
Pressing: Smooth Isosurfaces with Flats from Binary Grids

A. Chica, J. Williams2, C. Andujar, P. Brunet, I. Navazo, J. Rossignac2, A. Vinacua

Department of Software, Polytechnic University of Catalonia, Barcelona, Spain
2IRIS Cluster and GVU Center, College of Computing, Georgia Institute of Technology,

Atlanta, GA, USA

Abstract

We explore the automatic recovery of solids from their volumetric discretizations. In particular, we
propose an approach, called Pressing, for smoothing isosurfaces extracted from binary volumes while
recovering their large planar regions (�ats). Pressing yields a surface that is guaranteed to contain
the samples of the volume classi�ed as interior and exclude those classi�ed as exterior. It uses global
optimization to identify �ats and constrained bilaplacian smoothing to eliminate sharp features and
high-frequencies from the rest of the isosurface. It recovers sharp edges between �at regions and between
�at and smooth regions. Hence, the resulting isosurface is usually a much more accurate approximation
of the original solid than isosurfaces produced by previously proposed approaches. Furthermore, the
segmentation of the isosurface into �at and curved faces and the sharp/smooth labelling of their edges
may be valuable for shape recognition, simpli�cation, compression, and various reverse engineering and
manufacturing applications.

1 Introduction

Consider a solid model M whose boundary ∂M is smooth and contains large planar faces (called �ats). The
set of samples (nodes) of a regular axis-aligned lattice in a box containing M may be divided into the set G
of green samples in M and the set R of red samples out of M . The collection of cubical voxels centered at
the green samples provides a rough approximation of M .

Di�erent from voxels, the cells of the grid are axis-aligned boxes having for vertices a 2×2×2 arrangement
of neighboring samples from the grid. Cells with vertices of di�erent colors are said to be mixed. The axis-
aligned edges of the lattice connecting adjacent nodes of di�erent color are called sticks. Let the free space F
be the union of the mixed cells, and let S be a triangulated isosurface in F that separates R from G and has
as its vertices the midpoints of the sticks (Figure 1-a). We explore isotopies in F that will deform S into S′

by sliding its vertices along their sticks. In particular, we strive to increase the smoothness of S and at the
same time to reproduce in S′ close approximations of the �ats of ∂M , using only the information encoded
by G and R. The resulting surface S′ (Figure 1-c) is called the pressed S, and the process for computing it
is called Pressing.

In both two and three dimensions, Pressing starts by grouping the sticks into clusters that can each be
stabbed by a �at separating the red and green samples at the sticks' endpoints. Then Pressing slides the
sticks' vertices to their intersections with the �at and freezes them. The other fresh (non-frozen) vertices
are then adjusted along their sticks to smooth the isosurface.

We �rst illustrate this process with a 2D example. A region M with a boundary ∂M that contains several
�ats (line segments) (Figure 2-a) is rasterized (Figure 2-b) on a regular axis-aligned lattice by painting green

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: (a) The aliased isosurface was extracted from a 1283 binary voxelization. Its vertices are at the
stick midpoints. (b) The �ats were identi�ed and color-coded. The junction points along the boundaries
between planar and non-planar regions are also identi�ed and shown as orange dots. Note that a �at may be
connected to other �ats or to smooth faces through sharp edges and to smooth faces through smooth edges.
(c) The resulting pressed isosurface.

the lattice nodes in M and red the other ones.
Pressing starts from this red/green labeling and reconstructs an isocontour S (Figure 2-c) approximating

∂M . The mixed cells are the lattice squares having both red and green vertices. S is contained in their union.
A mixed cell is bounded by two or four sticks. A cell with two sticks contributes a single edge to S. A cell
with four sticks is called an X-face. It contributes two edges to S. There are two ways of constructing these
two edges so that they do not intersect. The choice a�ects the topology of the result. We have dealt with
this problem in three dimensions in [ABC∗05], which is the solution we will adopt here. We will not dwell
further in this issue, as the algorithm presented in this paper will work equally with any correct starting
triangulation. For the purpose of this illustration, one can assume we have an oracle that decides for us the
connectivity to use.

