finally, we have also incorporated into our stereotypes previous results regarding 

constraint satisfiability and constraint redundancy checking. This has been easily done 

by attaching to our stereotypes well-established rules that detect whether a set of 

constraints is strongly satisfiable [Hal01] and redundancies between recursive 

association constraints. We have also outlined how to automate code generation from 

our profile to check integrity constraints in a relational database. 

Since one of the main goals of our paper has been to illustrate the advantages 

provided by the use of constraint stereotypes, we have not intended to be exhaustive 

in the extent of predefined constraints considered. Future work may involve the 

definition of other types of frequent general constraints. We also plan to incorporate 

into our stereotypes other known results for reasoning about constraints and to further 

develop the automatic code generation from our stereotypes. 
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