-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by UPCommons. Portal del coneixement obert de la UPC

Sphere—Trees Generation As Needed In Real Time To Speed Up
Collision Detection

Marta Franquesa Niub
Departament de Llenguatges i Sistemes Infttios
Universitat Poliecnica de Catalunya
Email: marta@Isi.upc.edu

Omar Rodiguez Gonalez
Facultad de Ingeniéa
Universidad Aubnoma de San Luis Potios
Email: omarg@uaslp.mx

Keywords: Sphere-tree, collision detection, viewing volume, graphics hardware.

Abstract: In this paper two improvements to speed up collision detection are desciitietly, a method calledn-
collide sphere-tregOCST for short, is presented. This approach works by detecting coBisimong models
with arbitrary geometry using the video card’s Graphics Processing,UBR&). While candidate parts of
colliding objects are being detected, the OCST is constructed for collisidnaticm in parallel, at the same
time. Thus, the OCST is created in real-time. Secondly, we have tested td®ditriangulated represen-
tation models for the same original-objects. We have evaluated triangfeasoltriangle—strip models to
speed up the algorithm response when computing collisions. The methditba described, implemented
and tested for the two kinds of triangulated models, and the obtained resustisavn.

https://core.ac.uk/display/41825877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION

Collision detection is a key problem in many areas of compgtaphics (JTTO1; LM03). Considered as a
bottleneck within real-time environments, several authtve studied the detection of a collision and multiple
solutions have been proposed and published.

It is well known that to compute collision detection amongesal objects, a bounding easy—shaped wrapper
and hierarchies of them are created and used to cover eamlvadvscene—object. These wrappers of simple
shape allow us to compute intersections in a quick way, ditseg collision faster than using the geometry of
the original object models. The problem that arises is tfieiefit managing of the wrapper hierarchies. As
the wrappers are usually called bounding volumes (BV), ikeahchies are called BV-trees. Examples of BV
are axis—aligned—bounding-boxes (AABB), oriented—baugieboxes (OBB) and spheres. The most solutions
compute the trees in a preprocessed step and, then, trévensén a later animation time. These approaches are
cumbersome and heavy to manage in the whole process. Thusttleneck of this solution lies in the time step
when the new levels of the tree are created, traversed arateghdOne of the most commonly BV-hierarchy
model used is the sphere—tree.

The hybrid collision detection (KTAK94), refers to any dsibn detection method that first performs one
or more iterations of approximate test to study whetherabjaterfere in the workspace and then, performs
more accurate tests to identify the object parts causinotegerence. Hubbard (Hub95) reports two phases: the
broad phasewhere approximate interferences are detected, anubitiew phasavhere exact collision detection
is performed. O’Sullivan and Dingliana (0’'S99; OD99) exded the classification pointing out that tharrow
phaseconsists of several levels of intersection testing betvieerobjects at increasing level of accuraoa(row
phase: progressive refinement leyelsd, in the last level of accuracy, the tests may be exactgw phase: exact
leve). Franquesa and Brunet (FNB03; FNBO04) divided binead phasén two subphases. In the first one, tests
are performed to find subsets of objects from the entire vwads where collisions can occur, rejecting at the
same time, all the space regions where interference is silge proad phase: progressive delimitation levels
In the second subphase, tests determine the candidatdsoffjatcan cause a collisiohrpad phase: accurate
broad leve). Figure 1 summarizes the complete hybrid collision déeaqpipeline including all its phases.

In recent times, the availability of high performance 3Dpjrias cards are common in personal computers.
The power and fastness of the built-in Graphics Processimits|UJGPU, and its own dedicated memory is being
applied to a wider variety of applications, even those thatdreators did not originally intend to manage.

In this paper, two improvements are described. Firstly, thowecalledon-collide sphere—tregOCST, is pre-
sented. This approach works by detecting collisions amaoodgehs with arbitrary geometry using the video card’s
GPU. While candidate parts of colliding objects are detedteel OCST is constructed for collision evaluation
in parallel, at the same time. Thus, the OCST is constructeddl-time. Secondly, we have tested two kinds
of triangulated models for the same original—-objects. Weslevaluated triangle—soup and triangle—strip models
to speed up the algorithm response. A triangle—strip is afdetangles where each triangle shares two vertices
with the preceding triangle. The first three indices defimiagle and then each additional index defines another
triangle by using the two preceding indices. More detaifddrimation can be found in (RFNO5a; RFNO5Db).