Next, Pressing identi�es the �ats. It associates each �at with a subset of the sticks it stabs, so that
each stick is associated with at most one �at. Then it snaps the vertices of these sticks to the �at that
stabs them, by sliding these vertices along their stick (Figure 2-d). These vertices will remain locked in this
position (we say that they are frozen). The remaining vertices are said to be fresh. Then Pressing identi�es
junction points among the fresh vertices adjacent to frozen vertices; these will correspond to sharp corners.
Finally, Pressing perturbs the fresh vertices through a custom smoothing process that retains sharp corners
and produces a polygonal curve S′ (Figure 2-e) that is isotopic to S (i.e., may be continuously deformed into
S without crossing any lattice point). Note that S′ is a close approximation of ∂M and has straight lines,
smooth curves, and sharp corners that match those of ∂M .

In a similar fashion, the 3D version of the Pressing algorithm works as follows:

• We cluster sticks [ABC∗04] into �ats that may be stabbed by a plane (Figure 1-b).

• We identify junction points: vertices between a �at and a curved region (Figure 1-b). (Section 3)

• We fair non-�at regions by an iterative process, which, at each step and for each fresh vertex combines
arc-length re-sampling, bilaplacian smoothing, and snapping. These three operations are performed
independently on each X, Y , and Z slice [NGH∗03]. Their results are combined for each stick using a
special �lter at borders. (Section 4)

2

(a) (b) (c)

(d) (e)

Figure 2: 2D region M bounded by straight and curved edges (a) Red/green classi�cation of grid-samples
produced by rasterizing M . (b) Reconstructed isocontour S with vertices at stick midpoints. (c) Straight
edges are recovered by snapping the vertices of each cluster to its �at. (d) A pressed version S′ of S is
obtained after 50 pressing iterations. (e) Its straight and curved edges correspond to those of M .

• Sharp edges are recovered through the use of a modi�ed Edge Sharpener algorithm [AFRS04,AFSR05]
(Figure 1-c). (Section 5)

In summary, the technical contributions presented in this paper are:

• We propose to combine segmentation (for recovering �ats) and smoothing (for joining them with smooth
transition surfaces).

• We modify iso-surfaces smoothing to preserve portions frozen by equality constraints.

• We present a new smoothing operator, which preserves the connectivity of the initial iso-surface rep-
resentation and achieves smoothness in the presence of equality and inequality constraints.

The combination of these advances leads to new functionalities:

• Flat regions, curved regions, and sharp edges can be automatically recovered from raw binary voxeliza-
tions even though scalar �eld and Hermite data are not available.

• The reconstruction error is therefore bounded, since the �nal isosurface is constrained to stab the initial
sticks.

3

• The isosurface is automatically segmented into �at and curved regions, which may facilitate shape
identi�cation and manufacturing and assembly planning.

2 Prior Art

Algorithms that extract isosurfaces from a discrete sampling of a scalar �eld on a regular grid strive to en-
sure topological consistency and geometric �delity [LC87,NFHL91,Nie03,Lac96,MSS94,ABC∗05]. Some ap-
proaches base topological decisions on scalar �eld values [CGMS00,Nie03,LB03] or Hermite data [HWC∗05],
i.e. the estimates of surface normals at the vertices. Geometric �delity often depends on the delicate ability
to recover sharp features (which may follow smooth curved edges) and to smooth the isosurface away from
these edges. The Extended Marching Cubes [KBUS01] detects cells containing features and recovers them
by inserting an additional point in each one of these cells. The Dual Contouring algorithm [JLSW02] uses
a quadratic error metric to compute a new point inside each of the four cells around each mixed stick and
generates a quad connecting these four new points. A similar approach is adopted in [VKSM04]. All these
methods make use of Hermite data and thus cannot be applied to recover sharp features on binary grids
where only the in/out classi�cation of the grid nodes is stored.

