
 1

Strict and Extended Interpretations of Operation
Contracts in Conceptual Modeling

Anna Queralt and Ernest Teniente

Universitat Politècnica de Catalunya
Dept. de Llenguatges i Sistemes Informàtics

c/ Jordi Girona 1-3, 08034 Barcelona (Catalonia, Spain)
{aqueralt, teniente}@lsi.upc.edu

Abstract. This paper describes two different ways of understanding operation
contracts in conceptual modeling. The main difference between them lies in the
way operation postconditions and integrity constraints are guaranteed, which
impacts on the desirable properties of operation contracts according to recom-
mended good practices for requirements specification. Both approaches are
formalized and then compared in a number of issues.

1. Introduction

An information system maintains a representation of the state of a domain in its in-
formation base. The state of the information base is the set of instances of the entity
and relationship types defined in the conceptual schema. Additionally, a conceptual
schema contains a set of integrity constraints that define conditions that each state of
the information base should satisfy.

The content of the information base changes due to the execution of operations.
The effect of an operation on the information base is usually defined by means of pre
and postconditions. A precondition expresses a condition that the information base
must satisfy when the call to the operation is done. A postcondition expresses a condi-
tion that the information base must satisfy after the application of the operation.

Several books on conceptual modeling deal both with the structural and the behav-
ioural part of a conceptual schema and give precise definitions for integrity con-
straints and also for pre and postconditions [5, 10, 11, 13, 17, 19-21]. However, they
usually pay little attention to the precise semantics of operation contracts since in
general they do not establish an explicit relation between operation postconditions and
the integrity constraints defined in the conceptual schema.

This is an important open issue in conceptual modeling since the semantics of an
operation should precisely define both the conditions under which the operation can
be applied as well as the new information base state obtained as a result of its execu-
tion. The latter cannot be done if we do not establish precisely how the satisfaction of
integrity constraints is guaranteed once the operation postcondition is satisfied.

In this paper we propose two different interpretations to define the semantics of
operation contracts: a strict interpretation and an extended one. The main difference
between them lies in the way postconditions and integrity constraints are guaranteed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41825855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

A strict interpretation assumes a passive behaviour of operations, since it prevents
an operation from being applied if some integrity constraint is violated (although both
its pre and postconditions are satisfied). Instead, an extended interpretation entails a
reactive behaviour of operations, since it must take care of maintaining integrity con-
straints satisfaction whenever they are violated, so that the operation will always be
applied if its precondition is satisfied.

We provide formal definitions for both strict and extended interpretations and we
illustrate them with several examples. Moreover, we also compare them in a number
of issues from the point of view of the characteristics of a good software specification.

The main contribution of our work is twofold. First, we clearly state the relation-
ship between integrity constraints and operation postconditions, an issue not yet
enough clarified in conceptual modeling. Second, we show that a strict interpretation
of operation contracts provides several advantages over an extended one as far con-
ceptual modeling is concerned.

Our work is independent of any specific conceptual modeling language and, thus,
our results can be applied to any of them provided that it allows the definition of op-
erations and explicit integrity constraints. In addition, our results can be applied to
almost all current conceptual modeling approaches like [5, 10, 11, 13, 15, 17, 19].

Next section reviews related work. Section 3 presents basic concepts and an exam-
ple used throughout the paper. Section 4 defines the strict and extended interpreta-
tions, while section 5 compares them. In section 6 we provide some experimental re-
sults and, finally, we present our conclusions and point out future work in section 7.

2. Related Work

Previous work on conceptual modeling provides precise definitions for integrity con-
straints and also definitions for pre and postconditions, but sometimes without explic-
itly establishing a clear relation between them. In this way, they generally pay little
attention to the precise semantics of operation contracts, in the sense of how the satis-
faction of integrity constraints is guaranteed after each operation execution.

In many proposals, integrity constraints are usually kept separated from the discus-
sion about operation contracts. In [11, 17, 19-21] definitions are given for integrity
constraints and for pre and postconditions, but the implications that constraints have
on the way of specifying operation contracts are not discussed. Even in [10] it is said
explicitly that integrity constraints are not included in the discussion about pre and
postconditions for the sake of simplicity.

On the contrary, the relationship between operation contracts and integrity con-
straints is clearly established in [5, 13, 15]. According to them, the state of the infor-
mation base resulting from the execution of an operation must satisfy both the post-
condition and the integrity constraints every time the precondition is satisfied. As we
will see, this semantics corresponds to our extended interpretation of operation con-
tracts, which as we will discuss presents several drawbacks from the point of view of
the characteristics of a good software specification.

The previous discussion does not concern proposals that do not allow the explicit
definition of integrity constraints in the conceptual schema, like Taxis [14].

 3

3. Basic Concepts

The conceptual schema of an information system must include all relevant static and
dynamic aspects of its domain [9]. The part of a conceptual schema that deals with
static aspects is called the structural schema, and the part that deals with dynamic as-
pects is called the behavioural schema.

