
BOCST: Branch On-collide Sphere-trees

Omar Rodŕıguez González Marta Franquesa Niubó
Facultad de Ingenieŕıa Departament de Llenguatges
Universidad Autónoma i Sistemes Informàtics

de San Luis Potośı Universitat Politècnica de Catalunya
San Luis Potośı, México Barcelona, España

omarg@uaslp.mx marta@lsi.upc.edu

October 13, 2005

Abstract

In this paper, a fast sphere-tree generation method used for collision
detection called Branch On-collide Sphere-trees is proposed. Using the
video card graphic processing unit (GPU), a sphere-tree is constructed
in real-time inside an animation. With this method, the core memory
usage is minimized because no pre-computed data is loaded at any
time during simulation life cycle.

With our method, real-time conservative collision detection is achieved
using the GPU, core memory is managed efficiently and the error is
lowered using fast-construction sphere-tree structures.

Keywords: sphere-tree construction, collision detection, viewing volume,
graphics hardware

1 Introduction

Collision detection has been considered as a bottleneck within real-time
environments, because the high CPU usage involved. At animation run-
time, the CPU is needed to update the bounding volume (BV) hierarchies
loaded in core memory in a preprocessed step. When many objects are in
the scene, the cost to update all the needed hierarchies are high in computer
resources. Even so, having loaded in core memory all the BV hierarchies
from the used models can imply high memory requirements.

Several authors have studied the key areas for collision detection usage
[LG98, JTT01]. Proposals for the collision detection problem has been based
over the Kitamura et al. [KTAK94] hybrid collision detection work. Hub-
bard [Hub95] reports two phases: the broad phase, where approximate inter-
ferences are detected, and the narrow phase where exact collision detection

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is performed. O’Sullivan and Dingliana [O’S99, OD99] extended the narrow
phase with the narrow phase: progressive refinement levels and the narrow
phase: exact level. Franquesa and Brunet [FNB03, FNB04] extended the
broad phase with the broad phase: progressive delimitation levels and broad
phase: accurate broad level. For more information in the hybrid collision
detection problem refer to [RF05c].

The power and fastness of the recent video card GPUs and its own dedicated
memory has been applied to a wider variety of applications. Using the
video card GPU, we have developed a method to detect collision detection
in simulation run-time without the need of precomputed hierarchies. In this
paper, we focus in the narrow phase: progressive refinement levels. However,
work related to the broad phase has been researched in [RF05a].

Main contribution: In a common simulation, the structures involved in
the hybrid collision detection phases (space subdivision hierarchies and BV
hierarchies) have been approached as a construction preprocess to the sim-
ulation run-time. Before entering the simulation, all the structures involved
must be loaded into core memory. In simulation run-time, the updates to
the BV hierarchies take place according to the position and orientation of
the moving objects.

We present a method that doesn’t use precomputed BV hierarchical struc-
tures, instead uses a fast sphere-tree created in real-time called Branch On-
collide Sphere-trees (BOCST for short). The method uses GPUs occlusion
queries to construct the hierarchy in real-time and is oriented for moving
rigid objects. With our method, the narrow phase of the hybrid collision
detection problem is accelerated. When many objects are present inside the
simulation, the core memory can be managed more efficiently because the
nature of the BOCST.

Organization: The rest of the paper is organized as follows. In section 2
we discuss the state of the art in related areas. The description of the
representation model to be used is detailed in section 3. Generation methods
for the BOCSTs are explained in section 4. Simulations, performance and
results are given in section 5 and conclusions are presented in section 6.

2 Previous Related Work

A bounding volume hierarchy approximates a representation of an object
as a hierarchical structure, known as bounding volume tree (BVtree). One
of the most used BVtrees in the literature is the sphere-tree [Hub93]. A
sphere-tree represents an object by sets of spheres in a hierarchical way.
Three methods are commonly used for the construction of a sphere-tree.
The first one, consists of fitting spheres to a polyhedron and shrinking them
until they just fit [RB79]. The second one, is based on an octree [Sam90].

2



Thus, the octree-based sphere-trees [PG95, Hub96, OD99] performs a re-
cursive subdivision in 3D, creating spheres on child nodes that overlap the
surface of the object. And the third and last, the medial-axis surface method
[Qui94, Hub95, Hub96, BO03], uses Voronoi diagrams to calculate the object
skeleton placing maximal sized spheres on it so the spheres fill the object.