As already mentioned, the whole structures involved in i@l collision detection phases have usually been
computed as a preprocess to the simulation environmenar8ehtering the simulation, the structures must be
loaded in core memory. We present an algorithm that doess®precomputed BV hierarchical structures, but
it uses instead an octree—based sphere—tree created-timrean needed. The detection of surface overlapping
over the sphere—tree nodes is performed making use of amclgaeries by exploiting the capacities of modern
graphics hardware. The algorithm is aimed at rigid objeatsing in large environments. Thearrow phaseof

the hybrid collision detection problem is accelerated. Wnany objects interact, core memory is managed more
efficiently than the other preprocessed approaches. Tlesstz secondary storage is improved when out-of-core
techniques are used.

Organization: The rest of the paper is organized as follows. In section pteeious related work is discussed.
The representation model to be used is detailed in secti@reScription of the OCST construction algorithm is
in section 4. OCST collision detection in real-time are d&sed in section 5. Experimental results are given in
section 6 and, finally, conclusions are presented in seétion

BROAD PHASE: DELIMITATION LEVELS

Space region idennficaiion

Q0

BROAD PHASE: ACCURATEILEVEL
Ohjects identfication

NAREOW PHASE: REFINEMENT LEVELS
Object parts 1dent:fication

|

NARROW PHASE: EXACT LEVEL
Colliding primstrees ideniification

Figure 1: Collision detection pipeline

2 PREVIOUS RELATED WORK

A bounding volume hierarchy approximates a representatiaan object as a hierarchical structure, known as
bounding volume tree (BVtree). One of the most used BVtreahe literature is the sphere—tree (Hub93). A
sphere—tree represents an object by sets of spheres iraachieal way. Three methods are commonly used for
the construction of a sphere—tree. The first one, considiftinfy spheres to a polyhedron and shrinking them
until they just fit (RB79). The second one is based on an o¢Bam90). Thus, the octree—based sphere—trees
(Hub96; OD99; PG95; PSL92) performs a recursive subdimigin3D, creating spheres on child nodes that
overlap the surface of the object. And the third and lastntiedial-axis surface method (BO03; Hub95; Hub96;
Qui94), uses Voronoi diagrams to calculate the olg&etetorplacing maximal sized spheres on it so the spheres
fill the object.

The graphics-hardware-assisted collision detectionrélgos started with Shinya and Forgue (SF91), and
Rossignaet al. (RMS92). After them, a more efficient algorithm was proposgd/lyszkowskiet al. (MOK95)
using the stencil buffer. Baciu and Wonk (BW98) were the fissuse common available graphics cards to
compute image—based collision detection. Vassileal. (VSCO01) use a technique for collision detection in
deformable objects like clothes. Kigt al. (KOLMO03) use graphics hardware to calculate Minkowski sums
find the minimum translational vector needed to separateitesfering objects. All those algorithms involve
no precomputation, but perform image-space computatitetsréquire the reading back of the depth or stencil
buffer, which can be expensive on standard graphics haedwar

Govindarajuet al. (GRLMO03) use occlusion queries to compute a potentiallfidiah set (PCS) in théroad
phase followed by exact collision in thearrow phase Fanet al. (FWGO04) use occlusion queries to fast detect
collision between a convex object and an arbitrarily shagigect. The advantage of using GPU based occlusion
queries is that no read back of the depth or stencil buffeeceasary to obtain results. This kind of tests are faster
than image-space computations.

As pointed out in (Kor99), in order to achieve high 3D graglperformance in many applications, it is essential
to use triangle strips because they can greatly speed upighky of triangle meshes. Triangle strips have
been widely used for efficient rendering. It is NP-completaest whether a given triangulated model can be
represented as a single triangle strip, so many heuristies heen proposed to partition models into few long
strips. In the literature we can find many approaches that the problem to compute triangle—strips. There are
several programs available in the world wide web. One of amomsoftware is the STRIPEThis software is
a tool which converts a polygonal model into triangle stapsl it is freely available for non commercial use.