A structural schema consists of a taxonomy of entity types together with their at-
tributes, a taxonomy of relationship types among entity types, and a set of integrity
constraints over the state of the domain, which define conditions that each state of the
information base must satisfy. Those constraints may have a graphical representation
or can be defined by means of a particular language.

The content of the information base changes due to the execution of operations. A
behavioural schema contains a set of operations and the definition of their effect on
the information base. This knowledge is usually defined by the preconditions and
postconditions of the operations. A precondition expresses a condition that must be
satisfied when the call to the operation is done. A postcondition expresses a condition
that the new state of the information base must satisfy. Changes in an information
base state are defined by means of a set of one or more structural events to be applied,
which are drawn from the operation pre and postconditions.

A structural event is an elementary change in the population of an entity or rela-
tionship type, i.e. the creation or deletion of instances. The precise number and mean-
ing of structural events depend on the conceptual modeling language used. In this pa-
per, we will use the following kinds of structural events1:

- Entity insertion: insert(EntityType(attribute1,...,attributen)).
- Entity deletion: delete(EntityType(object)).
- Entity generalization (an object is moved from an entity type to its supertype):

generalize(object, EntityType).
- Entity specialization (an object is moved from an entity type to one of its sub-

types): specialize(object, EntityType(attribute1,...,attributen)).
- Relationship insertion: newLink(RelationshipType(participant1,...,participantn,

[attr1,...,attrn])).
The application of a set of structural events to a state IB of the information base re-

sults in a new state IB’ of the same information base. Given a state of the information
base IB, there are several sets of structural events that lead to new states satisfying an
operation postcondition. From those, we are only interested in the minimal ones. A set
S of structural events is minimal if no proper subset of S is also a set of structural
events that satisfies the postcondition. This is the way in which we deal with the
frame problem [2].

We present a conceptual schema that models the domain of Internet auctions,
which will serve as an example throughout the paper. In an auction site, items are
owned by users, and may be auctioned for a certain period of time, during which the
auction is open. Users registered in the site can place several bids for an auctioned
item, as long as the auction is not closed. The amount of a new bid must be greater
than all the bids placed so far.

1 Other kinds of structural events exist but we only define those used in our examples.

 4

Figure 1 shows a UML class diagram specifying this information. The additional
constraints needed are textually defined and then formalized in OCL [16]. Without
loss of generality, we will also make a textual description and an OCL formalization
of operation contracts.

Fig. 1. Class diagram for Internet auctions

Integrity constraints

- Users are identified by e-mail
context User inv emailIsUnique:
User.allInstances()->isUnique(e-mail)

- Items are identified by code
context Item inv codeIsUnique:
Item.allInstances()->isUnique(code)

- The amount of a bid must be greater than the amount of all the previous bids of the
same auction
context Bid inv amountAbovePreviousBids:
self.auction.bid->select(time.instant < self.time.instant)->
forall(amount < self.amount)

4. Semantics of Operation Contracts

As we said, an operation precondition expresses requirements that any call must sat-
isfy in order to be correct, while its postcondition expresses properties that are en-
sured in return by the execution of the call [12].

In addition to preconditions and postconditions, invariants play an important role in
the definition of the semantics of operation contracts. Every operation may assume
that the invariants are true when it is entered and must in return ensure that they are
true on its completion [8]. From the point of view of conceptual modeling, invariants
capture semantic properties of the domain and are represented by means of integrity
constraints that restrict the possible states of the information base. In this sense, those
constraints express global properties of the state and, thus, they must be preserved by
all the operations. The semantics of operation contracts in conceptual modeling we
identify in this paper differ mainly on the way integrity constraints are considered.

User

Unregistered

Item

Auction

OpenAuction ClosedAuction

Time

bidder

0..1 *
*

Bid

{disjoint, complete}

Registered

{disjoint, complete}

e-mail : string

date : DateTime

code : string

beginning : DateTime
ending : DateTime

instant : DateTime

amount : Money

Owns

ow ner1

*

Auctioned in

1

*

credit-card : string

 5

Given an information base IB and an operation Op, the semantics of Op defines the
conditions under which Op can be applied and the new IB’ we obtain as a result of
applying Op to IB.

4.1. Strict and Extended Interpretations of an Operation Contract

Let IB and IB’ be states of the information base. Let Op(IB, IB’) denote that IB’ is the
result of applying an operation Op on IB. Let Pre and Post be the precondition and the
postcondition of Op and S be the minimal set of structural events that satisfies Post
when applied to IB2. Let IB’ = S(IB) denote that IB’ is obtained as a result of applying
to IB all the structural events in S. Let IC be the set of integrity constraints defined in
the conceptual schema.