The graphics-hardware-assisted collision detection algorithms started with
Shinya and Forgue [MM91], and Rossignac et al. [RMS92]. After them, a
more efficient algorithm was proposed by Myszkowski et al. [MOK95] using
the stencil buffer. Baciu and Wonk [BW98] were the first to use common
available graphics cards to compute image-based collision detection. Vas-
silev et al. [VSC01] use a technique for collision detection in deformable
objects like clothes. Kim et al. [KOLM03] use graphics hardware to cal-
culate Minkowski sums to find the minimum translational vector needed to
separate two interfering objects. All those algorithms involve no precompu-
tation, but perform image-space computations that require the reading back
of the depth or stencil buffer, which can be expensive on standard graphics
hardware.

Govindaraju et al. [GRLM03] use occlusion queries to compute a potentially
colliding set (PCS) in the broad phase, followed by exact collision in the
narrow phase. Fan et al. [FWG04] use occlusion queries to fast detect
collision between a convex object and an arbitrarily shaped object.

Due that no previous papers mentioned above solved the problem to con-
struct a BVtree in real-time for the use of arbitrarily shaped objects, we
present a new method that efficiently achieve this task in real-time. Then,
Rodŕıguez and Franquesa [RF05b] used the GPU to construct an octree-
based sphere-tree so no precomputation is required. The advantage of using
GPU based occlusion queries is that no read back of the depth or sten-
cil buffer is necessary to obtain results. This kind of tests are faster than
image-space computations.

3 BOCST Description

A BOCST, is a sphere-tree constructed in real-time via the graphics card
GPU. It has the following features:

• Based on a sphere-tree hierarchy

• Constructed in animation run-time when is needed

• It has a low memory stamp and it’s structure can be created/deleted
as needed

• Constructed using the video graphics GPU

3



• The updated cost in animation run-time of the structure is kept to
minimum

The BOCST is constructed as needed. That means that at the beginning of
the animation only the root node of the BOCST exists in memory. When an
initial collision is detected, the required branches of the involved trees are
created. In this way the core memory is managed efficiently. Therefore, the
tree is going up when it is needed. Thus, if in a certain amount of time, a
branch of the tree is not involved in any collision test, the branch is deleted
from memory. Then, the space in memory is the minimum needed at any
time.

The construction takes place using the object’s geometry used by the graph-
ics card. The model is loaded in the video card memory. So the model
doesn’t need to be loaded at core memory at any moment. Using GPU
occlusion queries, the tree is constructed while a collision is detected up to
an user-defined level.

Compared to precomputed structures, that require that the entire tree nodes
exists in core memory for each object, the BOCST only has the tree nodes
needed to detect a collision. With this, less CPU usage is needed to perform
updates to the BOCST structure.

3.1 Representation Model

Each node of a BOCST is represented as:

• A pointer to the parent node

• A List of pointers to the children nodes

• A pointer to the original object

• An integer n, where 2n represents the dimensions of a bounding cube
for the node

• The radius of the bounding sphere

• The center of the bounding sphere

The BOCST structure is maintained in core memory and updated as needed.
The dynamic structure can increase or decrease in size depending on the
frame-collision coherency inside the animation. A time-stamp is assigned to
the deeper BOCST nodes. If a complete BOCST level doesn’t participate in
a collision during a certain amount of time, it is deleted from core memory
and the parent initialized with its own time-stamp. This will cause that a
BOCST gets back to its initial state (only the root node). Then, the whole
system runs faster because discarded branches are not carried out by the
animation.

4



4 BOCST Generation

Two methods have been developed and tested to create BOCSTs. The first
is based on classic octrees and the second one is based on BONOs. The
last one, shows major improvements in speed and memory management in
real-time construction inside an animation (see subsection 4.3).

To construct a BOCST, OpenGL occlusion queries must be supported
by the graphics card. The occlusion query operation is performed via the
GPU and its result is read and processed by the methods.

4.1 Occlusion Query Operations

Different hardware designers have made various occlusion test implemen-
tations with differences in performance and functionality. In this way, the
first occlusion query that we can find1, returns a boolean answer if any
incoming fragment passes the depth test. The second one2, returns the
number of fragments that pass the depth test but requires that the first
query be supported by the graphic card. The third and most standard,
GL ARB occlusion query3, is similar to the last named query, but does not
require the first query to be available.