Mesh smoothing algorithms strive to remove noise and high-frequency details from a general triangulated
surface by the iterative application of a smoothing operator. Most approaches derive non-shrinking smoothing
operators from discrete approximations of the Laplacian [Tau95,Kob97,DMSB99].

A major concern of smoothing techniques is the addition of constraints on the vertex placement to
guarantee the separation of in/out grid nodes [Gib98,Whi00,NGH∗03,Nie04]. Gibson [Gib98] proposed an
algorithm for reducing the terracing artifacts in isosurfaces extracted from binary grids. It places one vertex
in each mixed cell and then links the vertices in face-connected mixed cells to form a net. This net is relaxed
to reduce the energy measure in the links. A constraint is applied to keep each node in this original cell.
After the relaxation a triangulated surface, which may not be a manifold, is generated in a straightforward
way. Nielson et al. [NGH∗03] proposed a closely related technique to our constrained smoothing approach.
Like Pressing, mesh vertices are moved along the sticks and surface smoothing is obtained by combining
two orthogonal polygonal smoothing operations. However, the displacement for each vertex in [NGH∗03] is
driven by a non-linear optimization algorithm that minimizes an energy function de�ned on each polygonal
curve. A di�erent approach is presented in [Nie04] which introduced a smoothing operator based on the dual
of the dual surface of a Marching Cubes mesh, locating the vertices at the intersections of the dual's quads
with the lattice edges.

The computation of planar regions (�ats) approximating a given geometric model is an important problem
with wide applications in computer vision, modeling and impostor-based simpli�cation. The technique we
apply for detecting �ats is related to superfaces [KT94] and face clustering [GWH01, She01], which group
connected sets of nearly coplanar faces of a given triangulated surface. Superfaces uses a greedy algorithm to
cluster triangles. Each triangle in a superface imposes constraints on the set of feasible approximating planes
for the superface, most notably that the triangle's vertices must be within a �xed distance of the planes.
Hierarchical face clustering [GWH01] uses quadric error metrics [GH97] to iteratively merge adjacent faces.
Cohen-Steiner et al. [CSAD04] adopt a variational geometric partitioning approach to group faces into best-
�tting regions according to a normal deviation error metric. Decoret et al. [DDSD03] use an optimization
algorithm to �nd a set of approximating planes, using a discretization of a plane parameterization in spherical
coordinates, and propose a greedy optimization algorithm of a density �eld in this plane parameterization.
The main drawback is the time complexity of the plane optimization algorithm and the lack of uniformity
in the parameterization of planes.

4

Unlike the approaches above, which require a triangulated surface, Andujar et al. [ABC∗04] propose an
e�cient algorithm for the computation of the largest �at region (tile) in a discrete geometric model. The
input of the algorithm is the set of sticks. Using a voting-based approach, the plane that slices a largest
number of sticks is computed. The robustness and e�ciency of the approach rests on the use of two di�erent
parameterizations of the planes with suitable properties. The �rst of these is exact and is used to retrieve
precomputed local solutions of the problem. The second one is discrete and is used in a hierarchical voting
scheme to compute the global maximum. The authors demonstrate the merits of the algorithm for e�ciently
computing an optimized set of textured impostors for a given discretization of a polygonal model.

3 Detection of �ats and junction points

The �rst step of Pressing identi�es clusters of sticks and freezes their vertices on the best plane �t for each
cluster. To do so, we traverse the sticks, which cast a vote according to their neighborhoods, using the
approach proposed in [ABC∗04] for computing maximum tiles (�at regions).

As shown in Figure 1-b, the boundary of a �at F may include three types of edges. (1) Edges connecting
F to another �at. (2) Sharp edges connecting F to a curved surface. (3) Smooth edges connecting F to
a curved surface with normal continuity. Edges of type (1) and (2) will be identi�ed as sharp edges and
preserved. Edges of type (3) will be faired by our smoothing algorithm.