Definition 1: Strict Interpretation of an Operation Op
∀ IB, IB’ such that Op(IB, IB’) the following three conditions hold:

a) IB ⊨ Pre ∧ IC
b) IB’ = S(IB)
c) IB’ ⊨ Post ∧ IC

Intuitively, the first condition states that there is a transition from an information
base IB to an information base IB’ as a result of applying an operation Op only if IB
satisfies Pre and it is consistent (i.e. it satisfies all integrity constraints). Moreover,
according to the second condition, IB’ is obtained exactly as a result of applying to IB
the minimal set S of structural events that satisfies Post. Finally, the third condition
requires IB’ to satisfy Post (always true according to b)) and to be consistent. If any of
the conditions does not hold, then Op is not applied to IB.

To illustrate the previous definition, assume the following contract for an operation
newUser aimed at registering new users in our Internet auctions domain:
Operation: newUser(email: String, creditCard: String)
Pre: --there is not a user with e-mail=email

not User.allInstances() → exists(u u.e-mail=email)
Post: --a new instance u of Registered, identified by

email and with credit-card=creditCard is created

u.oclIsNew() and u.oclIsTypeOf(Registered) and
u.e-mail = email and u.credit-card = creditCard

Fig. 2. Contract for the operation newUser

We have that S={insert(Registered(email,creditCard))} suffices to satisfy the post-
condition of newUser(email,creditCard) in any IB.

We are going to show the conditions under which newUser can be applied to IB
and the new IB’ resulting of applying newUser according to the strict semantics. We
distinguish two different situations depending on the contents of IB:

1. IB contains a user identified by email. In this case, the operation may not be
applied since condition a) of the strict interpretation is not satisfied.

2 Exceptionally, several minimal sets S may exist but only in those cases when some kind of

random behaviour is desired. Any of them can be arbitrarily chosen then.

 6

2. IB does not contain any user identified by email. Then:
− a) is guaranteed, since Pre is satisfied and IB is consistent.
− b) states that IB’ = S(IB), i.e. IB’ is obtained just by inserting a registered

user with email and creditCard into IB.
− IB’, as obtained according to b), satisfies c) since S necessarily satisfies the

postcondition and applying S to IB never violates any integrity constraint.
Note that the only integrity constraint that newUser may violate is the first
one (emailIsUnique) but this will never happen when IB does not contain
any user with the same email.

Summarizing, we have that according to a strict interpretation the semantics of the
operation newUser is the following. If IB does not contain any user identified by
email then the operation results on the application of the structural event in-
sert(Registered(email,creditCard)). Otherwise, the operation may not be applied since
Pre is not satisfied and, thus, not all the necessary conditions hold.

Definition 2: Extended Interpretation of an Operation Op
∀ IB, IB’ such that Op(IB, IB’) the following four conditions hold:

a) IB ⊨ Pre ∧ IC
b) IB’ = S2(IB) and S ⊆ S2
c) IB’ ⊨ Post ∧ IC
d) ¬∃ S3, S ⊆ S3 ⊂ S2 such that S3(IB) ⊨ Post ∧ IC

The first condition states, as before, that the transition is only possible if IB satis-
fies Pre and it is consistent. The second condition asserts now that to obtain IB’ at
least the structural events in S must be applied. However, it does not discard the ap-
plication of additional structural events to IB. The third condition requires IB’ to sat-
isfy Post and to be consistent. Finally, the fourth condition states a minimality condi-
tion on S2 in the sense that there is no proper subset of S2 that satisfies Post and IC.

From previous proposals, [5, 13, 15] follow an extended interpretation to define the
semantics of operation contracts.

As we said before, the main difference between both interpretations relies on how
integrity constraints are handled. As stated in Definition 1, a strict interpretation de-
fines a set of structural events S, determined only by the postcondition, to perform the
transition from IB to IB’ according to Op. S may only be applied to IB if it does not
lead to a violation of any integrity constraint. Otherwise, Op must be rejected.

On the contrary, an extended interpretation allows for several different sets of
structural events Si to be applied to IB, provided that all of them include at least the
events in S and satisfy the minimality condition. The additional structural events in Si
must be such that they guarantee that no constraint is violated in the resulting state,
even though some of them were violated by the events in S. Clearly, if S itself does
not violate any constraint there is no need to consider additional structural events.

If we assume now an extended interpretation of the operation in Figure 2, we have
that when IB contains a user identified by email the operation will not be executed. If
this does not happen, the application of S={insert(Registered(email,creditCard))} suf-
fices also to satisfy the four conditions of Definition 2, following the same reasoning
as for the strict interpretation. Hence, we have in this particular example that the se-

 7

mantics of strict and extended interpretations coincide. The main reason for that coin-
cidence is that no integrity constraint is violated by S and, thus, the application of S is
enough to obtain IB’ in both cases.

We see, however, an important drawback in the previous operation contract. The
problem is that, in this example, the operation precondition is redundant since the
same aspect of the specified system (users are identified by e-mail) is already guaran-
teed by the first integrity constraint. As stated in [3], non-redundant conceptual sche-
mas provide several advantages regarding desirable properties of software specifica-
tions and ease of design and implementation.

