
A new hybrid evolutionary algorithm for the k-cardinality tree

problem∗

Christian Blum

ALBCOM, LSI, Universitat Politècnica de Catalunya

Jordi Girona 1-3, Campus Nord, 08034 Barcelona, Spain

cblum@lsi.upc.es

Abstract

In recent years it has been shown that an intelligent combination of metaheuristics
with other optimization techniques can significantly improve over the application of a
pure metaheuristic. In this paper, we combine the evolutionary computation paradigm
with dynamic programming for the application to the NP-hard k-cardinality tree problem.
Given an undirected graph G with node and edge weights, this problem consists of finding
a tree in G with exactly k edges such that the sum of the weights is minimal. The genetic
operators of our algorithm are based on an existing dynamic programming algorithm from
the literature for finding optimal subtrees in a given tree. The simulation results show
that our algorithm is able to improve the best known results for benchmark problems
from the literature in 111 cases.

1 Introduction

The k-cardinality tree (KCT) problem—also referred to as the k-minimum spanning tree (k-
MST) problem, or just the k-tree problem—is an NP -hard [14, 23] combinatorial optimization
problem which generalizes the well-known minimum weight spanning tree problem. Let G =
(V, E) be a graph with a weight function wE : E → IN on the edges and a weight function
wV : V → IN on the nodes. We denote the weight of a node v by wV (v) (or just wv), and
the weight of an edge e by wE(e) (or just we). Furthermore, we denote by Tk the set of all
k-cardinality trees in G, that is, the set of all trees in G with exactly k edges. Then, the
problem consists of finding a k-cardinality tree Tk ∈ Tk that minimizes

f(Tk) =

(

∑

e∈ETk

we

)

+

(

∑

v∈VTk

wv

)

. (1)

In this equation, as well as in the rest of the paper, when given a tree T , ET denotes the set
of edges of T , and VT the set of nodes of T .

The KCT problem was first described in [20] and it has gained considerable interest
since the mid 1990’s due to various applications, e.g. in oil-field leasing [19], facility layout
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[15, 16], open pit mining [24], matrix decomposition [7, 8], quorum-cast routing [11] and
telecommunications [18].

The edge weighted version of the KCT problem (i.e., node weights are all zero) was first
tackled by exact approaches [17, 11, 25] and heuristics [13, 12, 11]. The best ones of these
heuristics are based on a polynomial time dynamic programming algorithm [22, 2] that finds
the best k-cardinality tree in a graph that is itself a tree. However, the interest in heuristics
was quickly lost and research focused on the development of more appealing metaheuristics [6].
Among these, the different versions of variable neighborhood search (VNS) proposed in [26]
can be regarded as state-of-the-art for the benchmark instance set proposed in the same paper,
and the ant colony optimization (ACO) approach proposed in [10] is currently state-of-the-
art for the benchmark instance set proposed in [4]. Much less research efforts were directed
at the node weighted KCT problem. Simple greedy as well as dual greedy based heuristics
were proposed in [13], and the first metaheuristic approaches were presented in [5]. The best
technique for the node-weighted KCT problem is the variable neighborhood descent (VNDS)
technique proposed in [9]. In the same paper the only existing benchmark set for the node
weighted KCT was introduced.

Motivation for this paper In [2] we extended the dynamic programming algorithm of
Maffioli, which was introduced for edge-weighted trees, to trees that can have both edge and
node weights. In the same article we conducted an experimental evaluation of two simple
heuristics for the KCT problem in graphs with node and/or edge weights. Both heuristics are
based on this extended dynamic programming algorithm. The results concerning (almost) all
available benchmark instances for the edge weighted and for the node weighted KCT problem
showed that the current state-of-the-art metaheuristics are on average only slightly better
than these two heuristics, while consuming much more computation time. Therefore, we ad-
vocated the hybridization of this dynamic programming algorithm with metaheuristics. In [3]
we made such an attempt by developing a hybrid between ACO and dynamic programming.
The results show that for node weighted instances and rather small cardinalities this hybrid
algorithm improves on the results of the VNDS algorithm proposed in [13]. However, the
results for edge weighted problem instances were inferior to the results of the VNS algorithm
proposed in [26]. In this paper we make a different use of the dynamic programming algo-
rithm. More specifically, we propose an evolutionary algorithm whose genetic operators are
based on dynamic programming.

The organization of this paper is as follows. In Section 2 we outline the hybrid evolutionary
algorithm. Extensive computational tests of this algorithm are presented in Section 3, and
Section 4 offers conclusions and an outlook to the future.

2 Hybrid EA for the KCT problem

Evolutionary algorithms (EAs) [1, 21] are widely used to tackle hard optimization problems.
They are inspired by nature’s capability to evolve living beings which are well adapted to
their environment. EAs can shortly be characterized as computational models of evolutionary
processes working on populations of individuals. Individuals are in most cases solutions to
the tackled problem. EAs apply genetic operators such as recombination and/or mutation
operators in order to generate new solutions at each iteration. The driving force in EAs is
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the selection of individuals based on their fitness. Individuals with a higher fitness have a
higher probability to be chosen as members of the next iterations’ population (or as parents
for producing new individuals). This principle is called survival of the fittest in natural
evolution. It is the capability of nature to adapt itself to a changing environment which gave
the inspiration for EAs.

