A new hybrid evolutionary algorithm for the k-cardinality tree problem*

Christian Blum
ALBCOM, LSI, Universitat Politècnica de Catalunya Jordi Girona 1-3, Campus Nord, 08034 Barcelona, Spain
cblum@lsi.upc.es

Abstract

In recent years it has been shown that an intelligent combination of metaheuristics with other optimization techniques can significantly improve over the application of a pure metaheuristic. In this paper, we combine the evolutionary computation paradigm with dynamic programming for the application to the NP-hard k-cardinality tree problem. Given an undirected graph G with node and edge weights, this problem consists of finding a tree in G with exactly k edges such that the sum of the weights is minimal. The genetic operators of our algorithm are based on an existing dynamic programming algorithm from the literature for finding optimal subtrees in a given tree. The simulation results show that our algorithm is able to improve the best known results for benchmark problems from the literature in 111 cases.

1 Introduction

The k-cardinality tree (KCT) problem-also referred to as the k-minimum spanning tree $(k$ MST) problem, or just the k-tree problem-is an $N P$-hard [14, 23] combinatorial optimization problem which generalizes the well-known minimum weight spanning tree problem. Let $G=$ (V, E) be a graph with a weight function $w_{E}: E \rightarrow I N$ on the edges and a weight function $w_{V}: V \rightarrow I N$ on the nodes. We denote the weight of a node v by $w_{V}(v)$ (or just w_{v}), and the weight of an edge e by $w_{E}(e)$ (or just w_{e}). Furthermore, we denote by \mathcal{T}_{k} the set of all k-cardinality trees in G, that is, the set of all trees in G with exactly k edges. Then, the problem consists of finding a k-cardinality tree $T_{k} \in \mathcal{T}_{k}$ that minimizes

$$
\begin{equation*}
f\left(T_{k}\right)=\left(\sum_{e \in E_{T_{k}}} w_{e}\right)+\left(\sum_{v \in V_{T_{k}}} w_{v}\right) \tag{1}
\end{equation*}
$$

In this equation, as well as in the rest of the paper, when given a tree T, E_{T} denotes the set of edges of T, and V_{T} the set of nodes of T.

The KCT problem was first described in [20] and it has gained considerable interest since the mid 1990's due to various applications, e.g. in oil-field leasing [19], facility layout

[^0][15, 16], open pit mining [24], matrix decomposition [7, 8], quorum-cast routing [11] and telecommunications [18].

The edge weighted version of the KCT problem (i.e., node weights are all zero) was first tackled by exact approaches $[17,11,25]$ and heuristics $[13,12,11]$. The best ones of these heuristics are based on a polynomial time dynamic programming algorithm [22, 2] that finds the best k-cardinality tree in a graph that is itself a tree. However, the interest in heuristics was quickly lost and research focused on the development of more appealing metaheuristics [6]. Among these, the different versions of variable neighborhood search (VNS) proposed in [26] can be regarded as state-of-the-art for the benchmark instance set proposed in the same paper, and the ant colony optimization (ACO) approach proposed in [10] is currently state-of-theart for the benchmark instance set proposed in [4]. Much less research efforts were directed at the node weighted KCT problem. Simple greedy as well as dual greedy based heuristics were proposed in [13], and the first metaheuristic approaches were presented in [5]. The best technique for the node-weighted KCT problem is the variable neighborhood descent (VNDS) technique proposed in [9]. In the same paper the only existing benchmark set for the node weighted KCT was introduced.

Motivation for this paper In [2] we extended the dynamic programming algorithm of Maffioli, which was introduced for edge-weighted trees, to trees that can have both edge and node weights. In the same article we conducted an experimental evaluation of two simple heuristics for the KCT problem in graphs with node and/or edge weights. Both heuristics are based on this extended dynamic programming algorithm. The results concerning (almost) all available benchmark instances for the edge weighted and for the node weighted KCT problem showed that the current state-of-the-art metaheuristics are on average only slightly better than these two heuristics, while consuming much more computation time. Therefore, we advocated the hybridization of this dynamic programming algorithm with metaheuristics. In [3] we made such an attempt by developing a hybrid between ACO and dynamic programming. The results show that for node weighted instances and rather small cardinalities this hybrid algorithm improves on the results of the VNDS algorithm proposed in [13]. However, the results for edge weighted problem instances were inferior to the results of the VNS algorithm proposed in [26]. In this paper we make a different use of the dynamic programming algorithm. More specifically, we propose an evolutionary algorithm whose genetic operators are based on dynamic programming.

The organization of this paper is as follows. In Section 2 we outline the hybrid evolutionary algorithm. Extensive computational tests of this algorithm are presented in Section 3, and Section 4 offers conclusions and an outlook to the future.

2 Hybrid EA for the KCT problem

Evolutionary algorithms (EAs) [1, 21] are widely used to tackle hard optimization problems. They are inspired by nature's capability to evolve living beings which are well adapted to their environment. EAs can shortly be characterized as computational models of evolutionary processes working on populations of individuals. Individuals are in most cases solutions to the tackled problem. EAs apply genetic operators such as recombination and/or mutation operators in order to generate new solutions at each iteration. The driving force in EAs is
the selection of individuals based on their fitness. Individuals with a higher fitness have a higher probability to be chosen as members of the next iterations' population (or as parents for producing new individuals). This principle is called survival of the fittest in natural evolution. It is the capability of nature to adapt itself to a changing environment which gave the inspiration for EAs.

2.1 Tree construction

The operators of our hybrid EA are based on the principle of tree construction. A tree construction is well-defined by the definition of the following four components:

1. The graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ in which the tree should be constructed;
2. The number $l \leq\left(V^{\prime}-1\right)$ of edges of the tree to be constructed (also called the size of the tree);
3. The way in which to start the tree construction (e.g., by determining a node or an edge from which to start the construction process);
4. The way in which to perform each of the construction steps.

The first three definitions are operator dependent. For example, in the operator for generating the initial population a tree construction might be started from a randomly chosen edge, whereas the crossover operator might start a tree construction from a partial tree. However, the way in which to perform a construction step is the same in all algorithm operators: Given a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, the desired size l of the final tree, and the current tree T whose size is smaller than l, a construction step consists of adding exactly one node and one edge to T such that the result is again a tree. Let, at an arbitrary construction step, \mathcal{N}, with $\mathcal{N} \cup V_{T}=\emptyset$, be the set of nodes of G^{\prime} that can be added to T via at least one edge. ${ }^{1}$ For each $v \in \mathcal{N}$ let E_{v} be the set of edges that have v as an end-point, and that have their other end-point-denoted by $v_{e, o}$-in T. Then, a node $v \in \mathcal{N}$ is chosen as follows. With probability $\mathbf{p}_{d e t}, v$ is chosen as the node that minimizes $w_{e_{\text {min }}}+w_{v}$. Hereby,

$$
\begin{equation*}
e_{\min } \leftarrow \operatorname{argmin}\left\{w_{e}+w_{v_{e, o}} \mid e \in E_{v}\right\} \tag{2}
\end{equation*}
$$

Otherwise (i.e., with probability $1-\mathbf{p}_{d e t}$), v is chosen probabilistically in proportion to $w_{e_{\text {min }}}+$ w_{v}. This means that when $\mathbf{p}_{\text {det }}$ is close to 1 , the tree construction is almost deterministic, and the other way around. The way in which we chose a value for this parameter is outlined in Section 3. Finally, to complete the tree construction step, v and $e_{\min }$ are added to T. For an example see Figure 1.