3 OCST REPRESENTATION MODEL

To cover each candidate object for collision, octree—baspresentation for sphere—trees construction is used.
As it is well known, an octree is a hierarchical structureadttd subdividing recursively in 3D to form eight
child nodes (Sam90; RFNO5b). Each one can be representbdhwite colors. Black color for child nodes
completely inside the subdividing object. White for childdes completely outside. Grey for child nodes in
which the frontier of the object overlaps. Grey nodes wilsbédivided until a user—defined depth for the octree
is reached. When the octree depth is reached, the grey nodesédeaf nodes. An octree—based sphere—tree
is an octree where each node is bounded by one sphere indteadube. Figure 2 shows an octree-based
sphere—tree representation of a dragon.

A conservative collision detection can be performed by gisirsphere—tree based on octrees, with a certain
depth level. The model gives enough proximity to the obgestirface depending on the prespecified user—level.

The cost of creating sphere—trees can be high in terms of etimgpresources. Space subdivisions require
floating—point operations, which are generally slow on CPhk octree construction requires having the geom-
etry object loaded in core memory aside the sphere—treetgteu Trying to create a sphere—tree on simulation
run-time cannot be achieved using only the CPU. Therefe&redmstruction of a sphere—tree has been treated as
a precomputation step to the simulation. Having and maiimtgiall the sphere—tree structures in core memory
when many objects are present, can be expensive durindetaytile of a simulation.

From the BVtrees construction methods, the simplicity df@e-based sphere—trees makes it good enough to
implement them using graphics hardware (see section 4).chstruction of sphere—trees in real-time is per-
formed using occlusion queries. Thus, here, no precornipuatet necessary, core memory is free of hierarchical

http://www.cs.sunysb.edu/ stripe

Figure 2: Original object and octree—based sphere—tredsl@y 4 and 6

structures at the beginning of the simulation because thereptrees are created only on-collision when required.
To preserve memory, only branches of the sphere—tree fgratis of the objects that potentially can collide are
computed. Newly created branches are maintained in coreonyefor future use during the simulation (see
section 5). As we will see in next sections, the use of trienglrips, instead of triangle—soups, to model the
scene—objects increases the efficiency of the whole awllidetection system computing the wrapper model in
real time on needed.

4 OCST CONSTRUCTION

Different hardware designers have made several occlusgtrimplementations with differences in performance
and functionality. In this way, we can distinguish threedgjpf occlusion queries The first dneeturns a boolean
answer if no incoming object fragment passes the depthdestKigure 3, where the occlusion query will return
TRUB. The second orfereturns the number of fragments that pass the depth tesegnites a previous boolean
query to be supported by the graphic card. Thus, two queses to be done to know the one answer. The third
and most standard, GARB_occlusionquery, is similar to the last mentioned query, but it returns thesias
of object parts that occlude directly. It does not requieefihevious boolean query. Figure 4 shows a case of no
occluded object.

The GLARB_occlusionquery is used in our method to avoid stalls in the graphicslpip. This query can
manage multiple queries before asking for the result of arg; mmcreasing the overall performance.

In what follows we describe how the oclusion query works, &od/ our method uses of it. L&k be an
arbitrarily shaped object. An OCST root node fors constructed creating a box far. AABB(A) A bounding
sphere foA is created bounding th®ABB(A) with its center as the center of the AABB and its radius abthal

2http://oss.sgi.com/projects/ogl-sample/registry/HP/occlugish txt
3http://oss.sgi.com/projects/ogl-sample/registry/NV/occlusjaary.txt
“http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusjoary.txt

Figure 3: Occlusion queries: Some incoming object fragrpasses the depth test.

Figure 4: Occlusion queries: No incoming object fragmesisga the depth test.

~ "CAMERA .
POSITION _..4**"

Figure 5: Viewing volume construction: One of the three \vigywolumes and its camera position.

distance of the AABB extreme verticeS{(AABB(A)) Taking the AABB from the root node @&, we construct

a new level for the OCST subdividing it in 3D. For each newdlmibde, a resulting octree subdividing AABB
box is assigned and an overlap test is performed to veriycgn be a grey node. Occlusion computations are
performed to accelerate the overlap test for the detecfigney nodes. These computations are based in the fact
that, if the surface oA can be viewed in at least some part from inside the AABB of areecnode, thei is
overlapping the octree node and the node is marked grey {geeR). The overlap test performs one, two or up
to three occlusion queries, one for each of the main axis.