The GL ARB occlusion query is used in our method to avoid stalls in the
graphics pipeline. This query can manage multiple queries before asking for
the result of any one, increasing the overall performance.

4.2 Octree-based BOCST (O-BOCST) Generation

An octree is a tree of degree eight which represents the space occupied by
objects contained in a space. A detailed description and operations involving
octrees can be found in [BJN92].

4.2.1 O-BOCST Construction

Let A be an arbitrarily shaped object. A BOCST root node for A is con-
structed creating an axis-aligned bounding box (AABB) for A. A bounding
sphere for A is created bounding the AABB from A, with its center as the
center of the AABB and its radius as half the distance of the AABB ex-
treme vertices. Taking the AABB from the root node of A, we construct a
new level for the BOCST subdividing it in 3D. For each new child node, a
resulting octree subdividing AABB box is assigned and an overlap test is
performed to verify if it can be a grey node.

1http://oss.sgi.com/projects/ogl-sample/registry/HP/occlusion test.txt
2http://oss.sgi.com/projects/ogl-sample/registry/NV/occlusion query.txt
3http://oss.sgi.com/projects/ogl-sample/registry/ARB/occlusion query.txt

5



Figure 1: Viewing volume construction and occlusion query test: left, the
occlusion query returns the number of samples that passes the test inside
the viewing volume; right, the occlusion query returns zero

To accelerate the overlap test for the detection of grey nodes, occlusion
queries are performed. Based in the observation that, if the surface of A can
be viewed in at least some part from inside the AABB of an octree node,
then A is overlapping the octree node.

The overlap test performs one, two or up to three occlusion queries for each
of the main axis. The requirements for each occlusion query are:

• a viewing volume

• a camera position

• the occlusion test elements

The viewing volume is created using an orthographic frustum view limited
by the AABB box of the octree node tested. The camera position is placed
outside the viewing volume, centered at a box face, looking toward the box
in parallel to a main axis, and with a distance equal to the length of the box
in the looking direction. The first occlusion test element (the occluder), is
the AABB box of the octree node. The second occlusion test element (the
possibly occluded objects), is the surface of A.

An occlusion query reports if one or more occluders allow that occluded
objects can be seen from inside a viewing volume. That is, if the surface
of A can be seen from inside the AABB box (viewing volume) of the tested
octree node, in at least one of the three main axis, then the surface of A is
overlapping that octree node. Figure 1 illustrates one of the three possible
viewing volumes and its camera position and the.

Algorithm 1 illustrates the overlap test. If the number of samples that passed
the occlusion query is greater than zero in at least one of the three queries,

6



set occlusion query buffer;
render AABB box of the tested octree node;
clear depth buffer;
disable color and depth buffer;
disable cull face;
while not overlap found do

select one of the three frustum views;
set occlusion query;
render surface of A;
end occlusion query;
get occlusion query results;
if samples passed the test > 0 then

overlap with surface of A is found;
else

if all queries finished then
no overlap found;

else
select next frustum view;

end if
end if

end while
enable cull face;
enable depth and color buffer;

Algorithm 1: GPU based overlap test

the surface of A overlaps the tested octree node and it’s a grey node. If it’s
a grey node, a sphere is created bounding the AABB box of the node and
is inserted on the BOCST.

4.3 BONO-based BOCST (B-BOCST) Generation

Similar concepts for the construction of O-BOCSTs are used to construct
the B-BOCST.

The branch-on-need octree (BONO) was introduced by Whilhelms and van
Gelder in [WvG92]. The BONO is a data structure based on octrees that
delay the subdivision of the space until absolutely necessary. The BONO
associates each node to a conceptual region and an actual region. The
BONO strategy is that the lower subdivision in each branching direction
always covers the largest possible exact power of two. Whit this, BONOs
only requires integer space subdivisions so simple shift operations are only
required. Using BONOs, the CPU dependent subdivisions are accelerated.
For more information about BONOs, see [WvG92].

7



4.3.1 B-BOCST Construction

The process to construct a B-BOCST is similar to the process to construct
an O-BOCST, but a BONO method is used instead of an octree (see sec-
tion 4.2). The BONO method is well known so here we will detail only some
implementation aspects to consider in the usage of BONOs.

Let A be an arbitrarily shaped object. A BOCST root node for A is con-
structed creating an axis-aligned bounding box (AABB) for A. A bounding
sphere for A is created bounding the AABB from A, with its center as the
center of the AABB and its radius as half the distance of the AABB extreme
vertices. Taking the AABB from the root node of A, we construct a new
level for the BOCST subdividing it in 3D with the BONO method. For each
new child node, an AABB box is assigned and an overlap test is performed
to verify if it can be a grey node.