2.2 The algorithm

The algorithmic framework of our hybrid EA approach to tackle the KCT problem is shown in Algorithm 1. In this algorithm, henceforth denoted by HyEA, $T_{k}^{\text {best }}$ denotes the best solution (i.e., the best k-cardinality tree) found since the start of the algorithm, and $T_{k}{ }^{i t e r}$ denotes the best solution in the current population P. The algorithm starts by generating the initial population in function Generatelnitial- Population (pop_size). Then, at each iteration the algorithm produces a new population by first applying a crossover operator in function ApplyCrossover (P), and then by the subsequent replacement of the worst solutions with newly

[^1]

Figure 1: In this example we have given a graph with 6 nodes and 8 edges. The nodes weights are for simplicity reasons all set to 1 . Nodes and edges are labelled with their weights. Furthermore we have given a tree T of size 2 , denoted by gray shaded nodes and bold edges: $V_{T}=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $E_{T}=\left\{e_{1,2}, e_{1,3}\right\}$. The set of nodes that can be added to T is therefore given as $\mathcal{N}=\left\{v_{4}, v_{5}\right\}$. The set of edges that join v_{4} with T is $E_{v_{4}}=\left\{e_{2,4}, e_{3,4}\right\}$, and the set of edges that join v_{5} with T is $E_{v_{5}}=\left\{e_{3,5}\right\}$. Due to the edge weights, $e_{\min }$ is in the case of v_{4} determined as $e_{2,4}$, and in the case of v_{5} as $e_{3,5}$.

```
Algorithm 1 Hybrid EA for the KCT problem (HyEA)
    InPuT: a node and/or edge-weighted graph \(G\), and a cardinality \(k<|V|-1\)
    \(P \leftarrow\) GeneratelnitialPopulation(pop_size)
    \(T_{k}{ }^{\text {best }} \leftarrow \operatorname{argmin}\left\{f\left(T_{k}\right) \mid T_{k} \in P\right\}\)
    while termination conditions are not met do
        \(\hat{P} \leftarrow\) ApplyCrossover \((P)\)
        \(P \leftarrow \operatorname{IntroduceNewMaterial}(\hat{P})\)
        \(T_{k}{ }^{\text {iter }} \leftarrow \operatorname{argmin}\left\{f\left(T_{k}\right) \mid T_{k} \in P\right\}\)
        if \(f\left(T_{k}{ }^{i t e r}\right)<f\left(T_{k}{ }^{\text {best }}\right)\) then
            \(T_{k}{ }^{\text {best }} \leftarrow T_{k}{ }^{\text {iter }}\)
        end if
    end while
    output: \(T_{k}{ }^{\text {best }}\)
```

generated trees in function IntroduceNewMaterial (\hat{P}). The components of this algorithm are outlined in more detail below.

GeneratelnitialPopulation(pop_size): The initial population is generated in this method. It takes as input the size pop_size of the population. We explain in Section 3 how pop_size is determined. The construction of each of the initial k-cardinality trees in graph G starts with a node that is chosen uniformly at random from V. All further construction steps are performed as described in Section 2.1.

ApplyCrossover (P) : At each algorithm iteration an offspring population \hat{P} is generated from the current population P. For each k-cardinality tree $T \in P$, the following is done. First, tournament selection (with tournament size 3) is used to choose a crossover parter $T^{c} \neq T$ for T from P. In the following we say that two trees in the same graph are overlapping, if and only if they have at least one node in common.

In case T and T^{c} are overlapping, graph G^{c} is defined as the union of T and T^{c}, that
is, $V_{G^{c}}=V_{T} \cup V_{T^{c}}$ and $E_{G^{c}}=E_{T} \cup E_{T^{c}}$. Then, a spanning tree $T^{s p}$ of G^{c} is constructed as follows. The first node is chosen uniformly at random. Each further construction step is performed as described in Section 2.1. Then the dynamic programming algorithm proposed in [2] is applied to $T^{s p}$ for finding the best k-cardinality tree $T^{c h i l d}$ that is contained in $T^{s p}$.

Otherwise, that is, in case the crossover partners T and T^{c} are not overlapping, T is used as the basis for constructing a tree in G that contains both, T and T^{c}. This is done by extending T (with construction steps as outlined in Section 2.1) until the current tree under construction can be connected with T^{c} by at least one edge. In case of several connecting edges, edge e that minimizes $w_{e}+w_{v_{a}}+w_{v_{b}}$ is chosen, where v_{a} and v_{b} are the two endpoints of e. Finally, we apply the dynamic programming algorithm proposed in [2] for finding the best k-cardinality tree $T^{\text {child }}$ in the constructed tree.

The better tree among $T^{\text {child }}$ and T is added to the offspring population \hat{P}.
IntroduceNewMaterial (\hat{P}) : In order to avoid a premature convergence of the algorithm, this function introduces at each iteration new material (in the form of newly constructed k cardinality trees) into the population. The input of this function is the offspring population \hat{P} generated by crossover. First, the function selects $X=\lfloor 100$ - newmat $\rfloor \%$ of the best solutions in \hat{P} for the new population P. Then, the remaining $100-X \%$ of P are generated as follows: Starting from a node of G that is uniformly chosen at random, an $l_{\text {new }}$-cardinality tree $T_{l_{\text {new }}}$ (where $l_{\text {new }} \geq k$) is constructed by applying construction steps as outlined in Section 2.1. In Section 3 we describe the setting of $l_{\text {new }}$. Then, the dynamic programming algorithm proposed in [2] is used for finding the best k-cardinality tree in $T_{l_{\text {new }}}$. This tree is then added to P.

Our hybrid EA algorithm HyEA outputs the best solution found during a run. This completes the description of the algorithm.

3 Experimental evaluation

We implemented HyEA in ANSI C++ using GCC 3.2.2 for compiling the software. Our experimental results were obtained on a PC with Intel Pentium 4 processor (3.06 GHz) and 1 Gb of memory. Before we present the computational results, we specify in the following the setting of the four algorithm parameters.