To avoid redundancy in the specification of the operation newUser we should de-
fine an operation contract like the one in Figure 2 but with an empty precondition.
The set S will be the same (S={insert(Registered(email,creditCard))}). However, we
have now that the semantics of both interpretations does not coincide anymore.

In a strict interpretation, the semantics of newUser would be the same as the one
stated above. We show it by distinguishing again the same situations:

1. IB contains a user identified by email. Then:
− a) is guaranteed, since Pre is True and IB is consistent.
− b) states that IB’ = S(IB), i.e. IB’ is obtained just by inserting a registered

user with email and creditCard into IB.
− c) is not satisfied since IB’ will always violate the first integrity constraint.
We have then that newUser may not be applied in such an IB since it is impos-
sible to satisfy all conditions required by a strict interpretation.

2. IB does not contain any user identified by email. Then:
− a) is guaranteed.
− b) states that IB’ = S(IB).
− IB’, as obtained according to b), satisfies c) since S necessarily satisfies the

postcondition and applying S to IB never violates any integrity constraint.

In an extended interpretation, we must distinguish also the same two situations:
1. IB contains a user user identified by email. Then:

− a) is guaranteed.
− b) states that IB’ = S2(IB) and S ⊆ S2. i.e., any information base resulting

from applying a set S2 of structural events that contains
S={insert(Registered(email,creditCard))} will satisfy this condition.

− c) states that IB’ must imply both the postcondition (this is always true
since S necessarily satisfies it) and all integrity constraints. Since S itself
violates the first integrity constraint, S2 must be a superset of S.

− d) states that S2 must be minimal, and adding delete(User(user)) to S suf-
fices both to satisfy this condition and repair the previous violation.

2. IB does not contain any user identified by email. The behaviour in this situa-
tion is the same as the one of the strict interpretation.

Summarizing, the semantics of the non-redundant operation contract for newUser
according to an extended interpretation is the following. If IB does not contain a user
identified by email the operation results in the application of the structural event in-
sert(Registered(email,creditCard)). Otherwise, i.e. IB contains a user u identified by

 8

email, it results on the application of S2 = S ∪ {delete(User(user))}, in order to satisfy
the postcondition and repair the violation.

As a result of the previous discussion, we may conclude that an extended interpre-
tation implicitly entails a reactive behaviour of operations, since it must take care of
maintaining integrity constraints satisfaction whenever they are violated, so that the
operation is always be executed if its precondition is satisfied (and it is possible to
maintain all integrity constraints). Instead, a strict interpretation assumes a passive
behaviour of the operations, since it prevents the operation from being applied if some
integrity constraint is violated.

We may establish a certain parallelism between the semantics we have just defined
and the notions of partial and total correctness in axiomatic computer programming
[7]. In fact, our strict interpretation semantics is somehow inspired by partial correct-
ness, when adapted to conceptual modeling and taking integrity constraints into ac-
count. In a similar way, our extended interpretation is inspired by total correctness.
The similarity between our semantics and those of axiomatic programming lies in the
fact that in total correctness the postcondition is always satisfied as long as the pre-
condition is, as in our extended interpretation. On the other hand, in partial correct-
ness, the satisfaction of the precondition does not necessarily imply the satisfaction of
the postcondition, as happens in our strict interpretation of operation contracts.

4.2. More on the Strict Interpretation

We will further illustrate the semantics of the strict interpretation by means of some
examples. We start by specifying the following contract for an operation bid, aimed at
allowing users to place bids in our Internet auctions domain:
Operation: bid(u:Registered, a:OpenAuction, amt:Money)
Pre:
Post: --a new instance b of Bid, with amount amt and de-

fined by the user u, the auction a and the current
time is created

b.oclIsNew() and b.oclIsTypeOf(Bid) and b.bidder = u
and b.auction=a and b.amount=amt and b.time=now()

Fig. 3. Contract for the operation bid

For the sake of non-redundancy, we assume that the precondition is empty, but the
behaviour of this operation would be exactly the same if it included (redundantly)
statements to guarantee that no integrity constraint is violated.

The minimal set of structural events that satisfies Post is S={newLink
(Bid(u,a,currentTime,amt))}. So, according to a strict interpretation, the semantics of
bid is the following. If amt is greater than the amount of all the previous bids of a,
then the operation results on the application of the structural event
newLink(Bid(u,a,currentTime,amt)). Otherwise, the operation cannot be applied since
it would violate the constraint amountAbovePreviousBids. Note that this interpretation
corresponds with the expected semantics of an operation bid.