The same algorithm 1 is applied for the BONO-based overlap test to
detect grey nodes.

The B-BOCST has several advantages over the O-BOCST:

• BONOs are used as the sphere-tree, resulting in faster construction
times

• Faster construction time, because only integer operations are required
for the BONO constructio

• Less BOCST nodes and lower memory requirements, due to the nature
of the BONO method

• Easier to maintain in run-time animation

However, there are some disadvantages on the B-BOCST method:

• In some cases, the BONOs behave equals to an octree

• Less spheres means increased error in object tightness

However, this disadvantages can be easily resolved as we’ll see on later sec-
tions (see subsection 5.3).

4.4 BOCST Construction Considerations

With an octree-base BOCST, a bounding cube covering O (with O = any ob-
ject) is created with dimensions dt, with dt = Max(Proj(AABB(O), dx, dy, dz)).
Independently of the value of dt, an O-BOCST is always constructed the
same.

With B-BOCST, the construction varies depending on the value of dt be-
cause a space subdivisions with the BONO algorithm occurs at 2n (where

8



Method O-BOCST B-BOCST O-BOCST B-BOCST
Levels 6 6 7 6 6 7

dt 514 (2n + 2) 768 (2n + 2n−1)
Total Nodes 4457 1068 4453 4457 2406 10065
Nodes l = 1 1 1 1 1 1 1
Nodes l = 2 8 2 2 8 4 4
Nodes l = 3 42 9 9 42 16 16
Nodes l = 4 193 44 44 193 99 99
Nodes l = 5 819 192 192 819 436 436
Nodes l = 6 3394 820 820 3394 1850 1850
Nodes l = 7 3385 7659

dt 896 (2n + 2n−1 + 2n−2) 1023 (2n+1 − 1)
Total Nodes 4457 3324 13787 4457 4404 18120
Nodes l = 1 1 1 1 1 1 1
Nodes l = 2 8 7 7 8 8 8
Nodes l = 3 42 30 30 42 43 43
Nodes l = 4 193 142 142 193 192 192
Nodes l = 5 819 593 593 819 812 812
Nodes l = 6 3394 2551 2551 3394 3348 3348
Nodes l = 7 10463 13716

Table 1: Number of spheres for the bunny with n = 9 (l = number of
constructed levels)

n = nbits(dt)− 1 and nbits() = number of bits of the integer part of dt).
This causes that when (2n + 2) < dt < (2n+1 − 1) (being n = 1...x), the
B-BOCST representation takes less spheres to cover the original object than
the O-BOCST with the same depth level. When dt = 2n+1, the B-BOCST
behaves similar to the O-BOCST with the same depth level. Table 1 and
table 2 show the number of spheres for some examples.

In the case that (2n + 2) < dt < (2n+1 − 1), the B-BOCST requires less
spheres to cover the original object, the construction is faster and less mem-
ory is required for the BOCST. In the other hand, the tightness error in-
creases. See section 5.2 for a description of the error measure in different
cases.

A trade-off is caused between fastness and object tightness. This can be
corrected inside the animation, varying the value of the user defined level
depending of the value of dt for each O in the scene. For more information in
animation performance and real-time BOCST corrections see subsection 5.3.

5 Simulations and Results

This section is divided in several categories: input data description shows
the model properties used in all simulations; error description explains the

9



Method O-BOCST B-BOCST O-BOCST B-BOCST
Levels 6 6 7 6 6 7

dt 514 (2n + 2) 768 (2n + 2n−1)
Total Nodes 2216 546 2265 2216 1219 5113
Nodes l = 1 1 1 1 1 1 1
Nodes l = 2 8 2 2 8 5 5
Nodes l = 3 26 9 9 26 14 14
Nodes l = 4 102 27 27 102 59 59
Nodes l = 5 406 101 101 406 221 221
Nodes l = 6 1673 406 406 1673 919 919
Nodes l = 7 1719 3894

dt 896 (2n + 2n−1 + 2n−2) 1023 (2n+1 − 1)
Total Nodes 2216 1716 7079 2216 2232 9281
Nodes l = 1 1 1 1 1 1 1
Nodes l = 2 8 6 6 8 8 8
Nodes l = 3 26 19 19 26 26 26
Nodes l = 4 102 83 83 102 100 100
Nodes l = 5 406 310 310 406 401 401
Nodes l = 6 1673 1297 1297 1673 1696 1696
Nodes l = 7 5363 7049

Table 2: Number of spheres for the dragon with n = 9 (l = number of
constructed levels)

method used to calculate the error in a BV hierarchy according to the model
it covers; O-BOCST vs B-BOCST simulations shows the performance in
a real-time animation for each method; and finally, the results subsection
compares all the results for both methods.