3.1 Setting of the algorithm parameters

pop_size: The population size is one of the important algorithm parameters. Earlier experience with the KCT problem (see, for example, [4]) has shown that the population size should be coupled to the cardinality k. That is, when k is rather small, the population size should be rather big, and vice versa. Based on some initial computational tests we decided for a population size pop_size such that each node of G (on average) appears in 5 members of the population. In addition, we introduced sensible lower and upper bounds for the population size (i.e., at least 10 population members, respectively at most 100 population members). In technical terms,

$$
\begin{equation*}
\text { pop_size } \leftarrow \min \left\{\max \left\{10,\left\lfloor 5 \cdot \frac{|V|}{k+1}\right\rfloor\right\}, 100\right\} . \tag{3}
\end{equation*}
$$

$\mathbf{p}_{\text {det }}$: As outlined in Section 2.1, when constructing a tree each step may either be performed deterministically or probabilistically. This is decided for each construction step with a certain
probability $\mathbf{p}_{d e t}$. If $\mathbf{p}_{d e t}$ is close to one, a tree construction is almost deterministic, and if $\mathbf{p}_{d e t}$ is close to zero, the tree construction is almost probabilistic. By means of experimentation we found that for rather small cardinalities a value of about $\mathbf{p}_{\text {det }}=0.85$ works well, whereas for rather big cardinalities a value around $\mathbf{p}_{d e t}=0.99$ works best. In order to obtain an algorithm that shows a reasonable performance over the whole cardinality range, we decided to chose $\mathbf{p}_{d e t}$ for each tree construction (or tree extension in the case of the crossover operator) uniformly at random from $[0.85,0.99]$.
newmat: This parameter takes an integer value between 0 and 100, and denotes the percentage of new trees in the new population that is generated per algorithm iteration. Clearly, if newmat $=0$ the algorithm will suffer from premature convergence, whereas if newmat $=100$, the algorithm will just create a random new population at each iteration. After tuning by hand we found the value of newmat $=20$ to be reasonably well working for small as well as big cardinalities. However, this parameter is not really critical. Values between 10 and 30 work almost equally well.
$l_{\text {new }}:$ At each iteration, newmat\% new trees are added to the new population. These trees might be generated in the same way as the trees of the initial population, that is, trees of size k (corresponding to a setting of $l_{\text {new }}=k$). However, we noticed that-in particular in later stages of the search process - the quality of these k-cardinality trees was not comparable to the quality of the trees resulting from the evolution process. Adding these trees was therefore not useful for the search process. Hence, we decided to generate trees that are bigger than k (i.e., $l_{\text {new }}>k$), and to apply the dynamic programming algorithm proposed in [2] in order to find the best k-cardinality tree in the $l_{\text {new }}$-cardinality tree that was generated. There is of course a trade-off between time and quality. Generating trees of size $l_{\text {new }}=|V|-1$ (i.e., spanning trees) results on average in the best k-cardinality trees. However, in this case the dynamic programming algorithm takes more time than in the case of $l_{\text {new }}<|V|-1$. After some experimentation we decided for a value of

$$
\begin{equation*}
l_{\text {new }} \leftarrow k+\left\lfloor\frac{|V|-1-k}{3}\right\rfloor . \tag{4}
\end{equation*}
$$

In words, $l_{\text {new }}$ is set to k plus one third of the remaining cardinality range (remember that the maximum cardinality is $|V|-1$).

3.2 Results

3.2.1 Application to the edge-weighted instances (part 1)

First, we applied our algorithm to 12 of the edge-weighted graphs from the benchmark set by Blum and Blesa [4]; that is, the same 12 instances to which the current state-of-the-art algorithm for this benchmark set-an ant colony optimization approach (denoted by ACO) by Bui and Sundarraj [10]-was applied. The results are shown in Tables 2, 3, and 4. The format of these tables is as follows. The first column provides the cardinality, while the second column contains the value of the best known solution for the respective cardinality. The cases in which the best known solution was improved by HyEA are marked by a left-right arrow. Columns 3 and 4 provide the value of the best solution found in 20 runs by ACO, respectively the average of the best solutions found in the 20 runs. The same information is given for HyEA

Figure 2: Average computation time (in seconds) of ACO and HyACO over the cardinality range $[2,1087]$ of problem instance bb33x33_1.
in columns 5 and 6 . Additionally, in column 7 is provided the average time needed to find the best solutions in the 20 runs. For space reasons this information is not provided for ACO. The time information can be obtained from [10]. We show the differences in computation time graphically on the typical example of problem instance bb33x33_1 in Figure 2. Hereby one has to keep in mind that the results of ACO were obtained on a computer with Intel Pentium 4 processor $(2.4 \mathrm{GHz})$ and 512 Gb of memory. The graphic in Figure 2 shows that for small and medium size cardinalities the computation times of ACO and HyEA are comparable. However, for larger cardinalities HyEA has clear advantages over ACO in terms of computation time. As computation time limits for HyEA we used the time limits that were used in [4] (divided by 2.7 , due to the fact that the machine used in [4] is about 2.7 times slower than the machine that we used).

When comparing the computational results displayed in Tables 2, 3, and 4, we note a clear advantage of HyEA over ACO. Table 1 shows a summary of the results that are provided in Tables2, 3, and 4. When small graphs are concerned the results of both methods are comparable. The advantage of HyEA over ACO is especially strong on bigger graphs such as, for example, g1000-4-01 or bb33x33_1. With respect to the feasible cardinality range, the advantage of HyEA over ACO is especially clear for smaller cardinalities. Altogether, HyEA improves the best known solutions concerning the considered 12 instances of this benchmark set in 53 cases.

Table 1: Summary of the results displayed in Tables 2 to 13. The numbers in the table show how often - in 138 results - HyEA is better than, respectively "worse than" or "equal to", ACO. This information is given with respect to the best solutions found (second table row), and the average results obtained (third table row).

	better	equal	worse
best	53	71	14
average	78	45	15

3.2.2 Application to the edge-weighted instances (part 2)

Second, we applied our algorithm to the 8 remaining edge-weighted graphs from the benchmark set by Blum and Blesa [4]. The only algorithms that were applied so far to these 8 instances were the algorithms proposed in [4]. As none of these approaches is clearly better than the others, we compare HyEA only to the best known solutions (see Table 5). Especially concerning the bigger ones of these graphs, HyEA has clear advantages over the best solutions found by the three approaches proposed in [4]. Alltogether, HyEA is able to improve 51 of the best known solutions.

3.2.3 Application to node-weighted instances

In a third set of experiments we applied HyEA to the benchmark set of node-weighted graphs that was proposed in [9]. This set is composed of 30 grid graphs, that is, 10 grid graphs of 900 vertices (i.e., 30 times 30 vertices), 10 grid graphs of 1600 vertices, and 10 grid graphs of 2500 vertices. Furthermore, the benchmark set consists of 30 random graphs, that is, 10 graphs of 3000 vertices, 10 graphs of 4000 vertices, and 10 graphs of 5000 vertices. We compared our results to the results of the variable neighborhood decent technique (denoted by VNDS) presented in [9], and to the results of the hybrid ant colony optimization technique (denoted by HyACO) that we proposed in [3]. This comparison is shown in Table 6. Instead of applying an algorithm several times to the same graph and cardinality, it is usual for this benchmark set to apply the algorithm exactly once to each graph and cardinality, and then to average the results over the graphs of the same type. Therefore, the structure of Table 6 is slightly different to the tables of the previous section. The first table column indicates the graph type (e.g., grid graphs of size 30×30). The second table column contains the cardinality, whereas the third table column provides the best known results (abbreviated by bkr). Then for each of the three algorithms we provide the result together with the average computation time that was spent in order to compute this result. Note that the computation time limit for HyEA was the same as the one that was used for HyACO (see [3]).

For what concerns the application to grid graph instances (see Table 6a), we note that both HyACO as well as HyEA are in 9 out of 15 cases better than VNDS. It is interesting to note that this concerns especially the cases of small to medium size cardinalities. For larger cardinalities VNDS beats both HyACO and HyEA. Furthermore, HyEA is in 11 out of 15 cases better than HyACO. This indicates that, even though HyACO and HyEA behaver similar in comparison to VNDS, HyEA seems to make a better use of the dynamic programming algorithm than HyACO. In terms of computation time, both algorithms are comparable.