2.1 Tree construction

The operators of our hybrid EA are based on the principle of tree construction. A tree
construction is well-defined by the definition of the following four components:

1. The graph G′ = (V ′, E′) in which the tree should be constructed;
2. The number l ≤ (V ′ − 1) of edges of the tree to be constructed (also called the size of

the tree);
3. The way in which to start the tree construction (e.g., by determining a node or an edge

from which to start the construction process);
4. The way in which to perform each of the construction steps.

The first three definitions are operator dependent. For example, in the operator for generating
the initial population a tree construction might be started from a randomly chosen edge,
whereas the crossover operator might start a tree construction from a partial tree. However,
the way in which to perform a construction step is the same in all algorithm operators: Given
a graph G′ = (V ′, E′), the desired size l of the final tree, and the current tree T whose size is
smaller than l, a construction step consists of adding exactly one node and one edge to T such
that the result is again a tree. Let, at an arbitrary construction step, N , with N ∪VT = ∅, be
the set of nodes of G′ that can be added to T via at least one edge.1 For each v ∈ N let Ev

be the set of edges that have v as an end-point, and that have their other end-point—denoted
by ve,o—in T . Then, a node v ∈ N is chosen as follows. With probability pdet, v is chosen as
the node that minimizes wemin

+ wv. Hereby,

emin ← argmin{we + wve,o | e ∈ Ev} . (2)

Otherwise (i.e., with probability 1−pdet), v is chosen probabilistically in proportion to wemin
+

wv. This means that when pdet is close to 1, the tree construction is almost deterministic,
and the other way around. The way in which we chose a value for this parameter is outlined
in Section 3. Finally, to complete the tree construction step, v and emin are added to T . For
an example see Figure 1.

2.2 The algorithm

The algorithmic framework of our hybrid EA approach to tackle the KCT problem is shown
in Algorithm 1. In this algorithm, henceforth denoted by HyEA, Tk

best denotes the best so-
lution (i.e., the best k-cardinality tree) found since the start of the algorithm, and Tk

iter

denotes the best solution in the current population P . The algorithm starts by generating
the initial population in function GenerateInitial- Population(pop size). Then, at each iteration
the algorithm produces a new population by first applying a crossover operator in function
ApplyCrossover(P ), and then by the subsequent replacement of the worst solutions with newly

1
Remember that VT denotes the node set of T .
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Figure 1: In this example we have given a graph with 6 nodes and 8 edges. The nodes
weights are for simplicity reasons all set to 1. Nodes and edges are labelled with their weights.
Furthermore we have given a tree T of size 2, denoted by gray shaded nodes and bold edges:
VT = {v1, v2, v3}, and ET = {e1,2, e1,3}. The set of nodes that can be added to T is therefore
given as N = {v4, v5}. The set of edges that join v4 with T is Ev4

= {e2,4, e3,4}, and the set
of edges that join v5 with T is Ev5

= {e3,5}. Due to the edge weights, emin is in the case of
v4 determined as e2,4, and in the case of v5 as e3,5.

Algorithm 1 Hybrid EA for the KCT problem (HyEA)

input: a node and/or edge-weighted graph G, and a cardinality k < |V | − 1
P ← GenerateInitialPopulation(pop size)
Tk

best ← argmin{f(Tk) | Tk ∈ P}
while termination conditions are not met do

P̂ ← ApplyCrossover(P )
P ← IntroduceNewMaterial(P̂ )
Tk

iter ← argmin{f(Tk) | Tk ∈ P}
if f(Tk

iter) < f(Tk
best) then

Tk
best ← Tk

iter

end if
end while
output: Tk

best

generated trees in function IntroduceNewMaterial(P̂ ). The components of this algorithm are
outlined in more detail below.

GenerateInitialPopulation(pop size): The initial population is generated in this method. It
takes as input the size pop size of the population. We explain in Section 3 how pop size
is determined. The construction of each of the initial k-cardinality trees in graph G starts
with a node that is chosen uniformly at random from V . All further construction steps are
performed as described in Section 2.1.

ApplyCrossover(P ): At each algorithm iteration an offspring population P̂ is generated from
the current population P . For each k-cardinality tree T ∈ P , the following is done. First,
tournament selection (with tournament size 3) is used to choose a crossover parter T c 6= T

for T from P . In the following we say that two trees in the same graph are overlapping, if
and only if they have at least one node in common.

In case T and T c are overlapping, graph Gc is defined as the union of T and T c, that
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is, VGc = VT ∪ VT c and EGc = ET ∪ ET c . Then, a spanning tree T sp of Gc is constructed
as follows. The first node is chosen uniformly at random. Each further construction step is
performed as described in Section 2.1. Then the dynamic programming algorithm proposed
in [2] is applied to T sp for finding the best k-cardinality tree T child that is contained in T sp.