Three requirements are needed for each occlusion queryH{§eee 5): A viewing volumga camera position
andthe occlusion test element$he viewing volume is created using an orthographic frustiew limited by
the AABB box of the octree node tested. The camera positiplaised outside the viewing volume, centered at
a box face, looking toward the box in parallel to a main axigl with a distance equal to the length of the box in
the looking direction. The first occlusion test element @keluder), is the AABB box of the octree node. The
second occlusion test element (the possibly occluded t)jés the surface oA .

An occlusion query reports if one or more occluders allowbssibility that occluded objects can be seen
from inside a viewing volume. In other words, if the surfaé&aan be seen from inside the AABB box (viewing
volume) of the tested octree node, in at least one of the thege axis, then the surface Afis overlapping that
octree node. If the number of samples that passed the caclgsiery is greater than zero in at least one of the
three queries (fox, yandz axis), then the surface éfoverlaps the tested OCST node and it it is marked grey. In
this case, a sphere is created bounding the AABB box of the aad is inserted on the OCST structure.

5 OCST AND REAL-TIME COLLISION DETECTION

To achieve collision detection in real-time, OCST branclesconstructed for objects only when it is needed.
Thus, to initialize the animation system it is only requitedoad the geometry of the objects into graphics card’s
memory, and construct a root OCST for each of them at the bawjrof the simulation. The OCST root is
initialized with an AABB and a bounding sphere with the certethe center of the AABB, and its radius as half
the distance of the AABB extreme vertices.

Let A andB be arbitrarily shaped objects in movement. The two objecltigde with each other only, if the
distance between their root sphere centers is equal oarghie sum of their respective radius (See Figure 6).
When a collision occurs, one level is constructed for the O@8DbjectsA andB. If child nodes of objecA
collide with child nodes of objeds, an additional level is constructed only for the collidirigild nodes. This
process continues up to a user—defined depth for the OCST. Waealepth value is reached, and two leaf nodes
collide, a collision between objeét andB is reported. Using a bigger depth value, the approximatboting
object surface is tighter, and the collision detection iseraccurate.

All hierarchies sphere centers must be updated with thectsbije movement. When a new level for the OCST
is created the number of updates increases. With a big usfared depth value the maintaining cost of updating
all the animation OCSTs is higher. To found the potentiathliding set, PCS, the sphere interference test

Figure 6: SphereA andB collideiff d < R4 + Rp, whered = |Cg — C4|.

described below is used. A list with pair—colliding spheigesomputed and used to identify interfering object
parts. In large environments (FN04; RFNO5c), the PCS carbtsned using algorithms designed for thread
phaseof the hybrid collision detection problem.

To increase the algorithm performance, the branches of @®TCcreated by older collisions are kept in core
memory. These can be re-used on forthcoming collision.t@stavoid the problem of a high computing resource
cost caused for hierarchies updates, a time-stamp is &sbigrthe deeper OCST nodes. If a complete OCST
level does not participate in a collision during a certairoant of time, it is deleted from core memory and the
parent initialized with its own time-stamp. This will causme object to get back to its initial state (only the OCST
root node is kept), if it is not involved in any more colliseduring a certain amount of time (This is the case of
the Cow and the Dragon of Figure 8).

6 EXPERIMENTAL RESULTS

In this section some relevant results of applying our metiredexposed. To compare the actual results with ex-
isting others, the input data tested in other existing dlgors has been selected. Explanations about simulations
and results can be found in (RFNO5a). The algorithms have iogglemented on a Dell Inspiron notebook with
ATI Mobility Radeon 9600 graphics card with 128 MB VRAM and arfium M processor at 1.80 GHz. The
algorithms were tested with commonly used complex m&dé&lgure 7 shows the models used.