Even though all three algorithms provide very similar results, VNDS seems to have a consistent advantage over HyEA and HyACO for what concerns the application to random graph instances (see Table 6b). When comparing HyEA with HyACO we note that HyEA is in 12 out of 15 cases better than HyACO. In fact, the three cases in which HyACO beats HyEA are the smallest cardinalities concerning the three graph types. This suggests that except for the application to very small cardinalities HyEA has in general advantages over HyACO when applied to node-weighted random graph instances.

4 Conclusions and outlook

In this paper we have proposed a hybrid evolutionary algorithm for the application to the k-cardinality tree problem, which is an $N P$-hard combinatorial optimization problem. The hybrid component of our algorithm is a dynamic programming algorithm for finding optimal trees in graphs that are themselfs trees. This dynamic programming algorithm is used in all the operators of our algorithm. We conducted an extensive computational evaluation of our algorithm. The results are especially favorable when edge-weighted problem instances are concerned. In fact, our algorithm is able to improve 104 best known solutions for benchmark instances from the literature. Furthermore, our algorithm is comparable to current state-of-the-art algorithms when applied to node-weighted grid graph instances. In 6 out of 15 cases our algorithm is able to improve the best known results from the literature. On the negative side, our algorithm seems to have some problems for node-weighted random graph instances. These instances are the only ones for which our algorithm does not reach state-of-the-art performance. We plan to investigate on this topic in future research.

References

[1] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York, 1996.
[2] C. Blum. Revisiting dynamic programming for finding optimal subtrees in trees. European Journal of Operational Research, 2006. In press.
[3] C. Blum and M. Blesa. Combining Ant Colony Optimization with Dynamic Programming for solving the k-cardinality tree problem. In 8th International Work-Conference on Artificial Neural Networks, Computational Intelligence and Bioinspired Systems (IWANN'05), volume 3512 of Lecture Notes in Computer Science, pages 25-33. SpringerVerlag, Berlin, 2005.
[4] C. Blum and M.J. Blesa. New metaheuristic approaches for the edge-weighted k cardinality tree problem. Computers \& Operations Research, 32(6):1355-1377, 2005.
[5] C. Blum and M. Ehrgott. Local search algorithms for the k-cardinality tree problem. Discrete Applied Mathematics, 128:511-540, 2003. Selected for the Editors' choice volume of 2003 .
[6] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003.
[7] R. Borndörfer, C. Ferreira, and A. Martin. Matrix decomposition by Branch-and-Cut. Technical report, Konrad-Zuse-Zentrum für Informationstechnik, Berlin, 1997.
[8] R. Borndörfer, C. Ferreira, and A. Martin. Decomposing matrices into blocks. SIAM Journal on Optimization, 9(1):236-269, 1998.
[9] J. Brimberg, D. Urošević, and N. Mladenović. Variable neighborhood search for the vertex weighted k-cardinality tree problem. European Journal of Operational Research, 2005. In press.
[10] T. N. Bui and G. Sundarraj. Ant system for the k-cardinality tree problem. In K. Deb et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference GECCO 2004, volume 3102 of Lecture Notes in Computer Science, pages 36-47. Springer Verlag, Berlin, Germany, 2004.
[11] S. Y. Cheung and A. Kumar. Efficient quorumcast routing algorithms. In Proceedings of INFOCOM'94, Los Alamitos, USA, 1994. IEEE Society Press.
[12] M. Ehrgott and J. Freitag. K_TREE / K_SUBGRAPH: A program package for minimal weighted k-cardinality-trees and -subgraphs. European Journal of Operational Research, 1(93):214-225, 1996.
[13] M. Ehrgott, J. Freitag, H. W. Hamacher, and F. Maffioli. Heuristics for the k-cardinality tree and subgraph problem. Asia-Pacific Journal of Operational Research, 14(1):87-114, 1997.
[14] M. Fischetti, H. W. Hamacher, K. Jørnsten, and F. Maffioli. Weighted k-cardinality trees: Complexity and polyhedral structure. Networks, 24:11-21, 1994.
[15] L. R. Foulds and H. W. Hamacher. A new integer programming approach to (restricted) facilities layout problems allowing flexible facility shapes. Technical Report 1992-3, Department of Management Science, University of Waikato, New Zealand, 1992.
[16] L. R. Foulds, H. W. Hamacher, and J. Wilson. Integer programming approaches to facilities layout models with forbidden areas. Annals of Operations Research, 81:405417, 1998.
[17] J. Freitag. Minimal k-cardinality trees. Master's thesis, Department of Mathematics, University of Kaiserslautern, Germany, 1993. In german.
[18] N. Garg and D. Hochbaum. An $O(\log k)$ approximation algorithm for the k minimum spanning tree problem in the plane. Algorithmica, 18:111-121, 1997.
[19] H. W. Hamacher and K. Joernsten. Optimal relinquishment according to the Norwegian petrol law: A combinatorial optimization approach. Technical Report No. 7/93, Norwegian School of Economics and Business Administration, Bergen, Norway, 1993.
[20] H. W. Hamacher, K. Jörnsten, and F. Maffioli. Weighted k-cardinality trees. Technical Report 91.023, Politecnico di Milano, Dipartimento di Elettronica, Italy, 1991.
[21] A. Hertz and D. Kobler. A framework for the description of evolutionary algorithms. European Journal of Operational Research, 126:1-12, 2000.
[22] F. Maffioli. Finding a best subtree of a tree. Technical Report 91.041, Politecnico di Milano, Dipartimento di Elettronica, Italy, 1991.
[23] M. V. Marathe, R. Ravi, S. S. Ravi, D. J. Rosenkrantz, and R. Sundaram. Spanning trees short or small. SIAM Journal on Discrete Mathematics, 9(2):178-200, 1996.
[24] H. W. Philpott and N. Wormald. On the optimal extraction of ore from an open-cast mine. Technical report, University of Auckland, New Zeland, 1997.
[25] R. Uehara. The number of connected components in graphs and its applications. IEICE Technical Report COMP99-10, Natural Science Faculty, Komazawa University, Japan, 1999.
[26] D. Urošević, J. Brimberg, and N. Mladenović. Variable neighborhood decomposition search for the edge weighted k-cardinality tree problem. Computers $\& \mathcal{F}$ Operations Research, 31:1205-1213, 2004.

Table 2: Results for grid graphs bb15x15_1, bb15×15_2, bb33x33_1, and bb33×33_2.

