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Abstract

Quickselect with median-of-three is routinely used as the method of

choice for selection of the mth element out of n in general-purpose libraries

such as the C++ Standard Template Library. Its average behavior is fairly

well understood and has been shown to outperform that of the standard

variant, which chooses a random pivot on each stage. However, no results

were previously known about the variance of the median-of-three variant,

other than for the number of comparisons made when the rank m of

the sought element is given by a uniform random variable. Here, we

consider the variance of the number of comparisons made by quickselect

with median-of-three and other quickselect variants when selecting the

mth element for m/n → α as n → ∞. We also investigate the behavior

of proportion-from-s sampling as s → ∞.

1 Introduction

Hoare’s quickselect [3] finds the mth smallest element (equivalently, the element
of rank m in ascending order, the mth order statistic) out of an array of n
elements by picking an element from the array —the pivot— and rearranging
the array so that elements smaller than the pivot are to its left and elements
larger than the pivot are to its right. If the pivot has been brought to position
j = m then it is the sought element; otherwise, if m < j then the procedure
is recursively applied to the subarray to the left of the pivot, and if m > j the
process continues in the right subarray, now looking for the (m − j)th element.

The main measure of quickselect’s performance is the number C
(0)
n,m of com-

parisons made to select the mth smallest element out of n. Knuth [6] has shown
that

E

[

C(0)
n,m

]

= 2 (n + 3 + (n + 1)Hn − (m + 2)Hm − (n + 3 − m)Hn+1−m) ,
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where Hn =
∑

1≤j≤n 1/j is the nth harmonic number. Thus E

[

C
(0)
n,m

]

is Θ(n)

for all values of m, 1 ≤ m ≤ n. Another interesting measure of performance is

the number C
(0)
n of comparisons needed when the rank of the sought element is

given by a uniformly distributed random variable in {1, . . . , n}. Since E

[

C
(0)
n

]

=

(1/n) · ∑1≤m≤n E

[

C
(0)
n,m

]

it immediately follows that E

[

C
(0)
n

]

= 3n + o(n).

Sometimes it is more convenient (and more amenable to analysis) to consider

the asymptotic behavior of C
(0)
n,m as n → ∞ and m/n → α, for some fixed α,

0 ≤ α ≤ 1. It is not difficult to show that m0(α) = lim n→∞
m/n→α

E

[

C
(0)
n,m

]

/ n =

2+2H(α), where H(x) = −(x log x+(1−x) log(1−x)) is the entropy function1.

Kirschenhofer and Prodinger [4] have computed the exact form of V

[

C
(0)
n,m

]

.

It is Θ(n2), but even its asymptotic behavior for m = α · n + o(n) is expressed
by a rather complicated formula:

v0(α) = lim
n→∞

m/n→α

V

[

C(0)
n,m

]

/n2 = −2H2(α) + 4H(α) − 4 log(α) log(1 − α)

+ (5 +
2π2

3
)α(1 − α) +

1

2
− 4α dilogα − 4(1− α) dilog(1 − α),

where dilogx =
∫ x

1
log z
1−z dz denotes the dilogarithm [1].

In quickselect with median-of-three the pivot of each recursive stage is the
median of a sample of three elements of the array. This reduces the proba-
bility of uneven partitions and there is a corresponding reduction in the av-
erage performance (see [2, 5] and references therein). In particular, m1(α) =

lim n→∞
m/n→α

E

[

C
(1)
n,m

]

/ n = 2 + 3α(1− α), and E

[

C
(1)
n

]

= 5/2 n + o(n). The gen-

eralization to quickselect with median-of-(2t+1) has also been considered, both
for fixed t and for variable-sized samples, i.e., when t = t(n). Grübel [2] has

investigated the properties of mt(α) = lim n→∞
m/n→α

E

[

C
(t)
n,m

]

/n. Mart́ınez and

Roura [8] have computed the expected value and variance of C
(t)
n for all fixed t.