6.1 OCST Construction Timings

The time to construct one level of an OCST is exposed in TablEhls time is equal for the two models used,

triangle—soup and triangle—strips. The results are obthimith the objects already loaded in graphics card’s
memory as triangles regardless of with the kind of triangiolachosen, triangle—soup or triangle—strip. The
Table shows the number of triangles for each model, the tisgel to construct the level (in seconds) and the
number of occlusion tests performed.

The complete model has to be rendered for each occlusiorNest that the object’s geometry does not affect
the time of constructing one OCST new level. The algorithmfgsenance is affected only for the number of
occlusion tests and the time each one lasts. Therefore,dh& wase only occurs when all occlusion tests have
to be considered, for all the nodes and axis. In this casé, &igtht possible child nodes and three tests per each
one, for a total of 24 occlusion tests, the maximum expertegttime was resulted equal to 0.03 seconds. For
the simplest model the construction of an OCST level usirg the CPU can take from 0.03 seconds, 0.1 to 0.5
seconds for the intermediate models, and 1 second or mottesftargest models. Without the use of the GPU for
the construction, the object’'s geometry does indeed affiecalgorithm performance. The optimizations such as

Shttp:/fisg.cs.tcd.ie/spheretree/

Nk :
v*"'ﬂ"

A7
77

Figure 7: Two examples of input data models. T@uwandBunnymodeled by triangle—soup, with 5144 and
5110 triangles respectively. Down: Same input objects readdey using triangle—strips.

| Mdel | Triangles | Time | Ccclusion |
Dragon 1496 0. 0099 13
Bunny 1500 0. 0099 9
Cow 1500 0. 0099 9
Lanmp 600 0.0199 13
Dr agon 5104 0.0199 13
Bunny 5110 0. 0099 9
Cow 5144 0. 0099 9

Table 1: OCST construction time

Figure 8: Example of a collision detection fragment animatiSnapshot where one object, Biennyis moving
and the other three objects are still.

triangle—strips have proved useful to accelerate the rasfdbe complete model. Therefore, using triangle—strips
is faster for the OCST construction, as it is shown by theltesuthe next section.

6.2 OCST Collision Detection Performance

The algorithms were tested with a scenario where one olgplotfs a fixed trajectory in a 3D space. Collision
occurs among the other three objects. Figure 8 shows a sstaplsan example of collision simulation: The
initial location of theBunnyis By. Then following a trajectory, it passes through, B>, and Bs (place where

the snaptshot has been taken) Anthe Bunnycollided with the dragon, itB; the Bunnycollided with theCow

and in B; the Bunnyis colliding with a lamp. While the collision is being detegdaew levels of the respective
objects trees are generated. When the collision is falsésgbés going up to the root node, deleting all the nodes.
This last reason is the key why the dragon and the cow arewsateal by big spheres, because the trees are going
up. Table 2 and Table 3 show the performance for the animadioth the time taken to finish it. The tables use
triangle—soup and triangle—strip respectively to rendermhodels and represent the same animation. In the two
situations, a user—defined depth level for the OCST equaldaiSed. The results are measured in frames—per-
second (FPS). The number of occlusion queries performeatin gme step is also shown. Comparing the results

[Tine [FPS [Ccclusion queries
1.00 | 177.64 198
2.00 | 244.76 700
3.00 | 274. 45 316
4.00 | 245.75 694
5.00 | 264. 47 490
6.00 | 283.72 294
7.00 | 294.71 182
8.00 | 268. 46 754

Table 2: Animation performance using triangle—soup modegd$al animation time: 8.582 sec.

[Tine [FPS [Ccclusion queries
1.00 [232.53 240
2.00 | 278.72 832
3.00 | 325.35 372
4.00 | 297.70 690
5.00 | 310.38 532
6. 00 | 348. 65 208
7.00 | 311.69 884

Table 3: Animation performance using triangle—strip med@&btal animation time: 7.360 sec.

exposed in the tables, we can conclude that the use of teasiyips is better than the use of triangle—soups.
Note for example the number of frames per second at 4 sece afitimation time, with 694 occlusion queries for
triangle—soup and 690 queries for triangle—strip and th® BR245.75 in the first case and 297.70 in the second
case. Then the better ratio of FPS, indicates better refsultsangle—strips.