The next example is useful to illustrate the main drawback of the strict interpreta-
tion. If we want to define an operation unregisterUser aimed at unregistering regis-
tered users, we could specify the following operation contract:

 9

Operation: unregisterUser(u:Registered)
Pre:
Post: --user u becomes instance of Unregistered in the

current time and ceases to be instance of Registered

u.oclIsTypeOf(Unregistered) and
u.oclAsType(Unregistered).date = now() and
not u.oclIsTypeOf(Registered)

Fig. 4. Contract for the operation unregisterUser

According to a strict interpretation, the minimal set of structural events that satis-
fies Post is S={specialize(u, Unregistered(now)), generalize(u, Registered)}. Then,
according to Definition 1, IB' is obtained from IB by inserting u as an instance of Un-
registered and removing him from Registered. Note that this operation always results
in a state IB' satisfying both the postcondition and the integrity constraints.

Clearly, the previous semantics is the expected one for the operation unregister-
User. However, the postcondition of the contract explicitly states that u must not be a
registered user any more. Moreover, the class diagram already entails that if u is Un-
registered (as enforced also by the contract postcondition) u may not be Registered
(because of the disjointness constraint). So, we could argue whether the same behav-
iour could be achieved by removing “not u.oclIsTypeOf(Registered)” from Post.

The problem is that if we do that, a strict interpretation of the contract would never
allow to apply the operation unregisterUser since the information base resulting from
just inserting u as an unregistered user (the minimal set of structural events that would
satisfy now the postcondition) would always violate the disjointness constraint.
Hence, a strict interpretation requires to state “not u.oclIsTypeOf(Registered)” in the
operation postcondition.

4.3. More on the Extended Interpretation

We will further illustrate first the semantics of the extended interpretation by taking
the previous example into account and assuming the following contract for the opera-
tion unregisterUser:
Operation: unregisterUser(u:Registered)
Pre:
Post: --user u becomes now instance of Unregistered

u.oclIsTypeOf(Unregistered) and
u.oclAsType(Unregistered).date = now()

Fig. 5. Contract for the operation unregisterUser

According to Definition 2, the semantics of the previous contract when assuming
an extended interpretation is the following:
− a) is guaranteed.
− b) states that IB’ = S2(IB) and S ⊆ S2, S={specialize(u, Unregistered(now))}.
− Note that the application of S alone would violate the disjointness constraint of

the User specialization. Then, according to c), S2 must be a superset of S.
− The minimal superset of S that satisfies both Post and IC is S2 = S ∪ {general-

ize(u, Registered)}.

 10

As a conclusion, we have in this example that an extended interpretation does not
present the same drawback than a strict one, since we do not need to specify in the
postcondition of unregisterUser that u is not registered anymore. The reason is that
the reactive behaviour of an extended interpretation when some constraint is violated
will suffice to detect it (even if it is not explicitly specified, as in the contract of Fig-
ure 5) and conclude that the previous contract requires always the application of two
structural events: {specialize(u, Unregistered(now)), generalize(u, Registered)}.

To illustrate the main drawback of the extended interpretation we will consider
again the contract of Figure 3 for an operation bid. As before, we assume that the op-
eration has no precondition (to achieve non-redundancy) while the postcondition as-
serts that a new bid is created for the given registered user and open auction. We dis-
tinguish two relevant situations:

1. amt is greater than the amount of all the previous bids of a. Then the operation
results on the application of S={newLink(Bid(u,a,now,amt))}, the minimal set
of structural events that satisfies Post, since it does not violate any constraint.

2. On the contrary, the application of S alone would result in the violation of the
integrity constraint amountAbovePreviousBids. To avoid this violation, addi-
tional structural events should be taken into account. In particular, they should
repair the violation either decreasing or eliminating previous bids.

According to this, the previous operation contract admits two different sets of
structural events to be applied to IB. In addition to the events in S, one of them con-
tains structural events to decrease the amount of previous bids, while the other con-
tains the deletion of previous bids (note that both of them satisfy both Post and IC).
Clearly, both alternatives correspond to completely different business rules. Hence, a
random behaviour of such operation contract is not acceptable.

This is a clear example to show that assuming an extended interpretation can easily
lead to ambiguous contracts. The problem is that, as stated in the IEEE Recommended
Practice for Software Requirements Specifications (SRS) [1], a good SRS must be
unambiguous in the sense that each requirement, and in particular the ones stated in
the operation contracts, must have a unique understanding.

There are two possible ways to avoid ambiguity. One possibility is to strengthen
the operation precondition to ensure that no integrity constraint violation will be pro-
duced. In the previous example this would be done with the contract:
Operation: bid(u:Registered, a:OpenAuction, amt:Money)
Pre: --the amount amt is above the amount of all previous

bids for the same auction

a.bid-> forall(amount < amt)
Post: --a new instance b of Bid, with amount amt and de-

fined by the user u, the auction a and the current
time is created

b.oclIsNew() and b.oclIsTypeOf(Bid) and b.bidder=u
and b.auction=a and b.time=now() and b.amount=amt

Fig. 6. A redundant contract for the operation bid

The problem is that this way to avoid ambiguity results in a redundant operation
precondition. As we said before, this situation (although being acceptable) would not
follow suggested good practices of conceptual modeling [3].