5.1 Input Data Description

Common data found on the web has been used to test the methods4. A
process of stripification5 has been applied to this models, so an optimized
model results in better performance inside the animation. Figure 2 shows
some of the models used in the tests.

5.2 Error Description

To measure the tightness for the spheres to the object surface of each method
an error has been calculated. The error is related to the accuracy of the
conservative collision detection, and is computed as follows:

• The error is fixed measuring the distance between the surfaces con-
tained inside a bounding sphere and the bounding sphere

4http://isg.cs.tcd.ie/spheretree/
5http://www.cs.sunysb.edu/ stripe/

10



Figure 2: Example of input models: left to right: bunny with 5110 trian-
gles, dragon with 5104 triangles, lamp with 600 triangles and cow with 5144
triangles

• The maximum error is equal to 1.0, being this case when the root
sphere is tangent to the object surface: MaxError = diam(sphereroot)

• Error = Max(dist(Oi, spherei))/MaxError, where spherei = BVtree
leaf nodes and Oi = objects inside spherei

• The minimum and average error is calculated too

• The error is determined only with the leaf nodes of the BVtree

To compute a correct value for the error, a complete octree-based and
BONO-based BOCST have been constructed and leaf nodes have been an-
alyzed. Some results are showed in figure 3 and figure 4.

Figure 3: Average error for the bunny (l = user-defined depth level)

11



Figure 4: Average error for the dragon (l = user-defined depth level)

5.3 BOCST Simulation Parameters

Several parameters affect the performance of the simulations. Some of them
are:

• Collision depth: number of levels to construct while the method de-
tects a collision. In other words, the hierarchy is generated up to the
collision depth level if the interference between objects has not been
discounted before.

• Max. time: time-stamp for the deeper nodes of the BOCST.

• Anim. frames: number of frames for a fixed animated route.

• dt: maximum dimension for the bounding box of O.

The collision depth, max. time and anim. frames are user-defined. The
value for dt is variable depending on the object dimensions.

The collision depth parameter affects on the performance and the accuracy
of the algorithm. With a low value, the accuracy is poor but the performance
is good, because less levels have to be constructed. With a high value, the
accuracy is good but the performance is poor.

The Max. time parameter affects on the performance, the usage of core
memory and collision-coherency. With a low value, the performance is better
and the core memory usage is low because less spheres need to be maintained
in animation run-time, but the collision-coherency is poor, which causes that

12



O-BOCST B-BOCST
Coll. depth 5 5, 6
Max. time 2.0 2.0

Anim. frames 2200 2200
dt 514, 832, 1024 514, 832, 1024

Table 3: Parameter values

levels used in the animation have to be constructed continuously. With a
high value, the performance diminishes and the core memory increases, but
the collision-coherency is better.

The Anim. frames parameter affects on the performance too. With a low
value, the animation takes less steps to finish, so the objects move faster.
This causes that a faster moving object collide with another, and several
levels of the BOCST have to be constructed at once, which can cause that
a stall in the animation occurs. With a high value, the objects movement
in the animation is slow, but levels of the BOCST are constructed one at a
time with no penalties in the performance.

The dt parameter is variable and affects on the performance and the accuracy
of the BOCST methods (see section 4). To test with several scenarios, we
have modified the value of dt scaling all objects to known dimensions. When
(2n + 2) < dt < (2n+1 − 1) (being n = 1...x), less spheres are constructed
for the B-BOCST compared to the O-BOCST with the same depth level (l)
but the accuracy is lower for the first. When dt = 2n+1, the B-BOCST and
the O-BOCST behaves similar so the performance is low but the accuracy
increases. To alleviate this problem, the following considerations are taken
into account for the B-BOCST method:

• If (2n + 2) ≤ dt < (2n + 2n−1) then l = l + 1

• If (2n + 2n−1) ≤ dt ≤ (2n+1) then l = l

5.4 BOCST Performance and Results

To compare the results of both BOCST methods, the following parameter
values in table 3 are used.