They also establish results for t = t(n), namely, the optimal sample size.
Mart́ınez, Panario and Viola [7] have considered another family of sampling

strategies that they call proportion-from-s. At each recursive stage, the chosen
pivot has a relative rank within the sample as close as possible to the current
relative rank α = m/n of sought element. As the algorithm proceeds, the size
n of current subarray and the rank m of the sought element within the current
subarray change and so does the relative rank; thus the rank of the selected
pivot nicely “adapts” to the current input. Their results were established in
a quite general framework, which encompasses the proportion-from-s sampling
strategies, the standard variant and the median-of-(2t + 1) sampling strategies
as particular instances of so-called adaptive sampling strategies2.

1Unless otherwise stated, all logarithms are natural.
2Even though some of them do not “adapt” their choice of pivots, like standard quickselect;

but they are special degenerate cases of the general definition given there.
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The goal of this paper is to investigate and obtain explicit results about

v(α) = lim
n→∞

m/n→α

V[Cn,m]

n2
,

for several distinct variants of quickselect, each using its own sampling strategy.

First, in Section 2 we establish that, for any adaptive sampling strategy,

g(α) = lim n→∞
m/n→α

E

[

C
2
n,m

]

/n2 exists, and give the integral equation that g(α)

satisfies. We get then a few general results about g(α). The techniques used
are those developed in [2, 7]. In Section 3 we obtain explicit solutions to that
integral equation for the particular case of median-of-three and thus for its
variance. Afterwards, in Section 4, we show that if s → ∞ then proportion-
from-s sampling strategies achieve not only optimal expected performance (a
result due to [7]) but subquadratic variance, i.e., lim n→∞

m/n→α
V[Cn,m] /n2 = 0.

The immediate consequence is that Cn,m exhibits concentration in probability.
Median-of-(2t+1) also achieves subquadratic variance in the limit t → ∞, even
though the expected performance is not optimal in that case.

2 General results

Following [7], we say that a sampling strategy is adaptive if it can be fully
described by a function r : [0, 1] → {1, . . . , s}, where s is the size of the samples.
Quickselect with adaptive sampling works as follows: if n ≥ s, a random sample
of s elements from the current subarray of size n is chosen and the element whose
rank within the sample is r = r(α) is picked as the pivot of the current recursive
stage, where α = m/n is the current relative rank of the sought element. We
assume further that the function r can be finitely specified by the image of each
interval of a partition of [0, 1] into ` intervals. For convenience, we will assume
that the intervals Ik are defined by ` − 1 endpoints 0 = a0 < a1 < a2 < · · · <
a`−1 < a` = 1 as follows: I1 = [0, a1], I` = [a`−1, 1], Ik = (ak−1, ak] if k > 1
and ak ≤ 1/2, Ik = [ak−1, ak) if k < ` and ak−1 > 1/2, and Ik = (ak−1, ak) if
ak−1 ≤ 1/2 < ak and 1 < k < `. We will use the notation rk for the value of
r(α) when α ∈ Ik.

When s = 1 we have standard quickselect, and r(α) = r1 = 1 for all α ∈
[0, 1]. Median-of-(2t+1) sampling is characterized by s = 2t+1 and r(α) = r1 =
t+1 for all α ∈ [0, 1]. In [7], proportion-from-s sampling is introduced; for these
strategies ` = s and r(α) = rk = k for all α ∈ Ik and 1 ≤ k ≤ s. The choice
of endpoints gives raise to interesting mathematical phenomena with relevant
practical implications; for “pure” proportion-from-s, we have ak = k/s.

We now restate two of the fundamental results of [7] concerning quickselect
with adaptive sampling.

Theorem 1 ([7]). Let Cn,m be the cost to select the mth out of n elements
using an adaptive sampling strategy with m/n → α for 0 ≤ α ≤ 1 as n → ∞.
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Then we have that the expectation characteristic function of the algorithm

f(α) = lim
n→∞

E[Cn,m]

n
,

is well defined, and

f(α) = 1 +
s!