(a) Grid graph bb15×15_1 (225 vertices)						
k	bks	ACO		HyEA		
		best	$\mathbf{a v g}$	best	avg	avg. time
2	2	$\mathbf{2}$	2.00	$\mathbf{2}$	2.00	0.01
20	257	$\mathbf{2 5 7}$	258.00	$\mathbf{2 5 7}$	257.00	0.20
40	642	$\mathbf{6 4 2}$	644.40	$\mathbf{6 4 2}$	642.00	0.22
60	977	$\mathbf{9 7 7}$	1005.50	$\mathbf{9 7 7}$	978.50	0.39
80	1335	$\mathbf{1 3 3 5}$	1429.15	$\mathbf{1 3 3 5}$	1346.80	1.07
100	$\rightarrow 1761$	1762	1780.05	$\mathbf{1 7 6 1}$	1762.60	0.95
120	2235	$\mathbf{2 2 3 5}$	2262.80	$\mathbf{2 2 3 5}$	2235.00	0.77
140	2781	$\mathbf{2 7 8 1}$	2798.10	2783	2793.00	2.85
160	3417	$\mathbf{3 4 1 7}$	3423.00	$\mathbf{3 4 1 7}$	3424.30	2.41
180	4158	$\mathbf{4 1 5 8}$	4162.15	$\mathbf{4 1 5 8}$	4165.20	2.55
200	5040	$\mathbf{5 0 4 0}$	5040.95	5041	5041.00	0.54
220	6176	$\mathbf{6 1 7 6}$	6176.00	$\mathbf{6 1 7 6}$	6176.00	0.31
223	6400	$\mathbf{6 4 0 0}$	6400.00	$\mathbf{6 4 0 0}$	6400.00	0.01

(b) Grid graph bb15×15_2 (225 vertices)

(b) Grid graph bb15×15_2 (225 vertices)						
k	bks	ACO				
		best	avg	best	HyEA avg	avg. time
2	6	$\mathbf{6}$	6.00	$\mathbf{6}$	6.00	0.01
20	253	$\mathbf{2 5 3}$	253.00	$\mathbf{2 5 3}$	253.00	0.06
40	585	$\mathbf{5 8 5}$	624.10	$\mathbf{5 8 5}$	585.00	0.54
60	927	$\mathbf{9 2 7}$	986.05	$\mathbf{9 2 7}$	930.80	0.53
80	1290	$\mathbf{1 2 9 0}$	1348.35	1291	1295.00	1.01
100	1686	$\mathbf{1 6 8 6}$	1726.25	$\mathbf{1 6 8 6}$	1688.50	1.46
120	2120	$\mathbf{2 1 2 0}$	2143.55	$\mathbf{2 1 2 0}$	2124.20	1.47
140	2634	$\mathbf{2 6 3 4}$	2639.60	$\mathbf{2 6 3 4}$	2639.90	2.21
160	3248	3250	3272.75	$\mathbf{3 2 4 8}$	3248.20	2.48
180	3915	$\mathbf{3 9 1 5}$	3915.00	$\mathbf{3 9 1 5}$	3915.00	0.74
200	4718	$\mathbf{4 7 1 8}$	4718.00	$\mathbf{4 7 1 8}$	4718.00	0.47
220	5862	$\mathbf{5 8 6 2}$	5862.00	$\mathbf{5 8 6 2}$	5862.00	0.03
223	6101	$\mathbf{6 1 0 1}$	6101.00	$\mathbf{6 1 0 1}$	6101.00	0.01

(c) Grid graph bb33×33_1 (1089 vertices)

k	bks	ACO		HyEA best		
		avg	best	avg	avg. time	
2	3	$\mathbf{3}$	3.00	$\mathbf{3}$	3.00	0.05
100	$\rightarrow 1562$	1587	1594.60	$\mathbf{1 5 6 2}$	1586.30	15.17
200	$\rightarrow 3303$	3366	3466.35	$\mathbf{3 3 0 3}$	3324.90	38.16
300	$\rightarrow 5112$	5235	5320.45	$\mathbf{5 1 1 2}$	5128.60	102.02
400	$\rightarrow 7070$	7166	7224.80	$\mathbf{7 0 7 0}$	7086.00	206.63
500	$\rightarrow 9204$	9256	9327.60	$\mathbf{9 2 0 4}$	9236.70	195.84
600	11579	$\mathbf{1 1 5 7 9}$	11579.00	11588	11607.60	479.65
700	$\rightarrow 14299$	14309	14313.35	$\mathbf{1 4 2 9 9}$	14311.10	408.93
800	$\rightarrow 17393$	17399	17399.00	$\mathbf{1 7 3 9 3}$	17405.50	338.28
900	$\rightarrow 20919$	20921	20921.00	$\mathbf{2 0 9 1 9}$	20920.10	328.29
1000	25199	$\mathbf{2 5 1 9 9}$	25199.00	$\mathbf{2 5 1 9 9}$	25199.00	112.54
1087	30417	$\mathbf{3 0 4 1 7}$	30417.00	$\mathbf{3 0 4 1 7}$	30417.00	3.27

(d) Grid graph bb33×33_2 (1089 vertices)

(d) Grid graph bb33x33_2 (1089 vertices)						
k	bks	ACO		HyEA		
		best	avg	best	avg	avg. time
2	3	$\mathbf{3}$	3.00	$\mathbf{3}$	3.00	0.09
100	1524	1531	1568.65	$\mathbf{1 5 2 4}$	1525.30	14.74
200	$\rightarrow 3255$	3316	3530.60	$\mathbf{3 2 5 5}$	3273.40	40.03
300	$\rightarrow 5185$	5275	5360.10	$\mathbf{5 1 8 5}$	5196.60	81.25
400	$\rightarrow 7252$	7340	7582.05	$\mathbf{7 2 5 2}$	7266.10	195.82
500	$\rightarrow 9465$	9514	9624.70	$\mathbf{9 4 6 5}$	9484.00	263.24
600	$\rightarrow 11856$	11879	11889.30	$\mathbf{1 1 8 5 6}$	11886.90	285.07
700	$\rightarrow 14509$	14523	14523.00	$\mathbf{1 4 5 0 9}$	14544.50	873.62
800	$\rightarrow 17542$	17571	17571.00	$\mathbf{1 7 5 4 2}$	17545.40	449.37
900	$\rightarrow 20993$	21002	21002.00	$\mathbf{2 0 9 9 3}$	20998.10	316.32
1000	$\rightarrow 25273$	25274	25274.00	$\mathbf{2 5 2 7 3}$	25273.00	64.70
1087	30326	$\mathbf{3 0 3 2 6}$	30326.00	$\mathbf{3 0 3 2 6}$	30326.00	2.67

Table 3: Results for the 4-regular graphs g400-4-01, g400-4-05, g1000-4-01, and g1000-4-05.

(a) 4-regular graph g400-4-01 (400 vertices, 800 edges)						
k	bks	ACO		HyEA		
		best	avg	best	avg	avg. time
2	8	$\mathbf{8}$	8.00	$\mathbf{8}$	8.00	0.02
40	563	$\mathbf{5 6 3}$	563.00	$\mathbf{5 6 3}$	563.70	1.31
80	1304	$\mathbf{1 3 0 4}$	1304.85	$\mathbf{1 3 0 4}$	1305.40	2.29
120	$\rightarrow 2134$	2135	2139.45	$\mathbf{2 1 3 4}$	2134.00	7.70
160	3062	$\mathbf{3 0 6 2}$	3065.95	$\mathbf{3 0 6 2}$	3062.00	4.68
200	4086	$\mathbf{4 0 8 6}$	4086.00	$\mathbf{4 0 8 6}$	4087.70	14.41
240	$\rightarrow 5224$	5225	5228.80	$\mathbf{5 2 2 4}$	5225.30	12.03
280	6487	$\mathbf{6 4 8 7}$	6488.10	$\mathbf{6 4 8 7}$	6487.00	6.94
320	7882	$\mathbf{7 8 8 2}$	7882.00	$\mathbf{7 8 8 2}$	7882.00	4.71
360	9468	$\mathbf{9 4 6 8}$	9468.00	$\mathbf{9 4 6 8}$	9468.00	7.76
398	11433	$\mathbf{1 1 4 3 3}$	11433.00	$\mathbf{1 1 4 3 3}$	11433.00	0.10