 11

The second possibility in order to avoid ambiguity is to explicitly state in the op-
eration postcondition the way to repair integrity constraints violations, as we have to
do in a strict interpretation. This could be done in the previous example by choosing,
for each integrity constraint, one of the two possible ways to repair the constraint vio-
lation (i.e. either to decrease the amount of previous bids or to delete them) and speci-
fying the corresponding OCL expression in the operation postcondition.

Note that there are some situations where an extended interpretation is not ambigu-
ous without the need for specifying additional information in the operation contracts.
The example of Figure 5 allows illustrating them. In this example, a disjointness con-
straint is violated and, since the only possible way to repair it is by deleting u as a reg-
istered user, no ambiguity exists at all. In general, the extended interpretation of an
operation contract will not be ambiguous when all integrity constraints that are vio-
lated by the operation execution allow only for a single repair.

4.4 Summarizing Strict and Extended Interpretations

As we said, the main differences between strict and extended interpretations lie in the
way integrity constraints are enforced. That is, when there is no violation of integrity
constraints, the semantics of a given operation contract is equivalent in both interpre-
tations. In this case, the new information base state is always obtained by the applica-
tion of the minimal set S of structural events that satisfy the operation postcondition.

However, if the violation of some constraint occurs when applying the structural
events in S, the semantics of the contract depends on the interpretation chosen.

On the one hand, under a strict interpretation the violation of a constraint entails
that the operation is not applied and, thus, the information base remains unchanged.
For this reason, no redundant checks in the precondition are needed. A strict interpre-
tation of the contract of bid in Figure 3 serves as an example of this situation.

Alternatively, if we do not want the operation to be rejected, its postcondition must
explicitly state how to satisfy the constraints after the operation execution. This can
be seen in the contract for unregisterUser in Figure 4.

On the other hand, under an extended interpretation the operation may be applied
even though some constraint is violated by S, and the new state of the information
base is obtained by means of the application of a set of structural events S’, a superset
of S, that guarantees that no constraint is violated. Note that S’ is unique as long as
there is a single way to guarantee the constraints, as shown in section 4.3 with a dis-
jointness constraint violation. If S’ is not unique, as usually happens in practice, the
operation contract is ambiguous. To avoid ambiguities, we must specify in the post-
condition the way to preserve consistency (as must be done in a strict interpretation).

Alternatively, if we want to maintain consistency by rejecting the operation, its
precondition must include redundant checks to ensure that the operation execution
does not violate the constraints. An example of this situation can be found in the con-
tract for the operation bid specified in Figure 2.

We summarize in Table 1 how (in addition to the intended behaviour of the opera-
tion) we should specify the treatment of integrity constraints in a contract, depending
both on the interpretation chosen and whether we want the operation to be rejected or
applied when the events in S violate some integrity constraint.

 12

Table 1. Avoiding integrity constraint violations

 Reject the operation Apply the operation

Strict Nothing else needs to be done Specify how to satisfy the constraints in Post

Extended Add redundant checks to Pre Specify how to satisfy the constraints in Post
(if the contract is ambiguous)

5. Discussion

We compare both approaches from the point of view of the relevant characteristics of
a good software requirements specification (SRS) [1, 4]. As recommended also in [1,
4], we assume an unambiguous operation contract specification. In general, this is al-
ways true in a strict interpretation, since a deterministic behaviour is usually desired.
Regarding the extended interpretation, we will concentrate in this section on those
situations where non-ambiguity is achieved by strengthening either the operation pre
or postcondition, since this is the most frequent case in practice.

5.1. Completeness

An SRS is complete if it includes, among others, the definition of the responses of the
software to all realizable classes of input data in all realizable classes of situations.

From this point of view, both approaches can be considered complete. An extended
interpretation avoids erroneous execution of an operation by means of its precondition
while a strict one assumes that the response to undesired situations is the rejection of
the changes done by the operation. Moreover, when the precondition is not satisfied,
both approaches act the same way: rejecting the operation.

For instance, understanding the operation bid (see Figure 3) from the point of view
of an extended interpretation, we always obtain a defined result when the precondition
is satisfied, which is exactly the one specified in the postcondition (a new bid is cre-
ated and associated to the user and auction specified as parameters and the current
time) plus the additional changes, if any, required to satisfy all integrity constraints.

Understanding bid from a strict interpretation, we have two kinds of results when
the precondition holds. In those cases where no integrity constraint is violated, the re-
sulting state of the information base is the one specified in the postcondition, as oc-
curs with an extended interpretation. On the other hand, when some integrity con-
straint is violated, bid is rejected and the information base remains unchanged.

5.2. Consistency

An SRS is consistent if, and only if, no subset of individual requirements described in
it conflict.

Although none of the approaches leads directly to an inconsistent specification, a
strict interpretation facilitates having a consistent one while an extended interpretation
is more prone to the specification of conflicting requirements. The reason is that,

 13

since integrity constraints are sometimes specified both in the structural schema and
as preconditions of operations in the behavioural schema, they can be in contradiction
and, therefore, lead to an inconsistent specification.