(r(α) − 1)!(s − r(α))!

[

∫ 1

α

f(α/x)xr(α)(1 − x)s−r(α) dx

+

∫ α

0

f

(

α − x

1 − x

)

xr(α)−1(1 − x)s+1−r(α) dx

]

. (1)

It is important to notice that because r(α) is an integer function the dis-
continuities carry on to f(α). So in general f(α) is defined by ` pieces, say,
f1, . . . , f`, with fk the restriction of f(α) for α in the kth interval. The inte-
gral equation above can be transformed, after careful manipulations, to a set of
higher-order linear differential equations, as shown in the following lemma.

Lemma 1 ([7]). For any adaptive sampling strategy,

ds+2

dαs+2
fk(α) =

(−1)s+1−rk

αs+1−rk

· s!

(rk − 1)!
· drk+1

dαrk+1
fk(α)

+
1

(1 − α)rk

· s!

(s − rk)!
· ds+2−rk

dαs+2−rk

fk(α),

where f(α) is the strategy’s expectation characteristic function, and α ∈ Ik,
1 ≤ k ≤ `.

In order to obtain similar results about the variance of Cn,m, we consider

its second factorial moment E

[

C
2
n,m

]

= E[Cn,m(Cn,m − 1)] since V[Cn,m] =

E

[

C
2
n,m

]

+ E[Cn,m]−E[Cn,m]
2
. The starting point of our analysis is the recur-

rence satisfied by Cn,m(v), the probability generating function (PGF) of Cn,m

Cn,m(v) =
∑

k≥0

Pr{Cn,m = k}vk

= vn−1
[

m−1
∑

j=1

π
(s,r)
n,j Cn−j,m−j(v) + π(s,r)

n,m +

n
∑

j=m+1

π
(s,r)
n,j Cj−1,m(v)

]

, (2)

where π
(s,r)
n,j denotes the probability that the rth element of the sample of size s

is the jth element among the n elements. The recurrence accounts for the n−1
comparisons needed to partition the array around the pivot, but it disregards
the comparisons needed to select the pivot from the sample; this is unimportant
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since we assume that s is fixed. Now, E[Cn,m] = C ′
n,m(1) and E

[

C
2
n,m

]

=

C ′′
n,m(1); hence,

E

[

C2
n,m

]

= 2(n − 1) E[Cn,m] − n(n − 1)

+

m−1
∑

j=1

π
(s,r)
n,j E

[

C
2
n−j,m−j

]

+

n
∑

j=m+1

π
(s,r)
n,j E

[

C
2
j−1,m

]

.

From this recurrence, we can establish the following result.

Theorem 2. Let Cn,m be cost to select the mth out of n elements using an
adaptive sampling strategy with m/n → α for 0 ≤ α ≤ 1 as n → ∞. Then we
have that the second factorial moment characteristic function of the algorithm

g(α) = lim
n→∞

E

[

C
2
n,m

]

n2
,

is well defined, and

g(α) = 2f(α) − 1 +
s!

(r(α) − 1)!(s − r(α))!

[

∫ 1

α

g(α/x)xr(α)+1(1 − x)s−r(α) dx

+

∫ α

0

g

(

α − x

1 − x

)

xr(α)−1(1 − x)s+2−r(α) dx

]

, (3)

where f(α) is the expectation characteristic function of the sampling strategy.

Once we have results about g(x) they can be easily translated to the variance
since v(α) = limn→∞ V[Cn,m]/n2 = g(α) − f2(α). For instance, a sampling
strategy is said to be symmetric if limz→α+ r(z) = limz→α+ s + 1 − r(1 − z).
This notion is quite natural, and both median-of-(2t+1) and proportion-from-s
strategies3 are symmetric. If r is symmetric then both g(x) and v(x) are as
well, now in the usual sense, i.e., g(x) = g(1− x) and v(x) = v(1− x). Another
interesting result concerns the behavior of v(x) when x → 0.