For both BOCST methods, optimized model are used (see section 5.1). An
animation is setup and it moves an object with 5000 triangles over three
objects on a precalculated trajectory. Table 4, table 5 and table 6 shows the
animation results. The tables show the time both methods took to finish it,
the frames per second (FPS) in each animation second and the number of
occlusion queries performed by each method.

13



O-BOCST l = 5 B-BOCST l = 5 B-BOCST l = 6
6.869 segs. 6.479 segs. 6.609 segs.

Time FPS Occ. queries FPS Occ. queries FPS Occ. queries
1.0 192.81 0 260.74 0 258.74 0
2.0 310.38 524 328.34 368 295.41 702
3.0 337.66 254 364.64 64 354.65 166
4.0 355.29 144 370.26 0 367.27 0
5.0 371.63 22 371.63 0 369.63 0
6.0 370.63 0 366.27 28 367.27 28

Table 4: Animation results with dt = 514

O-BOCST l = 5 B-BOCST l = 5 B-BOCST l = 6
7.120 segs. 6.970 segs. 7.7512 segs.

Time FPS Occ. queries FPS Occ. queries FPS Occ. queries
1.0 243.76 148 247.75 86 234.53 50
2.0 274.45 902 298.40 644 227.77 1270
3.0 329.67 412 336.66 208 262.74 1064
4.0 304.39 588 312.38 412 303.39 588
5.0 340.66 328 353.65 130 266.73 908
6.0 368.63 8 348.30 132 370.26 0
7.0 335.33 742 329.67 326

Table 5: Animation results with dt = 832

O-BOCST l = 5 B-BOCST l = 5 B-BOCST l = 6
7.881 segs. 7.250 segs. 8.752 segs.

Time FPS Occ. queries FPS Occ. queries FPS Occ. queries
1.0 177.64 178 225.77 234 185.63 70
2.0 279.72 828 296.70 742 209.79 1410
3.0 311.38 388 319.36 514 228.77 1402
4.0 290.71 740 303.70 518 303.39 538
5.0 314.69 532 336.33 344 234.77 1246
6.0 347.31 208 333.67 384 216.57 1454
7.0 323.68 754 330.34 406 345.65 226
8.0 288.42 848

Table 6: Animation results with dt = 1024

14



6 Conclusions

The BOCST methods to approximate objects in 3D has been presented in
this paper. Compared with others, the BOCST is faster and better. It is
created as it is required in the collision detection animation run-time and
not in a preprocessed step, like other methods. The subtrees of the BOCST
actual node are computed only for the parts of the objects that are involved
in a collision. The method has been tested for a variety of data sets and
scenarios with different performance parameters.

In the future, we will continue researching with improved BVtree methods
for better object tightness to achieve better collision detection. As well,
collision prediction and exact collision detection are pending subjects in
this paper.

Acknowledgements

This research has been partially supported by the Ministerio de Ciencia
y Tecnoloǵıa under the project MAT2002-0497-C03-02 and the Facultad
de Ingenieŕıa of the Universidad Autónoma de San Luis Potośı under the
PROMEP program.

References

[BJN92] P. Brunet, R. Juan, and I. Navazo. Octree representations
in solid modeling. Progress in Computer Graphics, 1:164–215,
1992.

[BO03] G. Bradshaw and C. O’Sullivan. Adaptative Medial–Axis Ap-
proximation for Sphere–Tree Construction. ACM Transactions
on Graphics, 22(4), 2003.

[BW98] G. Baciu and S.G. Wonk. Recode: An image–based collision
detection algorithm. In Proc. of Pacific Graphics, pages 497–
512, 1998.

[FNB03] M. Franquesa-Niubo and P. Brunet. Collision detection using
MKtrees. In Proc. CEIG 2003, pages 217–232, July 2003.

[FNB04] M. Franquesa-Niubo and P. Brunet. Collision Prediction using
MKtrees. In R. Scopigno and V. Skala, editors, WSCG 2004,
The 12–th International Conf. in Central Europe on Comp.
Graphics, Visualization and Comp. Vision 2004, volume 1,
pages 63–70, February 2004. Plzen. ISSN 1213–6972.

15



[FWG04] Z. Fan, H. Wan, and S. Gao. Simple and rapid collision detection
using multiple viewing volumes. In VRCAI ’04: Proceedings of
the 2004 ACM SIGGRAPH international conference on Virtual
Reality continuum and its applications in industry, pages 95–99.
ACM Press, 2004.