For instance, it will be more difficult to keep the specification of bid consistent
with the operation contract specified in Figure 6 than with the one specified in Figure
3, both of them having the same behaviour. The reason is that we could easily have
specified in the precondition of the first contract that the amount of a bid must be
greater or equal than the amount of the previous bids for the same auction, which
would be clearly inconsistent with the integrity constraint amountAbovePreviousBids,
which forces a bid to be higher than the previous ones.

5.3. Verifiability

An SRS is verifiable if, and only if, every requirement stated therein is verifiable. A
requirement is verifiable if, and only if, there exists some finite cost-effective process
with which a person or machine can check that the software product meets the re-
quirement.

Unlike the previous criterion, verifiability is more easily achieved by an extended
interpretation. Although both approaches allow the verification of the software prod-
uct, this process can become more complicated assuming a strict interpretation due to
the dispersion of the requirements affecting an operation.

For example, to verify the correct behaviour of the operation bid as defined in Fig-
ure 3 we must also take into account the integrity constraint amountAbovePrevious-
Bids. Taking, however, the contract in Figure 6, no additional information is needed
in order to verify it.

5.4. Modifiability

An SRS is modifiable if, and only if, its structure and style are such that any changes
to the requirements can be made easily, completely, and consistently. Modifiability
generally requires an SRS not to be redundant.

With regards to modifiability, again an extended interpretation is more prone to er-
rors due to the necessary duplication of integrity constraints in the preconditions.
When changing a requirement, it is easy to forget changing it in every precondition it
appears, which, as well as wasting more time, can lead to inconsistencies.

Suppose that a requirement changes, for instance we want to enforce that a bid may
only be placed if it is a 5 % higher than the highest previous one for the same auction.
In this case, the integrity constraint amountAbovePreviousBids must be changed in
order to express this requirement. Moreover, with an extended interpretation we will
also have to modify the precondition of the operation bid (see Figure 6) stating again
the same condition in order to be consistent, and take care of doing the same in every
contract affected by the change. However, with a strict interpretation, we need not
make any additional changes, since requirements stated by integrity constraints are
stated only in the structural schema.

We find, much less frequently, a similar drawback when the postcondition already
specifies how to maintain a certain integrity constraint. This drawback is shared by

 14

both approaches. On the one hand, a strict interpretation needs to specify this reactive
behaviour always in the postcondition. On the other, an extended interpretation re-
quires to do the same to guarantee there is only one possible reaction to the violation
of each integrity constraint.

5.5. Conciseness

Given two SRS for the same system, each exhibiting identical levels of all the previ-
ously mentioned qualities, the SRS that is shorter is better.

Taking conciseness into account, it is clear that the a strict interpretation approach
helps to get shorter specifications, since each integrity constraint is specified in ex-
actly one place.

It can easily be seen just by comparing again the contracts of Figures 3 and 6. It is
clear that the one in Figure 3, corresponding to a strict interpretation, is shorter and,
however, both of them have the same meaning.

5.6. Summary

The following table summarizes the discussion in this section. Rows correspond to
desirable properties of a good software requirements specification while columns re-
fer to the interpretations we have defined in this paper. A in a cell denotes the con-
venience of the corresponding interpretation in order to achieve the property.

Table 2. Comparison of the approaches

 Extended interpretation Strict interpretation
Completeness
Consistency
Verifiability
Modifiability
Conciseness

As we can see, completeness is achieved in both interpretations; consistency,
modifiability and conciseness are easier to achieve in a strict interpretation; and veri-
fiability in an extended one. For this reason, we may conclude that a strict interpreta-
tion of operation contracts provides in general several advantages over an extended
one regarding conceptual modeling.

6. Experimental Tests

We have applied the ideas discussed in this paper in the specification of some real-life
applications, far beyond the simple examples we have used so far to illustrate them. In
particular, we have developed a generic conceptual schema for the e-marketplace do-
main [18]. This conceptual schema is specified in UML, in combination with OCL, to
formalize the structural and the behavioural properties of this information system.

 15

Our generic e-marketplace conceptual schema has been drawn from an external
study of some well-known e-marketplaces and auction-sites like eBay, OnSale and
Amazon, as well as the job search site Monster, and it covers the main functionalities
provided by an e-marketplace: determining product offerings, searching for products
and price discovery. The whole specification includes about ninety integrity con-
straints and fifty operations that may modify the state of the information base.

We used a strict interpretation of operation contracts in the specification of this
conceptual schema. The main reason for this choice was the requirement to avoid am-
biguity. In an extended interpretation, this is achieved by (redundantly) including the
information provided by the constraints in the preconditions of the operations that
may violate them. However, with such a huge amount of operations and integrity con-
straints it becomes very difficult to identify all integrity constraints that may be vio-
lated by an operation execution.