Lemma 2. For any adaptive sampling strategy

lim
α→0

v(α) =
r0(s + 1)

(s + 1 − r0)((s + 2)(s + 1) − r0(r0 + 1))
,

where r0 = limα→0 r(α) and all limits of α → 0 are taken from the right.

In particular, for standard quickselect (t = 0) and quickselect with median-
of-(2t + 1), we have vt(0) = vt(1) = 2/(3t + 4), since r0 = t + 1 and s = 2t + 1.
For proportion-from-s, v(0) = v(1) = (s + 1)/s2(s + 3) ∼ 1/s2 + O(1/s3). So
proportion-from-s has smaller variance when locating elements of either low or

3Provided that the endpoints are taken such that ak = as−k for k > s/2.
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high rank than median-of-(2t+1). Furthermore, this result indicates that using
large samples can reduce the order of magnitude of the variance; notice that for
both types of strategies the coefficient of n2 in the variance tends 0 when the
size of the samples tends to ∞ and we look for extreme ranks. We will show
later that this is indeed true for all ranks.

We now state one of the important results of this paper, where we transform
the original problem to one of solving linear differential equations; we arrive at
this result after long and careful computations largely similar to those which
yield Lemma 1.

Lemma 3. For any adaptive sampling strategy,

ds+3

dαs+3
gk(α) = 2

ds+3

dαs+3
fk(α) +

(−1)s+1−rk

αs+1−rk

· s!

(rk − 1)!
· drk+2

dαrk+2
gk(α)

+
1

(1 − α)rk

· s!

(s − rk)!
· ds+3−rk

dαs+3−rk

gk(α),

where g(α) is the second factorial moment characteristic function, gk is its re-
striction to the kth interval, f(α) is the expectation characteristic function, and
α ∈ Ik, 1 ≤ k ≤ `.

Thus, except for the independent term 2f (s+3)(α) and the higher order
derivatives involved, we have the same differential equation as for the expec-
tation characteristic function.

3 The variance of median-of-three

In the case of median-of-three (s = 3, ` = 1 and r1 = 2) we are specially lucky,
since f ≡ m1(x) = 2 + 3x(1 − x) and its sixth derivative vanishes in the differ-
ential equation satisfied by g(x). Hence the corresponding differential equation
for g(x) is exactly the same as for the expectation characteristic function m1(x),
namely

d2φ

dx2
− 6

(

1

x2
+

1

(1 − x)2

)

φ(x) = 0,

but here φ(x) = g(iv)(x), instead of φ(x) = m′′′
1 (x).

Hence, the solution has to be integrated four times to recover g(x). The
symmetry g(4)(x) = g(4)(1 − x) can be used to show that

φ(x) = g(4)(x) = C1
−1 + 2x − 28x5 + 56x6 − 40x7 + 10x8

2x2(1 − x)2
.

Integrating this four times we get four additional arbitrary constants. The
technique that we shall use to obtain their value is to plug the general form of
g(x) back into the integral equation and compare coefficients. This involves a
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2/7

0.391151 . . .

Figure 1: Plot of v1(x).

somewhat long and tedious computation, but it is mostly mechanical and the
use of a computer algebra systems is of great help. We finally get

g(x) = −288

35
x2(ln(x) + ln(1 − x)) − 288

35
ln(1 − x) +

576

35
x ln(1 − x) +

30

7

− 24

245
x8 +

96

245
x7 − 48

175
x6 − 96

175
x5 − 48

35
x4 +

144

35
x3 − 7332

1225
x2 +

132

35
x,

and from there

v1(α) = lim
n→∞,m/n→α

V

[

C(1)
n,m

]

/n2 = g(α) − m2
1(α)