To detect cases where (2) or (3) apply, and before proceeding to the smoothing step, we consider every
edge of S joining a frozen vertex Vp on a planar region and a fresh vertex Vs on a smooth region. Let Np be
the normal of the tile stabbing Vp. Let Ns be normal to the plane produced by a least square �t to the fresh
vertices on the 2-ring neighborhood around Vs. When the angle between Np and Ns exceeds 30 degrees, we
decide that the edge is a chamfer-edge cutting through a sharp edge of S and label Vs as a junction point.
After experimenting with various angles, we have empirically concluded that a 30 degree threshold leads to
the best compromise limiting the false positives and false negatives.

4 Smoothing and snapping

In the next step, we seek to smooth out the surface obtained thus far, with a special consideration for sharp
edges between smooth and planar portions. To this end, we iterate the following two steps of our approach:
Smoothing and Snapping. Together, they iteratively modify the positions of the fresh vertices.

The 3D smoothing step computes for each fresh vertex C of S a displacement vector W along the stick I
of C. W is obtained as a linear combination of the two displacements, computed in each of the two di�erent
axis-aligned slices of the grid that contain I.

Consider one such slice. Assume that C lies on a curve where the slice intersects S. To compute the
corresponding displacement, we have developed a variant of the bilaplacian smoothing, which uses two points
at a �xed arc-length distance from C along the curve to each side of C. The construction is explained below.
The resulting displacement is projected onto the line supporting the stick I.

Consider �ve consecutive vertices (A,B, C, D, E) along a polygonal curve. The bilaplacian smoothing
displacement vector L2(C) associated with vertex C (Figure 3) may be computed as:

L2(C) =
−A + 4B − 6C + 4D − E

4
(1)

We �rst precompute and store L2(C) for each vertex C. Then, we move each vertex C to C ′′ =
C + s2L2(C), using s = 0.85. Note that this bilaplacian smoothing is equivalent to performing Taubin's

5

(a) (b)

Figure 3: The applied bilaplacian smoothing L2(C) can be computed as the di�erence L(C)− L(C ′) of two
Laplacian displacements. L(C) moves C to the average C ′ of its neighbors. Now assume that B and D have
also been moved to the averages B′ and D′ of their neighbors. L(C ′) moves C ′ to the average C ′′ of B′ and
D′.

Figure 4: The color-coding of the nodes was obtained by rasterizing a circle. Computing the bilaplacian from
neighboring vertices and snapping does not converge to an acceptable approximation of the circle (center).
Applying arc-length resampling yields a much better �t (right).

�ltering [Tau95] with λ = µ = s.
Next, the snapping step projects each displaced vertex C ′′ to the closest point on the line supporting the

stick it came from. But this naïve approach does not converge to the smoothest curve possible subject to the
constraints (Figure 4). We found that, rather than approaching zero, some displacement vectors eventually
become orthogonal to the sticks, so that projecting a displaced vertex simply returned it to its previous
position. Hence, the curve is stuck in a suboptimal shape. Furthermore, when the curve converges to a node
of the grid, the node imposes inequality constraints on the displacements of vertices of incident sticks. Thus
as two or three of these vertices converge towards the node, the arc-length parameterization of the samples
along the curve is no longer uniform. Because the formula in equation 1 was developed for converging to a
uniform parameterization, it performs poorly near these nodes, creating sharp discontinuities. To solve this
problem, we have explored a variety of alternatives, including using a more general cubic �t to non-uniformly
distributed samples, whose parameters in the parametric cubic expression are estimated from the arc-length
distances between vertices. We have concluded that the resampling approach described below leads to the
most e�ective smoothing. Hence when computing the bilaplacian L2(C), we do not use A,B, D, and E �
the neighboring vertices of C on the curve. Instead, we compute new samples at a �xed distance d along the

6

Figure 5: Instead of using the vertices B and D, two virtual neighbors (CR and CL) are computed on each
side of C by moving a �xed amount along the curve .

curve in both directions (Figure 5). This arc-length resampling prevents the formation of unwanted corners
and yields satisfactory results when used with the snapping. We select d to be 75% of the length of a cell's
side.