Otherwise, that is, in case the crossover partners T and T c are not overlapping, T is used
as the basis for constructing a tree in G that contains both, T and T c. This is done by
extending T (with construction steps as outlined in Section 2.1) until the current tree under
construction can be connected with T c by at least one edge. In case of several connecting
edges, edge e that minimizes we +wva +wvb

is chosen, where va and vb are the two endpoints
of e. Finally, we apply the dynamic programming algorithm proposed in [2] for finding the
best k-cardinality tree T child in the constructed tree.

The better tree among T child and T is added to the offspring population P̂ .

IntroduceNewMaterial(P̂ ): In order to avoid a premature convergence of the algorithm, this
function introduces at each iteration new material (in the form of newly constructed k-
cardinality trees) into the population. The input of this function is the offspring population P̂

generated by crossover. First, the function selects X = b100−newmatc% of the best solutions
in P̂ for the new population P . Then, the remaining 100−X% of P are generated as follows:
Starting from a node of G that is uniformly chosen at random, an lnew-cardinality tree Tlnew

(where lnew ≥ k) is constructed by applying construction steps as outlined in Section 2.1. In
Section 3 we describe the setting of lnew. Then, the dynamic programming algorithm pro-
posed in [2] is used for finding the best k-cardinality tree in Tlnew

. This tree is then added to P .

Our hybrid EA algorithm HyEA outputs the best solution found during a run. This
completes the description of the algorithm.

3 Experimental evaluation

We implemented HyEA in ANSI C++ using GCC 3.2.2 for compiling the software. Our
experimental results were obtained on a PC with Intel Pentium 4 processor (3.06 GHz) and 1
Gb of memory. Before we present the computational results, we specify in the following the
setting of the four algorithm parameters.

3.1 Setting of the algorithm parameters

pop size: The population size is one of the important algorithm parameters. Earlier experi-
ence with the KCT problem (see, for example, [4]) has shown that the population size should
be coupled to the cardinality k. That is, when k is rather small, the population size should
be rather big, and vice versa. Based on some initial computational tests we decided for a
population size pop size such that each node of G (on average) appears in 5 members of the
population. In addition, we introduced sensible lower and upper bounds for the population
size (i.e., at least 10 population members, respectively at most 100 population members). In
technical terms,

pop size ← min

{

max

{

10,

⌊

5 ·
|V |

k + 1

⌋}

, 100

}

. (3)

pdet: As outlined in Section 2.1, when constructing a tree each step may either be performed
deterministically or probabilistically. This is decided for each construction step with a certain
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probability pdet. If pdet is close to one, a tree construction is almost deterministic, and if pdet

is close to zero, the tree construction is almost probabilistic. By means of experimentation
we found that for rather small cardinalities a value of about pdet = 0.85 works well, whereas
for rather big cardinalities a value around pdet = 0.99 works best. In order to obtain an algo-
rithm that shows a reasonable performance over the whole cardinality range, we decided to
chose pdet for each tree construction (or tree extension in the case of the crossover operator)
uniformly at random from [0.85, 0.99].

newmat: This parameter takes an integer value between 0 and 100, and denotes the percent-
age of new trees in the new population that is generated per algorithm iteration. Clearly, if
newmat = 0 the algorithm will suffer from premature convergence, whereas if newmat = 100,
the algorithm will just create a random new population at each iteration. After tuning by
hand we found the value of newmat = 20 to be reasonably well working for small as well as
big cardinalities. However, this parameter is not really critical. Values between 10 and 30
work almost equally well.

lnew: At each iteration, newmat% new trees are added to the new population. These trees
might be generated in the same way as the trees of the initial population, that is, trees of size
k (corresponding to a setting of lnew = k). However, we noticed that—in particular in later
stages of the search process—the quality of these k-cardinality trees was not comparable to
the quality of the trees resulting from the evolution process. Adding these trees was therefore
not useful for the search process. Hence, we decided to generate trees that are bigger than
k (i.e., lnew > k), and to apply the dynamic programming algorithm proposed in [2] in order
to find the best k-cardinality tree in the lnew-cardinality tree that was generated. There is
of course a trade-off between time and quality. Generating trees of size lnew = |V | − 1 (i.e.,
spanning trees) results on average in the best k-cardinality trees. However, in this case the
dynamic programming algorithm takes more time than in the case of lnew < |V | − 1. After
some experimentation we decided for a value of

lnew ← k +

⌊

|V | − 1− k

3

⌋

. (4)

In words, lnew is set to k plus one third of the remaining cardinality range (remember that
the maximum cardinality is |V | − 1).