Looking at Table 2 and Table 3 and taking into account thasimellation trajectory was the same in both cases,
the time of the whole animation for triangle—soup was equdl. 582 sec, while for triangle—strip was 7.360 sec.

FPS slowed down only, when new levels for the OCSTs are gakrd\lthough the speed of the FPS gets
lower, the rate keeps on being good enough. Therefore, ihe#ion can be maintained over 60 FPS and allows
a smooth transition between frames in visual terms.

The worst case occurs when objects are moving very fast atrdigtg collision occurs. This situation can
cause several levels of the OCST tree have to be constructeda for each colliding object. In this case, the
performance could slow down. Even so, stalls in the animatan occur, only, if the user—defined depth value
is too high. Even though, these stalls are due to the high rowflocclusion tests that have to be performed to
construct all the OCST branches, the running time is nottdtewhen real-time simulations are computed.

Figure 9 shows the sequence of a collision between two ahjenbvdeled by using triangle—strips, with the
OCSTs created in real-time up to level 5. The red colour mtgie that a collision has been detected.

7 CONCLUSIONS

In this paper, two collision detection improvements arecdbed. Firstly, a new method that has been conceived
to speed up the collision detection pipeline has been intred. Its application in real-time environments has
been implemented using OCST. The method is fast enough tagearollision detection in real-time, as it can
be seen from the experimental results exposed. The speeeffariency obtained with our method enables us
to manage many concurrent objects in a scene. Secondly, weetésted two kinds of triangulated models for
the same set of original objects: triangle—soup and trearggtip. Triangle—strip are shown to be better model in
terms of sphere—tree time computing. And, as a consequémageare better when computing collision detection.

The method’s limitations are related to hardware constrist The overall performance is affected by several
parameters. The amount and speed of the video memory lbuitteigraphics cards, the bus transfer speed and
the clock frequency of the GPU. Other existing methods tisat aut-of-core algorithms in real-time could be
degraded at reading time from secondary storage, and aingetimie of the object’s geometry to the graphic
card memory.

Figure 9: OCST creation up to level 5

The amount of the model representation to be generated useddvith the use of OCST, while decreasing
considerably the collision detection time without loss cfaracy.

We have detailed here, an algorithm related tortagrow phaseof the collision detection pipeline problem.
However, work related to thbroad phasecan be found in (FN0O4; RFNO5c). We are working on bringing
together both methods, so a fully functional fast collisitatection system for large environments could give us
better results on our application environments.

ACKNOWLEDGEMENTS

This research has been partially supported by the MinstiriCiencia y Tecnoldg under the project MAT2002-
0497-C03-02 and by the CREBEC, Centre de Referencia en jrignBionedica de Catalunya, and by the
Facultad de Ingeni& de la Universidad Adhoma de San Luis Potognder the PROMEP program.

REFERENCES

G. Bradshaw and C. O'Sullivan. Adaptative Medial-Axis Approximation$phere—Tree ConstructioACM Transactions
on Graphics 22(4), 2003.

G. Baciu and S.G. Wonk. Recode: An image—based collision detectionitatgo In Proc. of Pacific Graphicspages
497-512, 1998.

M. Franquesa-Niub. Collision Detection in Large Environments using Multiresolution KdTreB8D thesis, Universitat
Politecnica de Catalunya, March 2004.

. Franquesa-Niubband P. Brunet. Collision Detection Usidd Ktrees. In Proc. CEIG 2003pages 217-232, July 2003.

. Franquesa-Niubband P. Brunet. Collision Prediction Using MKtrees. In R. Scopigno argk¥la, editors¢?SCG 2004,
The 12-th International Conf. in Central Europe on Comp. Graphitsalization and Comp. Vision 200¥olume 1,
pages 63-70, February 2004. Plzen. ISSN 1213-6972.

Z.Fan, H. Wan, and S. Gao. Simple and rapid collision detection using muligvéng volumes. INVRCAI '04: Proceedings
of the 2004 ACM SIGGRAPH international conference on Virtual Realityimonm and its applications in industry
pages 95-99. ACM Press, 2004.

Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh Mano&ullide: interactive collision detection be-
tween complex models in large environments using graphics hardwatWWS '03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardwzages 25—-32. Eurographics Association, 2003.