(b) 4-regular graph g400-4-05 (400 vertices, 800 edges)

k	bks	ACO		HyEA		
		best	avg	best	avg	avg. time
2	4	$\mathbf{4}$	4.00	$\mathbf{4}$	4.00	0.02
40	673	$\mathbf{6 7 3}$	673.00	676	684.60	1.70
80	1445	$\mathbf{1 4 4 5}$	1455.45	1449	1453.80	5.08
120	2293	$\mathbf{2 2 9 3}$	2303.05	$\mathbf{2 2 9 3}$	2294.70	10.87
160	3193	$\mathbf{3 1 9 3}$	3203.70	3195	3196.00	12.54
200	4156	$\mathbf{4 1 5 6}$	4165.75	$\mathbf{4 1 5 6}$	4156.30	14.15
240	$\rightarrow 5198$	5202	5213.30	$\mathbf{5 1 9 8}$	5198.60	19.26
280	6350	$\mathbf{6 3 5 0}$	6361.15	6353	6354.20	22.33
320	7682	$\mathbf{7 6 8 2}$	7682.00	$\mathbf{7 6 8 2}$	7682.00	3.18
360	9249	$\mathbf{9 2 4 9}$	9249.00	$\mathbf{9 2 4 9}$	9249.00	5.66
398	11236	$\mathbf{1 1 2 3 6}$	11236.00	$\mathbf{1 1 2 3 6}$	11236.00	0.12

(c) 4-regular graph g1000-4-01 (1000 vertices, 2000 edges)

k	bks	ACO		HyEA		
		best	avg	best	avg	avg. time
2	6	$\mathbf{6}$	6.00	$\mathbf{6}$	6.00	0.07
100	1523	$\mathbf{1 5 2 3}$	1564.85	1524	1527.40	17.83
200	$\rightarrow 3308$	3329	3367.10	$\mathbf{3 3 0 8}$	3311.50	47.38
300	$\rightarrow 5325$	5333	5367.30	$\mathbf{5 3 2 5}$	5326.80	119.77
400	7581	$\mathbf{7 5 8 1}$	7595.65	7583	7593.90	204.75
500	10052	$\mathbf{1 0 0 5 2}$	10066.65	10056	10062.90	304.23
600	12708	$\mathbf{1 2 7 0 8}$	12725.75	12712	12715.80	382.59
700	15675	$\mathbf{1 5 6 7 5}$	15675.00	$\mathbf{1 5 6 7 5}$	15678.10	664.70
800	$\rightarrow 19023$	19037	19037.65	$\mathbf{1 9 0 2 3}$	19028.40	393.80
900	$\rightarrow 22827$	22830	22830.00	$\mathbf{2 2 8 2 7}$	22827.00	68.06
998	27946	$\mathbf{2 7 9 4 6}$	27946.00	$\mathbf{2 7 9 4 6}$	27946.00	0.99

(d) 4-regular graph g1000-4-05 (1000 vertices, 2000 edges)

k	bks	ACO		HyEA best		
		avg	best	avg	avg. time	
2	7	$\mathbf{7}$	7.00	$\mathbf{7}$	7.00	0.05
100	$\rightarrow 1652$	1653	1665.00	$\mathbf{1 6 5 2}$	1653.60	19.67
200	$\rightarrow 3620$	3627	3665.30	$\mathbf{3 6 2 0}$	3623.10	66.00
300	$\rightarrow 5801$	5825	5836.90	$\mathbf{5 8 0 1}$	5807.10	171.47
400	$\rightarrow 8206$	8230	8233.65	$\mathbf{8 2 0 6}$	8212.30	216.24
500	$\rightarrow 10793$	10801	10810.85	$\mathbf{1 0 7 9 3}$	10795.70	348.94
600	$\rightarrow 13584$	13592	13606.75	$\mathbf{1 3 5 8 4}$	13587.80	307.26
700	$\rightarrow 16682$	16686	16688.15	$\mathbf{1 6 6 8 2}$	16686.30	338.49
800	$\rightarrow 20076$	20078	20078.00	$\mathbf{2 0 0 7 6}$	20077.90	351.13
900	24029	$\mathbf{2 4 0 2 9}$	24029.00	24033	24037.40	171.95
998	29182	$\mathbf{2 9 1 8 2}$	29182.00	$\mathbf{2 9 1 8 2}$	29182.00	1.96

Table 4: Results for random graphs steinc5, steinc15, steind5, and steind15.

(a) Random graph steinc5						500 vertices, 625 edges)			
k	bks	ACO		HyEA					
		best	avg	best	avg	avg. time			
2	5	$\mathbf{5}$	5.00	$\mathbf{5}$	5.00	0.02			
50	$\rightarrow 772$	774	820.15	$\mathbf{7 7 2}$	773.10	1.24			
100	1712	$\mathbf{1 7 1 2}$	1734.65	$\mathbf{1 7 1 2}$	1712.00	3.00			
150	2865	$\mathbf{2 8 6 5}$	2888.15	$\mathbf{2 8 6 5}$	2865.00	3.92			
200	4273	$\mathbf{4 2 7 3}$	4273.00	4279	4284.40	11.29			
250	$\rightarrow 5945$	5952	5955.20	$\mathbf{5 9 4 5}$	5946.70	7.01			
300	7938	$\mathbf{7 9 3 8}$	7938.00	$\mathbf{7 9 3 8}$	7938.00	5.18			
350	$\rightarrow 10236$	10247	10248.20	$\mathbf{1 0 2 3 6}$	10238.20	10.44			
400	$\rightarrow 12964$	12965	12965.00	$\mathbf{1 2 9 6 4}$	12967.20	10.64			
450	16321	$\mathbf{1 6 3 2 1}$	16321.00	$\mathbf{1 6 3 2 1}$	16321.00	8.62			
498	20485	$\mathbf{2 0 4 8 5}$	20485.00	$\mathbf{2 0 4 8 5}$	20485.00	0.04			

(b) Random graph steinc15 (500 vertices, 2500 edges)

k	bks	ACO		HyEA		
		best	avg	best	avg	avg. time
2	2	$\mathbf{2}$	2.00	$\mathbf{2}$	2.00	0.01
50	208	$\mathbf{2 0 8}$	208.00	$\mathbf{2 0 8}$	208.00	1.53
100	481	$\mathbf{4 8 1}$	488.45	$\mathbf{4 8 1}$	481.20	41.46
150	802	$\mathbf{8 0 2}$	809.70	$\mathbf{8 0 2}$	802.60	59.94
200	1182	$\mathbf{1 1 8 2}$	1185.80	$\mathbf{1 1 8 2}$	1182.20	111.91
250	$\rightarrow 1625$	1625	1630.15	$\mathbf{1 6 2 5}$	1626.40	203.61
300	2148	$\mathbf{2 1 4 8}$	2148.00	$\mathbf{2 1 4 8}$	2148.00	7.50
350	$\rightarrow 2795$	2795	2796.95	$\mathbf{2 7 9 5}$	2795.00	13.49
400	3571	$\mathbf{3 5 7 1}$	3571.00	$\mathbf{3 5 7 1}$	3571.00	31.68
450	4553	$\mathbf{4 5 5 3}$	4553.00	$\mathbf{4 5 5 3}$	4553.00	3.03
498	5973	$\mathbf{5 9 7 3}$	5973.00	$\mathbf{5 9 7 3}$	5973.00	0.28