Next we turn to the combination of these results into a displacement W . We could compute the dis-
placement for each vertex one by one. For example, consider the vertex V on a stick I that is parallel to
the Z axis. We could compute its displacements in the X −Z section of the grid that contains I and on the
Y − Z section. Then we would combine these displacements ensuring that the resulting vertex remains on
I. Instead, for simplicity and implementation e�ciency, we perform the smoothing and line-snapping steps
on each X − Y, X − Z, and Y − Z slice and then collect the results, combining two displacements for each
stick and clamping the result to the stick.

Because the stick of each vertex belongs to exactly two slices [NFHL91], we have two suggested displace-
ments for each vertex. We average the two displacement vectors to obtain the vertex's displacement and
then snap the displaced vertex to the closest point onto its stick. When averaging the two displacements
di�erent weighting techniques can be applied. We have experimented with three methods: (1) equal weights,
(2) weights are proportional to the dot products of the stick tangent with the normal to the curve, and (3)
weights are proportional to the dot products of the stick tangent with the tangent to the curve. There are
special cases in which (2) yields markedly worse results, and cases where (3) does that. We found that the
simpler approach in case (1) uniformly yields good results that are close to those of the best of the other
two.

We have modi�ed the smoothing �lter for vertices that belong to a feature edge. Those vertices do not use
the bilaplacian. Instead, they align themselves with the vertices on the smooth side (Figure 6). This amounts

Figure 6: The "smooth" vertices on a feature edge move themselves along their stick to be aligned with the
neighbors on their "smooth" side.

to aim at surfaces that approach the junction with zero curvature. In the absence of any information on this
junction, we have adopted this unclamped approach, which has been used in generating all the pictures.

7

5 Sharp Edge Recovering

The errors between the original shape and the iso-surface recovered thus far are usually concentrated near
the features, which were not appropriately captured by the regular sampling. To improve the accuracy of the
recovered surface, we sharpen the boundaries of planar regions using a variant of EdgeSharpener [AFRS04,
AFSR05].

The vertices belong to either a tile (planar face) or to a curved face. We use the term chamfer edges for
those mesh edges with vertices on two di�erent faces. A triangle with one or more chamfer edges is called
chamfer triangle.

In order to recover the sharp features we apply three steps. First, the chamfer triangles are identi�ed.
Then, we subdivide them appropriately by inserting new vertices. Finally, we position the new vertices to
better recover the sharp features.

Figure 7: Subdivision of a chamfer triangle with one (a) two (b) or three (c) chamfer edges.

Three cases arise when subdividing the chamfer triangles (Figure 7):

1. Triangles with one chamfer edge are split into two triangles.

2. Triangles with two chamfer edges result in three triangles.

3. When three di�erent faces meet at a triangle we have three chamfer edges. After subdividing we will
have six triangles and one interior vertex to represent the corner.

The process is presented in Figures 8 and 9. To �nd the position of a new vertex V inserted in a chamfer

Figure 8: Inserting a new vertex on a triangle with its vertices on three di�erent faces.

edge E, we consider the two original vertices, A and B, of E. We compute a normal NA for the vertex A
using its face, and de�ne a plane P that is orthogonal to NA and passes through A. Similarly, we compute a
normal NB for the vertex B using its face, and de�ne a plane Q that is orthogonal to NB and passes through
B. Finally, we move V to the closest point on the line of intersection between planes P and Q. When one of
these vertices belongs to a curved face, its normal is taken to be the normal to a plane estimated as in the
computation of junction points (the minimum square �t to the free neighbors in a 2-ring).