[GRLM03] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and
Dinesh Manocha. Cullide: interactive collision detection be-
tween complex models in large environments using graphics
hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 25–32. Eurographics Association, 2003.

[Hub93] P. M. Hubbard. Interactive collision detection. In Proc. IEEE
Symp. on Research Frontiers in Virtual Reality, volume 1, pages
24–31, October 1993.

[Hub95] Philip M. Hubbard. Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Computer
Graphics, 1(3):218–230, September 1995.

[Hub96] Philip M. Hubbard. Aproximating polyhedra with spheres for
time–critical collision detection. ACM Transactions on Graph-
ics, 15(3):179–210, July 1996.

[JTT01] P. Jimenez, F. Thomas, and C. Torras. (3d) collision detection:
A survey. Computers and Graphics, 25(2):269–285, August 2001.

[KOLM03] Young J. Kim, Miguel A. Otaduy, Ming C. Lin, and Dinesh
Manocha. Fast penetration depth estimation using rasterization
hardware and hierarchical refinement. In SCG ’03: Proceedings
of the nineteenth annual symposium on Computational geome-
try, pages 386–387. ACM Press, 2003.

[KTAK94] Y. Kitamura, H. Takemura, N. Ahuja, and F. Kishino. Effi-
cient collision detection among objects in arbitrary motion us-
ing multiple shape representation. In Proceedings 12th IARP
Inter. Conference on Pattern Recognition, pages 390–396, Octo-
ber 1994.

[LG98] M.C. Lin and S. Gottschalk. Collision detection between geo-
metric models: a survey. In Proc. of IMA Conference on Math-
ematics of Surfaces, 1998.

[MM91] Shinya M. and Forgue M. Interference detection through ras-
terization. Journal of Visualization and Computer Animations,
2:131–134, 1991.

16



[MOK95] K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast colli-
sion detection between computer solids using rasterizing graph-
ics hardware. The Visual Computer, 11, 1995.

[OD99] C. O’Sullivan and J. Dingliana. Real–time collision detection
and response using sphere–trees. In 15th Spring Conference on
Computer Graphics, April 1999. ISBN: 80–223–1357–2.

[O’S99] C. O’Sullivan. Perceptually–Adaptive Collision Detection for
Real–time Computer Animation. PhD thesis, University of
Dublin, Trinity College Department of Computer Science, June
1999.

[PG95] I.J. Palmer and R.L. Grimsdale. Collision detection for anima-
tion using sphere-trees. Computer Graphics Forum, 1995.

[Qui94] S. Quinlan. Efficient distance computation between non–convex
objects. In Proceedings of the IEEE Int. Conf. on Robotics and
Automation, pages 3324–3329, 1994. San Diego, CA.

[RB79] J.O. Rourke and N. Badler. Decomposition of three–dimensional
objects into spheres. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI–1(3):295–305, July 1979.

[RF05a] O. Rodŕıguez and M. Franquesa. Hierarchical structur-
ing of scenes with MKTrees. Technical report, Soft-
ware Dept. LSI. U.P.C., 2005. Ref: LSI–05–4–R. http:

//www.lsi.upc.edu/dept/techreps/techreps.html.

[RF05b] O. Rodŕıguez and M. Franquesa. A new gpu based sphere-tree
generation method to speed up the collision pipeline. In Proc.
CEIG 2005, pages 137–145, September 2005.

[RF05c] O. Rodŕıguez and M. Franquesa. A new sphere-tree generation
method to speed up the collision detection pipeline. Technical
report, Software Dept. LSI. U.P.C., 2005. Ref: LSI–05–23–R.
http: //www.lsi.upc.edu/dept/techreps/techreps.html.

[RMS92] Jarek Rossignac, Abe Megahed, and Bengt-Olaf Schneider. In-
teractive inspection of solids: cross-sections and interferences. In
SIGGRAPH ’92: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 353–360.
ACM Press, 1992.

[Sam90] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990. ISBN 0-201-50255-0.

17



[VSC01] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth anima-
tion on walking avatars. In Computer Graphics Forum, volume
20(3), pages 260–267, 2001.

[WvG92] J. Wilhelms and A. van Gelder. Octrees for faster isosurface
generation. ACM Transactions on Graphics, 11(3):201–227, July
1992.

18