(c) Random graph steind5 (1000 vertices, 1250 edges)

k	bks	ACO		HyEA best		
		avg	best	avg	avg. time	
2	3	$\mathbf{3}$	3.00	$\mathbf{3}$	3.00	0.06
100	1503	$\mathbf{1 5 0 3}$	1526.35	$\mathbf{1 5 0 3}$	1508.20	7.15
200	$\rightarrow 3442$	3452	3456.50	$\mathbf{3 4 4 2}$	3446.60	39.72
300	$\rightarrow 5817$	5829	5873.45	$\mathbf{5 8 1 7}$	5826.50	75.05
400	$\rightarrow 8691$	8695	8716.15	$\mathbf{8 6 9 1}$	8700.30	83.01
500	$\rightarrow 12056$	12062	12085.70	$\mathbf{1 2 0 5 6}$	12060.10	100.58
600	$\rightarrow 15916$	15933	15933.00	$\mathbf{1 5 9 1 6}$	15921.10	146.02
700	$\rightarrow 20511$	20520	20539.45	$\mathbf{2 0 5 1 1}$	20513.80	129.49
800	26053	$\mathbf{2 6 0 5 3}$	26053.00	$\mathbf{2 6 0 5 3}$	26053.00	33.79
900	32963	$\mathbf{3 2 9 6 3}$	32963.00	$\mathbf{3 2 9 6 3}$	32963.00	37.68
998	41572	$\mathbf{4 1 5 7 2}$	41572.00	$\mathbf{4 1 5 7 2}$	41572.00	2.92

(d) Random graph steind15 (1000 vertices, 5000 edges)

k	bks	ACO		HyEA		
		best	avg	best	avg	avg. time
2	2	$\mathbf{2}$	2.00	$\mathbf{2}$	2.00	0.05
100	455	$\mathbf{4 5 5}$	455.00	$\mathbf{4 5 5}$	455.00	7.52
200	$\rightarrow 1018$	1029	1038.90	$\mathbf{1 0 1 8}$	1018.70	63.51
300	$\rightarrow 1674$	1680	1680.00	$\mathbf{1 6 7 4}$	1674.50	139.57
400	$\rightarrow 2446$	2451	2458.70	$\mathbf{2 4 4 6}$	2447.70	173.52
500	$\rightarrow 3365$	3366	3369.15	$\mathbf{3 3 6 5}$	3365.20	361.29
600	$\rightarrow 4420$	4423	4424.05	$\mathbf{4 4 2 0}$	4420.00	176.68
700	$\rightarrow 5685$	5686	5686.00	$\mathbf{5 6 8 5}$	5685.00	62.22
800	7236	$\mathbf{7 2 3 6}$	7236.00	$\mathbf{7 2 3 6}$	7236.00	154.22
900	9248	$\mathbf{9 2 4 8}$	9248.00	$\mathbf{9 2 4 8}$	9248.00	10.97
998	12504	$\mathbf{1 2 5 0 4}$	12504.00	$\mathbf{1 2 5 0 4}$	12504.00	1.10

Table 5: Results for grid graphs bb45x5_1, bb45x5_2, bb100x10_1, bb100x10_2, bb50×50_1, bb50×50_2, and random graphs steine5, and le450_15a.

(a) Grid graph bb45x5_1 (225 vertices)					(b) Grid graph bb45x5_2 (225 vertices)				
k	bks		HyEA		k	bks			
		best	avg	avg. time			best	avg	avg. time
2	2	2	2.00	0.01	2	8	8	8.00	0.01
20	306	306	308.40	0.38	20	302	302	302.00	0.07
40	695	697	707.70	0.85	40	654	654	654.00	0.20
60	1115	1117	1131.20	0.87	60	1122	1122	1122.00	0.33
80	$\rightarrow 1568$	1568	1586.10	0.94	80	1617	1617	1620.90	0.60
100	1979	1979	2003.70	1.32	100	$\rightarrow 2129$	2129	2131.60	0.71
120	$\rightarrow 2450$	2450	2480.70	1.58	120	$\rightarrow 2633$	2633	2646.50	0.89
140	3028	3044	3055.10	2.28	140	3174	3174	3182.90	1.10
160	3702	3711	3722.30	1.89	160	$\rightarrow 3757$	3757	3762.00	1.70
180	$\rightarrow 4474$	4474	4493.40	2.14	180	4458	4458	4458.20	2.13
200	5461	5461	5462.80	0.61	200	5262	5262	5262.50	2.14
220	6718	6718	6718.00	0.40	220	6347	6347	6349.80	1.27
223	6946	6946	6946.00	0.02	223	6568	6568	6568.00	0.02

(c) Grid graph bb100×10_1 (1000 vertices)
(d) Grid graph bb100×10_2 (1000 vertices)

(c) Grid graph bb100x10_1 (1000 vertices)					(d) Grid graph bb100x10_2 (1000 vertices)				
k	bks	best	$\begin{gathered} \text { HyEA } \\ \text { avg } \end{gathered}$	avg. time	k	bks	HyEA		
							best	avg	avg. time
2	3	3	3.00	0.08	2	4	4	4.00	0.06
100	1601	1601	1601.00	7.07	100	$\rightarrow 1661$	1661	1666.60	5.01
200	$\rightarrow 3520$	3520	3521.20	25.87	200	$\rightarrow 3618$	3618	3635.90	28.57
300	$\rightarrow 5511$	5511	5542.60	41.39	300	$\rightarrow 5435$	5435	5458.10	56.44
400	$\rightarrow 7588$	7588	7614.80	133.02	400	$\rightarrow 7531$	7531	7558.10	131.65
500	$\rightarrow 9961$	9961	9984.00	190.60	500	$\rightarrow 9861$	9861	9876.60	171.25
600	$\rightarrow 12444$	12444	12463.50	352.62	600	$\rightarrow 12481$	12481	12492.00	218.96
700	$\rightarrow 15296$	15296	15317.10	313.39	700	$\rightarrow 15599$	15599	15604.70	387.85
800	$\rightarrow 18670$	18670	18674.50	241.32	800	$\rightarrow 19188$	19188	19198.20	434.18
900	$\rightarrow 22732$	22732	22738.00	162.07	900	$\rightarrow 23481$	23481	23482.00	121.22
998	28316	28316	28316.00	2.23	998	29474	29474	29474.00	3.08