To �nd the position of an interior vertex W , we consider the vertices A, B and C of the corner triangle.
We compute normals NA, NB and NC using their respective faces. Using them we de�ne planes P , Q and

8

Figure 9: Edges with vertices on two di�erent faces are subdivided to recover a feature.

Figure 10: A 128× 128× 128 voxelization of a pump model, and the �nal pressed isosurface.

R which are orthogonal to NA, NB and NC , and pass through A, B and C, respectively. Then, W is moved
to the intersection point of P , Q and R.

6 Results and discussion

In this section we present and discuss several examples. They are shown in Figures 10, 11, 12 and 13. The
initial surfaces of these models have been converted into a binary voxel representation, and these voxelizations
have been used as the input to Pressing. In order to show the performance of Pressing in the most general
case, we have intentionally applied a random rotation to the models to ensure that the main faces are not
axis-aligned.

All these models show several sharp edge features between �at regions. Although the initial information
is only a binary voxelization, our algorithm is successful in detecting and reconstructing �ats and sharp
edges. In Figures 10 and 11, Pressing also recovers the smooth regions of the model and the curved features
between �at and smooth pieces. The following tables summarize the performance of the algorithm to obtain
the results depicted in Figures 10, 11, 12 and 13. Notice �by comparing Figure 10 with Figure 1-c� that
a larger number of iterations can achieve still smoother results, at the expense of time.

Table 1 presents the computing time of our algorithm, running on a Pentium 4 at 3.4 GHz and 1 GB
of RAM. The Max Tiles step for the detection and reconstruction of �at regions is based on a previous
work and is not presented as a contribution in this paper. The times for detecting sharp features and edge

9

Figure 11: A 128× 128× 128 voxelization of a mechanical part, and the �nal pressed isosurface.

Figure 12: A 128× 128× 128 voxelization of the Fandisk model, and the �nal pressed isosurface.

sharpening are not signi�cant in front of the time complexity of the smoothing part of the algorithm. This
smoothing step is however below 10 seconds in all 128× 128× 128 models. The higher times in the PART2
model are a consequence of the �ner voxelization.

Table 2 presents the evolution of the reconstruction errors, which are computed by taking the average
of the squares of the distances between a vertex of the isosurface and the intersection of its stick with the
original model. Note that this measure provides an upper bound on the Haussdorf error. The table presents
the square roots of these values. Voxels are considered to be of size 1.0× 1.0× 1.0.

The �rst row measures the error between the scanned isosurface and the midpoint isosurface, the second
one adds the planar regions, while the third and the fourth ones include the smoothing with 100 and 1000
iterations each. The errors monotonically decrease at each Pressing step, and reach small values after only
100 smoothing operations. The increase of accuracy when the number of iterations goes from 100 to 1000 is
not signi�cant.

10

Figure 13: A 256× 256× 256 voxelization of a second mechanical part, and the �nal pressed isosurface.

Stats (times in seconds) PUMP MECHANICAL PART COMPLEX FANDISK

TIME (MaxTiles) 73.39 15.99 94.38 58.89
TIME (Detect Sharp Features) 0.314 0.185 0.951 0.277

TIME (Smoothing) 8.158 5.563 45.562 5.643
TIME (Edge Sharpening) 0.129 0.108 0.397 0.141

Tiles 8 8 10 11
Iterations 49 65 97 54

Table 1: Computing time, number of reconstructed �at regions and number of iterations for each of the
presented models.

7 Conclusions

We have proposed a novel smoothing approach for the automatic recovery of solids from binary volumetric
discretizations. Our approach uses global optimization to identify �ats and a constrained smoothing algo-
rithm to recover the shape of non-planar regions. The proposed smoothing algorithm involves a snapping
step after each bilaplacian smoothing step to guarantee that �nal vertices remain in the initial sticks of the
voxelization.

Pressing works on general binary voxelizations and can recover �at and curved regions in cases where no
scalar �eld data or Hermite data are available. The isosurface is automatically segmented by sequences of
junction points and it is constrained to stab the initial sticks. The reconstruction error is therefore bounded
and the topology is preserved.