= −288

35
ln(1 − x) +

576

35
x ln(1 − x) +

2

7
− 288

35
x − 288

35
x2(ln x + ln(1 − x))

− 24

245
x8 +

96

245
x7 − 48

175
x6 − 96

175
x5 − 363

35
x4 +

774

35
x3 − 3657

1225
x2, (4)

with m1(x) = 2 + 3x(1 − x). The function v1(α) is symmetric and has two
global maxima at α

.
= 0.263338 . . . and α

.
= 0.736661 . . ., where it attains the

value v1
.
= 0.391151 . . .. The global minima are α = 0 and α = 1, where v1 =

2/7
.
= 0.285714 . . ., while v0(0) = v0(1) = 1/2. The function is depicted in

Figure 1. A plot of the function v0(α) corresponding to standard quickselect is
shown in Figure 2 for comparison.

The leading coefficient of the variance to locate the median of an array is
given by v1(1/2) = 144

35 log 2 − 97121
39200

.
= 0.374229 . . .. Compare this to v0(1/2) =

−4 log2 2 + 4 log 2 + 7
4 − π2

6

.
= 0.955842 . . ., where v0(x) has its unique global

maximum.

4 Optimal sampling

Consider a family of biased symmetric proportion-from-s sampling strategies,
s ∈ N, with r(α)/s → α as s → ∞. A sampling strategy is called biased [7]
if r(α) > α · s + 1 − α for α < 1/2. The quantity δ = r − sα − 1 + α > 0
is called the bias. For a biased proportion-from-s strategy the endpoints of
the intervals are not evenly distributed in [0, 1] but shifted towards the left for
α < 1/2 and, symmetrically, towards the right when α > 1/2. In [7], it has
been shown that optimal average performance is achieved when s → ∞ for
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Figure 2: Plot of v0(x).

such a family. In particular, the limiting expectation characteristic function is
f∞(α) = lims→∞ fs(α) = 1 + min(α, 1 − α).

To tackle a similar analysis for the variance we have to study the behavior
of

T (∞)(F, G)(α) = 2F (α) − 1 + lim
s→∞

s!

(r(α) − 1)!(s − r(α))!
×

{
∫ 1

α

G
(α

x

)

xr(α)+1(1 − x)s−r(α) dx

+

∫ α

0

G

(

α − x

1 − x

)

xr(α)−1(1 − x)s+2−r(α) dx

}

.

Since T (∞)(f∞, ·) is a contraction (see [2, 7]) it suffices to find a fixed point g∞;
if we find it then it is unique and it is the limit characteristic function for the
second factorial moment of our family of sampling strategies. In order to do
that, we will need to analyze the asymptotic behavior of

I(s) =
s!

(r(α) − 1)!(s − r(α))!

∫ b

a

y(x) · xr(α)−1 · (1 − x)s−r(α) dx, (5)

as s → ∞, as the operator T (∞) can be expressed as a combination of integrals
with the form above, for suitable choices of the integral limits and the function
y(x). The maximum of the “kernel” xr−1(1−x)s−r occurs at x∗ = (r−1)/(s−1)
and so we have two fundamental situations: either the maximum x∗ is inside
(a, b) and then I(s) = y(x∗) + O(s−1); otherwise, if x∗ 6∈ [a, b] then I(s) =

O(s−1) (in general, I(s) → 0 exponentially fast, except if the maximum c were
c = a or c = b and c ∼ x∗). Take g∞(α) = (1 + min(α, 1 − α))2. Then

T (∞)(f∞, g∞)(α) = 2(1 + min(α, 1 − α)) − 1 + lim
s→∞

s!