3.2 Results

3.2.1 Application to the edge-weighted instances (part 1)

First, we applied our algorithm to 12 of the edge-weighted graphs from the benchmark set
by Blum and Blesa [4]; that is, the same 12 instances to which the current state-of-the-art
algorithm for this benchmark set—an ant colony optimization approach (denoted by ACO)
by Bui and Sundarraj [10]—was applied. The results are shown in Tables 2, 3, and 4. The
format of these tables is as follows. The first column provides the cardinality, while the second
column contains the value of the best known solution for the respective cardinality. The cases
in which the best known solution was improved by HyEA are marked by a left-right arrow.
Columns 3 and 4 provide the value of the best solution found in 20 runs by ACO, respectively
the average of the best solutions found in the 20 runs. The same information is given for HyEA

6



 0

 200

 400

 600

 800

 1000

 100  200  300  400  500  600  700  800  900 1000

av
g.

 ti
m

e 
(s

ec
s)

k

 
 ACO

 HyEA

Figure 2: Average computation time (in seconds) of ACO and HyACO over the cardinality
range [2, 1087] of problem instance bb33x33 1.

in columns 5 and 6. Additionally, in column 7 is provided the average time needed to find the
best solutions in the 20 runs. For space reasons this information is not provided for ACO. The
time information can be obtained from [10]. We show the differences in computation time
graphically on the typical example of problem instance bb33x33 1 in Figure 2. Hereby one has
to keep in mind that the results of ACO were obtained on a computer with Intel Pentium 4
processor (2.4 GHz) and 512 Gb of memory. The graphic in Figure 2 shows that for small and
medium size cardinalities the computation times of ACO and HyEA are comparable. However,
for larger cardinalities HyEA has clear advantages over ACO in terms of computation time.
As computation time limits for HyEA we used the time limits that were used in [4] (divided
by 2.7, due to the fact that the machine used in [4] is about 2.7 times slower than the machine
that we used).

When comparing the computational results displayed in Tables 2, 3, and 4, we note a
clear advantage of HyEA over ACO. Table 1 shows a summary of the results that are provided
in Tables2, 3, and 4. When small graphs are concerned the results of both methods are
comparable. The advantage of HyEA over ACO is especially strong on bigger graphs such
as, for example, g1000-4-01 or bb33x33 1. With respect to the feasible cardinality range, the
advantage of HyEA over ACO is especially clear for smaller cardinalities. Altogether, HyEA
improves the best known solutions concerning the considered 12 instances of this benchmark
set in 53 cases.

Table 1: Summary of the results displayed in Tables 2 to 13. The numbers in the table show
how often—in 138 results—HyEA is better than, respectively “worse than” or “equal to”,
ACO. This information is given with respect to the best solutions found (second table row),
and the average results obtained (third table row).

better equal worse

best 53 71 14
average 78 45 15
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3.2.2 Application to the edge-weighted instances (part 2)

Second, we applied our algorithm to the 8 remaining edge-weighted graphs from the bench-
mark set by Blum and Blesa [4]. The only algorithms that were applied so far to these 8
instances were the algorithms proposed in [4]. As none of these approaches is clearly better
than the others, we compare HyEA only to the best known solutions (see Table 5). Especially
concerning the bigger ones of these graphs, HyEA has clear advantages over the best solutions
found by the three approaches proposed in [4]. Alltogether, HyEA is able to improve 51 of
the best known solutions.

3.2.3 Application to node-weighted instances

In a third set of experiments we applied HyEA to the benchmark set of node-weighted graphs
that was proposed in [9]. This set is composed of 30 grid graphs, that is, 10 grid graphs of 900
vertices (i.e., 30 times 30 vertices), 10 grid graphs of 1600 vertices, and 10 grid graphs of 2500
vertices. Furthermore, the benchmark set consists of 30 random graphs, that is, 10 graphs
of 3000 vertices, 10 graphs of 4000 vertices, and 10 graphs of 5000 vertices. We compared
our results to the results of the variable neighborhood decent technique (denoted by VNDS)
presented in [9], and to the results of the hybrid ant colony optimization technique (denoted
by HyACO) that we proposed in [3]. This comparison is shown in Table 6. Instead of applying
an algorithm several times to the same graph and cardinality, it is usual for this benchmark
set to apply the algorithm exactly once to each graph and cardinality, and then to average
the results over the graphs of the same type. Therefore, the structure of Table 6 is slightly
different to the tables of the previous section. The first table column indicates the graph type
(e.g., grid graphs of size 30x30). The second table column contains the cardinality, whereas
the third table column provides the best known results (abbreviated by bkr). Then for each
of the three algorithms we provide the result together with the average computation time
that was spent in order to compute this result. Note that the computation time limit for
HyEA was the same as the one that was used for HyACO (see [3]).

For what concerns the application to grid graph instances (see Table 6a), we note that
both HyACO as well as HyEA are in 9 out of 15 cases better than VNDS. It is interesting
to note that this concerns especially the cases of small to medium size cardinalities. For
larger cardinalities VNDS beats both HyACO and HyEA. Furthermore, HyEA is in 11 out of 15
cases better than HyACO. This indicates that, even though HyACO and HyEA behaver similar
in comparison to VNDS, HyEA seems to make a better use of the dynamic programming
algorithm than HyACO. In terms of computation time, both algorithms are comparable.