On the contrary, nothing had to be done to avoid ambiguity in a strict interpreta-
tion. Therefore, the assumption of a strict interpretation notably simplified the task of
developing the specification. This is an important additional advantage of a strict in-
terpretation beyond the ones already pointed out in the previous section.

Another example that assumes a strict interpretation of operation contracts can be
found in [6], where a conceptual schema for EU-Rent, a car rental company which
provides typical rental services, is provided. This conceptual schema consists of about
fifty integrity constraints and eighty non-query operations, and similar conclusions
can be drawn from its specification regarding the different semantics of operation
contracts.

7. Conclusions and Further Work

The main goal of this paper has been to clarify the semantics of operation contracts in
conceptual modeling. In this sense, we have proposed two different interpretations of
operation contracts, a strict and an extended one, which differ on the way to under-
stand the relationship between operation postconditions and integrity constraints.

Roughly speaking, a strict interpretation prevents an operation from being applied
if some integrity constraint is violated. On the contrary, an extended interpretation as-
sumes its semantics must take care of maintaining integrity constraints when they are
violated as a consequence of applying the events that satisfy the postcondition.

We have provided formal definitions for the strict and the extended interpretations
and we have compared them in a number of issues from the point of view of the char-
acteristics of a good software specification. From our discussion, we may conclude
that a strict interpretation does better than an extended one as far as consistency,
modifiability and conciseness of the conceptual schema are concerned; an extended is
better regarding verifiability, and they both present similar contributions with respect
to completeness. Moreover, from our experimental tests we have learnt that a strict in-
terpretation considerably simplifies the task of developing a specification. In this way,
we have shown that a strict interpretation of operation contracts provides several ad-
vantages over an extended one.

 16

Our work is independent of any specific conceptual modeling language and, thus,
our results can be applied to any of them provided that it allows the definition of in-
tegrity constraints in the structural schema and operations in the behavioural one.

Further work may be devoted to study whether state diagrams impact in the inter-
pretations we have proposed since there is a close relationship between the events that
cause state transitions, operation postconditions and integrity constraints.

References

[1] IEEE Recommended Practice for Software Requirements Specifications (IEEE Std 830-1998).
(1998)

[2] Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure specifications. IEEE
Transactions on Software Engineering 21(10) (1995) 785-798

[3] Costal, D., Sancho, M. R., Teniente, E.: Understanding Redundancy in UML Models for Object-
Oriented Analysis. In: Advanced Information Systems Engineering: 14th International Conference,
CAiSE 2002 Proceedings. LNCS 2348 (2002) 659-674

[4] Davis, A. M.: Software Requirements: Objects, Functions and States. Prentice Hall, Englewood
Cliffs (1993)

[5] D'Souza, D. F., Wills, A. C.: Objects, Components and Frameworks. The Catalysis Approach. Addi-
son-Wesley (1998)

[6] Frias, L., Queralt, A., Olivé, A.: EU-Rent Car Rentals Specification. Departament de LSI, UPC,
Technical Report LSI-03-59-R (2003)

[7] Hoare, C. A. R.: An axiomatic basis for computer programming. Commun. ACM 12(10) (1969) 576-
580

[8] Hoare, C. A. R.: Proof of Correctness of Data Representations. Acta Informatica 1(4) (1972) 271-281
[9] ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and the Information

Base. In: J. J. van Griethuysen, (ed.) (1982)
[10] Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design

and the Unified Process. 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ (2002)
[11] Martin, J., Odell, J. J.: Object-Oriented Methods. A Foundation. P T R Prentice Hall, Englewood

Cliffs, New Jersey (1999)
[12] Meyer, B.: Applying 'Design by Contract'. Computer 25(10) (1992) 40-51
[13] Meyer, B.: Object-Oriented Software Construction. 2nd edn. Prentice Hall, New York (1997)
[14] Mylopoulos, J., Bernstein, P. A., Wong, H. K. T.: A Language Facility for Designing Database-

Intensive Applications. ACM Transactions on Database Systems 5(2) (1980) 185-207
[15] Olivé, A.: Definition of Events and their Effects in Object-Oriented Conceptual Modeling Lan-

guages. In: Conceptual Modeling - ER 2004. LNCS 3288 (2004)
[16] OMG: UML 2.0 OCL Specification. (2003)
[17] Pressman, R. S.: Software Engineering: A Practitioner's Approach. 5th edn. McGraw Hill (2001)
[18] Queralt, A., Teniente, E.: A Platform Independent Model for the Electronic Marketplace Domain.

Departament de LSI, UPC, Technical Report LSI-05-9-R (2005)
[19] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented Modeling and

Design. Prentice Hall, Englewood Cliffs, New Jersey (1991)
[20] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual. Addison

Wesley Longman, Reading, Massachusetts (1999)
[21] Wieringa, R.: A Survey of Structured and Object-Oriented Software Specification Methods and

Techniques. ACM Comput. Surv. 30(4) (1998) 459-527