We use a three dimensional implementation of the constrained smoothing, which combines two two-
dimensional smoothing steps for each vertex, one in each axis-aligned plane containing the vertex's stick,
followed by snapping. A special version of the �lter for vertices at the borders of the curved regions has been
also developed.

Results on a variety of models have been reported and discussed. Pressing achieves small reconstruction
errors and successfully recovers �ats and sharp features in a reasonable amount of time.

Potential applications include shape recognition, simpli�cation, compression and various reverse engi-
neering and manufacturing problems.

11

Error PUMP MECHANICAL PART COMPLEX FANDISK

Midpoint 0,2887 0,2837 0,2874 0,2882
Midpoint + Tiles 0,1254 0,2267 0,1706 0,1835

MidPoint + Tiles + Smoothing (100) 0,0461 0,0854 0,0715 0,0945
MidPoint + Tiles + Smoothing (1000) 0.0416 0,0827 0,0677 0,0868

Table 2: Average square error after the di�erent steps of the Pressing algorithm for each of the presented
models.

8 Acknowledgements

Rossignac and Williams's research on this project has been supported by the National Science Foundation
under Grant 0138420.

Andujar, Brunet, Chica, Navazo and Vinacua's research on this project has been supported by the CICYT
Spanish Agency under Grant TIN-2004-08065-C02-01

Chica's Research has also been supported by a Graduate Research Fellowship from the Spanish Govern-
ment.

References

[ABC∗04] Andújar C., Brunet P., Chica A., Navazo I., Rossignac J., Vinacua A.: Computing
maximal tiles and application to inpostor-based simpli�cation. Computer Graphics Forum 23, 3
(2004). Proceedings of Eurographics'04.

[ABC∗05] Andújar C., Brunet P., Chica A., Navazo I., Rossignac J., Vinacua À.: Optimazing the
topological and combinational complexity of isosurfaces. Computer-Aided Design 37, 8 (2005),
847�857.

[AFRS04] Attene M., Falcidiano B., Rossignac J., Spagnuolo M.: Edge-sharpener: Recovering
sharp features in triangulations of non-adaptively re-meshed surfaces. In Proc. of EG/ACM
SIGGRAPH Symposium on Geometry Processing 2004 (2004), pp. 62�69.

[AFSR05] Attene M., Falcidiano B., Spagnuolo M., Rossignac J.: Sharpen&blend: Recovering
curved edges in triangle meshes produced by feature-insensitive sampling. IEEE Transactions
on Visualization and Computer Graphics 11, 2 (2005), 83�91.

[CGMS00] Cignoni P., Ganovelli F., Montani C., Scopigno R.: Reconstruction of topologically
correct and adaptive trilinear isosurfaces. Computers and Graphics 24, 3 (2000), 399�418.

[CSAD04] Cohen-Steiner D., Alliez P., Desbrun M.: Variational shape approximation. ACM Trans.
Graph. 23, 3 (2004), 905�914.

[DDSD03] Décoret X., Durand F., Sillion F. X., Dorsey J.: Billboard clouds for extreme model
simpli�cation. ACM Transactions on Graphics 22, 3 (July 2003), 689�696.

12

[DMSB99] Desbrun M., Meyer M., Schröder P., Barr A. H.: Implicit fairing of irregular meshes
using di�usion and curvature �ow. In SIGGRAPH '99: Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques (New York, NY, USA, 1999), ACM
Press/Addison-Wesley Publishing Co., pp. 317�324.

[GH97] Garland M., Heckbert P. S.: Surface simpli�cation using quadric error metrics. In SIG-
GRAPH '97: Proceedings of the 24th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 1997), ACM Press/Addison-Wesley Publishing Co., pp. 209�
216.

[Gib98] Gibson S.: Constrained elastic surface nets: generating smooth surfaces from binary segmented
data. In MICCAI'98, Medical Image Computation and Computer Assisted Surgery (1998).