Even though all three algorithms provide very similar results, VNDS seems to have a
consistent advantage over HyEA and HyACO for what concerns the application to random
graph instances (see Table 6b). When comparing HyEA with HyACO we note that HyEA is in
12 out of 15 cases better than HyACO. In fact, the three cases in which HyACO beats HyEA
are the smallest cardinalities concerning the three graph types. This suggests that except for
the application to very small cardinalities HyEA has in general advantages over HyACO when
applied to node-weighted random graph instances.
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4 Conclusions and outlook

In this paper we have proposed a hybrid evolutionary algorithm for the application to the
k-cardinality tree problem, which is an NP -hard combinatorial optimization problem. The
hybrid component of our algorithm is a dynamic programming algorithm for finding optimal
trees in graphs that are themselfs trees. This dynamic programming algorithm is used in all
the operators of our algorithm. We conducted an extensive computational evaluation of our
algorithm. The results are especially favorable when edge-weighted problem instances are
concerned. In fact, our algorithm is able to improve 104 best known solutions for benchmark
instances from the literature. Furthermore, our algorithm is comparable to current state-of-
the-art algorithms when applied to node-weighted grid graph instances. In 6 out of 15 cases
our algorithm is able to improve the best known results from the literature. On the negative
side, our algorithm seems to have some problems for node-weighted random graph instances.
These instances are the only ones for which our algorithm does not reach state-of-the-art
performance. We plan to investigate on this topic in future research.

References
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Table 2: Results for grid graphs bb15x15 1, bb15x15 2, bb33x33 1, and bb33x33 2.

(a) Grid graph bb15x15 1 (225 vertices)

k bks ACO HyEA
best avg best avg avg. time

2 2 2 2.00 2 2.00 0.01
20 257 257 258.00 257 257.00 0.20
40 642 642 644.40 642 642.00 0.22
60 977 977 1005.50 977 978.50 0.39
80 1335 1335 1429.15 1335 1346.80 1.07

100 → 1761 1762 1780.05 1761 1762.60 0.95
120 2235 2235 2262.80 2235 2235.00 0.77
140 2781 2781 2798.10 2783 2793.00 2.85
160 3417 3417 3423.00 3417 3424.30 2.41
180 4158 4158 4162.15 4158 4165.20 2.55
200 5040 5040 5040.95 5041 5041.00 0.54
220 6176 6176 6176.00 6176 6176.00 0.31
223 6400 6400 6400.00 6400 6400.00 0.01

blank
(b) Grid graph bb15x15 2 (225 vertices)

k bks ACO HyEA
best avg best avg avg. time

2 6 6 6.00 6 6.00 0.01
20 253 253 253.00 253 253.00 0.06
40 585 585 624.10 585 585.00 0.54
60 927 927 986.05 927 930.80 0.53
80 1290 1290 1348.35 1291 1295.00 1.01

100 1686 1686 1726.25 1686 1688.50 1.46
120 2120 2120 2143.55 2120 2124.20 1.47
140 2634 2634 2639.60 2634 2639.90 2.21
160 → 3248 3250 3272.75 3248 3248.20 2.48
180 3915 3915 3915.00 3915 3915.00 0.74
200 4718 4718 4718.00 4718 4718.00 0.47
220 5862 5862 5862.00 5862 5862.00 0.03
223 6101 6101 6101.00 6101 6101.00 0.01

blank
(c) Grid graph bb33x33 1 (1089 vertices)

k bks ACO HyEA
best avg best avg avg. time

2 3 3 3.00 3 3.00 0.05
100 → 1562 1587 1594.60 1562 1586.30 15.17
200 → 3303 3366 3466.35 3303 3324.90 38.16
300 → 5112 5235 5320.45 5112 5128.60 102.02
400 → 7070 7166 7224.80 7070 7086.00 206.63
500 → 9204 9256 9327.60 9204 9236.70 195.84
600 11579 11579 11579.00 11588 11607.60 479.65
700 → 14299 14309 14313.35 14299 14311.10 408.93
800 → 17393 17399 17399.00 17393 17405.50 338.28
900 → 20919 20921 20921.00 20919 20920.10 328.29

1000 25199 25199 25199.00 25199 25199.00 112.54
1087 30417 30417 30417.00 30417 30417.00 3.27

blank
(d) Grid graph bb33x33 2 (1089 vertices)

k bks ACO HyEA
best avg best avg avg. time

2 3 3 3.00 3 3.00 0.09
100 1524 1531 1568.65 1524 1525.30 14.74
200 → 3255 3316 3530.60 3255 3273.40 40.03
300 → 5185 5275 5360.10 5185 5196.60 81.25
400 → 7252 7340 7582.05 7252 7266.10 195.82
500 → 9465 9514 9624.70 9465 9484.00 263.24
600 → 11856 11879 11889.30 11856 11886.90 285.07
700 → 14509 14523 14523.00 14509 14544.50 873.62
800 → 17542 17571 17571.00 17542 17545.40 449.37
900 → 20993 21002 21002.00 20993 20998.10 316.32

1000 → 25273 25274 25274.00 25273 25273.00 64.70
1087 30326 30326 30326.00 30326 30326.00 2.67
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Table 3: Results for the 4-regular graphs g400-4-01, g400-4-05, g1000-4-01, and g1000-4-05.