P. M. Hubbard. Interactive collision detection.Fnoc. IEEE Symp. on Research Frontiers in Virtual Realiglume 1, pages
24-31, October 1993.

Philip M. Hubbard. Collision detection for interactive graphics applicatidBEE Transactions on Visualization and Com-
puter Graphics1(3):218-230, September 1995.

Philip M. Hubbard. Aproximating polyhedra with spheres for time—criticdlision detection ACM Transactions on Graph-
ics, 15(3):179-210, July 1996.

P. Jimenez, F. Thomas, and C. Torras. (3D) Collision Detection: AéguBomputers and Graphic&5(2):269—-285, August
2001.

Young J. Kim, Miguel A. Otaduy, Ming C. Lin, and Dinesh Manocha. Rastetration depth estimation using rasterization
hardware and hierarchical refinement. 368G '03: Proceedings of the nineteenth annual symposium on Commatatio
geometrypages 386—387. ACM Press, 2003.

David Kornmann. "fast and simple triangle strip generatiovif1S Finland, Espoo, Finland. Color Platek999.

Y. Kitamura, H. Takemura, N. Ahuja, and F. Kishino. Efficient collisicetettion among objects in arbitrary motion using
multiple shape representation. Rroceedings 12th IARP Inter. Conference on Pattern Recogniiages 390-396,
October 1994.

M.C. Lin and D. ManochaHandbook of Discrete and Computational Geometry Collision Detectioapter 35. CRC Press
LLC, 2003. To appear.

K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast collision detectiotwsen computer solids using rasterizing graphics
hardware. The Visual Computed 1, 1995.

C. O'Sullivan and J. Dingliana. Real-time collision detection and respasisg sphere—trees. In 15th Spring Conference on
Computer Graphics, April 1999. ISBN: 80-223-1357-2.

= Z

C. O'Sullivan. Perceptually—Adaptive Collision Detection for Real-time Computer AnimatfeinD thesis, University of
Dublin, Trinity College Department of Computer Science, June 1999.

1.J. Palmer and R.L. Grimsdale. Collision detection for animation usingreptieesComputer Graphics Forumi995.

A.P. Del Pobil, M.A. Serna, and J. Llovet. A new representation filiston avoidance and detection. IREE Int. Conf. on
Robotics and Automation (Nice)(Franceplume 1, pages 246-251, May 1992.

S. Quinlan. Efficient distance computation between non—convex objecBroceedings of the IEEE Int. Conf. on Robotics
and Automationpages 3324-3329, 1994. San Diego, CA.

J.O. Rourke and N. Badler. Decomposition of three—dimensional ishijgo spheredEEE Transactions on Pattern Analysis
and Machine Intelligenge?AMI-1(3):295-305, July 1979.

O. Rodiguez and M. Franquesa-Niab A New gpu Based Sphere-Tree Generation Method To Speed Up The
Collision Detection Pipeline. Technical report, Software Dept. LSI. U,PZD05. Ref: LSI-05-45-R. http:
/Iwww.Isi.upc.edu/dept/techreps/techreps.html.

O. Rodiguez and M. Franquesa-Niob A New Sphere-Ttree Generation Method To Speed Up The Collision fizetec
Pipeline. InProceedings of CEIG’05, September 2005. Granada. S24805.

0. Rodiguez and M. Franquesa-NigbHierarchical Structuring Of Scenes With MKTrees. Technical refsmftware Dept.
LSI. U.P.C., 2005. Ref: LSI-05-4-R. http: //www.lsi.upc.edu/degiiteps/techreps.html.

Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider. ltiteraxspection of solids: cross-sections and interferences.
In SIGGRAPH '92: Proceedings of the 19th annual conference on Camngraphics and interactive techniquegmges
353-360. ACM Press, 1992.

H. Samet.The Design and Analysis of Spatial Data Structurgddison-Wesley, 1990. ISBN 0-201-50255-0.

M. Shinya and M. Forgue. Interference Detection Through Rastenzakimrnal of Visualization and Computer Animations
2:131-134, 1991.

T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth animatioratking avatars. I'Computer Graphics Forupvolume
20(3), pages 260—267, 2001.