(r(α) − 1)!(s − r(α))!
×

{

∫ 1

α

x2

(

1 + min

(

α

x
,
x − α

x

))2

xr(α)−1(1 − x)s−r(α) dx

+

∫ α

0

(1 − x)2
(

1 + min

(

α − x

1 − x
,
1 − α

1 − x

))2

xr(α)−1(1 − x)s−r(α) dx

}

.
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Now, if α < 1/2 then, by the definition of a biased strategy, α < x∗ and
thus the second integral tends to 0, while the first yields the main contribution
with y(x) = (2x − α)2. Also, as x∗ = α + O(s−1), we have T (∞)(g∞)(α) ∼
2(1 + α) − 1 + α2 = (1 + α)2. Because of the symmetry of r, and after careful
checking of the special case α = 1/2, we finally arrive at

T (∞)(f∞, g∞) = g∞ = (1 + min(α, 1 − α))2.

That is, g∞ is the limiting behavior of the second moment factorial characteristic
function of any family of biased proportion-from-s sampling strategies; and
g∞ = f2

∞. Thus we obtain the following important result.

Theorem 3. For any family of symmetric biased sampling strategies such that
lims→∞ r(α)/s = α, the variance of quickselect using the family of sampling
strategies is subquadratic. Indeed,

lim
s→∞

lim
n→∞,m/n→α

V[Cn,m]

n2
= 0.

Despite median-of-(2t+1) sampling doesn’t yield optimal average behavior,
an analogous to Theorem 3 holds. In particular, if t → ∞ then the expectation
characteristic function mt(α) → 2 [2]. Using the same techniques that we have
just used, we can also easily show that gt(α) → 4. Hence, the coefficient of n2

in V

[

C
(t)
n,m

]

vanishes as t → ∞. The same type of result was already established

for the variance of the cost of selecting an element of random rank by Mart́ınez
and Roura [8].

Now we turn our attention to the case of variable-sized samples, i.e., when
s = s(n). We assume that s → ∞ as n → ∞ but that it does grow sublin-
early (s = o(n)). To begin with, the proof given in [7] that the expectation
characteristic function of biased proportion-from-s strategies tends to f∞(α) =
1+min(α, 1−α) as s → ∞ is valid for variable-size samples. The average num-
ber of comparisons E[Cn,m] is of the form n + β(α) · s + o(s) +

∑ · · · + ∑ · · · ,
since we cannot disregard now the comparisons invested in selecting the pivots
from the samples; here, the factor β(α) is the coefficient of the linear cost of
the algorithm used to select the pivot. For instance, β(α) = 2 + 3α(1−α) if we
were using quickselect with median-of-three for that task. The full details are
not straightforward, but the intuition is rather simple; since s/n → 0 and the

asymptotic estimate for the splitting probabilities π
(s,r)
n,j are valid for s = s(n),

Theorems 1 and 2 hold too in this case.

By computing more precise asymptotic estimates of I(s) (see (5)), we can
establish the behavior of the lower order terms of f∞ and g∞. In particular,
f∞(α) = 1+min(α, 1−α)+O(s−1) and g∞(α) = (1+min(α, 1−α))2 +O(s−1).

Then E[Cn,m] = n(1 + min(α, 1 − α)) + β · s + O(n/s) and E

[

C
2
n,m

]

= n2(1 +

min(α, 1 − α))2 + Θ
(

n · s + n2/s
)

. Hence, we have the following result.
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Theorem 4. Consider a symmetric biased sampling strategy with s = s(n) →
∞ as n → ∞, with s = o(n) and such that lims→∞ r(α)/s = α. Then the
variance of quickselect using this sampling strategy is

V[Cn,m] = Θ
(

n · s, n2/s
)

.

The variance of a sampling strategy satisfying the hypothesis of the theo-
rem above is minimized when s = Θ(

√
n). Notice that this is consistent with

Theorem 3 and that we have then
√

V[Cn,m] = Θ(n3/4). We prove thus cor-
rect several conjectures made in [7] concerning the variance of quickselect with
proportion-from-s sampling for variable-sized samples. We have left unproven
the conjecture in [7] that proportion-from-s sampling with s = Θ(

√
n) gives

optimal expected performance too.
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