(a) 4-regular graph g400-4-01 (400 vertices, 800 edges)

k bks ACO HyEA
best avg best avg avg. time

2 8 8 8.00 8 8.00 0.02
40 563 563 563.00 563 563.70 1.31
80 1304 1304 1304.85 1304 1305.40 2.29

120 → 2134 2135 2139.45 2134 2134.00 7.70
160 3062 3062 3065.95 3062 3062.00 4.68
200 4086 4086 4086.00 4086 4087.70 14.41
240 → 5224 5225 5228.80 5224 5225.30 12.03
280 6487 6487 6488.10 6487 6487.00 6.94
320 7882 7882 7882.00 7882 7882.00 4.71
360 9468 9468 9468.00 9468 9468.00 7.76
398 11433 11433 11433.00 11433 11433.00 0.10

blank
(b) 4-regular graph g400-4-05 (400 vertices, 800 edges)

k bks ACO HyEA
best avg best avg avg. time

2 4 4 4.00 4 4.00 0.02
40 673 673 673.00 676 684.60 1.70
80 1445 1445 1455.45 1449 1453.80 5.08

120 2293 2293 2303.05 2293 2294.70 10.87
160 3193 3193 3203.70 3195 3196.00 12.54
200 4156 4156 4165.75 4156 4156.30 14.15
240 → 5198 5202 5213.30 5198 5198.60 19.26
280 6350 6350 6361.15 6353 6354.20 22.33
320 7682 7682 7682.00 7682 7682.00 3.18
360 9249 9249 9249.00 9249 9249.00 5.66
398 11236 11236 11236.00 11236 11236.00 0.12

blank
(c) 4-regular graph g1000-4-01 (1000 vertices, 2000 edges)

k bks ACO HyEA
best avg best avg avg. time

2 6 6 6.00 6 6.00 0.07
100 1523 1523 1564.85 1524 1527.40 17.83
200 → 3308 3329 3367.10 3308 3311.50 47.38
300 → 5325 5333 5367.30 5325 5326.80 119.77
400 7581 7581 7595.65 7583 7593.90 204.75
500 10052 10052 10066.65 10056 10062.90 304.23
600 12708 12708 12725.75 12712 12715.80 382.59
700 15675 15675 15675.00 15675 15678.10 664.70
800 → 19023 19037 19037.65 19023 19028.40 393.80
900 → 22827 22830 22830.00 22827 22827.00 68.06
998 27946 27946 27946.00 27946 27946.00 0.99

blank
(d) 4-regular graph g1000-4-05 (1000 vertices, 2000 edges)

k bks ACO HyEA
best avg best avg avg. time

2 7 7 7.00 7 7.00 0.05
100 → 1652 1653 1665.00 1652 1653.60 19.67
200 → 3620 3627 3665.30 3620 3623.10 66.00
300 → 5801 5825 5836.90 5801 5807.10 171.47
400 → 8206 8230 8233.65 8206 8212.30 216.24
500 → 10793 10801 10810.85 10793 10795.70 348.94
600 → 13584 13592 13606.75 13584 13587.80 307.26
700 → 16682 16686 16688.15 16682 16686.30 338.49
800 → 20076 20078 20078.00 20076 20077.90 351.13
900 24029 24029 24029.00 24033 24037.40 171.95
998 29182 29182 29182.00 29182 29182.00 1.96
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Table 4: Results for random graphs steinc5, steinc15, steind5, and steind15.

(a) Random graph steinc5 (500 vertices, 625 edges)

k bks ACO HyEA
best avg best avg avg. time

2 5 5 5.00 5 5.00 0.02
50 → 772 774 820.15 772 773.10 1.24

100 1712 1712 1734.65 1712 1712.00 3.00
150 2865 2865 2888.15 2865 2865.00 3.92
200 4273 4273 4273.00 4279 4284.40 11.29
250 → 5945 5952 5955.20 5945 5946.70 7.01
300 7938 7938 7938.00 7938 7938.00 5.18
350 → 10236 10247 10248.20 10236 10238.20 10.44
400 → 12964 12965 12965.00 12964 12967.20 10.64
450 16321 16321 16321.00 16321 16321.00 8.62
498 20485 20485 20485.00 20485 20485.00 0.04

blank
(b) Random graph steinc15 (500 vertices, 2500 edges)

k bks ACO HyEA
best avg best avg avg. time

2 2 2 2.00 2 2.00 0.01
50 208 208 208.00 208 208.00 1.53

100 481 481 488.45 481 481.20 41.46
150 802 802 809.70 802 802.60 59.94
200 1182 1182 1185.80 1182 1182.20 111.91
250 → 1625 1625 1630.15 1625 1626.40 203.61
300 2148 2148 2148.00 2148 2148.00 7.50
350 → 2795 2795 2796.95 2795 2795.00 13.49
400 3571 3571 3571.00 3571 3571.00 31.68
450 4553 4553 4553.00 4553 4553.00 3.03
498 5973 5973 5973.00 5973 5973.00 0.28