(e) Grid graph bb50×50_1 (2500 vertices)
(f) Grid graph bb50×50_2 (2500 vertices)

k	bks	HyEA			k	bks	HyEA		
		best	avg	avg. time			best	avg	avg. time
2	2	2	2.00	0.19	2	3	3	3.00	0.32
250	$\rightarrow 3988$	3988	4018.00	49.59	250	$\rightarrow 3612$	3612	3634.00	47.38
500	$\rightarrow 8150$	8150	8175.20	187.83	500	$\rightarrow 7822$	7822	7846.20	175.00
750	$\rightarrow 12551$	12551	12592.10	449.55	750	$\rightarrow 12440$	12440	12475.90	254.65
1000	$\rightarrow 17437$	17437	17492.00	545.41	1000	$\rightarrow 17546$	17546	17614.00	734.63
1250	$\rightarrow 22823$	22823	22855.30	922.59	1250	$\rightarrow 23448$	23448	23500.90	879.59
1500	$\rightarrow 28683$	28683	28783.40	832.11	1500	$\rightarrow 29892$	29892	29988.60	921.67
1750	$\rightarrow 35534$	35534	35567.80	890.94	1750	$\rightarrow 37197$	37197	37252.30	861.37
2000	$\rightarrow 43627$	43627	43645.70	924.21	2000	$\rightarrow 45673$	45673	45732.00	872.76
2250	$\rightarrow 53426$	53426	53432.90	750.46	2250	$\rightarrow 56037$	56037	56052.10	665.35
2498	67141	67141	67141.00	64.28	2498	70439	70439	70439.00	63.98

(g) Random graph steine5 (2500 vertices, 3125 edges))
(h) Random graph le450_15a (450 vertices, 8168 edges)

k	bks	HyEA avg				avg. time	k	bks	HyEA avg		avg. time
2		3	$\mathbf{3}$	3.00	0.79	2	2	$\mathbf{2}$	2.00		
250	$\rightarrow 3883$	$\mathbf{3 8 8 3}$	3893.10	57.24	45	59	$\mathbf{5 9}$	59.20	0.01		
500	$\rightarrow 9306$	$\mathbf{9 3 0 6}$	9313.80	161.18	90	135	$\mathbf{1 3 5}$	135.00	2.71		
750	$\rightarrow 15818$	$\mathbf{1 5 8 1 8}$	15861.90	213.04	135	226	$\mathbf{2 2 6}$	226.00	1.39		
1000	$\rightarrow 23528$	$\mathbf{2 3 5 2 8}$	23563.00	323.42	180	$\rightarrow 336$	$\mathbf{3 3 6}$	336.00	2.11		
1250	$\rightarrow 32493$	$\mathbf{3 2 4 9 3}$	32524.20	615.53	225	471	$\mathbf{4 7 1}$	471.00	11.31		
1500	$\rightarrow 42769$	$\mathbf{4 2 7 6 9}$	42789.30	533.98	270	630	$\mathbf{6 3 0}$	630.00	12.19		
1750	$\rightarrow 54763$	$\mathbf{5 4 7 6 3}$	54776.50	605.10	315	822	$\mathbf{8 2 2}$	822.00	16.66		
2000	$\rightarrow 68622$	$\mathbf{6 8 6 2 2}$	68628.30	460.59	360	1060	$\mathbf{1 0 6 0}$	1060.10	9.42		
2250	$\rightarrow 85366$	$\mathbf{8 5 3 6 6}$	85372.00	148.92	405	1388	$\mathbf{1 3 8 8}$	1388.00	7.50		
2498	106677	$\mathbf{1 0 6 6 7 7}$	106682.10	14.22	448	2002	$\mathbf{2 0 0 2}$	2002.00	2.10		

Table 6: Results for node weighted graphs.

(a) Grid graphs									
instance type	k	bkr	VNDS result		avg. time	HyACO result		avg. time	result
30×30	100	8203.50	8571.90	24.00	$\mathbf{8 2 0 3 . 5 0}$	65.99	8206.50	63.43	
	200	$\rightarrow 17766.60$	17994.40	88.00	17850.10	89.29	$\mathbf{1 7 7 6 6 . 6 0}$	97.99	
	300	28770.90	$\mathbf{2 8 7 7 0 . 9 0}$	126.00	28883.90	108.42	28845.40	104.14	
	400	42114.00	$\mathbf{4 2 1 1 4 . 0 0}$	80.00	42331.90	133.78	42282.70	117.80	
	500	59266.40	$\mathbf{5 9 2 6 6 . 4 0}$	213.00	59541.70	132.52	59551.60	110.31	
40×40	150	$\rightarrow 17461.70$	18029.90	112.00	17527.10	211.78	$\mathbf{1 7 4 6 1 . 7 0}$	229.39	
	300	$\rightarrow 37518.50$	38965.90	114.00	37623.80	277.70	$\mathbf{3 7 5 1 8 . 5 0}$	297.82	
	450	$\rightarrow 60305.60$	61290.10	261.00	60417.00	270.27	$\mathbf{6 0 3 0 5 . 6 0}$	269.80	
	600	86422.30	$\mathbf{8 6 4 2 2 . 3 0}$	261.00	86594.70	187.45	86571.10	295.54	
	750	117654.00	$\mathbf{1 1 7 6 5 4 . 0 0}$	303.00	118570.00	217.23	118603.50	260.62	
50×50	250	$\rightarrow 35677.20$	37004.00	228.00	35995.20	171.64	$\mathbf{3 5 6 7 7 . 2 0}$	259.78	
	500	$\rightarrow 76963.20$	81065.80	322.00	77309.90	286.66	$\mathbf{7 6 9 6 3 . 2 0}$	267.76	
	750	$\rightarrow 125009.00$	128200.00	482.00	125415.00	310.13	$\mathbf{1 2 5 0 0 9 . 0 0}$	284.98	
	1000	181983.00	182220.00	575.00	$\mathbf{1 8 1 9 8 3 . 0 0}$	316.63	182101.50	313.55	
	1250	250962.00	$\mathbf{2 5 0 9 6 2 . 0 0}$	681.00	253059.00	335.35	252683.10	303.51	

(b) Random graphs

instance type	k	bkr	VNDS		HyACO		HyEA	
			result	avg. time	result	avg. time	result	avg. time
3000	300	24181.40	24181.40	436.00	24345.70	133.73	24364.30	136.47
	600	58719.70	58719.70	575.00	59002.40	158.25	58857.60	150.31
	900	106016.40	106016.40	177.00	106330.00	164.47	106040.50	116.75
	1200	166948.40	166948.40	154.00	167214.00	178.26	166949.40	111.35
	1500	241335.60	241335.60	144.00	241569.00	145.25	241338.50	102.68
4000	400	32200.40	32200.40	791.00	32589.10	152.83	32828.10	133.42
	800	78755.70	78755.70	871.00	79468.10	156.72	79229.20	141.36
	1200	142460.00	142460.00	740.00	143259.00	145.11	142578.40	156.61
	1600	224259.70	224259.70	316.00	225010.00	171.29	224331.80	141.11
	2000	324681.30	324681.30	220.00	325299.00	158.60	324705.70	163.90
5000	500	57725.30	57725.30	84.00	58531.10	154.29	59678.40	127.30
	1000	152660.80	152660.80	797.00	154857.00	185.83	154060.30	218.43
	1500	293084.80	293084.80	789.00	295327.00	241.11	293462.10	238.52
	2000	482370.20	482370.20	575.00	484567.00	270.63	482517.40	281.37
	2500	720042.90	720064.10	462.00	721700.00	297.02	720094.10	321.69

[^0]: *This work was supported by the Spanish CICYT project OPLINK (grant TIN-2005-08818-C04-01), and by the "Juan de la Cierva" program of the Spanish Ministry of Science and Technology of which Christian Blum is a post-doctoral research fellow.

[^1]: ${ }^{1}$ Remember that V_{T} denotes the node set of T.