[GWH01] Garland M., Willmott A., Heckbert P. S.: Hierarchical face clustering on polygonal
surfaces. In Proceedings of ACM Symposium on Interactive 3D Graphics (Mar. 2001), ACM
Press.

[HWC∗05] Ho C.-C., Wu F.-C., Chen B.-Y., Chuang Y.-Y., Ouhyoung M.: Cubical marching
squares: Adaptive feature preserving surface extraction from volume data. Computer Graphics
Forum (Eurographics 2005) 24, 3 (2005), 537�546.

[JLSW02] Ju T., Losasso F., Schaefer S., Warren J.: Dual countouring of hermite data. ACM
Transactions on Graphics 21, 3 (2002), 339�346. Proc of Siggraph'02.

[KBUS01] Kobbelt L. P., Botsch M., U. Schwanecke H. P. S.: Feature sensitive surface extraction
from volume data. ACM Computer Graphics (Siggraph 2001) (2001), 57�66.

[Kob97] Kobbelt L.: Discrete fairing. In Proceedings of the Seventh IMA Conference on the Mathematics
of Surfaces (1997), pp. 101�131.

[KT94] Kalvin A. D., Taylor R. H.: Superfaces: Polyhedral approximation with bounded error.
In Medical Imaging: Image Capture, Formatting, and Display (Feb. 1994), vol. 2164, SPIE,
pp. 2�13. (Also IBM Watson Research Center tech report RC 19135).

[Lac96] Lachaud J.-O.: Topologically de�ned iso-surfaces. In Proc. 6th Discrete Geometry for Computer
Imagery (DGCI'96), Lyon, France (1996), Springer-Verlag, Berlin, pp. 245�256.

[LB03] Lopes A., Brodlie K.: Improving the robustness and accuracy of the marching cubes algorithm
for isosurfacing. IEEE Transactions on Visualization and Computer Graphics 9, 1 (2003), 16�29.

[LC87] Lorensen W., Cline H.: Marching cubes: A high resolution 3D surface construction algorithm.
Computer Graphics 21, 4 (1987), 163�169.

[MSS94] Montani C., Scateni R., , Scopigno R.: Discretized marching cubes. In IEEE Visualization
(1994), pp. 281�287.

[NFHL91] Nielson G., Foley T., Hamann B., Lane D.: Visualizing and modeling scattered multivari-
ate data. IEEE Computer Graphics and Applications 11, 3 (1991), 47�55.

[NGH∗03] Nielson G., Graf G., Holmes R., Huang A., Phielipp M.: Shrouds: Optimal separating
surfaces for enumerated volumes. In EG-IEEE TCVG Symposium on Visualization 2003 (2003),
pp. 75�84.

13

[Nie03] Nielson G.: On marching cubes. IEEE Transactions on Visualization and Computer Graphics
9, 3 (2003), 283�297.

[Nie04] Nielson G.: Dual marching cubes. In IEEE Visualization 2004 (2004), pp. 489�496.

[She01] Sheffer A.: Model simpli�cation for meshing using face clustering. Computer Aided design 33,
13 (2001), 925�934.

[Tau95] Taubin G.: A signal processing approach to fair surface design. In SIGGRAPH '95: Proceedings
of the 22nd annual conference on Computer graphics and interactive techniques (New York, NY,
USA, 1995), ACM Press, pp. 351�358.

[VKSM04] Varadhan G., Krishnan S., Sriram T., Manocha D.: Topology preserving surface extrac-
tion using adaptive subdivision. In Proc. of EG/ACM SIGGRAPH Symposium on Geometry
Processing 2004 (2004), pp. 241�250.

[Whi00] Whitaker R. T.: Reducing aliasing artifacts in iso-surfaces of binary volumes. In VVS '00:
Proceedings of the 2000 IEEE symposium on Volume visualization (New York, NY, USA, 2000),
ACM Press, pp. 23�32.

14