blank
(c) Random graph steind5 (1000 vertices, 1250 edges)

k bks ACO HyEA
best avg best avg avg. time

2 3 3 3.00 3 3.00 0.06
100 1503 1503 1526.35 1503 1508.20 7.15
200 → 3442 3452 3456.50 3442 3446.60 39.72
300 → 5817 5829 5873.45 5817 5826.50 75.05
400 → 8691 8695 8716.15 8691 8700.30 83.01
500 → 12056 12062 12085.70 12056 12060.10 100.58
600 → 15916 15933 15933.00 15916 15921.10 146.02
700 → 20511 20520 20539.45 20511 20513.80 129.49
800 26053 26053 26053.00 26053 26053.00 33.79
900 32963 32963 32963.00 32963 32963.00 37.68
998 41572 41572 41572.00 41572 41572.00 2.92

blank
(d) Random graph steind15 (1000 vertices, 5000 edges)

k bks ACO HyEA
best avg best avg avg. time

2 2 2 2.00 2 2.00 0.05
100 455 455 455.00 455 455.00 7.52
200 → 1018 1029 1038.90 1018 1018.70 63.51
300 → 1674 1680 1680.00 1674 1674.50 139.57
400 → 2446 2451 2458.70 2446 2447.70 173.52
500 → 3365 3366 3369.15 3365 3365.20 361.29
600 → 4420 4423 4424.05 4420 4420.00 176.68
700 → 5685 5686 5686.00 5685 5685.00 62.22
800 7236 7236 7236.00 7236 7236.00 154.22
900 9248 9248 9248.00 9248 9248.00 10.97
998 12504 12504 12504.00 12504 12504.00 1.10
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Table 5: Results for grid graphs bb45x5 1, bb45x5 2, bb100x10 1, bb100x10 2, bb50x50 1,
bb50x50 2, and random graphs steine5, and le450 15a.

(a) Grid graph bb45x5 1 (225 vertices) (b) Grid graph bb45x5 2 (225 vertices)

k bks HyEA k bks HyEA
best avg avg. time best avg avg. time

2 2 2 2.00 0.01 2 8 8 8.00 0.01
20 306 306 308.40 0.38 20 302 302 302.00 0.07
40 695 697 707.70 0.85 40 654 654 654.00 0.20
60 1115 1117 1131.20 0.87 60 1122 1122 1122.00 0.33
80 → 1568 1568 1586.10 0.94 80 1617 1617 1620.90 0.60

100 1979 1979 2003.70 1.32 100 → 2129 2129 2131.60 0.71
120 → 2450 2450 2480.70 1.58 120 → 2633 2633 2646.50 0.89
140 3028 3044 3055.10 2.28 140 3174 3174 3182.90 1.10
160 3702 3711 3722.30 1.89 160 → 3757 3757 3762.00 1.70
180 → 4474 4474 4493.40 2.14 180 4458 4458 4458.20 2.13
200 5461 5461 5462.80 0.61 200 5262 5262 5262.50 2.14
220 6718 6718 6718.00 0.40 220 6347 6347 6349.80 1.27
223 6946 6946 6946.00 0.02 223 6568 6568 6568.00 0.02

blank
(c) Grid graph bb100x10 1 (1000 vertices) (d) Grid graph bb100x10 2 (1000 vertices)

k bks HyEA k bks HyEA
best avg avg. time best avg avg. time

2 3 3 3.00 0.08 2 4 4 4.00 0.06
100 1601 1601 1601.00 7.07 100 → 1661 1661 1666.60 5.01
200 → 3520 3520 3521.20 25.87 200 → 3618 3618 3635.90 28.57
300 → 5511 5511 5542.60 41.39 300 → 5435 5435 5458.10 56.44
400 → 7588 7588 7614.80 133.02 400 → 7531 7531 7558.10 131.65
500 → 9961 9961 9984.00 190.60 500 → 9861 9861 9876.60 171.25
600 → 12444 12444 12463.50 352.62 600 → 12481 12481 12492.00 218.96
700 → 15296 15296 15317.10 313.39 700 → 15599 15599 15604.70 387.85
800 → 18670 18670 18674.50 241.32 800 → 19188 19188 19198.20 434.18
900 → 22732 22732 22738.00 162.07 900 → 23481 23481 23482.00 121.22
998 28316 28316 28316.00 2.23 998 29474 29474 29474.00 3.08

blank
(e) Grid graph bb50x50 1 (2500 vertices) (f) Grid graph bb50x50 2 (2500 vertices)

k bks HyEA k bks HyEA
best avg avg. time best avg avg. time

2 2 2 2.00 0.19 2 3 3 3.00 0.32
250 → 3988 3988 4018.00 49.59 250 → 3612 3612 3634.00 47.38
500 → 8150 8150 8175.20 187.83 500 → 7822 7822 7846.20 175.00
750 → 12551 12551 12592.10 449.55 750 → 12440 12440 12475.90 254.65

1000 → 17437 17437 17492.00 545.41 1000 → 17546 17546 17614.00 734.63
1250 → 22823 22823 22855.30 922.59 1250 → 23448 23448 23500.90 879.59
1500 → 28683 28683 28783.40 832.11 1500 → 29892 29892 29988.60 921.67
1750 → 35534 35534 35567.80 890.94 1750 → 37197 37197 37252.30 861.37
2000 → 43627 43627 43645.70 924.21 2000 → 45673 45673 45732.00 872.76
2250 → 53426 53426 53432.90 750.46 2250 → 56037 56037 56052.10 665.35
2498 67141 67141 67141.00 64.28 2498 70439 70439 70439.00 63.98

blank
(g) Random graph steine5 (2500 vertices, 3125 edges)) (h) Random graph le450 15a (450 vertices, 8168 edges)

k bks HyEA k bks HyEA
best avg avg. time best avg avg. time

2 3 3 3.00 0.79 2 2 2 2.00 0.01
250 → 3883 3883 3893.10 57.24 45 59 59 59.20 2.71
500 → 9306 9306 9313.80 161.18 90 135 135 135.00 1.39
750 → 15818 15818 15861.90 213.04 135 226 226 226.00 2.11

1000 → 23528 23528 23563.00 323.42 180 → 336 336 336.00 11.31
1250 → 32493 32493 32524.20 615.53 225 471 471 471.00 12.19
1500 → 42769 42769 42789.30 533.98 270 630 630 630.00 16.66
1750 → 54763 54763 54776.50 605.10 315 822 822 822.00 9.42
2000 → 68622 68622 68628.30 460.59 360 1060 1060 1060.10 7.50
2250 → 85366 85366 85372.00 148.92 405 1388 1388 1388.00 2.10
2498 106677 106677 106682.10 14.22 448 2002 2002 2002.00 0.12
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Table 6: Results for node weighted graphs.

(a) Grid graphs

instance k bkr VNDS HyACO HyEA
type result avg. time result avg. time result avg. time

30x30 100 8203.50 8571.90 24.00 8203.50 65.99 8206.50 63.43
200 → 17766.60 17994.40 88.00 17850.10 89.29 17766.60 97.99
300 28770.90 28770.90 126.00 28883.90 108.42 28845.40 104.14
400 42114.00 42114.00 80.00 42331.90 133.78 42282.70 117.80
500 59266.40 59266.40 213.00 59541.70 132.52 59551.60 110.31

40x40 150 → 17461.70 18029.90 112.00 17527.10 211.78 17461.70 229.39
300 → 37518.50 38965.90 114.00 37623.80 277.70 37518.50 297.82
450 → 60305.60 61290.10 261.00 60417.00 270.27 60305.60 269.80
600 86422.30 86422.30 261.00 86594.70 187.45 86571.10 295.54
750 117654.00 117654.00 303.00 118570.00 217.23 118603.50 260.62

50x50 250 → 35677.20 37004.00 228.00 35995.20 171.64 35677.20 259.78
500 → 76963.20 81065.80 322.00 77309.90 286.66 76963.20 267.76
750 → 125009.00 128200.00 482.00 125415.00 310.13 125009.00 284.98

1000 181983.00 182220.00 575.00 181983.00 316.63 182101.50 313.55
1250 250962.00 250962.00 681.00 253059.00 335.35 252683.10 303.51

blank
(b) Random graphs

instance k bkr VNDS HyACO HyEA
type result avg. time result avg. time result avg. time

3000 300 24181.40 24181.40 436.00 24345.70 133.73 24364.30 136.47
600 58719.70 58719.70 575.00 59002.40 158.25 58857.60 150.31
900 106016.40 106016.40 177.00 106330.00 164.47 106040.50 116.75

1200 166948.40 166948.40 154.00 167214.00 178.26 166949.40 111.35
1500 241335.60 241335.60 144.00 241569.00 145.25 241338.50 102.68

4000 400 32200.40 32200.40 791.00 32589.10 152.83 32828.10 133.42
800 78755.70 78755.70 871.00 79468.10 156.72 79229.20 141.36

1200 142460.00 142460.00 740.00 143259.00 145.11 142578.40 156.61
1600 224259.70 224259.70 316.00 225010.00 171.29 224331.80 141.11
2000 324681.30 324681.30 220.00 325299.00 158.60 324705.70 163.90

5000 500 57725.30 57725.30 84.00 58531.10 154.29 59678.40 127.30
1000 152660.80 152660.80 797.00 154857.00 185.83 154060.30 218.43
1500 293084.80 293084.80 789.00 295327.00 241.11 293462.10 238.52
2000 482370.20 482370.20 575.00 484567.00 270.63 482517.40 281.37
2500 720042.90 720064.10 462.00 721700.00 297.02 720094.10 321.69
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